1
|
Han J, Park H. Recycling of endocytic BDNF through extracellular vesicles in astrocytes. Sci Rep 2025; 15:2011. [PMID: 39814913 PMCID: PMC11735857 DOI: 10.1038/s41598-025-86200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an essential role in regulating diverse neuronal functions in an activity-dependent manner. Although BDNF is synthesized primarily in neurons, astrocytes can also supply BDNF through various routes, including the recycling of neuron-derived BDNF. Despite accumulating evidence for astrocytic BDNF uptake and resecretion of neuronal BDNF, the detailed mechanisms underlying astrocytic BDNF recycling remain unclear. Here, we report that astrocytic resecretion of endocytosed BDNF is mediated by an extracellular vesicle (EV)-dependent secretory pathway. In cultured primary astrocytes, extracellular BDNF was endocytosed into CD63-positive EVs, and stimulation of astrocytes with ATP could evoke the release of endocytosed BDNF from CD63-positive vesicles. Downregulation of vesicle-associated membrane protein 3 (Vamp3) led to an increase in the colocalization of endosomal BDNF and CD63 but a decrease in extracellular vesicle release, suggesting the necessity of Vamp3-dependent signaling for EV-mediated BDNF secretion. Collectively, our findings demonstrate that astrocytic recycling of neuronal BDNF is dependent on the EV-mediated secretory pathway via Vamp3-associated signaling.
Collapse
Affiliation(s)
- Jeongho Han
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Hyungju Park
- Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), Daegu, South Korea.
| |
Collapse
|
2
|
Castillo-Peña A, Molina-Pinelo S. Landscape of tumor and immune system cells-derived exosomes in lung cancer: mediators of antitumor immunity regulation. Front Immunol 2023; 14:1279495. [PMID: 37915578 PMCID: PMC10616833 DOI: 10.3389/fimmu.2023.1279495] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023] Open
Abstract
The immune system plays a critical role in cancer, including lung cancer, which is the leading cause of cancer-related deaths worldwide. Immunotherapy, particularly immune checkpoint blockade, has revolutionized the treatment of lung cancer, but a large subset of patients either do not respond or develop resistance. Exosomes, essential mediators of cell-to-cell communication, exert a profound influence on the tumor microenvironment and the interplay between cancer and the immune system. This review focuses on the role of tumor-derived exosomes and immune cells-derived exosomes in the crosstalk between these cell types, influencing the initiation and progression of lung cancer. Depending on their cell of origin and microenvironment, exosomes can contain immunosuppressive or immunostimulatory molecules that can either promote or inhibit tumor growth, thus playing a dual role in the disease. Furthermore, the use of exosomes in lung cancer immunotherapy is discussed. Their potential applications as cell-free vaccines and drug delivery systems make them an attractive option for lung cancer treatment. Additionally, exosomal proteins and RNAs emerge as promising biomarkers that could be employed for the prediction, diagnosis, prognosis and monitoring of the disease. In summary, this review assesses the relationship between exosomes, lung cancer, and the immune system, shedding light on their potential clinical applications and future perspectives.
Collapse
Affiliation(s)
- Alejandro Castillo-Peña
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville, Spain
| | - Sonia Molina-Pinelo
- Institute of Biomedicine of Seville (IBiS), HUVR, CSIC, University of Seville, Seville, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| |
Collapse
|
3
|
Morisse M, Bourhis T, Lévêque R, Guilbert M, Cicero J, Palma M, Chevalier D, le Bourhis X, Toillon RA, Mouawad F. Influence of EGF and pro-NGF on EGFR/SORTILIN interaction and clinical impact in head and neck squamous cell carcinoma. Front Oncol 2023; 13:661775. [PMID: 37576898 PMCID: PMC10416107 DOI: 10.3389/fonc.2023.661775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) remains a cancer with a poor prognosis, with a 5-year survival rate of less than 50%. Although epidermal growth factor receptor (EGFR) is almost always overexpressed, targeted anti-EGFR therapies have modest efficacy and are mainly used in palliative care. Growth factors such as Nerve Growth Factor (NGF) and its precursor proNGF have been shown in our laboratory to play a role in tumor growth and aggressiveness. Interestingly, an interaction between Sortilin, a proNGF receptor, and EGFR has been observed. This interaction appears to interfere with the pro-oncogenic signaling of EGF and modulate the membrane expression of EGFR. The aim of this study was to characterize this interaction biologically, to assess its impact on clinical prognosis and to analyze its role in the cellular trafficking of EGFR. Using immunohistochemical staining on tumor sections from patients treated at our university center and PLA (Proximity Ligation Assay) labeling, we showed that Sortilin expression is significantly associated with reduced 5-year survival. However, when Sortilin was associated with EGFR, this association was not found. Using the Cal-27 and Cal-33 cancer cell lines, we observed that proNGF reduces the effects of EGF on cell growth by inducing the internalization of its receptor. These results therefore suggest a regulatory role for Sortilin in the degradation or renewal of EGFR on the membrane. It would be interesting in future work to show the intracellular fate of EGFR and the role of (pro)neurotrophins in these mechanisms.
Collapse
Affiliation(s)
- Martin Morisse
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center (CHU) de Lille, University of Lille, Lille, France
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Thomas Bourhis
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center (CHU) de Lille, University of Lille, Lille, France
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Romain Lévêque
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Mathieu Guilbert
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Julien Cicero
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Martine Palma
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Dominique Chevalier
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center (CHU) de Lille, University of Lille, Lille, France
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Xuefen le Bourhis
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Robert-Alain Toillon
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Francois Mouawad
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Center (CHU) de Lille, University of Lille, Lille, France
- Univ. Lille, Inserm, University Hospital Center (CHU) Lille, UMR9020-U1277 - CANTHER – Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| |
Collapse
|
4
|
Message in a Bottle: Endothelial Cell Regulation by Extracellular Vesicles. Cancers (Basel) 2022; 14:cancers14081969. [PMID: 35454874 PMCID: PMC9026533 DOI: 10.3390/cancers14081969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Elucidating the role of extracellular vesicles (EVs) in the communication mechanisms between cancer and endothelial cells (ECs) within the tumor microenvironment is an exciting challenge. At the same time, due to their ability to convey bioactive molecules, EVs may be potentially relevant from a therapeutic perspective for diverse vascular pathologies. Abstract Intercellular communication is a key biological mechanism that is fundamental to maintain tissue homeostasis. Extracellular vesicles (EVs) have emerged as critical regulators of cell–cell communication in both physiological and pathological conditions, due to their ability to shuttle a variety of cell constituents, such as DNA, RNA, lipids, active metabolites, cytosolic, and cell surface proteins. In particular, endothelial cells (ECs) are prominently regulated by EVs released by neighboring cell types. The discovery that cancer cell-derived EVs can control the functions of ECs has prompted the investigation of their roles in tumor angiogenesis and cancer progression. In particular, here, we discuss evidence that supports the roles of exosomes in EC regulation within the tumor microenvironment and in vascular dysfunction leading to atherosclerosis. Moreover, we survey the molecular mechanisms and exosomal cargoes that have been implicated in explanations of these regulatory effects.
Collapse
|
5
|
Syeda S, Rawat K, Shrivastava A. Pharmacological Inhibition of Exosome Machinery: An Emerging Prospect in Cancer Therapeutics. Curr Cancer Drug Targets 2022; 22:560-576. [DOI: 10.2174/1568009622666220401093316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Exosomes are nanocarriers that mediate intercellular communication, crucial for normal physiological functions. However, exponentially emerging reports have correlated their dysregulated release with various pathologies, including cancer. In cancer, from stromal remodeling to metastasis, where tumor cells bypass the immune surveillance and show drug resistivity, it has been established to be mediated via tumor-derived exosomes. Owing to their role in cancer pathogenicity, exosome-based strategies offer enormous potential in treatment regimens. These strategies include the use of exosomes as a drug carrier or as an immunotherapeutic agent, which requires advanced nanotechnologies for exosome isolation and characterization. In contrast, pharmacological inhibition of exosome machinery surpasses the requisites of nanotechnology and thus emerges as an essential prospect in cancer therapeutics. In this line, researchers are currently trying to dissect the molecular pathways to reveal the involvement of key regulatory proteins that facilitate the release of tumor-derived exosomes. Subsequently, screening of various molecules in targeting these proteins, with eventual abatement of exosome-induced cancer pathogenicity, is being done. However, their clinical translation requires more extensive studies. Here we comprehensively review the molecular mechanisms regulating exosome release in cancer. Moreover, we give insight into the key findings that highlight the effect of various drugs as exosome blockers, which will add to the route of drug development in cancer management.
Collapse
Affiliation(s)
- Saima Syeda
- Department of Zoology, University of Delhi, Delhi-110007, India
| | - Kavita Rawat
- Department of Zoology, University of Delhi, Delhi-110007, India
| | | |
Collapse
|
6
|
Sánchez ML, Coveñas R. The Neurotensinergic System: A Target for Cancer Treatment. Curr Med Chem 2021; 29:3231-3260. [PMID: 34711154 DOI: 10.2174/0929867328666211027124328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The scientific interest regarding the involvement of peptides in cancer has increased in the last years. In tumor cells the overexpression of peptides and their receptors is known and new therapeutic targets for the treatment of cancer have been suggested. The overexpression of the neurotensinergic system has been associated with poor prognosis, tumor size, higher tumor aggressiveness, increased relapse risk and worse sensitivity to chemotherapy agents. OBJECTIVE The aim of this review is to update the findings regarding the involvement of the neurotensinergic system in cancer to suggest anticancer therapeutic strategies targeting this system. The neurotensin (NT) precursor, NT and its receptors (NTR) and the involvement of the neurotensinergic system in lung, breast, prostate, gastric, colon, liver and pancreatic cancers, glioblastoma, neuroendocrine tumors and B-cell leukemia will be mentioned and discussed as well as the signaling pathways mediated by NT. Some research lines to be developed in the future will be suggested such as: molecules regulating the expression of the NT precursor, influence of the diet in the development of tumors, molecules and signaling pathways activated by NT and antitumor therapeutic strategies targeting the neurotensinergic system. CONCLUSION NT, via the NTR, exerts oncogenic (tumor cell proliferation, invasion, migration, angiogenesis) and antiapoptotic effects, whereas NTR antagonists inhibit these effects. NTR expression can be used as a diagnostic tool/therapeutic target and the administration of NTR antagonists as antitumor drugs could be a therapeutic strategy to treat tumors overexpressing NTR.
Collapse
Affiliation(s)
- Manuel Lisardo Sánchez
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| | - Rafael Coveñas
- University of Salamanca, Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), Institute of Neurosciences of Castilla y León (INCYL), Salamanca. Spain
| |
Collapse
|
7
|
Charfi C, Demeule M, Currie JC, Larocque A, Zgheib A, Danalache BA, Ouanouki A, Béliveau R, Marsolais C, Annabi B. New Peptide-Drug Conjugates for Precise Targeting of SORT1-Mediated Vasculogenic Mimicry in the Tumor Microenvironment of TNBC-Derived MDA-MB-231 Breast and Ovarian ES-2 Clear Cell Carcinoma Cells. Front Oncol 2021; 11:760787. [PMID: 34751242 PMCID: PMC8571021 DOI: 10.3389/fonc.2021.760787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/06/2021] [Indexed: 01/17/2023] Open
Abstract
Vasculogenic mimicry (VM) is defined as the formation of microvascular channels by genetically deregulated cancer cells and is often associated with high tumor grade and cancer therapy resistance. This microcirculation system, independent of endothelial cells, provides oxygen and nutrients to tumors, and contributes also in part to metastasis. VM has been observed in ovarian cancer and in triple negative breast cancer (TNBC) and shown to correlate with decreased overall cancer patient survival. Thus, strategies designed to inhibit VM may improve cancer patient treatments. In this study, sortilin (SORT1) receptor was detected in in vitro 3D capillary-like structures formed by ES-2 ovarian cancer and MDA-MB-231 TNBC-derived cells when grown on Matrigel. SORT1 gene silencing or antibodies directed against its extracellular domain inhibited capillary-like structure formation. In vitro, VM also correlated with increased gene expression of matrix metalloproteinase-9 (MMP-9) and of the cancer stem cell marker CD133. In vivo ES-2 xenograft model showed PAS+/CD31- VM structures (staining positive for both SORT1 and CD133). TH1904, a Doxorubicin-peptide conjugate that is internalized by SORT1, significantly decreased in vitro VM at low nM concentrations. In contrast, VM was unaffected by unconjugated Doxorubicin or Doxil (liposomal Doxorubicin) up to μM concentrations. TH1902, a Docetaxel-peptide conjugate, altered even more efficiently in vitro VM at pM concentrations. Overall, current data evidence for the first time that 1) SORT1 itself exerts a crucial role in both ES-2 and MDA-MB-231 VM, and that 2) VM in these cancer cell models can be efficiently inhibited by the peptide-drug conjugates TH1902/TH1904. These new findings also indicate that both peptide-drug conjugates, in addition to their reported cytotoxicity, could possibly inhibit VM in SORT1-positive TNBC and ovarian cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Alain Zgheib
- Laboratoire d’Oncologie Moléculaire, Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Bogdan Alexandru Danalache
- Laboratoire d’Oncologie Moléculaire, Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Amira Ouanouki
- Laboratoire d’Oncologie Moléculaire, Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | - Richard Béliveau
- Laboratoire d’Oncologie Moléculaire, Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
| | | | - Borhane Annabi
- Laboratoire d’Oncologie Moléculaire, Département de chimie, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Auger C, Christou N, Brunel A, Perraud A, Verdier M. Autophagy and Extracellular Vesicles in Colorectal Cancer: Interactions and Common Actors? Cancers (Basel) 2021; 13:cancers13051039. [PMID: 33801266 PMCID: PMC7958126 DOI: 10.3390/cancers13051039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a homeostatic process involved in the degradation of disabled proteins and organelles using lysosomes. This mechanism requires the recruitment of specialized proteins for vesicle trafficking, that may also be involved in other types of machinery such as the biogenesis and secretion of extracellular vesicles (EVs), and particularly small EVs called exosomes. Among these proteins, Rab-GTPases may operate in both pathways, thus representing an interesting avenue for further study regarding the interaction between autophagy and extracellular vesicle machinery. Both mechanisms are involved in the development of colorectal cancer (CRC), particularly in cancer stem cell (CSC) survival and communication, although they are not specific to CRC or CSCs. This highlights the importance of studying the crosstalk between autophagy and EVs biogenesis and release.
Collapse
Affiliation(s)
- Clément Auger
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
| | - Niki Christou
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
- Endocrine, General and Digestive Surgery Department, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges CEDEX, France
- Correspondence: ; Tel.: +33-36-8456-9392
| | - Aude Brunel
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
| | - Aurélie Perraud
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
- Endocrine, General and Digestive Surgery Department, Limoges University Hospital, 2 rue Martin Luther King, 87042 Limoges CEDEX, France
| | - Mireille Verdier
- EA 3842, CAPTuR, GEIST, Faculty of Medicine, University of Limoges, 2 rue du Dr Marcland, 87025 Limoges CEDEX, France; (C.A.); (A.B.); (A.P.); (M.V.)
| |
Collapse
|
9
|
Blandin AF, Cruz Da Silva E, Mercier MC, Glushonkov O, Didier P, Dedieu S, Schneider C, Devy J, Etienne-Selloum N, Dontenwill M, Choulier L, Lehmann M. Gefitinib induces EGFR and α5β1 integrin co-endocytosis in glioblastoma cells. Cell Mol Life Sci 2021; 78:2949-2962. [PMID: 33151388 PMCID: PMC11073190 DOI: 10.1007/s00018-020-03686-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022]
Abstract
Overexpression of EGFR drives glioblastomas (GBM) cell invasion but these tumours remain resistant to EGFR-targeted therapies such as tyrosine kinase inhibitors (TKIs). Endocytosis, an important modulator of EGFR function, is often dysregulated in glioma cells and is associated with therapy resistance. However, the impact of TKIs on EGFR endocytosis has never been examined in GBM cells. In the present study, we showed that gefitinib and other tyrosine kinase inhibitors induced EGFR accumulation in early-endosomes as a result of an increased endocytosis. Moreover, TKIs trigger early-endosome re-localization of another membrane receptor, the fibronectin receptor alpha5beta1 integrin, a promising therapeutic target in GBM that regulates physiological EGFR endocytosis and recycling in cancer cells. Super-resolution dSTORM imaging showed a close-proximity between beta1 integrin and EGFR in intracellular membrane compartments of gefitinib-treated cells, suggesting their potential interaction. Interestingly, integrin depletion delayed gefitinib-mediated EGFR endocytosis. Co-endocytosis of EGFR and alpha5beta1 integrin may alter glioma cell response to gefitinib. Using an in vitro model of glioma cell dissemination from spheroid, we showed that alpha5 integrin-depleted cells were more sensitive to TKIs than alpha5-expressing cells. This work provides evidence for the first time that EGFR TKIs can trigger massive EGFR and alpha5beta1 integrin co-endocytosis, which may modulate glioma cell invasiveness under therapeutic treatment.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Department of Oncologic Pathology, Dana Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
| | - Elisabete Cruz Da Silva
- UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS, Université de Strasbourg, 67401, Illkirch, France
| | - Marie-Cécile Mercier
- UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS, Université de Strasbourg, 67401, Illkirch, France
| | - Oleksandr Glushonkov
- UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS, Université de Strasbourg, 67401, Illkirch, France
| | - Pascal Didier
- UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS, Université de Strasbourg, 67401, Illkirch, France
| | - Stéphane Dedieu
- UMR CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Cristophe Schneider
- UMR CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Jessica Devy
- UMR CNRS 7369, Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nelly Etienne-Selloum
- UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS, Université de Strasbourg, 67401, Illkirch, France
- Département de Pharmacie, Centre de Lutte Contre le Cancer Paul Strauss, 67000, Strasbourg, France
| | - Monique Dontenwill
- UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS, Université de Strasbourg, 67401, Illkirch, France
| | - Laurence Choulier
- UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS, Université de Strasbourg, 67401, Illkirch, France
| | - Maxime Lehmann
- UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, CNRS, Université de Strasbourg, 67401, Illkirch, France.
| |
Collapse
|
10
|
Mohammadi R, Hosseini SA, Noruzi S, Ebrahimzadeh A, Sahebkar A. Diagnostic and Therapeutic Applications of Exosome Nanovesicles in Lung Cancer: State-of-The-Art. Anticancer Agents Med Chem 2021; 22:83-100. [PMID: 33645488 DOI: 10.2174/1871520621666210301085318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/30/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is a malignant disease with a frequency of various morbidity, mortality, and poor prognosis in patients that the conventional therapeutic approaches are not efficient sufficiently. Recently, with the discovery of exosomes, researchers have examined new approaches in the development, diagnosis, treatment, and drug delivery of various cancer, such as lung cancer, and display various its potential. Investigation of exosome-derived lung cancer cells contents and preparation of their exhaustive profile by advanced technics such as labeling exosome with nanoparticle and types of mass spectroscopy methods will assist researchers for take advantage of the specific properties of exosomes. Moreover, scientists will present encouraging ways for the treatment of lung cancer with loaded of drugs, proteins, microRNA, and siRNA in specific antigen targeted exosomes. This manuscript will include brief details on the role of exosomes as a novel prognostic biomarker (by the content of lipid, surface and internal protein, miRNAs, and LnRNAs) and therapeutic agent (as vaccine and targeted drug delivery) in lung cancer.
Collapse
Affiliation(s)
- Rezvan Mohammadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran. Iran
| | - Seyede A Hosseini
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Somaye Noruzi
- Department of Biotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd. Iran
| | - Ailin Ebrahimzadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Science, Bojnurd. Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
11
|
Ghaemimanesh F, Mehravar M, Milani S, Poursani EM, Saliminejad K. The multifaceted role of sortilin/neurotensin receptor 3 in human cancer development. J Cell Physiol 2021; 236:6271-6281. [PMID: 33634506 DOI: 10.1002/jcp.30344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sortilin (also known as neurotensin receptor 3) is a multitasking protein implicated in numerous pathophysiological processes, including cancer development, cardiovascular impairment, Alzheimer-type dementia, and depression. Although the definitive role of sortilin in human solid and hematological malignancies has been evidenced, few articles reviewed the task. The aim of the current review is to unravel the mechanisms by which sortilin controls oncogenicity and cancer progression; and also to summarize and discuss the original data obtained from international research laboratories on this topic. Questions on how sortilin is involving in the impairment of cell junctions, in exosomes composition and release, as well as in the regulation of epidermal growth factor receptor trafficking are also responded. In addition, we provide a special focus on the regulatory role of sortilin in signal transduction by either neurotrophins or neurotensin in normal and malignant cells. The relevance of sortilin with normal and cancer stem cells is also discussed. The last section provides a general overview of sortilin applications as a diagnostic and prognostic biomarker in the context of cancer detection. Finally, we comment on the future research aspects in which the field of cancer diagnosis, prognosis, and therapy might be developed.
Collapse
Affiliation(s)
- Fatemeh Ghaemimanesh
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Mehravar
- Department of Anatomy and Developmental Biology, Development and Stem Cells Program, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Saeideh Milani
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ensieh M Poursani
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Abstract
Exosomes are nanoscale extracellular vesicles that can transport cargos of proteins, lipids, DNA, various RNA species and microRNAs (miRNAs). Exosomes can enter cells and deliver their contents to recipient cell. Owing to their cargo exosomes can transfer different molecules to the target cells and change the phenotype of these cells. The fate of the contents of an exosome depends on its target destination. Various mechanisms for exosome uptake by target cells have been proposed, but the mechanisms responsible for exosomes internalization into cells are still debated. Exosomes exposed cells produce labeled protein kinases, which are expressed by other cells. This means that these kinases are internalized by exosomes, and transported into the cytoplasm of recipient cells. Many studies have confirmed that exosomes are not only secreted by living cells, but also internalized or accumulated by the other cells. The "next cell hypothesis" supports the notion that exosomes constitute communication vehicles between neighboring cells. By this mechanism, exosomes participate in the development of diabetes and its associated complications, critically contribute to the spreading of neuronal damage in Alzheimer's disease, and non-proteolysed form of Fas ligand (mFasL)-bearing exosomes trigger the apoptosis of T lymphocytes. Furthermore, exosomes derived from human B lymphocytes induce antigen-specific major histocompatibility complex (MHC) class II-restricted T cell responses. Interestingly, exosomes secreted by cancer cells have been demonstrated to express tumor antigens, as well as immune suppressive molecules. This process is defined as "exosome-immune suppression" concept. The interplay via the exchange of exosomes between cancer cells and between cancer cells and the tumor stroma promote the transfer of oncogenes and onco-miRNAs from one cell to other. Circulating exosomes that are released from hypertrophic adipocytes are effective in obesity-related complications. On the other hand, the "inflammasome-induced" exosomes can activate inflammatory responses in recipient cells. In this chapter protein kinases-related checkpoints are emphasized considering the regulation of exosome biogenesis, secretory traffic, and their impacts on cell death, tumor growth, immune system, and obesity.
Collapse
Affiliation(s)
- Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey.
| |
Collapse
|
13
|
Identification of Sortilin Alternatively Spliced Variants in Mouse 3T3L1 Adipocytes. Int J Mol Sci 2021; 22:ijms22030983. [PMID: 33498179 PMCID: PMC7863940 DOI: 10.3390/ijms22030983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/06/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus is a metabolic disorder defined by systemic insulin resistance. Insulin resistance in adipocytes, an important regulator of glucose metabolism, results in impaired glucose uptake. The trafficking protein, sortilin, regulates major glucose transporter 4 (Glut4) movement, thereby promoting glucose uptake in adipocytes. Here, we demonstrate the presence of an alternatively spliced sortilin variant (Sort17b), whose levels increase with insulin resistance in mouse 3T3L1 adipocytes. Using a splicing minigene, we show that inclusion of alternative exon 17b results in the expression of Sort17b splice variant. Bioinformatic analysis indicated a novel intrinsic disorder region (IDR) encoded by exon 17b of Sort17b. Root mean square deviation (RMSD) and root mean square fluctuation (RMSF) measurements using molecular dynamics demonstrated increased flexibility of the protein backbone within the IDR. Using protein–protein docking and co-immunoprecipitation assays, we show robust binding of Glut4 to Sort17b. Further, results demonstrate that over-expression of Sort17b correlates with reduced Glut4 translocation and decreased glucose uptake in adipocytes. The study demonstrates that insulin resistance in 3T3L1 adipocytes promotes expression of a novel sortilin splice variant with thus far unknown implications in glucose metabolism. This knowledge may be used to develop therapeutics targeting sortilin variants in the management of type 2 diabetes and metabolic syndrome.
Collapse
|
14
|
Blondy S, Talbot H, Saada S, Christou N, Battu S, Pannequin J, Jauberteau M, Lalloué F, Verdier M, Mathonnet M, Perraud A. Overexpression of sortilin is associated with 5-FU resistance and poor prognosis in colorectal cancer. J Cell Mol Med 2021; 25:47-60. [PMID: 33325631 PMCID: PMC7810928 DOI: 10.1111/jcmm.15752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Even if 5-fluorouracil (5-FU) is used as the first-line chemotherapeutic drug, responsiveness is only 20-30%. Acquired resistance to 5-FU contributes to both poor patient prognosis and relapse, emphasizing the need to identify biomarkers. Sortilin, a vacuolar protein sorting 10 protein (Vps10p), implicated in protein trafficking, is over expressed in CRC cell lines cultured 72 hours in presence of 5-FU. This overexpression was also observed in 5-FU-resistant cells derived from these cell lines as well as in CRC primary cultures (or patients derived cell lines). A significantly higher expression of sortilin was observed in vivo, in 5-FU-treated tumours engrafted in Nude mice, as compared with non-treated tumour. A study of transcriptional regulation allowed identifying a decrease in ATF3 expression, as an explanation of sortilin overexpression following 5-FU treatment. In silico analysis revealed SORT1 expression correlation with poor prognosis. Moreover, sortilin expression was found to be positively correlated with CRC tumour grades. Collectively, our findings identify sortilin as a potential biomarker of 5-FU resistance associated with poor clinical outcomes and aggressiveness in CRC. As a new prognostic factor, sortilin expression could be used to fight against CRC.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Aged
- Aged, 80 and over
- Animals
- Cell Line, Tumor
- Colorectal Neoplasms/drug therapy
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/pathology
- Disease-Free Survival
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Fluorouracil/therapeutic use
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Male
- Mice, Nude
- Neoplasm Grading
- Prognosis
- Protein Transport/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Treatment Outcome
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Sabrina Blondy
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Hugo Talbot
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Sofiane Saada
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Niki Christou
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
- Service de Chirurgie DigestiveEndocrinienne et GénéraleCHU de LimogesLimogesFrance
| | - Serge Battu
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Julie Pannequin
- IGFUniversité MontpellierCNRSINSERMMontpellier Cedex 5France
| | - Marie‐Odile Jauberteau
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
- Service d’ImmunologieCHU de LimogesLimogesFrance
| | - Fabrice Lalloué
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Mireille Verdier
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
| | - Muriel Mathonnet
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
- Service de Chirurgie DigestiveEndocrinienne et GénéraleCHU de LimogesLimogesFrance
| | - Aurélie Perraud
- Laboratoire EA3842 Contrôle de l’Activation CellulaireProgression Tumorale et Résistances thérapeutiques «CAPTuR»Faculté de médecineLimogesFrance
- Service de Chirurgie DigestiveEndocrinienne et GénéraleCHU de LimogesLimogesFrance
| |
Collapse
|
15
|
Cooperation and Interplay between EGFR Signalling and Extracellular Vesicle Biogenesis in Cancer. Cells 2020; 9:cells9122639. [PMID: 33302515 PMCID: PMC7764760 DOI: 10.3390/cells9122639] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) takes centre stage in carcinogenesis throughout its entire cellular trafficking odyssey. When loaded in extracellular vesicles (EVs), EGFR is one of the key proteins involved in the transfer of information between parental cancer and bystander cells in the tumour microenvironment. To hijack EVs, EGFR needs to play multiple signalling roles in the life cycle of EVs. The receptor is involved in the biogenesis of specific EV subpopulations, it signals as an active cargo, and it can influence the uptake of EVs by recipient cells. EGFR regulates its own inclusion in EVs through feedback loops during disease progression and in response to challenges such as hypoxia, epithelial-to-mesenchymal transition and drugs. Here, we highlight how the spatiotemporal rules that regulate EGFR intracellular function intersect with and influence different EV biogenesis pathways and discuss key regulatory features and interactions of this interplay. We also elaborate on outstanding questions relating to EGFR-driven EV biogenesis and available methods to explore them. This mechanistic understanding will be key to unravelling the functional consequences of direct anti-EGFR targeted and indirect EGFR-impacting cancer therapies on the secretion of pro-tumoural EVs and on their effects on drug resistance and microenvironment subversion.
Collapse
|
16
|
Christou N, Blondy S, David V, Verdier M, Lalloué F, Jauberteau MO, Mathonnet M, Perraud A. Neurotensin pathway in digestive cancers and clinical applications: an overview. Cell Death Dis 2020; 11:1027. [PMID: 33268796 PMCID: PMC7710720 DOI: 10.1038/s41419-020-03245-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Initially, NEUROTENSIN (NTS) has been shown to play physiological and biological functions as a neuro-transmitter/modulator in the central nervous system and as an endocrine factor in the periphery, through its binding to two kinds of receptors: NTSR1 and 2 (G protein-coupled receptors) and NTSR3/sortilin (a vacuolar protein-sorting 10-domain receptor). NTS also plays oncogenic roles in many types of cancer, including digestive cancers. In tumor tissues, NTS and NTSR1 expression is higher than in healthy ones and is associated with poor prognosis. NTS and NTRS1 promote cancer progression and play key functions in metastatic processes; they modulate several signaling pathways and they contribute to changes in the tumor microenvironment. Conversely, NTRS2 involvement in digestive cancers is poorly understood. Discovered for mediating NTS biological effects, sortilin recently emerged as a promising target as its expression was found to be increased in various types of cancers. Because it can be secreted, a soluble form of sortilin (sSortilin) appears as a new serum biomarker which, on the basis of recent studies, promises to be useful in both the diagnosis and tumor progression monitoring. More precisely, it appears that soluble sortilin can be associated with other receptors like TRKB. These associations occur in exosomes and trigger the aggressiveness of cancers like glioblastoma, leading to the concept of a possible composite theranostic biomarker. This review summarizes the oncogenic roles of the NTS signaling pathways in digestive cancers and discusses their emergence as promising early diagnostic and/or prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Niki Christou
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France.
- Service de Chirurgie Digestive, Endocrinienne et Générale, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France.
| | - Sabrina Blondy
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Valentin David
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
- Service de Pharmacie, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France
| | - Mireille Verdier
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Fabrice Lalloué
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
| | - Marie-Odile Jauberteau
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
- Service d'Immunologie, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France
| | - Muriel Mathonnet
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
- Service de Chirurgie Digestive, Endocrinienne et Générale, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France
| | - Aurélie Perraud
- Laboratoire EA3842 CAPTuR « Contrôle de l'Activation cellulaire, Progression Tumorale et Résistances thérapeutiques », Faculté de médecine, 2 rue du Docteur Marcland, 87025, Limoges, France
- Service de Chirurgie Digestive, Endocrinienne et Générale, CHU de Limoges, 2 avenue Martin Luther King, 87042, Limoges, France
| |
Collapse
|
17
|
Al-Yozbaki M, Acha-Sagredo A, George A, Liloglou T, Wilson CM. Balancing neurotrophin pathway and sortilin function: Its role in human disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188429. [DOI: 10.1016/j.bbcan.2020.188429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 09/02/2020] [Indexed: 01/03/2023]
|
18
|
Zanetti-Domingues LC, Bonner SE, Martin-Fernandez ML, Huber V. Mechanisms of Action of EGFR Tyrosine Kinase Receptor Incorporated in Extracellular Vesicles. Cells 2020; 9:cells9112505. [PMID: 33228060 PMCID: PMC7699420 DOI: 10.3390/cells9112505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/09/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
EGFR and some of the cognate ligands extensively traffic in extracellular vesicles (EVs) from different biogenesis pathways. EGFR belongs to a family of four homologous tyrosine kinase receptors (TKRs). This family are one of the major drivers of cancer and is involved in several of the most frequent malignancies such as non-small cell lung cancer, breast cancer, colorectal cancer and ovarian cancer. The carrier EVs exert crucial biological effects on recipient cells, impacting immunity, pre-metastatic niche preparation, angiogenesis, cancer cell stemness and horizontal oncogene transfer. While EV-mediated EGFR signalling is important to EGFR-driven cancers, little is known about the precise mechanisms by which TKRs incorporated in EVs play their biological role, their stoichiometry and associations to other proteins relevant to cancer pathology and EV biogenesis, and their means of incorporation in the target cell. In addition, it remains unclear whether different subtypes of EVs incorporate different complexes of TKRs with specific functions. A raft of high spatial and temporal resolution methods is emerging that could solve these and other questions regarding the activity of EGFR and its ligands in EVs. More importantly, methods are emerging to block or mitigate EV activity to suppress cancer progression and drug resistance. By highlighting key findings and areas that remain obscure at the intersection of EGFR signalling and EV action, we hope to cross-fertilise the two fields and speed up the application of novel techniques and paradigms to both.
Collapse
Affiliation(s)
- Laura C. Zanetti-Domingues
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
- Correspondence: (L.C.Z.-D.); (V.H.)
| | - Scott E. Bonner
- The Wood Lab, Department of Paediatrics, University of Oxford, Oxford OX1 3QX, UK;
| | - Marisa L. Martin-Fernandez
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot OX11 0FA, UK;
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: (L.C.Z.-D.); (V.H.)
| |
Collapse
|
19
|
Gonçalves NP, Yan Y, Ulrichsen M, Venø MT, Poulsen ET, Enghild JJ, Kjems J, Vægter CB. Modulation of Small RNA Signatures in Schwann-Cell-Derived Extracellular Vesicles by the p75 Neurotrophin Receptor and Sortilin. Biomedicines 2020; 8:E450. [PMID: 33114403 PMCID: PMC7694014 DOI: 10.3390/biomedicines8110450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Schwann cells (SCs) are the main glial cells of the peripheral nervous system (PNS) and are known to be involved in various pathophysiological processes, such as diabetic neuropathy and nerve regeneration, through neurotrophin signaling. Such glial trophic support to axons, as well as neuronal survival/death signaling, has previously been linked to the p75 neurotrophin receptor (p75NTR) and its co-receptor Sortilin. Recently, SC-derived extracellular vesicles (EVs) were shown to be important for axon growth and nerve regeneration, but cargo of these glial cell-derived EVs has not yet been well-characterized. In this study, we aimed to characterize signatures of small RNAs in EVs derived from wild-type (WT) SCs and define differentially expressed small RNAs in EVs derived from SCs with genetic deletions of p75NTR (Ngfr-/-) or Sortilin (Sort1-/-). Using RNA sequencing, we identified a total of 366 miRNAs in EVs derived from WT SCs of which the most highly expressed are linked to the regulation of axonogenesis, axon guidance and axon extension, suggesting an involvement of SC EVs in axonal homeostasis. Signaling of SC EVs to non-neuronal cells was also suggested by the presence of several miRNAs important for regulation of the endothelial cell apoptotic process. Ablated p75NTR or sortilin expression in SCs translated into a set of differentially regulated tRNAs and miRNAs, with impact in autophagy and several cellular signaling pathways such as the phosphatidylinositol signaling system. With this work, we identified the global expression profile of small RNAs present in SC-derived EVs and provided evidence for a regulatory function of these vesicles on the homeostasis of other cell types of the PNS. Differentially identified miRNAs can pave the way to a better understanding of p75NTR and sortilin roles regarding PNS homeostasis and disease.
Collapse
Affiliation(s)
- Nádia P. Gonçalves
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.U.); (C.B.V.)
| | - Yan Yan
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (M.T.V.); (J.K.)
- Omiics ApS, 8000 Aarhus, Denmark
| | - Maj Ulrichsen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.U.); (C.B.V.)
| | - Morten T. Venø
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (M.T.V.); (J.K.)
- Omiics ApS, 8000 Aarhus, Denmark
| | - Ebbe T. Poulsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (E.T.P.); (J.J.E.)
| | - Jan J. Enghild
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (E.T.P.); (J.J.E.)
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, 8000 Aarhus, Denmark; (Y.Y.); (M.T.V.); (J.K.)
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark; (E.T.P.); (J.J.E.)
| | - Christian B. Vægter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark; (M.U.); (C.B.V.)
| |
Collapse
|
20
|
Wei D, Zhan W, Gao Y, Huang L, Gong R, Wang W, Zhang R, Wu Y, Gao S, Kang T. RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res 2020; 31:157-177. [PMID: 32958903 PMCID: PMC8027411 DOI: 10.1038/s41422-020-00409-1] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
Exosomes are generated within the multivesicular endosomes (MVEs) as intraluminal vesicles (ILVs) and secreted during the fusion of MVEs with the cell membrane. The mechanisms of exosome biogenesis remain poorly explored. Here we identify that RAB31 marks and controls an ESCRT-independent exosome pathway. Active RAB31, phosphorylated by epidermal growth factor receptor (EGFR), engages flotillin proteins in lipid raft microdomains to drive EGFR entry into MVEs to form ILVs, which is independent of the ESCRT (endosomal sorting complex required for transport) machinery. Active RAB31 interacts with the SPFH domain and drives ILV formation via the Flotillin domain of flotillin proteins. Meanwhile, RAB31 recruits GTPase-activating protein TBC1D2B to inactivate RAB7, thereby preventing the fusion of MVEs with lysosomes and enabling the secretion of ILVs as exosomes. These findings establish that RAB31 has dual functions in the biogenesis of exosomes: driving ILVs formation and suppressing MVEs degradation, providing an exquisite framework to better understand exosome biogenesis.
Collapse
Affiliation(s)
- Denghui Wei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Weixiang Zhan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Liyan Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Run Gong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Wen Wang
- Department of Abdominal Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China.
| |
Collapse
|
21
|
Gholipour E, Sarvarian P, Samadi P, Talebi M, Movassaghpour A, Motavalli R, Hojjat-Farsangi M, Yousefi M. Exosome: From leukemia progression to a novel therapeutic approach in leukemia treatment. Biofactors 2020; 46:698-715. [PMID: 32797698 DOI: 10.1002/biof.1669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as small vesicles, are released by tumor cells and tumor microenvironment (cells and function as key intercellular mediators and effects on different processes including tumorigenesis, angiogenesis, drug resistance, and evasion from immune system. These functions are due to exosomes' biomolecules which make them as efficient markers in early diagnosis of the disease. Also, exosomes have been recently applied in vaccination. The potential role of exosomes in immune response toward leukemic cells makes them efficient immunotherapeutic agents treating leukemia. Furthermore, variations in exosomes contents make them beneficial to be used in treating different diseases. This review introduces the role of exosomes in the development of hematological malignancies and evaluates their functional role in the treatment of these malignancies.
Collapse
Affiliation(s)
- Elham Gholipour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Sarvarian
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Samadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Immune and Gene Therapy Lab, Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Aging Research Institute, Tabriz university of Medical Sciences, Tabriz, Iran
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
miR-210 transferred by lung cancer cell-derived exosomes may act as proangiogenic factor in cancer-associated fibroblasts by modulating JAK2/STAT3 pathway. Clin Sci (Lond) 2020; 134:807-825. [PMID: 32219336 DOI: 10.1042/cs20200039] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023]
Abstract
It has been generally believed that cancer-associated fibroblasts (CAFs) have the ability to increase the process of tumor angiogenesis. However, the potential mechanisms by which cancer-derived exosomes in lung cancer (LC) remains to be investigated. LC-derived exosomes were administrated to NIH/3T3 cells. A variety of experiments were conducted to investigate the proangiogenic factors of CAFs, including Western blot, RT-PCR, colony formation assay, tube formation assay, Matrigel plug assay et al. In addition, the impact of JAK2/STAT3 signaling pathway were also explored. The role of hsa-miR-210 was identified with microarray profiling and validated in vitro and in vivo assays. The target of miR-210 was screened by RNA pull down, RNA-sequencing and then verified. It was shown that LC-derived exosomes could induce cell reprogramming, thus promoting the fibroblasts transferring into CAFs. In addition, the exosomes with overexpressed miR-210 could increase the level of angiogenesis and vice versa, which suggested the miR-210 secreted by the LC-derived exosomes may initiate the CAF proangiogenic switch. According to our analysis, the miR-210 had the ability of elevating the expression of some proangiogenic factors such as MMP9, FGF2 and vascular endothelial growth factor (VEGF) a (VEGFa) by activating the JAK2/STAT3 signaling pathway, ten-eleven translocation 2 (TET2) was identified as the target of miR-210 in CAFs which has been involved in proangiogenic switch. miR-210 was overexpressed in serum exosomes of untreated non-small cell LC (NSCLC) patients. We concluded that the promotion effect of exosomal miR-210 on proangiogenic switch of CAFs may be explained by the modulation of JAK2/STAT3 signaling pathway and TET2 in recipient fibroblasts.
Collapse
|
23
|
Ahmadi M, Rezaie J. Tumor cells derived-exosomes as angiogenenic agents: possible therapeutic implications. J Transl Med 2020; 18:249. [PMID: 32571337 PMCID: PMC7310379 DOI: 10.1186/s12967-020-02426-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is a multistep process and various molecules are involved in regulating it. Extracellular vesicles are cell-derived particles, secreted from several types of cells and are known to mediate cell-to-cell communication. These vesicles contain different bio-molecules including nucleic acids, proteins, and lipids, which are transported between cells and regulate physiological and pathological conditions in the recipient cell. Exosomes, 30–150 nm extracellular vesicles, and their key roles in tumorigenesis via promoting angiogenesis are of great recent interest. In solid tumors, the suitable blood supply is the hallmark of their progression, growth, and metastasis, so it can be supported by angiogenesis. Tumor cells abundantly release exosomes containing different kinds of biomolecules such as angiogenic molecules that contribute to inducing angiogenesis. These exosomes can be trafficked between tumor cells or between tumor cells and endothelial cells. The protein and nucleic acid cargo of tumor derived-exosomes can deliver to endothelial cells mostly by endocytosis, and then induce angiogenesis. Tumor derived-exosomes can be used as biomarker for cancer diagnosis. Targeting exosome-induced angiogenesis may serve as a promising tool for cancer therapy. Taken together, tumor derived-exosomes are the major contributors in tumor angiogenesis and a supposed target for antiangiogenic therapies. However, further scrutiny is essential to investigate the function of exosomes in tumor angiogenesis and clinical relevance of targeting exosomes for suppressing angiogenesis.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, 1138, Urmia, 57147, Iran.
| |
Collapse
|
24
|
Nikolaou S, Qiu S, Fiorentino F, Simillis C, Rasheed S, Tekkis P, Kontovounisios C. The role of Neurotensin and its receptors in non-gastrointestinal cancers: a review. Cell Commun Signal 2020; 18:68. [PMID: 32336282 PMCID: PMC7183616 DOI: 10.1186/s12964-020-00569-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Background Neurotensin, originally isolated in 1973 has both endocrine and neuromodulator activity and acts through its three main receptors. Their role in promoting tumour cell proliferation, migration, DNA synthesis has been studied in a wide range of cancers. Expression of Neurotensin and its receptors has also been correlated to prognosis and prediction to treatment. Main body The effects of NT are mediated through mitogen-activated protein kinases, epidermal growth factor receptors and phosphatidylinositol-3 kinases amongst others. This review is a comprehensive summary of the molecular pathways by which Neurotensin and its receptors act in cancer cells. Conclusion Identifying the role of Neurotensin in the underlying molecular mechanisms in various cancers can give way to developing new agnostic drugs and personalizing treatment according to the genomic structure of various cancers. Video abstract
Collapse
Affiliation(s)
- Stella Nikolaou
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Shengyang Qiu
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Francesca Fiorentino
- Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Constantinos Simillis
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK
| | - Shahnawaz Rasheed
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Paris Tekkis
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK.,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK.,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | - Christos Kontovounisios
- Department of Colorectal Surgery, Chelsea and Westminster Hospital, NHS Foundation Trust, London, UK. .,Department of Colorectal Surgery, Royal Marsden Hospital, London, UK. .,Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK.
| |
Collapse
|
25
|
Sheehan G, Konings M, Lim W, Fahal A, Kavanagh K, van de Sande WWJ. Proteomic analysis of the processes leading to Madurella mycetomatis grain formation in Galleria mellonella larvae. PLoS Negl Trop Dis 2020; 14:e0008190. [PMID: 32267851 PMCID: PMC7141616 DOI: 10.1371/journal.pntd.0008190] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mycetoma is a neglected chronic and granulomatous infection primarily associated with the fungal pathogen Madurella mycetomatis. Characteristic of this infection is the formation of grains. However, the processes leading to grain formation are not known. In this study, we employed a proteomic approach to characterise M. mycetomatis grain formation in Galleria mellonella larvae and map the processes leading to grain formation over time. For this, at 1 day, 3 days and 7 days post-inoculation, proteins from grains and hemolymph were extracted and analysed by label-free mass spectrometry. A total of 87, 51 and 48 M. mycetomatis proteins and 713, 997, 18 G. mellonella proteins were found in grains on day 1, 3 and 7 post-inoculation respectively. M. mycetomatis proteins were mainly involved in cellular metabolic processes and numerous enzymes were encountered. G. mellonella proteins were primarily involved in the nodulation process. The proteins identified were linked to nodulation and grain formation and four steps of grain formation were identified. The results of this proteomic approach could in the future be used to design novel strategies to interfere with mycetoma grain formation and to combat this difficult to treat infection. Although grain formation is the hallmark of mycetoma, so far the pathways leading to grain formation were not studied. Since our hypothesis is that both host and pathogen play a role in this process, we aimed to study this process in a model system. Grains can be formed in the invertebrate Galleria mellonella and different stages of grain formation can be noted within the larvae. We therefore infected G. mellonella with the mycetoma causative agent Madurella mycetomatis, and monitored grain formation over time. At day 1, day 3 and day 7 post-inoculation, grains and hemolymph were obtained from infected larvae. Proteins were isolated and identified by label-free mass spectrometry. By analyzing the proteins found in both host and pathogen on the different time points, we were able to develop a grain model over time. This grain model can in the future be used to identify novel treatments for this difficult to treat infection.
Collapse
Affiliation(s)
- Gerard Sheehan
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Mickey Konings
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | - Wilson Lim
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
| | | | - Kevin Kavanagh
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Co. Kildare, Ireland
| | - Wendy W. J. van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
26
|
Tsuchiya M, Kayamori K, Wada A, Komaki M, Ohata Y, Hamagaki M, Sakamoto K, Ikeda T. A Novel, Tumor-Induced Osteoclastogenesis Pathway Insensitive to Denosumab but Interfered by Cannabidiol. Int J Mol Sci 2019; 20:ijms20246211. [PMID: 31835378 PMCID: PMC6940789 DOI: 10.3390/ijms20246211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/21/2022] Open
Abstract
Bone metabolism is strictly regulated, and impaired regulation caused by hormonal imbalances induces systemic bone loss. Local bone loss caused by tumor invasion into bone is suggested to be induced by the generation of cytokines, which affect bone metabolism, by tumor cells. The major cause of systemic and local bone losses is excess bone resorption by osteoclasts, which differentiate from macrophages by receptor activator of nuclear factor kappa-B ligand (RANKL) or tumor necrosis factor-alpha (TNF-α). We previously found a novel pathway for tumor-induced osteoclastogenesis targeting osteoclast precursor cells (OPCs). Tumor-induced osteoclastogenesis was resistant to RANKL and TNF-α inhibitors. In the present study, we confirmed that exosomes derived from oral squamous cell carcinoma (OSCC) cells induced osteoclasts from OPCs. We also showed that the depletion of exosomes from culture supernatants of OSCC cells partially interfered with osteoclastogenesis, and cannabidiol, an innoxious cannabinoid without psychotropic effects, almost completely suppressed tumor-induced osteoclastogenesis. Osteoclastogenesis and its interference by cannabidiol were independent of the expression of nuclear factor of T cell c1 (NFATc1). These results show that osteoclastogenesis induced by OSCC cells targeting OPCs is a novel osteoclastogenic pathway independent of NFATc1 expression that is partially caused by tumor-derived exosomes and suppressed by cannabidiol.
Collapse
Affiliation(s)
- Maiko Tsuchiya
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
| | - Akane Wada
- Department of Oral Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (A.W.); (Y.O.)
| | - Motohiro Komaki
- Department of Highly Advanced Stomatology (Periodontology), Graduate School of Dentistry, Kanagawa Dental University, 3-31-6 Tsuruya-cho, Kanagawa-ku, Yokosuka-city, Kanagawa 221-0835, Japan;
| | - Yae Ohata
- Department of Oral Diagnostic Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (A.W.); (Y.O.)
| | - Miwako Hamagaki
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
| | - Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
| | - Tohru Ikeda
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan; (M.T.); (K.K.); (M.H.); (K.S.)
- Correspondence: ; Tel.: +81-3-5803-5451
| |
Collapse
|
27
|
Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li ITS. Challenges and opportunities in exosome research-Perspectives from biology, engineering, and cancer therapy. APL Bioeng 2019; 3:011503. [PMID: 31069333 PMCID: PMC6481742 DOI: 10.1063/1.5087122] [Citation(s) in RCA: 372] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022] Open
Abstract
Exosomes are small (∼30-140 nm) lipid bilayer-enclosed particles of endosomal origin. They are a subset of extracellular vesicles (EVs) that are secreted by most cell types. There has been growing interest in exosome research in the last decade due to their emerging role as intercellular messengers and their potential in disease diagnosis. Indeed, exosomes contain proteins, lipids, and RNAs that are specific to their cell origin and could deliver cargo to both nearby and distant cells. As a result, investigation of exosome cargo contents could offer opportunities for disease detection and treatment. Moreover, exosomes have been explored as natural drug delivery vehicles since they can travel safely in extracellular fluids and deliver cargo to destined cells with high specificity and efficiency. Despite significant efforts made in this relatively new field of research, progress has been held back by challenges such as inefficient separation methods, difficulties in characterization, and lack of specific biomarkers. In this review, we summarize the current knowledge in exosome biogenesis, their roles in disease progression, and therapeutic applications and opportunities in bioengineering. Furthermore, we highlight the established and emerging technological developments in exosome isolation and characterization. We aim to consider critical challenges in exosome research and provide directions for future studies.
Collapse
Affiliation(s)
- Xia Li
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Alexander L. Corbett
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | | | - Nishat Tasnim
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Jonathan P. Little
- School of Health and Exercise Sciences, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Cathie Garnis
- Department of Integrative Oncology, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada, and Department of Surgery, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Mads Daugaard
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada, and Department of Urologic Sciences, University of British Columbia, Vancouver, Vancouver, BC V5Z 1M9, Canada
| | - Emma Guns
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada, and Department of Urologic Sciences, University of British Columbia, Vancouver, Vancouver, BC V5Z 1M9, Canada
| | - Mina Hoorfar
- School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Isaac T. S. Li
- Department of Chemistry, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| |
Collapse
|
28
|
Neurotrophins and their involvement in digestive cancers. Cell Death Dis 2019; 10:123. [PMID: 30741921 PMCID: PMC6370832 DOI: 10.1038/s41419-019-1385-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
Cancers of the digestive system, including esophageal, gastric, pancreatic, hepatic, and colorectal cancers, have a high incidence and mortality worldwide. Efficient therapies have improved patient care; however, many challenges remain including late diagnosis, disease recurrence, and resistance to therapies. Mechanisms responsible for these aforementioned challenges are numerous. This review focuses on neurotrophins, including NGF, BDNF, and NT3, and their specific tyrosine kinase receptors called tropomyosin receptor kinase (Trk A, B, C, respectively), associated with sortilin and the p75 neurotrophin receptor (p75NTR), and their implication in digestive cancers. Globally, p75NTR is a frequently downregulated tumor suppressor. On the contrary, Trk and their ligands are considered oncogenic factors. New therapies which target NT and/or their receptors, or use them as diagnosis biomarkers could help us to combat digestive cancers.
Collapse
|
29
|
Talbot H, Saada S, Naves T, Gallet PF, Fauchais AL, Jauberteau MO. Regulatory Roles of Sortilin and SorLA in Immune-Related Processes. Front Pharmacol 2019; 9:1507. [PMID: 30666202 PMCID: PMC6330335 DOI: 10.3389/fphar.2018.01507] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/10/2018] [Indexed: 12/25/2022] Open
Abstract
Sortilin, also known as Neurotensin Receptor-3, and the sorting-related receptor with type-A repeats (SorLA) are both members of the Vps10p domain receptor family. Initially identified in CNS cells, they are expressed in various other cell types where they exert multiple functions. Although mostly studied for its involvement in Alzheimer’s disease, SorLA has recently been shown to be implicated in immune response by regulating IL-6-mediated signaling, as well as driving monocyte migration. Sortilin has been shown to act as a receptor, as a co-receptor and as an intra- and extracellular trafficking regulator. In the last two decades, deregulation of sortilin has been demonstrated to be involved in many human pathophysiologies, including neurodegenerative disorders (Alzheimer and Parkinson diseases), type 2 diabetes and obesity, cancer, and cardiovascular pathologies such as atherosclerosis. Several studies highlighted different functions of sortilin in the immune system, notably in microglia, pro-inflammatory cytokine regulation, phagosome fusion and pathogen clearance. In this review, we will analyze the multiple roles of sortilin and SorLA in the human immune system and how their deregulation may be involved in disease development.
Collapse
Affiliation(s)
- Hugo Talbot
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Sofiane Saada
- Faculty of Medicine, University of Limoges, Limoges, France
| | - Thomas Naves
- Faculty of Medicine, University of Limoges, Limoges, France
| | | | - Anne-Laure Fauchais
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Internal Medicine, University Hospital Limoges Dupuytren Hospital, Limoges, France
| | - Marie-Odile Jauberteau
- Faculty of Medicine, University of Limoges, Limoges, France.,Department of Immunology, University Hospital Limoges Dupuytren Hospital, Limoges, France
| |
Collapse
|
30
|
Blaser MC, Aikawa E. Roles and Regulation of Extracellular Vesicles in Cardiovascular Mineral Metabolism. Front Cardiovasc Med 2018; 5:187. [PMID: 30622949 PMCID: PMC6308298 DOI: 10.3389/fcvm.2018.00187] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular calcification is a multifaceted disease that is a leading independent predictor of cardiovascular morbidity and mortality. Recent studies have identified a calcification-prone population of extracellular vesicles as the putative elementary units of vascular microcalcification in diseased heart valves and vessels. Their action is highly context-dependent; extracellular vesicles released by smooth muscle cells, valvular interstitial cells, endothelial cells, and macrophages may promote or inhibit mineralization, depending on the phenotype of their originating cells and/or the extracellular environment to which they are released. In particular, emerging roles for vesicular microRNAs, bioactive lipids, metabolites, and protein cargoes in driving this pro-calcific switch underpin the necessity of innovative strategies to employ next-generation sequencing and omics technologies in order to better understand the pathobiology of these nano-sized entities. Furthermore, a recent body of work has emerged that centers on the novel re-purposing of extracellular vesicles and exosomes as potential therapeutic avenues for cardiovascular calcification. This review aims to highlight the role of extracellular vesicles as constituents of cardiovascular calcification and summarizes recent advances in our understanding of the biophysical nature of vesicle accumulation, aggregation, and mineralization. We also comprehensively discuss the latest evidence that extracellular vesicles act as key mediators and regulators of cell/cell communication, osteoblastic/osteoclastic differentiation, and cell/matrix interactions in cardiovascular tissues. Lastly, we highlight the importance of robust vesicle isolation and characterization when studying these phenomena, and offer a brief primer on working with cardiovascular applications of extracellular vesicles.
Collapse
Affiliation(s)
- Mark C Blaser
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elena Aikawa
- Division of Cardiovascular Medicine, Department of Medicine, Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Center of Excellence in Cardiovascular Biology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
31
|
Rhost S, Hughes É, Harrison H, Rafnsdottir S, Jacobsson H, Gregersson P, Magnusson Y, Fitzpatrick P, Andersson D, Berger K, Ståhlberg A, Landberg G. Sortilin inhibition limits secretion-induced progranulin-dependent breast cancer progression and cancer stem cell expansion. Breast Cancer Res 2018; 20:137. [PMID: 30454027 PMCID: PMC6245804 DOI: 10.1186/s13058-018-1060-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 10/08/2018] [Indexed: 12/26/2022] Open
Abstract
Background Cancer progression is influenced by genetic aberrations in the cancer cell population as well as by other factors including the microenvironment present within a tumour. Direct interactions between various cell types as well as cellular signalling via secreted cytokines can drive key tumourigenic properties associated with disease progression and treatment resistance. Also, cancer stem cell functions are influenced by the microenvironment. This challenging subset of cells has been linked to malignant properties. Within a screen, using in vivo like growth conditions, we identified progranulin as a highly secreted cytokine affecting cancer stem cells in breast cancer. This cytokine is known to play a role in numerous biological and tumour-related processes including therapy resistance in a range of cancer types. Methods Different in vitro and in vivo relevant conditions were used to validate breast cancer stem cell expansion mediated by progranulin and its receptor sortilin. Small interfering ribonucleic acid (siRNA) and pharmacological inhibition of sortilin were used to elucidate the role of sortilin as a functional receptor during progranulin-induced breast cancer stem cell propagation, both in vitro and in vivo, using breast cancer xenograft models. In addition, single-cell gene expression profiling as well as a Sox2 reporter breast cancer cell line were used to validate the role of dedifferentiation mediated by progranulin. Results In various in vivo-like screening assays, progranulin was identified as a potent cancer stem cell activator, highly secreted in ERα-negative breast cancer as well as in ERα-positive breast cancer under hypoxic adaptation. Progranulin exposure caused dedifferentiation as well as increased proliferation of the cancer stem cell pool, a process that was shown to be dependent on its receptor sortilin. Subcutaneous injections of progranulin or its active domain (GRN A) induced lung metastases in breast cancer xenograft models, supporting a major role for progranulin in cancer progression. Importantly, an orally bioavailable small molecule (AF38469) targeting sortilin, blocked GRN A-induced lung metastases and prevented cancer cell infiltration of the skin. Conclusion The collective results suggest that sortilin targeting represents a potential novel breast cancer therapy approach inhibiting tumour progression driven by secretion and microenvironmental influences. Electronic supplementary material The online version of this article (10.1186/s13058-018-1060-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sara Rhost
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Éamon Hughes
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Hannah Harrison
- Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4QL, UK.,Shore Lab, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Svanheidur Rafnsdottir
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden.,Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg, Sweden
| | - Hanna Jacobsson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Gregersson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Ylva Magnusson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Paul Fitzpatrick
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Andersson
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Karoline Berger
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, 413 45, Gothenburg, Sweden
| | - Göran Landberg
- Department of Pathology and Genetics, Institute of Biomedicine, Sahlgrenska Cancer Center, University of Gothenburg, Gothenburg, Sweden. .,Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4QL, UK.
| |
Collapse
|
32
|
Li Q, Ma W, Li T. Sortilin as a new membrane inhibitor of EGFR trafficking for overcoming resistance to EGFR inhibitors in non-small cell lung cancer. J Thorac Dis 2018; 10:S3186-S3191. [PMID: 30430029 DOI: 10.21037/jtd.2018.08.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qianping Li
- Department of Cardiothoracic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai 200233, China.,Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA.,Veterans Affairs Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
33
|
Li W, Lu Y, Yu X, Yong M, Ma D, Gao Q. Detection of exosomal tyrosine receptor kinase B as a potential biomarker in ovarian cancer. J Cell Biochem 2018; 120:6361-6369. [PMID: 30304550 DOI: 10.1002/jcb.27923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/25/2018] [Indexed: 12/21/2022]
Abstract
Ovarian cancer (OC) is a lethal disease diagnosed at advanced stages due to the lack of specific biomarkers. Tyrosine receptor kinase B (TrkB), which has recently been found to be related to OC progression, represents a promising potential biomarker for OC diagnosis and prognosis. The discovery of circulating exosomes as biomarkers for various diseases led us to explore exosomal TrkB in OC. Our previous study proved that the expression of TrkB was elevated in OC tissues. In this study, we focused on the detection of exosomal TrkB in OC. Exosomes were first gathered from three different OC cell lines' conditioned medium, serum samples of patients with OC as well as xenograft mice serum by serial centrifugation method. Then, we identified exosomes by transmission electron microscopy, NanoSight analysis, and expression of typical exosomal protein markers. The existence of TrkB in exosomes was measured by Western blot analysis, and the expression was detected by enzyme-linked immunosorbent assay. In this study, we demonstrated that exosomes could derive from OC cell lines, serum from OC xenograft nude mice, and clinical patients. Our study shows that serum exosomal TrkB may be considered a minimally invasive biomarker for OC.
Collapse
Affiliation(s)
- Wenqian Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunhui Lu
- Department of Obstetrics and Gynecology, Dalian Medical University Affiliated Dalian Obstetrics and Gynecology Hospital, Dalian, China
| | - Xiaohui Yu
- Department of Obstetrics and Gynecology, Dalian Medical University Affiliated Dalian Obstetrics and Gynecology Hospital, Dalian, China
| | - Minjie Yong
- Department of Obstetrics and Gynecology, Ningxia Obstetrics and Gynecology Hospital, Yinchuan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qinglei Gao
- Department of Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
34
|
Medoro A, Bartollino S, Mignogna D, Passarella D, Porcile C, Pagano A, Florio T, Nizzari M, Guerra G, Di Marco R, Intrieri M, Raimo G, Russo C. Complexity and Selectivity of γ-Secretase Cleavage on Multiple Substrates: Consequences in Alzheimer's Disease and Cancer. J Alzheimers Dis 2018; 61:1-15. [PMID: 29103038 DOI: 10.3233/jad-170628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The processing of the amyloid-β protein precursor (AβPP) by β- and γ-secretases is a pivotal event in the genesis of Alzheimer's disease (AD). Besides familial mutations on the AβPP gene, or upon its overexpression, familial forms of AD are often caused by mutations or deletions in presenilin 1 (PSEN1) and 2 (PSEN2) genes: the catalytic components of the proteolytic enzyme γ-secretase (GS). The "amyloid hypothesis", modified over time, states that the aberrant processing of AβPP by GS induces the formation of specific neurotoxic soluble amyloid-β (Aβ) peptides which, in turn, cause neurodegeneration. This theory, however, has recently evidenced significant limitations and, in particular, the following issues are debated: 1) the concept and significance of presenilin's "gain of function" versus "loss of function"; and 2) the presence of several and various GS substrates, which interact with AβPP and may influence Aβ formation. The latter consideration is suggestive: despite the increasing number of GS substrates so far identified, their reciprocal interaction with AβPP itself, even in the AD field, is significantly unexplored. On the other hand, GS is also an important pharmacological target in the cancer field; inhibitors or GS activity are investigated in clinical trials for treating different tumors. Furthermore, the function of AβPP and PSENs in brain development and in neuronal migration is well known. In this review, we focused on a specific subset of GS substrates that directly interact with AβPP and are involved in its proteolysis and signaling, by evaluating their role in neurodegeneration and in cell motility or proliferation, as a possible connection between AD and cancer.
Collapse
Affiliation(s)
- Alessandro Medoro
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Donatella Mignogna
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Aldo Pagano
- Department of Experimental Medicine, University of Genoa and Ospedale Policlinico San Martino, IRCCS per l'Oncologia, Genoa, Italy
| | - Tullio Florio
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Mario Nizzari
- Department of Internal Medicine and Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Gennaro Raimo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Claudio Russo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
35
|
The neurotrophic tyrosine kinase receptor TrkA and its ligand NGF are increased in squamous cell carcinomas of the lung. Sci Rep 2018; 8:8135. [PMID: 29802376 PMCID: PMC5970205 DOI: 10.1038/s41598-018-26408-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/10/2018] [Indexed: 02/06/2023] Open
Abstract
The neurotrophic tyrosine kinase receptor TrkA (NTRK1) and its ligand nerve growth factor (NGF) are emerging promoters of tumor progression. In lung cancer, drugs targeting TrkA are in clinical trials, but the clinicopathological significance of TrkA and NGF, as well as that of the precursor proNGF, the neurotrophin co-receptor p75NTR and the proneurotrophin co-receptor sortilin, remains unclear. In the present study, analysis of these proteins was conducted by immunohistochemistry and digital quantification in a series of 204 lung cancers of different histological subtypes versus 121 normal lung tissues. TrkA immunoreactivity was increased in squamous cell carcinoma compared with benign and other malignant lung cancer histological subtypes (p < 0.0001). NGF and proNGF were also increased in squamous cell carcinoma, as well as in adenocarcinoma (p < 0.0001). In contrast, p75NTR was increased across all lung cancer histological subtypes compared to normal lung (p < 0.0001). Sortilin was higher in adenocarcinoma and small cell carcinoma (p < 0.0001). Nerves in the tumor microenvironment were negative for TrkA, NGF, proNGF, p75NTR and sortilin. In conclusion, these data suggest a preferential therapeutic value of targeting the NGF-TrkA axis in squamous cell carcinomas of the lung.
Collapse
|
36
|
To be or not to be... secreted as exosomes, a balance finely tuned by the mechanisms of biogenesis. Essays Biochem 2018; 62:177-191. [PMID: 29717057 DOI: 10.1042/ebc20170076] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/27/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022]
Abstract
The release of extracellular vesicles such as exosomes provides an attractive intercellular communication pathway. Exosomes are 30- to 150-nm membrane vesicles that are generated in endosomal compartment and act as intercellular mediators in both physiological and pathological context. Despite the growing interest in exosome functions, the mechanisms responsible for their biogenesis and secretion are still not completely understood. Knowledge about these mechanisms is important because they control the composition, and hence the function and secretion, of exosomes. Exosomes are produced as intraluminal vesicles in extremely dynamic endosomal organelles, which undergo various maturation processes in order to form multivesicular endosomes. Notably, the function of multivesicular endosomes is balanced between exosome secretion and lysosomal degradation. In the present review, we present and discuss each intracellular trafficking pathway that has been reported or proposed as regulating exosome biogenesis, with a particular focus on the importance of endosomal dynamics in sorting out cargo proteins to exosomes and to the secretion of multivesicular endosomes. An overall picture reveals several key mechanisms, which mainly act at the crossroads of endosomal pathways as regulatory checkpoints of exosome biogenesis.
Collapse
|
37
|
Abstract
INTRODUCTION Tumor-derived exosomes (TEX) and their role in tumor progression by accelerating angiogenesis are of great current interest. A better understanding of the mechanisms underlying TEX-blood vessels cross-talk may lead to improvements in current diagnosis, prognosis and treatment of cancer. Areas covered: For solid tumors, an adequate blood supply is of critical importance for their development, growth and metastasis. TEX, virus-size vesicles which circulate freely throughout body fluids and accumulate in the tumor microenvironment (TME), have been recognized as a new contributor to angiogenesis. TEX serve as a communication system between the tumor and various normal cells and are responsible for functional reprogramming of these cells. The molecular and genetic cargos that TEX deliver to the recipient cells involved in angiogenesis promote its induction and progression. The targeted inhibition of TEX pro-angiogenic functions might be a novel therapeutic approach for control of tumor progression. Expert opinion: TEX circulating in body fluids of cancer patients carry a complex molecular and genetic cargo and are responsible for phenotypic and functional reprogramming of endothelial cells and other normal cells residing in the TME.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
38
|
Pinet S, Bessette B, Vedrenne N, Lacroix A, Richard L, Jauberteau MO, Battu S, Lalloué F. TrkB-containing exosomes promote the transfer of glioblastoma aggressiveness to YKL-40-inactivated glioblastoma cells. Oncotarget 2018; 7:50349-50364. [PMID: 27385098 PMCID: PMC5226587 DOI: 10.18632/oncotarget.10387] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022] Open
Abstract
The neurotrophin receptors are known to promote growth and proliferation of glioblastoma cells. Their functions in spreading glioblastoma cell aggressiveness to the microenvironment through exosome release from glioblastoma cells are unknown. Considering previous reports demonstrating that YKL-40 expression is associated with undifferentiated glioblastoma cancer stem cells, we used YKL-40-silenced cells to modulate the U87-MG differentiated state and their biological aggressiveness. Herein, we demonstrated a relationship between neurotrophin-receptors and YKL-40 expression in undifferentiated cells. Differential functions of cells and derived-exosomes were evidenced according to neurotrophin receptor content and differentiated cell state by comparison with control pLKO cells. YKL-40 silencing of glioblastoma cells impairs proliferation, neurosphere formation, and their ability to induce endothelial cell (HBMEC) migration. The modulation of differentiated cell state in YKL-40-silenced cells induces a decrease of TrkB, sortilin and p75NTR cellular expressions, associated with a low-aggressiveness phenotype. Interestingly, TrkB expressed in exosomes derived from control cells was undetectable in exosomes from YKL-40 -silenced cells. The transfer of TrkB-containing exosomes in YKL-40-silenced cells contributed to restore cell proliferation and promote endothelial cell activation. Interestingly, in U87 MG xenografted mice, TrkB-depleted exosomes from YKL-40-silenced cells inhibited tumor growth in vivo. These data highlight that TrkB-containing exosomes play a key role in the control of glioblastoma progression and aggressiveness. Furthermore, TrkB expression was detected in exosomes isolated from plasma of glioblastoma patients, suggesting that this receptor may be considered as a new biomarker for glioblastoma diagnosis.
Collapse
Affiliation(s)
- Sandra Pinet
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Barbara Bessette
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Nicolas Vedrenne
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Aurélie Lacroix
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| | - Laurence Richard
- Limoges University Hospital, Department of Neurology, 87042 Limoges Cedex, France
| | - Marie-Odile Jauberteau
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France.,Limoges University Hospital, Department of Immunology, 87042 Limoges Cedex, France
| | - Serge Battu
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France.,Limoges University, Laboratory of Analytical Chemistry and Bromatology, Faculty of Pharmacy, 87025 Limoges, France
| | - Fabrice Lalloué
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges Cedex, France
| |
Collapse
|
39
|
Itoh S, Mizuno K, Aikawa M, Aikawa E. Dimerization of sortilin regulates its trafficking to extracellular vesicles. J Biol Chem 2018; 293:4532-4544. [PMID: 29382723 PMCID: PMC5868269 DOI: 10.1074/jbc.ra117.000732] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/16/2018] [Indexed: 01/02/2023] Open
Abstract
Extracellular vesicles (EVs) play a critical role in intercellular communication by transferring microRNAs, lipids, and proteins to neighboring cells. Sortilin, a sorting receptor that directs target proteins to the secretory or endocytic compartments of cells, is found in both EVs and cells. In many human diseases, including cancer and cardiovascular disorders, sortilin expression levels are atypically high. To elucidate the relationship between cardiovascular disease, particularly vascular calcification, and sortilin expression levels, we explored the trafficking of sortilin in both the intracellular and extracellular milieu. We previously demonstrated that sortilin promotes vascular calcification via its trafficking of tissue-nonspecific alkaline phosphatase to EVs. Although recent reports have noted that sortilin is regulated by multiple post-translational modifications, the precise mechanisms of sortilin trafficking still need to be determined. Here, we show that sortilin forms homodimers with an intermolecular disulfide bond at the cysteine 783 (Cys783) residue, and because Cys783 can be palmitoylated, it could be shared via palmitoylation and an intermolecular disulfide bond. Formation of this intermolecular disulfide bond leads to trafficking of sortilin to EVs by preventing palmitoylation, which further promotes sortilin trafficking to the Golgi apparatus. Moreover, we found that sortilin-derived propeptide decreased sortilin homodimers within EVs. In conclusion, sortilin is transported to EVs via the formation of homodimers with an intermolecular disulfide bond, which is endogenously regulated by its own propeptide. Therefore, we propose that inhibiting dimerization of sortilin acts as a new therapeutic strategy for the treatment of EV-associated diseases, including vascular calcification and cancer.
Collapse
Affiliation(s)
- Shinsuke Itoh
- From the Center for Interdisciplinary Cardiovascular Sciences and.,Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo 189-0022, Japan
| | - Ken Mizuno
- From the Center for Interdisciplinary Cardiovascular Sciences and.,Tokyo New Drug Research Laboratories, Kowa Company, Ltd., Tokyo 189-0022, Japan
| | - Masanori Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences and.,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| | - Elena Aikawa
- From the Center for Interdisciplinary Cardiovascular Sciences and .,Center for Excellence in Vascular Biology, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115 and
| |
Collapse
|
40
|
De la Cruz-Morcillo MA, Berger J, Sánchez-Prieto R, Saada S, Naves T, Guillaudeau A, Perraud A, Sindou P, Lacroix A, Descazeaud A, Lalloué F, Jauberteau MO. p75 neurotrophin receptor and pro-BDNF promote cell survival and migration in clear cell renal cell carcinoma. Oncotarget 2018; 7:34480-97. [PMID: 27120782 PMCID: PMC5085170 DOI: 10.18632/oncotarget.8911] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/10/2016] [Indexed: 12/13/2022] Open
Abstract
p75NTR, a member of TNF receptor family, is the low affinity receptor common to several mature neurotrophins and the high affinity receptor for pro-neurotrophins. Brain-Derived Neurotrophic Factor (BDNF), a member of neurotrophin family has been described to play an important role in development and progression of several cancers, through its binding to a high affinity tyrosine kinase receptor B (TrkB) and/or p75NTR. However, the functions of these two receptors in renal cell carcinoma (RCC) have never been investigated. An overexpression of p75NTR, pro-BDNF, and to a lesser extent for TrkB and sortilin, was detected by immunohistochemistry in a cohort of 83 clear cell RCC tumors. p75NTR, mainly expressed in tumor tissues, was significantly associated with higher Fuhrman grade in multivariate analysis. In two derived-RCC lines, 786-O and ACHN cells, we demonstrated that pro-BDNF induced cell survival and migration, through p75NTR as provided by p75NTR RNA silencing or blocking anti-p75NTR antibody. This mechanism is independent of TrkB activation as demonstrated by k252a, a tyrosine kinase inhibitor for Trk neurotrophin receptors. Taken together, these data highlight for the first time an important role for p75NTR in renal cancer and indicate a putative novel target therapy in RCC.
Collapse
Affiliation(s)
- Miguel A De la Cruz-Morcillo
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France
| | - Julien Berger
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France.,Department of Urology, University Hospital Limoges, 87042 Limoges, Cedex, France
| | - Ricardo Sánchez-Prieto
- PCTCLM/CRIB Unidad de Medicina Molecular Laboratorio de Oncología/Unidad de Biomedicina UCLM-CSIC, Universidad de Castilla la Mancha, 02006 Albacete, Spain
| | - Sofiane Saada
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France
| | - Thomas Naves
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France
| | | | - Aurélie Perraud
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France
| | - Philippe Sindou
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France
| | - Aurélie Lacroix
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France
| | - Aurélien Descazeaud
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France.,Department of Urology, University Hospital Limoges, 87042 Limoges, Cedex, France
| | - Fabrice Lalloué
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France
| | - Marie-Odile Jauberteau
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, 87025 Limoges, Cedex, France
| |
Collapse
|
41
|
Goettsch C, Kjolby M, Aikawa E. Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases. Arterioscler Thromb Vasc Biol 2017; 38:19-25. [PMID: 29191923 DOI: 10.1161/atvbaha.117.310292] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 11/16/2017] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality in the Western world. Studies of sortilin's influence on cardiovascular and metabolic diseases goes far beyond the genome-wide association studies that have revealed an association between cardiovascular diseases and the 1p13 locus that encodes sortilin. Emerging evidence suggests a significant role of sortilin in the pathogenesis of vascular and metabolic diseases; this includes type II diabetes mellitus via regulation of insulin resistance, atherosclerosis through arterial wall inflammation and calcification, and dysregulated lipoprotein metabolism. Sortilin is also known for its functional role in neurological disorders. It serves as a key receptor for cytokines, lipids, and enzymes and participates in pathological cargo loading to and trafficking of extracellular vesicles. This article provides a comprehensive review of sortilin's contributions to cardiovascular and metabolic diseases but focuses particularly on atherosclerosis. We summarize recent clinical findings that suggest that sortilin may be a cardiovascular risk biomarker and also discuss sortilin as a potential drug target.
Collapse
Affiliation(s)
- Claudia Goettsch
- From the Department of Internal Medicine I-Cardiology, RWTH Aachen University, Germany (C.G.); The Danish Research Institute of Translational Neuroscience, Nordic European Molecular Biology Laboratory Partnership for Molecular Medicine, Danish Diabetes Academy, Denmark (M.K.); Department of Biomedicine (M.K.) and Department of Cardiology (M.K.), Aarhus University, Denmark; and Center for Interdisciplinary Cardiovascular Sciences (E.A.) and Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Mads Kjolby
- From the Department of Internal Medicine I-Cardiology, RWTH Aachen University, Germany (C.G.); The Danish Research Institute of Translational Neuroscience, Nordic European Molecular Biology Laboratory Partnership for Molecular Medicine, Danish Diabetes Academy, Denmark (M.K.); Department of Biomedicine (M.K.) and Department of Cardiology (M.K.), Aarhus University, Denmark; and Center for Interdisciplinary Cardiovascular Sciences (E.A.) and Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Elena Aikawa
- From the Department of Internal Medicine I-Cardiology, RWTH Aachen University, Germany (C.G.); The Danish Research Institute of Translational Neuroscience, Nordic European Molecular Biology Laboratory Partnership for Molecular Medicine, Danish Diabetes Academy, Denmark (M.K.); Department of Biomedicine (M.K.) and Department of Cardiology (M.K.), Aarhus University, Denmark; and Center for Interdisciplinary Cardiovascular Sciences (E.A.) and Center for Excellence in Vascular Biology, Division of Cardiovascular Medicine (E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
42
|
Al-Akhrass H, Naves T, Vincent F, Magnaudeix A, Durand K, Bertin F, Melloni B, Jauberteau MO, Lalloué F. Sortilin limits EGFR signaling by promoting its internalization in lung cancer. Nat Commun 2017; 8:1182. [PMID: 29084952 PMCID: PMC5662760 DOI: 10.1038/s41467-017-01172-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 08/24/2017] [Indexed: 01/27/2023] Open
Abstract
Tyrosine kinase receptors such as the epidermal growth factor receptor (EGFR) transduce information from the microenvironment into the cell and activate homeostatic signaling pathways. Internalization and degradation of EGFR after ligand binding limits the intensity of proliferative signaling, thereby helping to maintain cell integrity. In cancer cells, deregulation of EGFR trafficking has a variety of effects on tumor progression. Here we report that sortilin is a key regulator of EGFR internalization. Loss of sortilin in tumor cells promoted cell proliferation by sustaining EGFR signaling at the cell surface, ultimately accelerating tumor growth. In lung cancer patients, sortilin expression decreased with increased pathologic grade, and expression of sortilin was strongly correlated with survival, especially in patients with high EGFR expression. Sortilin is therefore a regulator of EGFR intracellular trafficking that promotes receptor internalization and limits signaling, which in turn impacts tumor growth.
Collapse
Affiliation(s)
- Hussein Al-Akhrass
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France
| | - Thomas Naves
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France.
| | - François Vincent
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France.,Service de Pathologie Respiratoire, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - Amandine Magnaudeix
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France
| | - Karine Durand
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France.,Service d'Anatomie Pathologique, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - François Bertin
- Service de Chirurgie Thoracique et Cardio-vasculaire, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - Boris Melloni
- Service de Pathologie Respiratoire, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - Marie-Odile Jauberteau
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France.,Service d'Immunologie, Centre Hospitalier et Universitaire de Limoges, 87042, Limoges CEDEX, France
| | - Fabrice Lalloué
- EA3842 Homéostasie Cellulaire et Pathologies and Chaire de Pneumologie Expérimentale, Université de Limoges, Faculté de Médecine, 2 Rue du Dr. Raymond Marcland, 87025, Limoges CEDEX, France
| |
Collapse
|
43
|
Abbaci A, Talbot H, Saada S, Gachard N, Abraham J, Jaccard A, Bordessoule D, Fauchais AL, Naves T, Jauberteau MO. Neurotensin receptor type 2 protects B-cell chronic lymphocytic leukemia cells from apoptosis. Oncogene 2017; 37:756-767. [PMID: 29059151 PMCID: PMC5808079 DOI: 10.1038/onc.2017.365] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/29/2017] [Accepted: 08/25/2017] [Indexed: 02/06/2023]
Abstract
B-cell chronic lymphocytic leukemia (B-CLL) cells are resistant to apoptosis, and consequently accumulate to the detriment of normal B cells and patient immunity. Because current therapies fail to eradicate these apoptosis-resistant cells, it is essential to identify alternative survival pathways as novel targets for anticancer therapies. Overexpression of cell-surface G protein-coupled receptors drives cell transformation, and thus plays a critical role in malignancies. In this study, we identified neurotensin receptor 2 (NTSR2) as an essential driver of apoptosis resistance in B-CLL. NTSR2 was highly expressed in B-CLL cells, whereas expression of its natural ligand, neurotensin (NTS), was minimal in both B-CLL cells and patient plasma. Surprisingly, NTSR2 remained in a constitutively active phosphorylated state, caused not by a mutation-induced gain-of-function but rather by an interaction with the oncogenic tyrosine kinase receptor TrkB. Functional and biochemical characterization revealed that the NTSR2-TrkB interaction acts as a conditional oncogenic driver requiring the TrkB ligand brain-derived neurotrophic factor (BDNF), which unlike NTS is highly expressed in B-CLL cells. Together, NTSR2, TrkB and BDNF induce autocrine and/or paracrine survival pathways that are independent of mutation status and indolent or progressive disease course. The NTSR2-TrkB interaction activates survival signaling pathways, including the Src and AKT kinase pathways, as well as expression of the anti-apoptotic proteins Bcl-2 and Bcl-xL. When NTSR2 was downregulated, TrkB failed to protect B-CLL cells from a drastic decrease in viability via typical apoptotic cell death, reflected by DNA fragmentation and Annexin V presentation. Together, our findings demonstrate that the NTSR2-TrkB interaction plays a crucial role in B-CLL cell survival, suggesting that inhibition of NTSR2 represents a promising targeted strategy for treating B-CLL malignancy.
Collapse
Affiliation(s)
- A Abbaci
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, Limoges Cedex, France
| | - H Talbot
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, Limoges Cedex, France
| | - S Saada
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, Limoges Cedex, France
| | - N Gachard
- Hematology Laboratory, Dupuytren Hospital University Center of Limoges, Limoges Cedex, France.,CNRS-UMR 7276, Limoges University, Limoges Cedex, France
| | - J Abraham
- Department of Hematology, Dupuytren Hospital University Center of Limoges, Limoges Cedex, France
| | - A Jaccard
- CNRS-UMR 7276, Limoges University, Limoges Cedex, France.,Department of Hematology, Dupuytren Hospital University Center of Limoges, Limoges Cedex, France
| | - D Bordessoule
- CNRS-UMR 7276, Limoges University, Limoges Cedex, France.,Department of Hematology, Dupuytren Hospital University Center of Limoges, Limoges Cedex, France
| | - A L Fauchais
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, Limoges Cedex, France.,Department of Internal Medicine, Dupuytren Hospital University Center of Limoges, Limoges Cedex, France
| | - T Naves
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, Limoges Cedex, France
| | - M O Jauberteau
- Limoges University, Equipe Accueil 3842, Cellular Homeostasis and Diseases, Faculty of Medicine, Limoges Cedex, France.,Department of Immunology, Dupuytren Hospital University Center of Limoges, Limoges Cedex, France
| |
Collapse
|
44
|
Faulkner S, Jobling P, Rowe CW, Rodrigues Oliveira SM, Roselli S, Thorne RF, Oldmeadow C, Attia J, Jiang CC, Zhang XD, Walker MM, Hondermarck H. Neurotrophin Receptors TrkA, p75 NTR, and Sortilin Are Increased and Targetable in Thyroid Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 188:229-241. [PMID: 29037860 DOI: 10.1016/j.ajpath.2017.09.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/14/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022]
Abstract
Neurotrophin receptors are emerging targets in oncology, but their clinicopathologic significance in thyroid cancer is unclear. In this study, the neurotrophin tyrosine receptor kinase TrkA (also called NTRK1), the common neurotrophin receptor p75NTR, and the proneurotrophin receptor sortilin were analyzed with immunohistochemistry in a cohort of thyroid cancers (n = 128) and compared with adenomas and normal thyroid tissues (n = 62). TrkA was detected in 20% of thyroid cancers, compared with none of the benign samples (P = 0.0007). TrkA expression was independent of histologic subtypes but associated with lymph node metastasis (P = 0.0148), suggesting the involvement of TrkA in tumor invasiveness. Nerves in the tumor microenvironment were positive for TrkA. p75NTR was overexpressed in anaplastic thyroid cancers compared with papillary and follicular subtypes (P < 0.0001). Sortilin was overexpressed in thyroid cancers compared with benign thyroid tissues (P < 0.0001). Neurotrophin receptor expression was confirmed in a panel of thyroid cancer cell lines at the mRNA and protein levels. Functional investigations using the anaplastic thyroid cancer cell line CAL-62 found that siRNA against TrkA, p75NTR, and sortilin decreased cell survival and cell migration through decreased SRC and ERK activation. Together, these data reveal TrkA, p75NTR, and sortilin as potential therapeutic targets in thyroid cancer.
Collapse
Affiliation(s)
- Sam Faulkner
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Philip Jobling
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher W Rowe
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia; School of Medicine & Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Department of Endocrinology, John Hunter Hospital, Callaghan, New South Wales, Australia
| | - S M Rodrigues Oliveira
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Severine Roselli
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Rick F Thorne
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher Oldmeadow
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia; School of Mathematical and Physical Sciences, Faculty of Science and Information Technology, University of Newcastle, Callaghan, New South Wales, Australia
| | - John Attia
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia; School of Medicine & Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Chen Chen Jiang
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia; School of Medicine & Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia
| | - Marjorie M Walker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia; School of Medicine & Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Department of Anatomical Pathology, John Hunter Hospital, Callaghan, New South Wales, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia; Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
45
|
Zhu MC, Xiong P, Li GL, Zhu M. Could lung cancer exosomes induce apoptosis of natural killer cells through the p75NTR–proNGF–sortilin axis? Med Hypotheses 2017; 108:151-153. [DOI: 10.1016/j.mehy.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/04/2017] [Indexed: 01/08/2023]
|
46
|
Abstract
The release of membrane-bound vesicles from cells is being increasingly recognized as a mechanism of intercellular communication. Extracellular vesicles (EVs) or exosomes are produced by virus-infected cells and are thought to be involved in intercellular communication between infected and uninfected cells. Viruses, in particular oncogenic viruses and viruses that establish chronic infections, have been shown to modulate the production and content of EVs. Viral microRNAs, proteins and even entire virions can be incorporated into EVs, which can affect the immune recognition of viruses or modulate neighbouring cells. In this Review, we discuss the roles that EVs have during viral infection to either promote or restrict viral replication in target cells. We will also discuss our current understanding of the molecular mechanisms that underlie these roles, the potential consequences for the infected host and possible future diagnostic applications.
Collapse
|
47
|
Choi D, Lee TH, Spinelli C, Chennakrishnaiah S, D'Asti E, Rak J. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol 2017; 67:11-22. [PMID: 28077296 DOI: 10.1016/j.semcdb.2017.01.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022]
Abstract
Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker and companion diagnostics. Indeed, studies are underway to further explore the multiple links between molecular causality in cancer and various aspects of cellular vesiculation.
Collapse
Affiliation(s)
- Dongsic Choi
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Cristiana Spinelli
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Esterina D'Asti
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
48
|
Béraud-Dufour S, Devader C, Massa F, Roulot M, Coppola T, Mazella J. Focal Adhesion Kinase-Dependent Role of the Soluble Form of Neurotensin Receptor-3/Sortilin in Colorectal Cancer Cell Dissociation. Int J Mol Sci 2016; 17:ijms17111860. [PMID: 27834811 PMCID: PMC5133860 DOI: 10.3390/ijms17111860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/28/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022] Open
Abstract
The aim of the present review is to unravel the mechanisms of action of the soluble form of the neurotensin (NT) receptor-3 (NTSR3), also called Sortilin, in numerous physiopathological processes including cancer development, cardiovascular diseases and depression. Sortilin/NTSR3 is a transmembrane protein thought to exert multiple functions both intracellularly and at the level of the plasma membrane. The Sortilin/NTSR3 extracellular domain is released by shedding from all the cells expressing the protein. Although the existence of the soluble form of Sortilin/NTSR3 (sSortilin/NTSR3) has been evidenced for more than 10 years, the studies focusing on the role of this soluble protein at the mechanistic level remain rare. Numerous cancer cells, including colonic cancer cells, express the receptor family of neurotensin (NT), and particularly Sortilin/NTSR3. This review aims to summarize the functional role of sSortilin/NTSR3 characterized in the colonic cancer cell line HT29. This includes mechanisms involving signaling cascades through focal adhesion kinase (FAK), a key pathway leading to the weakening of cell-cell and cell-extracellular matrix adhesions, a series of events which could be responsible for cancer metastasis. Finally, some future approaches targeting the release of sNTSR3 through the inhibition of matrix metalloproteases (MMPs) are suggested.
Collapse
Affiliation(s)
- Sophie Béraud-Dufour
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Chistelle Devader
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Fabienne Massa
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Morgane Roulot
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Thierry Coppola
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, Université Côte d'Azur, 660 route des Lucioles, 06560 Valbonne, France.
| |
Collapse
|
49
|
Roselli S, Pundavela J, Demont Y, Faulkner S, Keene S, Attia J, Jiang CC, Zhang XD, Walker MM, Hondermarck H. Sortilin is associated with breast cancer aggressiveness and contributes to tumor cell adhesion and invasion. Oncotarget 2016; 6:10473-86. [PMID: 25871389 PMCID: PMC4496368 DOI: 10.18632/oncotarget.3401] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/16/2015] [Indexed: 11/25/2022] Open
Abstract
The neuronal membrane protein sortilin has been reported in a few cancer cell lines, but its expression and impact in human tumors is unclear. In this study, sortilin was analyzed by immunohistochemistry in a series of 318 clinically annotated breast cancers and 53 normal breast tissues. Sortilin was detected in epithelial cells, with increased levels in cancers, as compared to normal tissues (p = 0.0088). It was found in 79% of invasive ductal carcinomas and 54% of invasive lobular carcinomas (p < 0.0001). There was an association between sortilin expression and lymph node involvement (p = 0.0093), suggesting a relationship with metastatic potential. In cell culture, sortilin levels were higher in cancer cell lines compared to non-tumorigenic breast epithelial cells and siRNA knockdown of sortilin inhibited cancer cell adhesion, while proliferation and apoptosis were not affected. Breast cancer cell migration and invasion were also inhibited by sortilin knockdown, with a decrease in focal adhesion kinase and SRC phosphorylation. In conclusion, sortilin participates in breast tumor aggressiveness and may constitute a new therapeutic target against tumor cell invasion.
Collapse
Affiliation(s)
- Séverine Roselli
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| | - Jay Pundavela
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| | - Yohann Demont
- INSERM U908, IFR-147, Universite Lille 1, Villeneuve d'Ascq 59655, France.,INSERM U1138, Equipe 11, Centre de Recherche des Cordeliers, Paris 75006, France
| | - Sam Faulkner
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| | - Sheridan Keene
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| | - John Attia
- Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia.,School of Public Health & Medicine, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia
| | - Chen Chen Jiang
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| | - Xu Dong Zhang
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| | - Marjorie M Walker
- Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia.,School of Public Health & Medicine, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia
| | - Hubert Hondermarck
- School of Biomedical Sciences & Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan NSW 2308, Australia.,Hunter Medical Research Institute, University of Newcastle, New Lambton NSW 2305, Australia
| |
Collapse
|
50
|
Kapustin AN, Shanahan CM. Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol 2016; 594:2905-14. [PMID: 26864864 DOI: 10.1113/jp271340] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/25/2015] [Indexed: 12/26/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) phenotypic conversion from a contractile to 'synthetic' state contributes to vascular pathologies including restenosis, atherosclerosis and vascular calcification. We have recently found that the secretion of exosomes is a feature of 'synthetic' VSMCs and that exosomes are novel players in vascular repair processes as well as pathological vascular thrombosis and calcification. Pro-inflammatory cytokines and growth factors as well as mineral imbalance stimulate exosome secretion by VSMCs, most likely by the activation of sphingomyelin phosphodiesterase 3 (SMPD3) and cytoskeletal remodelling. Calcium stress induces dramatic changes in VSMC exosome composition and accumulation of phosphatidylserine (PS), annexin A6 and matrix metalloproteinase-2, which converts exosomes into a nidus for calcification. In addition, by presenting PS, VSMC exosomes can also provide the catalytic surface for the activation of coagulation factors. Recent data showing that VSMC exosomes are loaded with proteins and miRNA regulating cell adhesion and migration highlight VSMC exosomes as potentially important communication messengers in vascular repair. Thus, the identification of signalling pathways regulating VSMC exosome secretion, including activation of SMPD3 and cytoskeletal rearrangements, opens up novel avenues for a deeper understanding of vascular remodelling processes.
Collapse
Affiliation(s)
- A N Kapustin
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| | - C M Shanahan
- BHF Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK
| |
Collapse
|