1
|
Klipp A, Greitens C, Scherer D, Elsener A, Leroux J, Burger M. Modular Calcium-Responsive and CD9-Targeted Phospholipase System Enhancing Endosomal Escape for DNA Delivery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410815. [PMID: 39998318 PMCID: PMC12005733 DOI: 10.1002/advs.202410815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Gene delivery systems must overcome multiple barriers, with endosomal escape representing a prominent obstacle. We have previously shown that a bacterial phospholipase C (PLC) enabled endosomal escape of a non-viral protein-based DNA delivery system termed TFAMoplex. Building upon this, this work introduces a calcium-responsive system designed to enhance endosomal escape through non-covalent capturing of PLC to the TFAMoplex followed by its release within endosomes and nanobody-mediated targeting to the endosomal membrane. This approach leads to improved TFAMoplexes enabling transfection of HeLa cells in full serum with a half maximal effective concentration (EC50) of less than 200 ng DNA per mL serum, using only 5 nM PLC. Particularly, the modular capture, release and targeting system could potentially be adapted to other delivery agents previously constrained by poor endosomal escape. These findings present a promising strategy to achieve efficient endosomal escape, offering prospects for improved delivery of macromolecules, in particular nucleic acids.
Collapse
Affiliation(s)
- Alexander Klipp
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 3Zürich8093Switzerland
| | - Christina Greitens
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 3Zürich8093Switzerland
| | - David Scherer
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 3Zürich8093Switzerland
| | - Alexander Elsener
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 3Zürich8093Switzerland
| | - Jean‐Christophe Leroux
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 3Zürich8093Switzerland
| | - Michael Burger
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 3Zürich8093Switzerland
| |
Collapse
|
2
|
Thankamani K, Shubham D, Kandpal G, Isaac AM, Kavitha MS, Raj VS. Middle East respiratory syndrome coronavirus (MERS-CoV) internalization does not rely on DPP4 cytoplasmic tail signaling. NPJ VIRUSES 2024; 2:67. [PMID: 40295839 PMCID: PMC11721135 DOI: 10.1038/s44298-024-00080-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 04/30/2025]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) infects respiratory epithelial cells in humans and camels by binding to dipeptidyl peptidase 4 (DPP4) as its entry receptor. DPP4 is a multifunctional type II membrane protein with a long ectodomain and a short six-amino-acid (aa) cytoplasmic tail. MERS-CoV is known to bind to the ectodomain of DPP4 to gain entry into the host cell. However, the role of the cytoplasmic tail in the entry process remains unclear. Here, we show that mutating or deleting individual aa residues or the entire cytoplasmic tail of DPP4 (ΔcytDPP4) does not completely prevent DPP4 from being inserted into the membrane or from allowing the binding of the MERS-CoV spike protein and pseudovirus infection. Although two mutants, ΔcytDPP4, and a single aa deleted DPP4 (ΔK6DPP4) displayed less surface presentation than wtDPP4, the spike protein could still bind and localize on different DPP4 mutants. The reduced surface expression of ΔK6DPP4 might be due to the extended transmembrane domain, which is altered by the hydrophobic tryptophan (W) residue adjacent to the deleted K6. Furthermore, HEK293T cells transiently expressing DPP4 mutants were permeable to MERS-CoV pseudovirus infection. Not only transiently expressing cells but also cells stably expressing the ΔcytDPP4 mutant were susceptible to MERS-CoV pseudoviral infection, indicating that the DPP4 cytoplasmic tail is not required for MERS-CoV entry. Overall, these data suggest that, although MERS-CoV binds to DPP4, other host factors may need to interact with DPP4 or the spike protein to trigger internalization.
Collapse
Affiliation(s)
- Karthika Thankamani
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Divakar Shubham
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Gayatri Kandpal
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Ann Mary Isaac
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - Modenkattil Sethumadhavan Kavitha
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India
| | - V Stalin Raj
- Virology Scientific Research (VSR) Laboratory, School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
3
|
Dos Santos Natividade R, Dumitru AC, Nicoli A, Strebl M, Sutherland DM, Welsh OL, Ghulam M, Stehle T, Dermody TS, Di Pizio A, Koehler M, Alsteens D. Viral capsid structural assembly governs the reovirus binding interface to NgR1. NANOSCALE HORIZONS 2024; 9:1925-1937. [PMID: 39347978 PMCID: PMC11441417 DOI: 10.1039/d4nh00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
Understanding the mechanisms underlying viral entry is crucial for controlling viral diseases. In this study, we investigated the interactions between reovirus and Nogo-receptor 1 (NgR1), a key mediator of reovirus entry into the host central nervous system. NgR1 exhibits a unique bivalent interaction with the reovirus capsid, specifically binding at the interface between adjacent heterohexamers arranged in a precise structural pattern on the curved virus surface. Using single-molecule techniques, we explored for the first time how the capsid molecular architecture and receptor polymorphism influence virus binding. We compared the binding affinities of human and mouse NgR1 to reovirus μ1/σ3 proteins in their isolated form, self-assembled in 2D capsid patches, and within the native 3D viral topology. Our results underscore the essential role of the concave side of NgR1 and emphasize that the spatial organization and curvature of the virus are critical determinants of the stability of the reovirus-NgR1 complex. This study highlights the importance of characterizing interactions in physiologically relevant spatial configurations, providing precise insights into virus-host interactions and opening new avenues for therapeutic interventions against viral infections.
Collapse
Affiliation(s)
- Rita Dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Andra C Dumitru
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
| | - Alessandro Nicoli
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
- Chemoinformatics and Protein Modelling, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Michael Strebl
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Danica M Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Olivia L Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mustafa Ghulam
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Terence S Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
- Chemoinformatics and Protein Modelling, Department of Molecular Life Sciences, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- Leibniz Institute for Food Systems Biology, Technical University of Munich, Freising, Germany.
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
- WELBIO department, WEL Research Institute, 1300 Wavre, Belgium
| |
Collapse
|
4
|
Doyle CA, Busey GW, Iobst WH, Kiessling V, Renken C, Doppalapudi H, Stremska ME, Manjegowda MC, Arish M, Wang W, Naphade S, Kennedy J, Bloyet LM, Thompson CE, Rothlauf PW, Stipes EJ, Whelan SPJ, Tamm LK, Kreutzberger AJB, Sun J, Desai BN. Endosomal fusion of pH-dependent enveloped viruses requires ion channel TRPM7. Nat Commun 2024; 15:8479. [PMID: 39353909 PMCID: PMC11445543 DOI: 10.1038/s41467-024-52773-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
The majority of viruses classified as pandemic threats are enveloped viruses which enter the cell through receptor-mediated endocytosis and take advantage of endosomal acidification to activate their fusion machinery. Here we report that the endosomal fusion of low pH-requiring viruses is highly dependent on TRPM7, a widely expressed TRP channel that is located on the plasma membrane and in intracellular vesicles. Using several viral infection systems expressing the envelope glycoproteins of various viruses, we find that loss of TRPM7 protects cells from infection by Lassa, LCMV, Ebola, Influenza, MERS, SARS-CoV-1, and SARS-CoV-2. TRPM7 ion channel activity is intrinsically necessary to acidify virus-laden endosomes but is expendable for several other endosomal acidification pathways. We propose a model wherein TRPM7 ion channel activity provides a countercurrent of cations from endosomal lumen to cytosol necessary to sustain the pumping of protons into these virus-laden endosomes. This study demonstrates the possibility of developing a broad-spectrum, TRPM7-targeting antiviral drug to subvert the endosomal fusion of low pH-dependent enveloped viruses.
Collapse
Affiliation(s)
- Catherine A Doyle
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Gregory W Busey
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Wesley H Iobst
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Chloe Renken
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Hansa Doppalapudi
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Marta E Stremska
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Mohan C Manjegowda
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Weiming Wang
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Nikegen Inc., Shanghai, China
| | - Shardul Naphade
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Joel Kennedy
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Louis-Marie Bloyet
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Cassandra E Thompson
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Eric J Stipes
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Alex J B Kreutzberger
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Boston Children's Hospital, Boston, MA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Bimal N Desai
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA.
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Yakimovich A. Machine Learning and Artificial Intelligence for the Prediction of Host-Pathogen Interactions: A Viral Case. Infect Drug Resist 2021; 14:3319-3326. [PMID: 34456575 PMCID: PMC8385421 DOI: 10.2147/idr.s292743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/03/2021] [Indexed: 01/27/2023] Open
Abstract
The research of interactions between the pathogens and their hosts is key for understanding the biology of infection. Commencing on the level of individual molecules, these interactions define the behavior of infectious agents and the outcomes they elicit. Discovery of host-pathogen interactions (HPIs) conventionally involves a stepwise laborious research process. Yet, amid the global pandemic the urge for rapid discovery acceleration through the novel computational methodologies has become ever so poignant. This review explores the challenges of HPI discovery and investigates the efforts currently undertaken to apply the latest machine learning (ML) and artificial intelligence (AI) methodologies to this field. This includes applications to molecular and genetic data, as well as image and language data. Furthermore, a number of breakthroughs, obstacles, along with prospects of AI for host-pathogen interactions (HPI), are discussed.
Collapse
|
6
|
Fuentes P, Sesé M, Guijarro PJ, Emperador M, Sánchez-Redondo S, Peinado H, Hümmer S, Ramón Y Cajal S. ITGB3-mediated uptake of small extracellular vesicles facilitates intercellular communication in breast cancer cells. Nat Commun 2020; 11:4261. [PMID: 32848136 PMCID: PMC7450082 DOI: 10.1038/s41467-020-18081-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/31/2020] [Indexed: 11/08/2022] Open
Abstract
Metastasis, the spread of malignant cells from a primary tumour to distant sites, causes 90% of cancer-related deaths. The integrin ITGB3 has been previously described to play an essential role in breast cancer metastasis, but the precise mechanisms remain undefined. We have now uncovered essential and thus far unknown roles of ITGB3 in vesicle uptake. The functional requirement for ITGB3 derives from its interactions with heparan sulfate proteoglycans (HSPGs) and the process of integrin endocytosis, allowing the capture of extracellular vesicles and their endocytosis-mediated internalization. Key for the function of ITGB3 is the interaction and activation of focal adhesion kinase (FAK), which is required for endocytosis of these vesicles. Thus, ITGB3 has a central role in intracellular communication via extracellular vesicles, proposed to be critical for cancer metastasis.
Collapse
Affiliation(s)
- Pedro Fuentes
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Marta Sesé
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain
| | - Pedro J Guijarro
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Marta Emperador
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Tumor Biomarkers Group, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Sara Sánchez-Redondo
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Héctor Peinado
- Microenvironment & Metastasis Group, Molecular Oncology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Stefan Hümmer
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain.
| | - Santiago Ramón Y Cajal
- Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Madrid, Spain.
| |
Collapse
|
7
|
Pérez-Gracia MT, Suay-García B, García M, Mateos-Lindemann ML. Hepatitis E: latest developments in knowledge. Future Microbiol 2016; 11:789-808. [PMID: 27203841 DOI: 10.2217/fmb-2016-0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis E, caused by Hepatitis E virus (HEV), is a highly prevalent disease in developing countries. In developed nations, autochthonous HEV infections seem to be an emergent disease. Its clinical manifestations and epidemiology are well known for endemic countries. It has been confirmed that hepatitis E is a zoonosis and that parenteral transmission can also occur. The molecular mechanisms of HEV replication are not fully understood, mostly because there are no efficient cell culture systems. HEV can cause chronic hepatitis in organ transplant recipients and immunocompetent patients. Cases with fulminant hepatitis and other extrahepatic manifestations have also been reported. The diagnosis is based on serological studies and detection of HEV RNA in blood and feces. Treatment with ribavirin and/or pegylated-IFN-α have proven to be successful in some cases. The recently approved/marketed vaccine is a good option in order to prevent this infection.
Collapse
Affiliation(s)
- M Teresa Pérez-Gracia
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avenida Seminario s/n 46113, Moncada, Valencia, Spain
| | - Beatriz Suay-García
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avenida Seminario s/n 46113, Moncada, Valencia, Spain
| | - Mario García
- Área de Microbiología, Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad CEU Cardenal Herrera, Avenida Seminario s/n 46113, Moncada, Valencia, Spain
| | - M Luisa Mateos-Lindemann
- Unidad de Virología, Servicio de Microbiología, Hospital Universitario Ramón y Cajal, Ctra. Colmenar Km 9,1, Madrid 28034, Spain
| |
Collapse
|