1
|
Fang F, Chen D, Basharat AR, Poulos W, Wang Q, Cibelli JB, Liu X, Sun L. Quantitative proteomics reveals the dynamic proteome landscape of zebrafish embryos during the maternal-to-zygotic transition. iScience 2024; 27:109944. [PMID: 38784018 PMCID: PMC11111832 DOI: 10.1016/j.isci.2024.109944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/23/2023] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Maternal-to-zygotic transition (MZT) is central to early embryogenesis. However, its underlying molecular mechanisms are still not well described. Here, we revealed the expression dynamics of 5,000 proteins across four stages of zebrafish embryos during MZT, representing one of the most systematic surveys of proteome landscape of the zebrafish embryos during MZT. Nearly 700 proteins were differentially expressed and were divided into six clusters according to their expression patterns. The proteome expression profiles accurately reflect the main events that happen during the MZT, i.e., zygotic genome activation (ZGA), clearance of maternal mRNAs, and initiation of cellular differentiation and organogenesis. MZT is modulated by many proteins at multiple levels in a collaborative fashion, i.e., transcription factors, histones, histone-modifying enzymes, RNA helicases, and P-body proteins. Significant discrepancies were discovered between zebrafish proteome and transcriptome profiles during the MZT. The proteome dynamics database will be a valuable resource for bettering our understanding of MZT.
Collapse
Affiliation(s)
- Fei Fang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Abdul Rehman Basharat
- Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| | - William Poulos
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - Jose B. Cibelli
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Xiaowen Liu
- Deming Department of Medicine, School of Medicine, Tulane University, 1441 Canal Street, New Orleans, LA 70112, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Huang J, Sun L, Mennigen JA, Liu Y, Liu S, Zhang M, Wang Q, Tu W. Developmental toxicity of the novel PFOS alternative OBS in developing zebrafish: An emphasis on cilia disruption. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124491. [PMID: 33223314 DOI: 10.1016/j.jhazmat.2020.124491] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
In recent years, sodium p-perfluorous nonenoxybenzene sulfonate (OBS) has emerged as a substitute for PFOS with large demand and application in the Chinese market. However, little is known about potential developmental effects of OBS. In this study, zebrafish embryos were acutely exposed to different concentrations of OBS and the positive control PFOS for a comparative developmental toxicity assessment. OBS caused hatching delays, body axis curvature, neurobehavioral inhibition and abnormal cardiovascular development. These organismal effects were accompanied by change of development related genes expression profile, in which some cases were similar to PFOS. Overall, the toxic effects induced by OBS were generally milder than that of PFOS. Further investigation suggested that both OBS and PFOS disrupted ciliogenesis, evidenced by the ciliary immunostaining, changes in gene expression of kinesin family, dynein arm family and tubulin family members, as well as downregulation of the abundance of motor proteins including KIF3C, DYNC1H1 and DYNC1LI1. The influence of PFOS was stronger than that of OBS on ciliary genes and proteins. Molecular docking analysis revealed that both OBS and PFOS fitted into the motor proteins tightly, but binding affinity between OBS and motor proteins was lower than PFOS. Collectively, OBS and PFOS may act on ciliary motor proteins to interfere with ciliogenesis, leading to ciliary dysfunction and providing a novel probable action mode linked to developmental toxicity. This raises concerns regarding the health risks of the novel PFOS alternative OBS.
Collapse
Affiliation(s)
- Jing Huang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China; Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | | | - Yu Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Shuai Liu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Miao Zhang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Qiyu Wang
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China.
| |
Collapse
|
3
|
Cassioli C, Baldari CT. A Ciliary View of the Immunological Synapse. Cells 2019; 8:E789. [PMID: 31362462 PMCID: PMC6721628 DOI: 10.3390/cells8080789] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/15/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
The primary cilium has gone from being a vestigial organelle to a crucial signaling hub of growing interest given the association between a group of human disorders, collectively known as ciliopathies, and defects in its structure or function. In recent years many ciliogenesis proteins have been observed at extraciliary sites in cells and likely perform cilium-independent functions ranging from regulation of the cytoskeleton to vesicular trafficking. Perhaps the most striking example is the non-ciliated T lymphocyte, in which components of the ciliary machinery are repurposed for the assembly and function of the immunological synapse even in the absence of a primary cilium. Furthermore, the specialization traits described at the immunological synapse are similar to those seen in the primary cilium. Here, we review common regulators and features shared by the immunological synapse and the primary cilium that document the remarkable homology between these structures.
Collapse
Affiliation(s)
- Chiara Cassioli
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy.
| |
Collapse
|
4
|
Narumanchi S, Kalervo K, Perttunen S, Wang H, Immonen K, Kosonen R, Laine M, Ruskoaho H, Tikkanen I, Lakkisto P, Paavola J. Inhibition of let-7c Regulates Cardiac Regeneration after Cryoinjury in Adult Zebrafish. J Cardiovasc Dev Dis 2019; 6:jcdd6020016. [PMID: 30987331 PMCID: PMC6617397 DOI: 10.3390/jcdd6020016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022] Open
Abstract
The let-7c family of micro-RNAs (miRNAs) is expressed during embryonic development and plays an important role in cell differentiation. We have investigated the role of let-7c in heart regeneration after injury in adult zebrafish. let-7c antagomir or scramble injections were given at one day after cryoinjury (1 dpi). Tissue samples were collected at 7 dpi, 14 dpi and 28 dpi and cardiac function was assessed before cryoinjury, 1 dpi, 7 dpi, 14 dpi and 28 dpi. Inhibition of let-7c increased the rate of fibrinolysis, increased the number of proliferating cell nuclear antigen (PCNA) positive cardiomyocytes at 7 dpi and increased the expression of the epicardial marker raldh2 at 7 dpi. Additionally, cardiac function measured with echocardiography recovered slightly more rapidly after inhibition of let-7c. These results reveal a beneficial role of let-7c inhibition in adult zebrafish heart regeneration.
Collapse
Affiliation(s)
- Suneeta Narumanchi
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Karri Kalervo
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Department of Surgery, South Karelia Central Hospital, 53130 Lappeenranta, Finland.
| | - Sanni Perttunen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Hong Wang
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Katariina Immonen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Riikka Kosonen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
| | - Mika Laine
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Heart and Lung Center, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland.
| | - Heikki Ruskoaho
- Drug Research Programme, Division of Pharmacology and Pharmacotherapy, University of Helsinki, 00014 Helsinki, Finland.
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland.
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, 00014 Helsinki, Finland.
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, 00290 Helsinki, Finland.
- Clinical Neurosciences, Neurology, University of Helsinki and Jorvi Hospital of Helsinki University Hospital, 02740 Espoo, Finland.
| |
Collapse
|
5
|
Polianskyte-Prause Z, Tolvanen TA, Lindfors S, Dumont V, Van M, Wang H, Dash SN, Berg M, Naams JB, Hautala LC, Nisen H, Mirtti T, Groop PH, Wähälä K, Tienari J, Lehtonen S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity. FASEB J 2019; 33:2858-2869. [PMID: 30321069 PMCID: PMC6338644 DOI: 10.1096/fj.201800529rr] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/24/2018] [Indexed: 01/05/2023]
Abstract
Metformin, the first-line drug to treat type 2 diabetes (T2D), inhibits mitochondrial glycerolphosphate dehydrogenase in the liver to suppress gluconeogenesis. However, the direct target and the underlying mechanisms by which metformin increases glucose uptake in peripheral tissues remain uncharacterized. Lipid phosphatase Src homology 2 domain-containing inositol-5-phosphatase 2 (SHIP2) is upregulated in diabetic rodent models and suppresses insulin signaling by reducing Akt activation, leading to insulin resistance and diminished glucose uptake. Here, we demonstrate that metformin directly binds to and reduces the catalytic activity of the recombinant SHIP2 phosphatase domain in vitro. Metformin inhibits SHIP2 in cultured cells and in skeletal muscle and kidney of db/db mice. In SHIP2-overexpressing myotubes, metformin ameliorates reduced glucose uptake by slowing down glucose transporter 4 endocytosis. SHIP2 overexpression reduces Akt activity and enhances podocyte apoptosis, and both are restored to normal levels by metformin. SHIP2 activity is elevated in glomeruli of patients with T2D receiving nonmetformin medication, but not in patients receiving metformin, compared with people without diabetes. Furthermore, podocyte loss in kidneys of metformin-treated T2D patients is reduced compared with patients receiving nonmetformin medication. Our data unravel a novel molecular mechanism by which metformin enhances glucose uptake and acts renoprotectively by reducing SHIP2 activity.-Polianskyte-Prause, Z., Tolvanen, T. A., Lindfors, S., Dumont, V., Van, M., Wang, H., Dash, S. N., Berg, M., Naams, J.-B., Hautala, L. C., Nisen, H., Mirtti, T., Groop, P.-H., Wähälä, K., Tienari, J., Lehtonen, S. Metformin increases glucose uptake and acts renoprotectively by reducing SHIP2 activity.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Hypoglycemic Agents/pharmacology
- Kidney Diseases/prevention & control
- Male
- Metformin/pharmacology
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/antagonists & inhibitors
- Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism
- Podocytes/cytology
- Podocytes/drug effects
- Podocytes/metabolism
- Rats
Collapse
Affiliation(s)
| | | | - Sonja Lindfors
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Vincent Dumont
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mervi Van
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Hong Wang
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Surjya N. Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Mika Berg
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | | | - Laura C. Hautala
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Harry Nisen
- Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, University of Helsinki, Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Central Clinical School, Monash University, Melbourne, Victoria, Australia; and
| | - Kristiina Wähälä
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, Hyvinkää, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Akhmetova KA, Chesnokov IN, Fedorova SA. [Functional Characterization of Septin Complexes]. Mol Biol (Mosk) 2018; 52:155-171. [PMID: 29695686 DOI: 10.7868/s0026898418020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/27/2016] [Indexed: 12/28/2022]
Abstract
Septins belong to a family of conserved GTP-binding proteins found in majority of eukaryotic species except for higher plants. Septins form nonpolar complexes that further polymerize into filaments and associate with cell membranes, thus comprising newly acknowledged cytoskeletal system. Septins participate in a variety of cell processes and contribute to various pathophysiological states, including tumorigenesis and neurodegeneration. Here, we review the structural and functional properties of septins and the regulation of their dynamics with special emphasis on the role of septin filaments as a cytoskeletal system and its interaction with actin and microtubule cytoskeletons. We also discuss how septins compartmentalize the cell by forming local protein-anchoring scaffolds and by providing barriers for the lateral diffusion of the membrane proteins.
Collapse
Affiliation(s)
- K A Akhmetova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia.,University of Alabama at Birmingham, Birmingham, 35294 USA.,Novosibirsk National Research State University, Novosibirsk, 630090 Russia
| | - I N Chesnokov
- University of Alabama at Birmingham, Birmingham, 35294 USA
| | - S A Fedorova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090 Russia.,Novosibirsk National Research State University, Novosibirsk, 630090 Russia.,
| |
Collapse
|
7
|
Neubauer K, Neubauer B, Seidl M, Zieger B. Characterization of septin expression in normal and fibrotic kidneys. Cytoskeleton (Hoboken) 2018; 76:143-153. [PMID: 30019536 DOI: 10.1002/cm.21473] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 01/22/2023]
Abstract
Chronic kidney disease (CKD) is characterized by the loss of nephrons and worsening organ-fibrosis that leads to deterioration and ultimately the total breakdown of kidney function. Renal fibrosis has become a major public health problem worldwide and necessitates hemodialysis and kidney transplantation in affected patients. CKD is mainly characterized by the activation and proliferation of interstitial fibroblasts and by excessive synthesis and accumulation of extracellular matrix components, causing the disruption of the normal tissue architecture of the kidney. Septins are GTPase proteins associated with membranes, actin filaments, and microtubules and are undoubtedly crucial for cytoskeleton organization. Although some septins are involved in liver fibrosis, they have not been investigated in the context of renal fibrosis. Here, we show that numerous septins are expressed in the healthy kidney and demonstrate in fibrotic mouse kidneys that various septins are remarkably up-regulated in the tubulointerstitium compared to contralateral control kidneys. We observed the same findings in human fibrotic kidneys. In both healthy and fibrotic kidneys, septins are coexpressed with extracellular matrix components, reinforcing the structural function of septins as cytoskeletal components. Furthermore, we could show in septin 8-deficient mice that septin 8 is dispensable for the formation of renal fibrosis, and that no other septin was compensatory changed in kidneys compared to wild-type mice.
Collapse
Affiliation(s)
- Katharina Neubauer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bjoern Neubauer
- Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Maximilian Seidl
- Faculty of Medicine, Medical Center, Institute of Clinical Pathology, University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Neubauer K, Boeckelmann D, Koehler U, Kracht J, Kirschner J, Pendziwiat M, Zieger B. Hereditary neuralgic amyotrophy in childhood caused by duplication within the SEPT9 gene: A family study. Cytoskeleton (Hoboken) 2018; 76:131-136. [PMID: 30019529 PMCID: PMC6585727 DOI: 10.1002/cm.21479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/28/2018] [Accepted: 07/10/2018] [Indexed: 01/24/2023]
Abstract
Hereditary neuralgic amyotrophy (HNA) is an autosomal dominant disorder associated with episodic, recurrent, and painful neuropathies affecting the nerves of the brachial plexus. In this study, we report on a family of Lebanese descent with HNA onset in early childhood. The affected family members presented with platelet dysfunction. Platelet aggregation was reduced after stimulation with the agonists ADP and epinephrine in all affected family members. Flow cytometric analyses revealed impaired platelet δ‐secretion. The index patient and one brother suffered from kidney cysts. Molecular genetic analysis revealed a heterozygous duplication of exon 2 within the septin 9 (SEPT9) gene in all the affected family members. Such a young child with HNA (aged 2 years) caused by SEPT9 duplication has not been described so far.
Collapse
Affiliation(s)
- Katharina Neubauer
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Doris Boeckelmann
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Udo Koehler
- Department of Medical Genetics, MGZ - Medical Genetics Center, Munich, Germany
| | - Julia Kracht
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Janbernd Kirschner
- Department of Neuropediatrics and Muscle Disorders, University Medical Center, Faculty of Medicine, University of Freiburg, Germany
| | - Manuela Pendziwiat
- Department of Neuropediatrics, Christian-Albrechts-University of Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Barbara Zieger
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Wasik AA, Dash SN, Lehtonen S. Septins in kidney: A territory little explored. Cytoskeleton (Hoboken) 2018; 76:154-162. [PMID: 30004646 PMCID: PMC6585700 DOI: 10.1002/cm.21477] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
Septins are a conserved family of GTP‐binding proteins that assemble into cytoskeletal filaments to function in a highly sophisticated and physiologically regulated manner. Originally septins were discovered in the budding yeast as membrane‐associated filaments that affect cell polarity and cytokinesis. In the last decades, much progress has been made in understanding the biochemical properties and cell biological functions of septins. In line with this, mammalian septins have been shown to be involved in various cellular processes, including regulation of cell polarity, cytoskeletal organization, vesicle trafficking, ciliogenesis, and cell–pathogen interactions. A growing number of studies have shown that septins play important roles in tissue and organ development and physiology; yet, little is known about their role in the kidney. In the following review, we discuss the structure and functions of septins in general and summarize the evidence for their presence and roles in the kidney.
Collapse
Affiliation(s)
- Anita A Wasik
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Surjya N Dash
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
|
11
|
Abstract
Shigella is a leading cause of dysentery worldwide, responsible for up to 165 million cases of shigellosis each year. Shigella is also recognised as an exceptional model pathogen to study key issues in cell biology and innate immunity. Several infection models have been useful to explore Shigella biology; however, we still lack information regarding the events taking place during the Shigella infection process in vivo Here, we discuss a selection of mechanistic insights recently gained from studying Shigella infection of zebrafish (Danio rerio), with a focus on cytoskeleton rearrangements and cellular immunity. We also discuss how infection of zebrafish can be used to investigate new concepts underlying infection control, including emergency granulopoiesis and the use of predatory bacteria to combat antimicrobial resistance. Collectively, these insights illustrate how Shigella infection of zebrafish can provide fundamental advances in our understanding of bacterial pathogenesis and vertebrate host defence. This information should also provide vital clues for the discovery of new therapeutic strategies against infectious disease in humans.
Collapse
Affiliation(s)
- Gina M Duggan
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
12
|
Abstract
Shigella flexneri, a Gram-negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. Infection by S. flexneri has been well-studied in vitro and is a paradigm for bacterial interactions with the host immune system. Recent work has revealed that components of the cytoskeleton have important functions in innate immunity and inflammation control. Septins, highly conserved cytoskeletal proteins, have emerged as key players in innate immunity to bacterial infection, yet septin function in vivo is poorly understood. Here, we use S. flexneri infection of zebrafish (Danio rerio) larvae to study in vivo the role of septins in inflammation and infection control. We found that depletion of Sept15 or Sept7b, zebrafish orthologs of human SEPT7, significantly increased host susceptibility to bacterial infection. Live-cell imaging of Sept15-depleted larvae revealed increasing bacterial burdens and a failure of neutrophils to control infection. Strikingly, Sept15-depleted larvae present significantly increased activity of Caspase-1 and more cell death upon S. flexneri infection. Dampening of the inflammatory response with anakinra, an antagonist of interleukin-1 receptor (IL-1R), counteracts Sept15 deficiency in vivo by protecting zebrafish from hyper-inflammation and S. flexneri infection. These findings highlight a new role for septins in host defence against bacterial infection, and suggest that septin dysfunction may be an underlying factor in cases of hyper-inflammation.
Collapse
|
13
|
Dash SN, Narumanchi S, Paavola J, Perttunen S, Wang H, Lakkisto P, Tikkanen I, Lehtonen S. Sept7b is required for the subcellular organization of cardiomyocytes and cardiac function in zebrafish. Am J Physiol Heart Circ Physiol 2017; 312:H1085-H1095. [DOI: 10.1152/ajpheart.00394.2016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/28/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022]
Abstract
Myofibrils made up of actin, myosin, and associated proteins generate the contractile force in muscle, and, consequently, mutations in these proteins may lead to heart failure. Septins are a conserved family of small GTPases that associate with actin filaments, microtubules, and cellular membranes. Despite the importance of septins in cytoskeleton organization, their role in cardiomyocyte organization and function is poorly characterized. Here, we show that septin 7 is expressed in both embryonic and adult zebrafish hearts and elucidate the physiological significance of sept7b, the zebrafish ortholog of human septin 7, in the heart in embryonic and larval zebrafish. Knockdown of sept7b reduced F-actin and α-cardiac actin expression in the heart and caused disorganization of actin filaments. Electron microscopy of sept7b-depleted larvae showed disorganization of heart myofibrils and partial detachment from Z-disks. Functional studies revealed that knockdown of sept7b leads to reduced ventricular dimensions, contractility, and cardiac output. Furthermore, we found that depletion of sept7b diminished the expression of retinaldehyde dehydrogenase 2, which catalyzes the synthesis of retinoic acid necessary for heart morphogenesis. We further observed that the sept7b and retinoic acid signaling pathways converge to regulate cardiac function. Together, these results specify an essential role for sept7b in the contractile function of the heart. NEW & NOTEWORTHY Knockdown of the zebrafish ortholog of human septin 7 ( sept7b) destabilizes cardiac actin and reduces ventricular dimensions, contractility, and cardiac output in larval zebrafish, indicating that sept7b is essential for cardiac function. We further found that sept7b and retinoic acid signaling pathways converge to regulate cardiac function. These data prompt further studies defining the role of sept7b in cardiomyopathies.
Collapse
Affiliation(s)
| | - Suneeta Narumanchi
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Jere Paavola
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
- Internal Medicine, Jorvi Hospital, Helsinki University Hospital, Espoo, Finland
| | - Sanni Perttunen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
| | - Hong Wang
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Päivi Lakkisto
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
- Clinical Chemistry and Hematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; and
| | - Ilkka Tikkanen
- Unit of Cardiovascular Research, Minerva Institute for Medical Research, Biomedicum Helsinki, Helsinki, Finland
- Abdominal Center, Nephrology, Helsinki University Hospital, Helsinki, Finland
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
14
|
The centrosomal OFD1 protein interacts with the translation machinery and regulates the synthesis of specific targets. Sci Rep 2017; 7:1224. [PMID: 28450740 PMCID: PMC5430665 DOI: 10.1038/s41598-017-01156-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/08/2017] [Indexed: 01/03/2023] Open
Abstract
Protein synthesis is traditionally associated with specific cytoplasmic compartments. We now show that OFD1, a centrosomal/basal body protein, interacts with components of the Preinitiation complex of translation (PIC) and of the eukaryotic Initiation Factor (eIF)4F complex and modulates the translation of specific mRNA targets in the kidney. We demonstrate that OFD1 cooperates with the mRNA binding protein Bicc1 to functionally control the protein synthesis machinery at the centrosome where also the PIC and eIF4F components were shown to localize in mammalian cells. Interestingly, Ofd1 and Bicc1 are both involved in renal cystogenesis and selected targets were shown to accumulate in two models of inherited renal cystic disease. Our results suggest a possible role for the centrosome as a specialized station to modulate translation for specific functions of the nearby ciliary structures and may provide functional clues for the understanding of renal cystic disease.
Collapse
|
15
|
Palander O, El-Zeiry M, Trimble WS. Uncovering the Roles of Septins in Cilia. Front Cell Dev Biol 2017; 5:36. [PMID: 28428954 PMCID: PMC5382219 DOI: 10.3389/fcell.2017.00036] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 03/23/2017] [Indexed: 01/22/2023] Open
Abstract
Septins are a family of GTP-binding proteins that associate with cellular membranes and the cytoskeleton. Their ability to polymerize into filamentous structures permits them to serve as diffusion barriers for membrane proteins and as multi-molecular scaffolds that recruit components of signaling pathways. At the cellular level, septins contribute to the regulation of numerous processes, including cytokinesis, cell polarity, cell migration, and many others. In this review, we discuss emerging evidence for roles of mammalian septins in the biogenesis and function of flagella and cilia, and how this may impact human diseases such as ciliopathies.
Collapse
Affiliation(s)
- Oliva Palander
- Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada.,Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Maha El-Zeiry
- Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada.,Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - William S Trimble
- Cell Biology Program, Hospital for Sick ChildrenToronto, ON, Canada.,Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Physiology, University of TorontoToronto, ON, Canada
| |
Collapse
|
16
|
Helmprobst F, Lillesaar C, Stigloher C. Expression of sept3, sept5a and sept5b in the Developing and Adult Nervous System of the Zebrafish ( Danio rerio). Front Neuroanat 2017; 11:6. [PMID: 28261064 PMCID: PMC5313478 DOI: 10.3389/fnana.2017.00006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/25/2017] [Indexed: 02/04/2023] Open
Abstract
Septins are a highly conserved family of small GTPases that form cytoskeletal filaments. Their cellular functions, especially in the nervous system, still remain largely enigmatic, but there are accumulating lines of evidence that septins play important roles in neuronal physiology and pathology. In order to further dissect septin function in the nervous system a detailed temporal resolved analysis in the genetically well tractable model vertebrate zebrafish (Danio rerio) is crucially necessary. To close this knowledge gap we here provide a reference dataset describing the expression of selected septins (sept3, sept5a and sept5b) in the zebrafish central nervous system. Strikingly, proliferation zones are devoid of expression of all three septins investigated, suggesting that they have a role in post-mitotic neural cells. Our finding that three septins are mainly expressed in non-proliferative regions was further confirmed by double-stainings with a proliferative marker. Our RNA in situ hybridization (ISH) study, detecting sept3, sept5a and sept5b mRNAs, shows that all three septins are expressed in largely overlapping regions of the developing brain. However, the expression of sept5a is much more confined compared to sept3 and sept5b. In contrast, the expression of all the three analyzed septins is largely similar in the adult brain.
Collapse
Affiliation(s)
- Frederik Helmprobst
- Biocenter, Division of Electron Microscopy, University of Würzburg Würzburg, Germany
| | - Christina Lillesaar
- Biocenter, Department of Physiological Chemistry, University of Würzburg Würzburg, Germany
| | - Christian Stigloher
- Biocenter, Division of Electron Microscopy, University of Würzburg Würzburg, Germany
| |
Collapse
|
17
|
Abstract
The pronephros is the first kidney type to form in vertebrate embryos. The first step of pronephrogenesis in the zebrafish is the formation of the intermediate mesoderm during gastrulation, which occurs in response to secreted morphogens such as BMPs and Nodals. Patterning of the intermediate mesoderm into proximal and distal cell fates is induced by retinoic acid signaling with downstream transcription factors including wt1a, pax2a, pax8, hnf1b, sim1a, mecom, and irx3b. In the anterior intermediate mesoderm, progenitors of the glomerular blood filter migrate and fuse at the midline and recruit a blood supply. More posteriorly localized tubule progenitors undergo epithelialization and fuse with the cloaca. The Notch signaling pathway regulates the formation of multi-ciliated cells in the tubules and these cells help propel the filtrate to the cloaca. The lumenal sheer stress caused by flow down the tubule activates anterior collective migration of the proximal tubules and induces stretching and proliferation of the more distal segments. Ultimately these processes create a simple two-nephron kidney that is capable of reabsorbing and secreting solutes and expelling excess water-processes that are critical to the homeostasis of the body fluids. The zebrafish pronephric kidney provides a simple, yet powerful, model system to better understand the conserved molecular and cellular progresses that drive nephron formation, structure, and function.
Collapse
Affiliation(s)
- Richard W Naylor
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Sarah S Qubisi
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
18
|
Willis A, Mazon-Moya M, Mostowy S. Investigation of septin biology in vivo using zebrafish. Methods Cell Biol 2016; 136:221-41. [PMID: 27473912 DOI: 10.1016/bs.mcb.2016.03.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The zebrafish (Danio rerio) is an important animal model to study cell biology in vivo. Benefits of the zebrafish include a fully annotated reference genome, an easily manipulable genome (for example, by morpholino oligonucleotide or CRISPR-Cas9), and transparent embryos for noninvasive, real-time microscopy using fluorescent transgenic lines. Zebrafish have orthologues of most human septins, and studies using larvae were used to investigate the role of septins in vertebrate development. The zebrafish larva is also an established model to study the cell biology of infection and has recently been used to visualize septin assembly during bacterial infection in vivo. Here, we describe protocols for the study of septins in zebrafish, with emphasis on techniques used to investigate the role of septins in host defense against bacterial infection.
Collapse
Affiliation(s)
- A Willis
- Imperial College London, London, United Kingdom
| | | | - S Mostowy
- Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Dash SN, Hakonen E, Ustinov J, Otonkoski T, Andersson O, Lehtonen S. sept7b is required for the differentiation of pancreatic endocrine progenitors. Sci Rep 2016; 6:24992. [PMID: 27114183 PMCID: PMC4845001 DOI: 10.1038/srep24992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/05/2016] [Indexed: 12/14/2022] Open
Abstract
Protection or restoration of pancreatic β-cell mass as a therapeutic treatment for type 1 diabetes requires understanding of the mechanisms that drive the specification and development of pancreatic endocrine cells. Septins are filamentous small GTPases that function in the regulation of cell division, cytoskeletal organization and membrane remodeling, and are involved in various tissue-specific developmental processes. However, their role in pancreatic endocrine cell differentiation remains unknown. Here we show by functional manipulation techniques in transgenic zebrafish lines that suppression of sept7b, the zebrafish ortholog of human SEPT7, profoundly increases the number of endocrine progenitors but limits their differentiation, leading to reduction in β- and α-cell mass. Furthermore, we discovered that shh (sonic hedgehog) expression in the endoderm, essential for the development of pancreatic progenitors of the dorsal pancreatic bud, is absent in larvae depleted of sept7b. We also discovered that sept7b is important for the differentiation of ventral pancreatic bud-derived cells: sept7b-depleted larvae exhibit downregulation of Notch receptors notch1a and notch1b and show precocious differentiation of NeuroD-positive endocrine cells in the intrapancreatic duct and gut epithelium. Collectively, this study provides a novel insight into the development of pancreatic endocrine progenitors, revealing an essential role for sept7b in endocrine progenitor differentiation.
Collapse
Affiliation(s)
| | - Elina Hakonen
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Research Program for Molecular Neurology and Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Sanna Lehtonen
- Department of Pathology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Ong K, Svitkina T, Bi E. Visualization of in vivo septin ultrastructures by platinum replica electron microscopy. Methods Cell Biol 2016; 136:73-97. [PMID: 27473904 PMCID: PMC5497467 DOI: 10.1016/bs.mcb.2016.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Septins are cytoskeletal proteins involved in diverse biological processes including cytokinesis, cell morphogenesis, motility, and ciliogenesis. Septins form various filamentous structures in vitro and in vivo, but the higher-order architecture of septin structures in vivo remains poorly defined. The best understood system in this respect is the budding yeast Saccharomyces cerevisiae, where septins form a ring structure that undergoes multiple stages of remodeling during the cell cycle. In this chapter, we describe a method for visualizing supramolecular septin structures in yeast at high spatial resolution using platinum replica electron microscopy. This approach can be applied to further understand the regulation of assembly and remodeling of septin higher-order structures, as well as the relationship between septin architecture and function.
Collapse
Affiliation(s)
- K. Ong
- University of Pennsylvania, Philadelphia, PA, United States
| | - T. Svitkina
- University of Pennsylvania, Philadelphia, PA, United States
| | - E. Bi
- University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
21
|
Kumar KS, Rajesham B, Ramulu MS, Bhaskar B, Dash SN, Ashfaq MA, Nagarapu R, Khan AA, Lehtonen S, Pal M. Cu-Catalyzed ligand-free synthesis of rosuvastatin based novel indole derivatives as potential anticancer agents. RSC Adv 2016. [DOI: 10.1039/c6ra20148b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rosuvastatin based indoles showed anti-proliferative and apoptotic activities and an increase of p21 mRNA expression levels in zebrafish larvae.
Collapse
Affiliation(s)
- K. Shiva Kumar
- Department of Chemistry
- Osmania University
- Hyderabad-500 007
- India
| | | | | | | | | | - Mohd Ashraf Ashfaq
- Central Laboratory for Stem Cell Research and Translational Medicine
- CLRD Deccan Colleges of Medical Sciences
- Hyderabad-500 058
- India
| | - Raju Nagarapu
- Central Laboratory for Stem Cell Research and Translational Medicine
- CLRD Deccan Colleges of Medical Sciences
- Hyderabad-500 058
- India
| | - Aleem Ahmed Khan
- Central Laboratory for Stem Cell Research and Translational Medicine
- CLRD Deccan Colleges of Medical Sciences
- Hyderabad-500 058
- India
| | - Sanna Lehtonen
- Department of Pathology
- University of Helsinki
- Helsinki
- Finland
| | - Manojit Pal
- Dr Reddy's Institute of Life Sciences
- Hyderabad Central University
- Hyderabad-500 046
- India
| |
Collapse
|
22
|
Dash SN, Lehtonen E, Wasik AA, Schepis A, Paavola J, Panula P, Nelson WJ, Lehtonen S. sept7b is essential for pronephric function and development of left–right asymmetry in zebrafish embryogenesis. Development 2014. [DOI: 10.1242/dev.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|