1
|
Ji Y, Li R, Tang G, Wang W, Chen C, Yang Q. The interrelated roles of RAB family proteins in the advancement of neoplastic growth. Front Oncol 2025; 15:1513360. [PMID: 40196733 PMCID: PMC11974252 DOI: 10.3389/fonc.2025.1513360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/26/2025] [Indexed: 04/09/2025] Open
Abstract
Rab Proteins, A Subfamily Of The Ras Superfamily Of Small Gtpases, Are Critical Regulators Of Intracellular Vesicular Trafficking, Which Is Intricately Linked To Various Cellular Processes. These Proteins Play Essential Roles Not Only In Maintaining Cellular Homeostasis But Also In Mediating The Complex Interplay Between Cancer Cells and Their Microenvironment. Rab Proteins Can Act As Either Oncogenic Factors Or Tumor Suppressors, With Their Functions Highly Dependent On The Cellular Context. Mechanistic Studies Have Revealed That Rab Proteins Are Involved In A Variety Of Processes, Including Vesicular Transport, Tumor Microenvironment Regulation, Autophagy, Drug Resistance, and Metabolic Regulation, and Play Either A Promotional Or Inhibitory Role In Cancer Development. Consequently, Targeting Rab Gtpases To Restore Dysregulated Vesicular Transport Systems May Offer A Promising Therapeutic Strategy To Inhibit Cancer Progression. However, It Is Equally Important To Consider The Potential Risks Of Disrupting Rab Functions, As Their Roles Are Highly Context-Dependent and May Have Opposing Effects In Different Malignancies. This Review Focuses On The Multifaceted Involvement Of Rab Family Proteins In Cancer Progression Underscores Their Importance As Potential Therapeutic Targets and Underscores The Need For A Deeper Understanding Of Their Complex Roles In Tumorigenesis.
Collapse
Affiliation(s)
- Yuxin Ji
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Ruonan Li
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
| | - Guohui Tang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Wenrui Wang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Changjie Chen
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Department of Biotechnology, Bengbu Medical College, Bengbu, Anhui, China
| | - Qingling Yang
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Bengbu Medical University, Bengbu, Anhui, China
- Clinical Testing and Diagnose Experimental Center, Bengbu Medical University, Bengbu, Anhui, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
| |
Collapse
|
2
|
Le T, Htun S, Pandey MK, Sun Y, Magnusen AF, Ullah E, Lauzon J, Beres S, Lee C, Guan B, Hufnagel RB, Brooks BP, Baranzini SE, Slavotinek A. A zebrafish model of crim1 loss of function has small and misshapen lenses with dysregulated clic4 and fgf1b expression. Front Cell Dev Biol 2025; 13:1522094. [PMID: 40114969 PMCID: PMC11922885 DOI: 10.3389/fcell.2025.1522094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/22/2025] [Indexed: 03/22/2025] Open
Abstract
Introduction Heterozygous deletions predicting haploinsufficiency for the Cysteine Rich Motor Neuron 1 (CRIM1) gene have been identified in two families with macrophthalmia, colobomatous, with microcornea (MACOM), an autosomal dominant trait. Crim1 encodes a type I transmembrane protein that is expressed at the cell membrane of lens epithelial and fiber cells at the stage of lens pit formation. Decreased Crim1 expression in the mouse reduced the number of lens epithelial cells and caused defective adhesion between lens epithelial cells and between the epithelial and fiber cells. Methods We present three patients with heterozygous deletions and truncating variants predicted to result in haploinsufficiency for CRIM1 as further evidence for the role of this gene in eye defects, including retinal coloboma, optic pallor, and glaucoma. We used Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 to make a stable Danio rerio model of crim1 deficiency, generating zebrafish that were homozygous for a 2 basepair deletion, c.339_340delCT p.Leu112Leufs*, in crim1. Results Homozygous, crim1 -/- larvae demonstrated smaller eyes and small and misshapen lenses compared to controls, but we did not observe colobomas. Bulk RNA-Seq using dissected eyes from crim1 -/- larvae and controls at 72 h post fertilization showed significant downregulation of crim1 and chloride intracellular channel 4 (clic4) and upregulation of fibroblast growth factor 1b (fgf1b) and complement component 1, q subcomponent (c1q), amongst other dysregulated genes. Discussion Our work strengthens the association between haploinsufficiency for CRIM1 and eye defects and characterizes a stable model of crim1 loss of function for future research.
Collapse
Affiliation(s)
- Tien Le
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Stephanie Htun
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Manoj Kumar Pandey
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yihui Sun
- Department of Neurology, Weill Institute for Neurosciences., University of California San Francisco, San Francisco, CA, United States
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
| | - Albert Frank Magnusen
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ehsan Ullah
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Julie Lauzon
- Department of Medical Genetics and Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Shannon Beres
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, United States
- Department of Neurology and Neurosciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Chung Lee
- Stanford University Pediatrics/Medical Genetics, Stanford University, Stanford, CA, United States
| | - Bin Guan
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Robert B Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sergio E Baranzini
- Department of Neurology, Weill Institute for Neurosciences., University of California San Francisco, San Francisco, CA, United States
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA, United States
| | - Anne Slavotinek
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
3
|
Xu S, Cao B, Xuan G, Xu S, An Z, Zhu C, Li L, Tang C. Function and regulation of Rab GTPases in cancers. Cell Biol Toxicol 2024; 40:28. [PMID: 38695990 PMCID: PMC11065922 DOI: 10.1007/s10565-024-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/23/2024] [Indexed: 05/05/2024]
Abstract
The Rab small GTPases are characterized by the distinct intracellular localization and modulate various endocytic, transcytic and exocytic transport pathways. Rab proteins function as scaffolds that connect signaling pathways and intracellular membrane trafficking processes through the recruitment of effectors, such as tethering factors, phosphatases, motors and kinases. In different cancers, Rabs play as either an onco-protein or a tumor suppressor role, highly dependending on the context. The molecular mechanistic research has revealed that Rab proteins are involved in cancer progression through influences on migration, invasion, metabolism, exosome secretion, autophagy, and drug resistance of cancer cells. Therefore, targeting Rab GTPases to recover the dysregulated vesicle transport systems may provide potential strategy to restrain cancer progression. In this review, we discuss the regulation of Rab protein level and activity in modulating pathways involved in tumor progression, and propose that Rab proteins may serve as a prognostic factor in different cancers.
Collapse
Affiliation(s)
- Shouying Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Bin Cao
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Ge Xuan
- Department of Gynaecology, Ningbo Women and Children's Hospital, No.339 Liuting Road, Ningbo, 315012, China
| | - Shu Xu
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Zihao An
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Chongying Zhu
- The Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Lin Li
- Department of Urology, Third Affiliated Hospital of the Second Military Medical University, Shanghai, 201805, China.
| | - Chao Tang
- National Clinical Research Center for Child Health of the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
4
|
Zhao F, Yang T, Zhou L, Li R, Liu J, Zhao J, Jia R. Sig1R activates extracellular matrix-induced bladder cancer cell proliferation and angiogenesis by combing β-integrin. Aging (Albany NY) 2023; 15:204721. [PMID: 37199665 DOI: 10.18632/aging.204721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/15/2023] [Indexed: 05/19/2023]
Abstract
The extracellular matrix (ECM) regulates many biological functions involved in tumorigenesis and tumor development; however, the underlying mechanism remains unknown. Sigma 1 receptor (Sig1R), a stress-activated chaperone, regulates the crosstalk between the ECM and tumor cells and is related to the malignant characteristics of several tumors. However, the link between Sig1R overexpression and ECM during malignancy has not been established in bladder cancer (BC). Here, we analyzed the interaction of Sig1R and β-integrin in BC cells and its role in ECM-mediated cell proliferation and angiogenesis. We found that Sig1R forms a complex with β-integrin to promote ECM-mediated BC cell proliferation and angiogenesis, which enhances the aggressiveness of the tumor cells. This leads to poor survival. Our research revealed that Sig1R mediates the cross-talk between BC cells and their ECM microenvironment, thereby driving the progression of BC. Promisingly, targeting an ion channel function through Sig1R inhibition may serve as a potential approach for BC treatment.
Collapse
Affiliation(s)
- Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Tianli Yang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Rongfei Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jingyu Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Jun Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
5
|
Jagtap S, Potdar C, Yadav R, Pal PK, Datta I. Dopaminergic Neurons Differentiated from LRRK2 I1371V-Induced Pluripotent Stem Cells Display a Lower Yield, α-Synuclein Pathology, and Functional Impairment. ACS Chem Neurosci 2022; 13:2632-2645. [PMID: 36006382 DOI: 10.1021/acschemneuro.2c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Being a large multidomain protein, LRRK2 has several confirmed pathological mutant variants for PD, and the incidence of these variants shows ethnicity biases. I1371V, a mutation in the GTPase domain, has been reported in East-Asian populations, but there are no studies reported on dopaminergic (DA) neurons differentiated from this variant. The aim here was to assess the yield, function, and α-synuclein pathology of DA neurons differentiated from LRRK2 I1371V iPSCs. FACS analysis of neural progenitors (NPs) showed a comparable immunopositive population of cells for neural and glial progenitor markers nestin and S100β; however, NPs from I1371V iPSCs showed lower clonogenic and proliferative capacities than healthy control NPs as determined by the neurosphere assay and Ki67 expression. Floor plate cells obtained from I1371V NPs primed with FGF8 showed distinctly lower immunopositivity for FOXA2 and CLIC5 than healthy control FPCs and similar DOC2B expression. On SHH addition, a similar mature neuronal population was obtained from both groups; however, the yield of TH-immunopositive cells was significantly lower in I1371V, with lower expression of mature DA neuronal markers En1, Nurr1, and DAT. Vesicular dopamine release and intracellular Ca2+ response with KCl stimulation were lower in I1371V DA neurons, along with a significantly reduced expression of resting vesicle marker VMAT2. A concurrently lower expression of PSD95/Syn-I immunopositive puncta was observed in I1371V differentiated cells. Further, higher phosphorylation of α-synuclein and aggregation of oligomeric α-synuclein in I1371V DA neurons were observed. Our data demonstrated conclusively for the first time that mutations in the I1371V allele of LRRK2 showed developmental deficit from the FPC stage and generated a lower yield/number of TH-immunopositive neurons with impairment in their function and synapse density along with increased α-synuclein pathology.
Collapse
Affiliation(s)
- Soham Jagtap
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Chandrakanta Potdar
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| | - Indrani Datta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Institute of National Importance, Bengaluru 560029, Karnataka, India
| |
Collapse
|
6
|
Molnár M, Sőth Á, Simon-Vecsei Z. Pathways of integrins in the endo-lysosomal system. Biol Futur 2022; 73:171-185. [DOI: 10.1007/s42977-022-00120-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/09/2022] [Indexed: 12/13/2022]
Abstract
AbstractIn this review, we present recent scientific advances about integrin trafficking in the endo-lysosomal system. In the last few years, plenty of new information has emerged about the endo-lysosomal system, integrins, and the mechanism, how exactly the intracellular trafficking of integrins is regulated. We review the internalization and recycling pathways of integrins, and we provide information about the possible ways of lysosomal degradation through the endosomal and autophagic system. The regulation of integrin internalization and recycling proved to be a complex process worth studying. Trafficking of integrins, together with the regulation of their gene expression, defines cellular adhesion and cellular migration through bidirectional signalization and ligand binding. Thus, any malfunction in this system can potentially (but not necessarily) lead to tumorigenesis or metastasis. Hence, extensive examinations of integrins in the endo-lysosomal system raise the possibility to identify potential new medical targets. Furthermore, this knowledge can also serve as a basis for further determination of integrin signaling- and adhesion-related processes.
Collapse
|
7
|
Wasson CW, Caballero-Ruiz B, Gillespie J, Derrett-Smith E, Mankouri J, Denton CP, Canettieri G, Riobo-Del Galdo NA, Del Galdo F. Induction of Pro-Fibrotic CLIC4 in Dermal Fibroblasts by TGF-β/Wnt3a Is Mediated by GLI2 Upregulation. Cells 2022; 11:cells11030530. [PMID: 35159339 PMCID: PMC8834396 DOI: 10.3390/cells11030530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a recently discovered driver of fibroblast activation in Scleroderma (SSc) and cancer-associated fibroblasts (CAF). CLIC4 expression and activity are regulated by TGF-β signalling through the SMAD3 transcription factor. In view of the aberrant activation of canonical Wnt-3a and Hedgehog (Hh) signalling in fibrosis, we investigated their role in CLIC4 upregulation. Here, we show that TGF-β/SMAD3 co-operates with Wnt3a/β-catenin and Smoothened/GLI signalling to drive CLIC4 expression in normal dermal fibroblasts, and that the inhibition of β-catenin and GLI expression or activity abolishes TGF-β/SMAD3-dependent CLIC4 induction. We further show that the expression of the pro-fibrotic marker α-smooth muscle actin strongly correlates with CLIC4 expression in dermal fibroblasts. Further investigations revealed that the inhibition of CLIC4 reverses morphogen-dependent fibroblast activation. Our data highlights that CLIC4 is a common downstream target of TGF-β, Hh, and Wnt-3a through signalling crosstalk and we propose a potential therapeutic avenue using CLIC4 inhibitors
Collapse
Affiliation(s)
- Christopher W. Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS29JT, UK; (J.G.); (F.D.G.)
- Correspondence:
| | - Begoña Caballero-Ruiz
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK; (B.C.-R.); (J.M.); (N.A.R.-D.G.)
- Department of Molecular Medicine, Sapienza University of Rome, 00196 Rome, Italy;
| | - Justin Gillespie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS29JT, UK; (J.G.); (F.D.G.)
| | - Emma Derrett-Smith
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London NW32PF, UK; (E.D.-S.); (C.P.D.)
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK; (B.C.-R.); (J.M.); (N.A.R.-D.G.)
| | - Christopher P. Denton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London NW32PF, UK; (E.D.-S.); (C.P.D.)
| | - Gianluca Canettieri
- Department of Molecular Medicine, Sapienza University of Rome, 00196 Rome, Italy;
| | - Natalia A. Riobo-Del Galdo
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK; (B.C.-R.); (J.M.); (N.A.R.-D.G.)
- Leeds Institute of Medical Research, Faculty of Medicine and Health, University of Leeds, Leeds LS29JT, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds LS29JT, UK; (J.G.); (F.D.G.)
- Scleroderma Programme, NIHR Leeds Musculoskeletal Biomedical Research Centre, Leeds LS29JT, UK
| |
Collapse
|
8
|
Chuang JZ, Yang N, Nakajima N, Otsu W, Fu C, Yang HH, Lee MP, Akbar AF, Badea TC, Guo Z, Nuruzzaman A, Hsu KS, Dunaief JL, Sung CH. Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration. Nat Commun 2022; 13:374. [PMID: 35042858 PMCID: PMC8766482 DOI: 10.1038/s41467-021-27935-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness among the elderly. Dry AMD has unclear etiology and no treatment. Lipid-rich drusen are the hallmark of dry AMD. An AMD mouse model and insights into drusenogenesis are keys to better understanding of this disease. Chloride intracellular channel 4 (CLIC4) is a pleomorphic protein regulating diverse biological functions. Here we show that retinal pigment epithelium (RPE)-specific Clic4 knockout mice exhibit a full spectrum of functional and pathological hallmarks of dry AMD. Multidisciplinary longitudinal studies of disease progression in these mice support a mechanistic model that links RPE cell-autonomous aberrant lipid metabolism and transport to drusen formation.
Collapse
Affiliation(s)
- Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University, Kanagawa, Japan
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Tudor Constantin Badea
- National Eye Institute, National institute of Health, Bethesda, MD, USA
- Research and Development Institute, Transilvania University of Brasov, School of Medicine, Brasov, Romania
| | - Ziqi Guo
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Afnan Nuruzzaman
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kuo-Shun Hsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Sloan Kettering Cancer Institute, New York, NY, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
9
|
Rab35 and glucocorticoids regulate APP and BACE1 trafficking to modulate Aβ production. Cell Death Dis 2021; 12:1137. [PMID: 34876559 PMCID: PMC8651661 DOI: 10.1038/s41419-021-04433-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/08/2021] [Accepted: 11/23/2021] [Indexed: 11/08/2022]
Abstract
Chronic stress and elevated glucocorticoids (GCs), the major stress hormones, are risk factors for Alzheimer’s disease (AD) and promote AD pathomechanisms, including overproduction of toxic amyloid-β (Aβ) peptides and intraneuronal accumulation of hyperphosphorylated Tau protein. The latter is linked to downregulation of the small GTPase Rab35, which mediates Tau degradation via the endolysosomal pathway. Whether Rab35 is also involved in Aβ overproduction remains an open question. Here, we find that hippocampal Rab35 levels are decreased not only by stress/GC but also by aging, another AD risk factor. Moreover, we show that Rab35 negatively regulates Aβ production by sorting amyloid precursor protein (APP) and β-secretase (BACE1) out of the endosomal network, where they interact to produce Aβ. Interestingly, Rab35 coordinates distinct intracellular trafficking steps for BACE1 and APP, mediated by its effectors OCRL and ACAP2, respectively. Finally, we demonstrate that Rab35 overexpression prevents the amyloidogenic trafficking of APP and BACE1 induced by high GC levels. These studies identify Rab35 as a key regulator of APP processing and suggest that its downregulation may contribute to stress-related and AD-related amyloidogenesis.
Collapse
|
10
|
Jin H, Tang Y, Yang L, Peng X, Li B, Fan Q, Wei S, Yang S, Li X, Wu B, Huang M, Tang S, Liu J, Li H. Rab GTPases: Central Coordinators of Membrane Trafficking in Cancer. Front Cell Dev Biol 2021; 9:648384. [PMID: 34141705 PMCID: PMC8204108 DOI: 10.3389/fcell.2021.648384] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor progression involves invasion, migration, metabolism, autophagy, exosome secretion, and drug resistance. Cargos transported by membrane vesicle trafficking underlie all of these processes. Rab GTPases, which, through coordinated and dynamic intracellular membrane trafficking alongside cytoskeletal pathways, determine the maintenance of homeostasis and a series of cellular functions. The mechanism of vesicle movement regulated by Rab GTPases plays essential roles in cancers. Therefore, targeting Rab GTPases to adjust membrane trafficking has the potential to become a novel way to adjust cancer treatment. In this review, we describe the characteristics of Rab GTPases; in particular, we discuss the role of their activation in the regulation of membrane transport and provide examples of Rab GTPases regulating membrane transport in tumor progression. Finally, we discuss the clinical implications and the potential as a cancer therapeutic target of Rab GTPases.
Collapse
Affiliation(s)
- Hongyuan Jin
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuanxin Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bowen Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Qin Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bo Wu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingyao Huang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shilei Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
11
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
12
|
Peng JM, Lin SH, Yu MC, Hsieh SY. CLIC1 recruits PIP5K1A/C to induce cell-matrix adhesions for tumor metastasis. J Clin Invest 2021; 131:133525. [PMID: 33079727 DOI: 10.1172/jci133525] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
Membrane protrusion and adhesion to the extracellular matrix, which involves the extension of actin filaments and formation of adhesion complexes, are the fundamental processes for cell migration, tumor invasion, and metastasis. How cancer cells efficiently coordinate these processes remains unclear. Here, we showed that membrane-targeted chloride intracellular channel 1 (CLIC1) spatiotemporally regulates the formation of cell-matrix adhesions and membrane protrusions through the recruitment of PIP5Ks to the plasma membrane. Comparative proteomics identified CLIC1 upregulated in human hepatocellular carcinoma (HCC) and associated with tumor invasiveness, metastasis, and poor prognosis. In response to migration-related stimuli, CLIC1 recruited PIP5K1A and PIP5K1C from the cytoplasm to the leading edge of the plasma membrane, where PIP5Ks generate a phosphatidylinositol 4,5-bisphosphate-rich (PIP2-rich) microdomain to induce the formation of integrin-mediated cell-matrix adhesions and the signaling for cytoskeleon extension. CLIC1 silencing inhibited the attachment of tumor cells to culture plates and the adherence and extravasation in the lung alveoli, resulting in suppressed lung metastasis in mice. This study reveals what we believe is an unrecognized mechanism that spatiotemporally coordinates the formation of both lamellipodium/invadopodia and nascent cell-matrix adhesions for directional migration and tumor invasion/metastasis. The unique traits of upregulation and membrane targeting of CLIC1 in cancer cells make it an excellent therapeutic target for tumor metastasis.
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Sheng-Hsuan Lin
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
13
|
Ling CK, Santos LL, Zhou W, Dimitriadis E. Chloride intracellular channel 4 is dysregulated in endometrium of women with infertility and alters receptivity. Biochem Biophys Res Commun 2020; 531:490-496. [PMID: 32807494 DOI: 10.1016/j.bbrc.2020.07.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023]
Abstract
The endometrium remodels in each menstrual cycle to become receptive in preparation for embryo implantation which occurs in the mid-secretory phase of the cycle. Failure of blastocyst adhesion and implantation cause infertility. We compared chloride intracellular channel 4 (CLIC4) expression in human endometrium from women with normal fertility and primary unexplained infertility in the mid-secretory/receptive phase of the menstrual cycle. CLIC4 localised to both the epithelial and stromal regions of the endometrium of fertile tissues across the cycle. CLIC4 expression was significantly reduced in the luminal and glandular epithelium and remained unchanged in the stromal region of mid-secretory infertile endometrium compared to fertile endometrium. siRNA knockdown of CLIC4 significantly compromised adhesive capacity of Ishikawa cells (endometrial epithelial cell line). This reduced adhesion and CLIC4 expression was associated with elevated SGK1, p53, SIRT1, BCL2 and MCL1 gene expression in the Ishikawa cells. CLIC4 expression was increased in primary human endometrial stromal cells during decidualization, however, siRNA knockdown of CLIC4 did not affect decidualization. Our data provide evidence that CLIC4 may regulate receptivity and facilitate blastocyst attachment initiating implantation. Reduced CLIC4 levels may be causative of implantation failure in women.
Collapse
Affiliation(s)
- Cheuk Kwan Ling
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Leilani L Santos
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Wei Zhou
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Victoria, 3010, Australia; Gynaecology Research Centre, Royal Women's Hospital, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
14
|
Yokoyama R, Kojima H, Takai R, Ohta T, Maeda H, Miyashita K, Mutoh M, Terasaki M. Effects of CLIC4 on Fucoxanthinol-Induced Apoptosis in Human Colorectal Cancer Cells. Nutr Cancer 2020; 73:889-898. [PMID: 33703973 DOI: 10.1080/01635581.2020.1779760] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Fucoxanthin is a marine xanthophyll found in edible brown algae, and a metabolite, fucoxanthinol (FxOH), possesses a potent apoptosis inducing effect in many cancer cells. Chloride intracellular channel 4 (CLIC4) is a member of the CLIC family that plays an important role in cancer development and apoptosis. However, the role of CLIC4 in FxOH-induced apoptosis is not well understood. In this study, we investigated whether CLIC4 affects the apoptotic properties of FxOH in human colorectal cancer (CRC) cells under FxOH treatment. Treating human CRC DLD-1 cells with 5.0 μmol/L FxOH significantly induced apoptosis. FxOH downregulated CLIC4, integrin β1, NHERF2 and pSmad2 (Ser465/467) by 0.6-, 0.7-, 0.7-, and 0.5-fold, respectively, compared with control cells without alteration of Rab35 expression. No colocalizing change was observed in CLIC4-related proteins in either control or FxOH-treated cells. CLIC4 knockdown suppressed cell growth and apoptosis. Interestingly, apoptosis induction by FxOH almost disappeared with CLIC4 knockdown. Our findings suggested that CLIC4 could be involved in FxOH-induced apoptosis in human CRC.
Collapse
Affiliation(s)
- Reo Yokoyama
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Rie Takai
- Research Institute of Health Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Tohru Ohta
- Research Institute of Health Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan
| | - Hayato Maeda
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori, Japan
| | - Kazuo Miyashita
- Laboratory of Biofunctional Material Chemistry, Division of Marine Bioscience, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Michihiro Mutoh
- Epidemiology and Preventions Group, Center for Public Health Sciences, National Cancer Center, Chuo-ku, Tokyo, Japan
| | - Masaru Terasaki
- School of Pharmaceutical Sciences, Health Science University of Hokkaido, Ishikari-Tobetsu, Japan.,Cancer Prevention Laboratories, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|
15
|
Peterman E, Valius M, Prekeris R. CLIC4 is a cytokinetic cleavage furrow protein that regulates cortical cytoskeleton stability during cell division. J Cell Sci 2020; 133:jcs241117. [PMID: 32184265 PMCID: PMC7240295 DOI: 10.1242/jcs.241117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/02/2020] [Indexed: 12/31/2022] Open
Abstract
During mitotic cell division, the actomyosin cytoskeleton undergoes several dynamic changes that play key roles in progression through mitosis. Although the regulators of cytokinetic ring formation and contraction are well established, proteins that regulate cortical stability during anaphase and telophase have been understudied. Here, we describe a role for CLIC4 in regulating actin and actin regulators at the cortex and cytokinetic cleavage furrow during cytokinesis. We first describe CLIC4 as a new component of the cytokinetic cleavage furrow that is required for successful completion of mitotic cell division. We also demonstrate that CLIC4 regulates the remodeling of the sub-plasma-membrane actomyosin network within the furrow by recruiting MST4 kinase (also known as STK26) and regulating ezrin phosphorylation. This work identifies and characterizes new molecular players involved in regulating cortex stiffness and blebbing during the late stages of cytokinetic furrowing.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius 10257, Lithuania
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
16
|
Skitchenko RK, Usoltsev D, Uspenskaya M, Kajava AV, Guskov A. Census of halide-binding sites in protein structures. Bioinformatics 2020; 36:3064-3071. [PMID: 32022861 PMCID: PMC7214031 DOI: 10.1093/bioinformatics/btaa079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/02/2022] Open
Abstract
Motivation Halides are negatively charged ions of halogens, forming fluorides (F−), chlorides (Cl−), bromides (Br−) and iodides (I−). These anions are quite reactive and interact both specifically and non-specifically with proteins. Despite their ubiquitous presence and important roles in protein function, little is known about the preferences of halides binding to proteins. To address this problem, we performed the analysis of halide–protein interactions, based on the entries in the Protein Data Bank. Results We have compiled a pipeline for the quick analysis of halide-binding sites in proteins using the available software. Our analysis revealed that all of halides are strongly attracted by the guanidinium moiety of arginine side chains, however, there are also certain preferences among halides for other partners. Furthermore, there is a certain preference for coordination numbers in the binding sites, with a correlation between coordination numbers and amino acid composition. This pipeline can be used as a tool for the analysis of specific halide–protein interactions and assist phasing experiments relying on halides as anomalous scatters. Availability and implementation All data described in this article can be reproduced via complied pipeline published at https://github.com/rostkick/Halide_sites/blob/master/README.md. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Dmitrii Usoltsev
- Institute BioEngineering, ITMO University, Saint-Petersburg 197101, Russia
| | - Mayya Uspenskaya
- Institute BioEngineering, ITMO University, Saint-Petersburg 197101, Russia
| | - Andrey V Kajava
- Institute BioEngineering, ITMO University, Saint-Petersburg 197101, Russia.,Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR 5237 CNRS, Universite Montpellier, Montpellier 34293, France
| | - Albert Guskov
- Groningen Biomolecular Sciences & Biotechnology Institute, University of Groningen, Groningen 9747 AG, the Netherlands
| |
Collapse
|
17
|
Argenzio E, Innocenti M. The chloride intracellular channel protein CLIC4 inhibits filopodium formation induced by constitutively active mutants of formin mDia2. FEBS Lett 2020; 594:1750-1758. [PMID: 32145706 DOI: 10.1002/1873-3468.13766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/14/2020] [Accepted: 03/02/2020] [Indexed: 11/07/2022]
Abstract
Chloride intracellular channel 4 (CLIC4) functions in diverse actin-dependent processes. Upon Rho activation, CLIC4 reversibly translocates from the cytosol to the plasma membrane to regulate cell adhesion and migration. At the plasma membrane, CLIC4 counters the formation of filopodia, which requires actin assembly by the formin mammalian Diaphanous (mDia)2. To this end, mDia2 must be activated through conversion from the closed to the open conformation. Thus, CLIC4 could harness the activation or the open conformation of mDia2 to inhibit filopodium formation. Here, we find that CLIC4 silencing enhances the filopodia induced by two constitutively active mDia2 mutants. Furthermore, we report that CLIC4 binds the actin-regulatory region of mDia2 in vitro. These results suggest that CLIC4 modulates the activity of the open conformation of mDia2, shedding new light into how cells may control filopodia.
Collapse
Affiliation(s)
- Elisabetta Argenzio
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Metello Innocenti
- Heidelberg University Biochemistry Center (BZH), Heidelberg University, Germany
| |
Collapse
|
18
|
Gururaja Rao S, Patel NJ, Singh H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front Physiol 2020; 11:96. [PMID: 32116799 PMCID: PMC7034325 DOI: 10.3389/fphys.2020.00096] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Ion channels are integral membrane proteins present on the plasma membrane as well as intracellular membranes. In the human genome, there are more than 400 known genes encoding ion channel proteins. Ion channels are known to regulate several cellular, organellar, and physiological processes. Any mutation or disruption in their function can result in pathological disorders, both common or rare. Ion channels present on the plasma membrane are widely acknowledged for their role in various biological processes, but in recent years, several studies have pointed out the importance of ion channels located in intracellular organelles. However, ion channels located in intracellular organelles are not well-understood in the context of physiological conditions, such as the generation of cellular excitability and ionic homeostasis. Due to the lack of information regarding their molecular identity and technical limitations of studying them, intracellular organelle ion channels have thus far been overlooked as potential therapeutic targets. In this review, we focus on a novel class of intracellular organelle ion channels, Chloride Intracellular Ion Channels (CLICs), mainly documented for their role in cardiovascular, neurophysiology, and tumor biology. CLICs have a single transmembrane domain, and in cells, they exist in cytosolic as well as membranous forms. They are predominantly present in intracellular organelles and have recently been shown to be localized to cardiomyocyte mitochondria as well as exosomes. In fact, a member of this family, CLIC5, is the first mitochondrial chloride channel to be identified on the molecular level in the inner mitochondrial membrane, while another member, CLIC4, is located predominantly in the outer mitochondrial membrane. In this review, we discuss this unique class of intracellular chloride channels, their role in pathologies, such as cardiovascular, cancer, and neurodegenerative diseases, and the recent developments concerning their usage as theraputic targets.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Neel J Patel
- Department of Cardiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Harpreet Singh
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
19
|
Carofino BL, Dinshaw KM, Ho PY, Cataisson C, Michalowski AM, Ryscavage A, Alkhas A, Wong NW, Koparde V, Yuspa SH. Head and neck squamous cancer progression is marked by CLIC4 attenuation in tumor epithelium and reciprocal stromal upregulation of miR-142-3p, a novel post-transcriptional regulator of CLIC4. Oncotarget 2019; 10:7251-7275. [PMID: 31921386 PMCID: PMC6944452 DOI: 10.18632/oncotarget.27387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a tumor suppressor implicated in processes including growth arrest, differentiation, and apoptosis. CLIC4 protein expression is diminished in the tumor parenchyma during progression in squamous cell carcinoma (SCC) and other neoplasms, but the underlying mechanisms have not been identified. Data from The Cancer Genome Atlas suggest this is not driven by genomic alterations. However, screening and functional assays identified miR-142-3p as a regulator of CLIC4. CLIC4 and miR-142-3p expression are inversely correlated in head and neck (HN) SCC and cervical SCC, particularly in advanced stage cancers. In situ localization revealed that stromal immune cells, not tumor cells, are the predominant source of miR-142-3p in HNSCC. Furthermore, HNSCC single-cell expression data demonstrated that CLIC4 is lower in tumor epithelial cells than in stromal fibroblasts and endothelial cells. Tumor-specific downregulation of CLIC4 was confirmed in an SCC xenograft model concurrent with immune cell infiltration and miR-142-3p upregulation. These findings provide the first evidence of CLIC4 regulation by miRNA. Furthermore, the distinct localization of CLIC4 and miR-142-3p within the HNSCC tumor milieu highlight the limitations of bulk tumor analysis and provide critical considerations for both future mechanistic studies and use of miR-142-3p as a HNSCC biomarker.
Collapse
Affiliation(s)
- Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kayla M. Dinshaw
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Pui Yan Ho
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aleksandra M. Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew Ryscavage
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Nathan W. Wong
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
20
|
Uretmen Kagiali ZC, Saner N, Akdag M, Sanal E, Degirmenci BS, Mollaoglu G, Ozlu N. CLIC4 and CLIC1 bridge plasma membrane and cortical actin network for a successful cytokinesis. Life Sci Alliance 2019; 3:3/2/e201900558. [PMID: 31879279 PMCID: PMC6933522 DOI: 10.26508/lsa.201900558] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 11/24/2022] Open
Abstract
CLIC members are required for the progression of cytokinesis by coupling the plasma membrane and cortical actin network at the cleavage furrow and polar cortex. CLIC4 and CLIC1 are members of the well-conserved chloride intracellular channel proteins (CLICs) structurally related to glutathione-S-transferases. Here, we report new roles of CLICs in cytokinesis. At the onset of cytokinesis, CLIC4 accumulates at the cleavage furrow and later localizes to the midbody in a RhoA-dependent manner. The cell cycle–dependent localization of CLIC4 is abolished when its glutathione S-transferase activity–related residues (C35A and F37D) are mutated. Ezrin, anillin, and ALIX are identified as interaction partners of CLIC4 at the cleavage furrow and midbody. Strikingly, CLIC4 facilitates the activation of ezrin at the cleavage furrow and reciprocally inhibition of ezrin activation diminishes the translocation of CLIC4 to the cleavage furrow. Furthermore, knockouts of CLIC4and CLIC1 cause abnormal blebbing at the polar cortex and regression of the cleavage furrow at late cytokinesis leading to multinucleated cells. We conclude that CLIC4 and CLIC1 function together with ezrin where they bridge plasma membrane and actin cytoskeleton at the polar cortex and cleavage furrow to promote cortical stability and successful completion of cytokinesis in mammalian cells.
Collapse
Affiliation(s)
| | - Nazan Saner
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Mehmet Akdag
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Erdem Sanal
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | | | - Gurkan Mollaoglu
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Nurhan Ozlu
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey .,Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| |
Collapse
|
21
|
Abdul-Salam VB, Russomanno G, Chien-Nien C, Mahomed AS, Yates LA, Wilkins MR, Zhao L, Gierula M, Dubois O, Schaeper U, Endruschat J, Wojciak-Stothard B. CLIC4/Arf6 Pathway. Circ Res 2019; 124:52-65. [PMID: 30582444 PMCID: PMC6325770 DOI: 10.1161/circresaha.118.313705] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Increased expression of CLIC4 (chloride intracellular channel 4) is a feature of endothelial dysfunction in pulmonary arterial hypertension, but its role in disease pathology is not fully understood. OBJECTIVE To identify CLIC4 effectors and evaluate strategies targeting CLIC4 signaling in pulmonary hypertension. METHODS AND RESULTS Proteomic analysis of CLIC4-interacting proteins in human pulmonary artery endothelial cells identified regulators of endosomal trafficking, including Arf6 (ADP ribosylation factor 6) GTPase activating proteins and clathrin, while CLIC4 overexpression affected protein regulators of vesicular trafficking, lysosomal function, and inflammation. CLIC4 reduced BMPRII (bone morphogenetic protein receptor II) expression and signaling as a result of Arf6-mediated reduction in gyrating clathrin and increased lysosomal targeting of the receptor. BMPRII expression was restored by Arf6 siRNA, Arf inhibitor Sec7 inhibitor H3 (SecinH3), and inhibitors of clathrin-mediated endocytosis but was unaffected by chloride channel inhibitor, indanyloxyacetic acid 94 or Arf1 siRNA. The effects of CLIC4 on NF-κB (nuclear factor-kappa B), HIF (hypoxia-inducible factor), and angiogenic response were prevented by Arf6 siRNA and SecinH3. Sugen/hypoxia mice and monocrotaline rats showed elevated expression of CLIC4, activation of Arf6 and NF-κB, and reduced expression of BMPRII in the lung. These changes were established early during disease development. Lung endothelium-targeted delivery of CLIC4 siRNA or treatment with SecinH3 attenuated the disease, reduced CLIC4/Arf activation, and restored BMPRII expression in the lung. Endothelial colony-forming cells from idiopathic pulmonary hypertensive patients showed upregulation of CLIC4 expression and Arf6 activity, suggesting potential importance of this pathway in the human condition. CONCLUSIONS Arf6 is a novel effector of CLIC4 and a new therapeutic target in pulmonary hypertension.
Collapse
Affiliation(s)
- Vahitha B Abdul-Salam
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Giusy Russomanno
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Chen Chien-Nien
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Abdul S Mahomed
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Luke A Yates
- Section of Structural Biology (L.A.Y.), Department of Medicine, Imperial College London, United Kingdom
| | - Martin R Wilkins
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Lan Zhao
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Magdalena Gierula
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Oliver Dubois
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| | - Ute Schaeper
- Silence Therapeutics GmbH, Berlin, Germany (U.S., J.E.)
| | | | - Beata Wojciak-Stothard
- From the Centre for Pharmacology and Therapeutics (V.B.A.-S., G.R., C.C.-N., A.S.M., M.R.W., L.Z., M.G., O.D., B.W.-S.), Department of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
22
|
Hsu KS, Otsu W, Li Y, Wang HC, Chen S, Tsang SH, Chuang JZ, Sung CH. CLIC4 regulates late endosomal trafficking and matrix degradation activity of MMP14 at focal adhesions in RPE cells. Sci Rep 2019; 9:12247. [PMID: 31439888 PMCID: PMC6706427 DOI: 10.1038/s41598-019-48438-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
Dysregulation in the extracellular matrix (ECM) microenvironment surrounding the retinal pigment epithelium (RPE) has been implicated in the etiology of proliferative vitreoretinopathy and age-related macular degeneration. The regulation of ECM remodeling by RPE cells is not well understood. We show that membrane-type matrix metalloproteinase 14 (MMP14) is central to ECM degradation at the focal adhesions in human ARPE19 cells. The matrix degradative activity, but not the assembly, of the focal adhesion is regulated by chloride intracellular channel 4 (CLIC4). CLIC4 is co-localized with MMP14 in the late endosome. CLIC4 regulates the proper sorting of MMP14 into the lumen of the late endosome and its proteolytic activation in lipid rafts. CLIC4 has the newly-identified “late domain” motif that binds to MMP14 and to Tsg101, a component of the endosomal sorting complex required for transport (ESCRT) complex. Unlike the late domain mutant CLIC4, wild-type CLIC4 can rescue the late endosomal sorting defect of MMP14. Finally, CLIC4 knockdown inhibits the apical secretion of MMP2 in polarized human RPE monolayers. These results, taken together, demonstrate that CLIC4 is a novel matrix microenvironment modulator and a novel regulator for late endosomal cargo sorting. Moreover, the late endosomal sorting of MMP14 actively regulates its surface activation in RPE cells.
Collapse
Affiliation(s)
- Kuo-Shun Hsu
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA.,Department of Surgery, Colorectal Service and Laboratory of Signal Transduction, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wataru Otsu
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA.,Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Yao Li
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Heuy-Ching Wang
- Ocular Trauma Task Area, US Army Institute of Surgical Research, Joint Base San Antonio-Fort Sam Houston, TX, San Antonio, USA
| | - Shuibing Chen
- Department of Surgery and Department of Biochemistry, Weill Medical College of Cornell University, New York, NY, USA
| | - Stephen H Tsang
- Department of Ophthalmology, Columbia University, New York, NY, USA.,Institute of Human Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory, Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology & Cell Biology, and Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Weill Medical College of Cornell University, New York, NY, USA. .,Department of Cell and Developmental Biology, Weill Medical College of Cornell University, New York, NY, USA.
| |
Collapse
|
23
|
Sahgal P, Alanko J, Icha J, Paatero I, Hamidi H, Arjonen A, Pietilä M, Rokka A, Ivaska J. GGA2 and RAB13 promote activity-dependent β1-integrin recycling. J Cell Sci 2019; 132:jcs.233387. [PMID: 31076515 DOI: 10.1242/jcs.233387] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022] Open
Abstract
β1-integrins mediate cell-matrix interactions and their trafficking is important in the dynamic regulation of cell adhesion, migration and malignant processes, including cancer cell invasion. Here, we employ an RNAi screen to characterize regulators of integrin traffic and identify the association of Golgi-localized gamma ear-containing Arf-binding protein 2 (GGA2) with β1-integrin, and its role in recycling of active but not inactive β1-integrin receptors. Silencing of GGA2 limits active β1-integrin levels in focal adhesions and decreases cancer cell migration and invasion, which is in agreement with its ability to regulate the dynamics of active integrins. By using the proximity-dependent biotin identification (BioID) method, we identified two RAB family small GTPases, i.e. RAB13 and RAB10, as novel interactors of GGA2. Functionally, RAB13 silencing triggers the intracellular accumulation of active β1-integrin, and reduces integrin activity in focal adhesions and cell migration similarly to GGA2 depletion, indicating that both facilitate active β1-integrin recycling to the plasma membrane. Thus, GGA2 and RAB13 are important specificity determinants for integrin activity-dependent traffic.
Collapse
Affiliation(s)
- Pranshu Sahgal
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jonna Alanko
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Jaroslav Icha
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Ilkka Paatero
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Antti Arjonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Mika Pietilä
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Anne Rokka
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku FIN-20520, Finland .,Department of Biochemistry and Food Chemistry, University of Turku, Turku FIN-20520, Finland
| |
Collapse
|
24
|
Ghosh M, Lo R, Ivic I, Aguilera B, Qendro V, Devarakonda C, Shapiro LH. CD13 tethers the IQGAP1-ARF6-EFA6 complex to the plasma membrane to promote ARF6 activation, β1 integrin recycling, and cell migration. Sci Signal 2019; 12:12/579/eaav5938. [PMID: 31040262 DOI: 10.1126/scisignal.aav5938] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell attachment to the extracellular matrix (ECM) requires a balance between integrin internalization and recycling to the surface that is mediated by numerous proteins, emphasizing the complexity of these processes. Upon ligand binding in various cells, the β1 integrin is internalized, traffics to early endosomes, and is returned to the plasma membrane through recycling endosomes. This trafficking process depends on the cyclical activation and inactivation of small guanosine triphosphatases (GTPases) by their specific guanine exchange factors (GEFs) and their GTPase-activating proteins (GAPs). In this study, we found that the cell surface antigen CD13, a multifunctional transmembrane molecule that regulates cell-cell adhesion and receptor-mediated endocytosis, also promoted cell migration and colocalized with β1 integrin at sites of cell adhesion and at the leading edge. A lack of CD13 resulted in aberrant trafficking of internalized β1 integrin to late endosomes and its ultimate degradation. Our data indicate that CD13 promoted ARF6 GTPase activity by positioning the ARF6-GEF EFA6 at the cell membrane. In migrating cells, a complex containing phosphorylated CD13, IQGAP1, GTP-bound (active) ARF6, and EFA6 at the leading edge promoted the ARF6 GTPase cycling and cell migration. Together, our findings uncover a role for CD13 in the fundamental cellular processes of receptor recycling, regulation of small GTPase activities, cell-ECM interactions, and cell migration.
Collapse
Affiliation(s)
- Mallika Ghosh
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| | - Robin Lo
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Ivan Ivic
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Brian Aguilera
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Veneta Qendro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Charan Devarakonda
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA
| | - Linda H Shapiro
- Center for Vascular Biology, Department of Cell Biology, University of Connecticut School of Medicine, Farmington, CT 06032, USA.
| |
Collapse
|
25
|
Moreno-Layseca P, Icha J, Hamidi H, Ivaska J. Integrin trafficking in cells and tissues. Nat Cell Biol 2019; 21:122-132. [PMID: 30602723 PMCID: PMC6597357 DOI: 10.1038/s41556-018-0223-z] [Citation(s) in RCA: 281] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022]
Abstract
Cell adhesion to the extracellular matrix is fundamental to metazoan multicellularity and is accomplished primarily through the integrin family of cell-surface receptors. Integrins are internalized and enter the endocytic-exocytic pathway before being recycled back to the plasma membrane. The trafficking of this extensive protein family is regulated in multiple context-dependent ways to modulate integrin function in the cell. Here, we discuss recent advances in understanding the mechanisms and cellular roles of integrin endocytic trafficking.
Collapse
Affiliation(s)
- Paulina Moreno-Layseca
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jaroslav Icha
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Hellyeh Hamidi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Biochemistry, University of Turku, Turku, Finland.
| |
Collapse
|
26
|
Becchetti A, Petroni G, Arcangeli A. Ion Channel Conformations Regulate Integrin-Dependent Signaling. Trends Cell Biol 2019; 29:298-307. [PMID: 30635161 DOI: 10.1016/j.tcb.2018.12.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/16/2018] [Accepted: 12/18/2018] [Indexed: 01/12/2023]
Abstract
Cell-matrix adhesion determines the choice between different cell fates and is accompanied by substantial changes in ion transport. The greatest evidence is the bidirectional interplay occurring between integrin receptors and K+ channels. These proteins can form signaling hubs that regulate cell proliferation, differentiation, and migration in normal and neoplastic tissue. Recent results show that the physical interaction with integrins determines the balance of the open and closed K+ channel states, and individual channel conformations regulate distinct downstream pathways. We propose a model of how these mechanisms regulate proliferation and metastasis in cancer cells. In particular, we suggest that the neoplastic progression could be modulated by targeting specific ion channel conformations.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Firenze, Italy
| |
Collapse
|
27
|
Argenzio E, Klarenbeek J, Kedziora KM, Nahidiazar L, Isogai T, Perrakis A, Jalink K, Moolenaar WH, Innocenti M. Profilin binding couples chloride intracellular channel protein CLIC4 to RhoA-mDia2 signaling and filopodium formation. J Biol Chem 2018; 293:19161-19176. [PMID: 30381396 PMCID: PMC6302171 DOI: 10.1074/jbc.ra118.002779] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a cytosolic protein implicated in diverse actin-based processes, including integrin trafficking, cell adhesion, and tubulogenesis. CLIC4 is rapidly recruited to the plasma membrane by RhoA-activating agonists and then partly colocalizes with β1 integrins. Agonist-induced CLIC4 translocation depends on actin polymerization and requires conserved residues that make up a putative binding groove. However, the mechanism and significance of CLIC4 trafficking have been elusive. Here, we show that RhoA activation by either lysophosphatidic acid (LPA) or epidermal growth factor is necessary and sufficient for CLIC4 translocation to the plasma membrane and involves regulation by the RhoA effector mDia2, a driver of actin polymerization and filopodium formation. We found that CLIC4 binds the G-actin–binding protein profilin-1 via the same residues that are required for CLIC4 trafficking. Consistently, shRNA-induced profilin-1 silencing impaired agonist-induced CLIC4 trafficking and the formation of mDia2-dependent filopodia. Conversely, CLIC4 knockdown increased filopodium formation in an integrin-dependent manner, a phenotype rescued by wild-type CLIC4 but not by the trafficking-incompetent mutant CLIC4(C35A). Furthermore, CLIC4 accelerated LPA-induced filopodium retraction. We conclude that through profilin-1 binding, CLIC4 functions in a RhoA–mDia2–regulated signaling network to integrate cortical actin assembly and membrane protrusion. We propose that agonist-induced CLIC4 translocation provides a feedback mechanism that counteracts formin-driven filopodium formation.
Collapse
Affiliation(s)
| | | | | | | | | | - Anastassis Perrakis
- Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
28
|
Gururaja Rao S, Ponnalagu D, Patel NJ, Singh H. Three Decades of Chloride Intracellular Channel Proteins: From Organelle to Organ Physiology. CURRENT PROTOCOLS IN PHARMACOLOGY 2018; 80:11.21.1-11.21.17. [PMID: 30040212 PMCID: PMC6060641 DOI: 10.1002/cpph.36] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular organelles are membranous structures central for maintaining cellular physiology and the overall health of the cell. To maintain cellular function, intracellular organelles are required to tightly regulate their ionic homeostasis. Any imbalance in ionic concentrations can disrupt energy production (mitochondria), protein degradation (lysosomes), DNA replication (nucleus), or cellular signaling (endoplasmic reticulum). Ionic homeostasis is also important for volume regulation of intracellular organelles and is maintained by cation and anion channels as well as transporters. One of the major classes of ion channels predominantly localized to intracellular membranes is chloride intracellular channel proteins (CLICs). They are non-canonical ion channels with six homologs in mammals, existing as either soluble or integral membrane protein forms, with dual functions as enzymes and channels. Provided in this overview is a brief introduction to CLICs, and a summary of recent information on their localization, biophysical properties, and physiological roles. © 2018 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Shubha Gururaja Rao
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Neel J Patel
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Harpreet Singh
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Shaughnessy R, Echard A. Rab35 GTPase and cancer: Linking membrane trafficking to tumorigenesis. Traffic 2018; 19:247-252. [PMID: 29314576 DOI: 10.1111/tra.12546] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/31/2022]
Abstract
Rab35 is a small GTPase that is involved in many cellular processes, including membrane trafficking, cell polarity, lipid homeostasis, immunity, phagocytosis and cytokinesis. Recent studies showed that activating mutations confer Rab35 with oncogenic properties. Conversely, downregulation of Rab35 inverts apico-basal cell polarity and promotes cell migration. Here we review Rab35's known functions in membrane trafficking and signaling, cell division and cell migration in cancer cells and discuss the importance of Rab35-dependent membrane trafficking in cancer progression.
Collapse
Affiliation(s)
- Ronan Shaughnessy
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique UMR3691, Paris, France
| |
Collapse
|
30
|
Wang G, Bi L, Wang G, Huang F, Lu M, Zhu K. Microarray analysis to identify the similarities and differences of pathogenesis between aortic occlusive disease and abdominal aortic aneurysm. Vascular 2017; 26:301-314. [PMID: 29087237 DOI: 10.1177/1708538117736695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives Expression profile of GSE57691 was analyzed to identify the similarities and differences between aortic occlusive disease and abdominal aortic aneurysm. Methods The expression profile of GSE57691 was downloaded from Gene Expression Omnibus database, including 20 small abdominal aortic aneurysm samples, 29 large abdominal aortic aneurysm samples, 9 aortic occlusive disease samples, and 10 control samples. Using the limma package in R, the differentially expressed genes were screened. Followed by enrichment analysis was performed for the differentially expressed genes using database for annotation, visualization, and integrated discovery online tool. Based on string online tool and Cytoscape software, protein-protein interaction network and module analyses were carried out. Moreover, integrated TF platform database and Cytoscape software were used for constructing transcriptional regulatory networks. Results As a result, 1757, 354, and 396 differentially expressed genes separately were identified in aortic occlusive disease, large abdominal aortic aneurysm, and small abdominal aortic aneurysm samples. UBB was significantly enriched in proteolysis related pathways with a high degree in three groups. SPARCL1 was another gene shared by these groups and regulated by NFIA, which had a high degree in transcriptional regulatory network. ACTB, a significant upregulated gene in abdominal aortic aneurysm samples, could be regulated by CLIC4, which was significantly enriched in cell motions. ACLY and NFIB were separately identified in aortic occlusive disease and small abdominal aortic aneurysm samples, and separately enriched in lipid metabolism and negative regulation of cell proliferation. Conclusions The downregulated UBB, NFIA, and SPARCL1 might play key roles in both aortic occlusive disease and abdominal aortic aneurysm, while the upregulated ACTB might only involve in abdominal aortic aneurysm. ACLY and NFIB were specifically involved in aortic occlusive disease and small abdominal aortic aneurysm separately.
Collapse
Affiliation(s)
- Guofu Wang
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Lechang Bi
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Gaofeng Wang
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Feilai Huang
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Mingjing Lu
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| | - Kai Zhu
- Department of Vascular Surgery, Shaoxing Hospital of China Medical University, Shaoxing, China
| |
Collapse
|
31
|
Zheng J, Duan B, Sun S, Cui J, Du J, Zhang Y. Folliculin Interacts with Rab35 to Regulate EGF-Induced EGFR Degradation. Front Pharmacol 2017; 8:688. [PMID: 29018350 PMCID: PMC5622982 DOI: 10.3389/fphar.2017.00688] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 12/20/2022] Open
Abstract
Aims and Hypothesis: This study aims to investigate the mechanism involved in intracellular regulation of EGFR degradation induced by EGF. Methods: Phosphorylation of proteins related to EGFR signaling was examined by western blot analysis. Activation, connection between Rab35 and folliculin (FLCN) were assessed by pulldown, coimmunoprecipitation assays separately. The relationship between FLCN and cell growth was detected using gene overexpression and knock-down techniques. Results: Here, we demonstrate that interfering with FLCN, a tumor suppressor, reduces the rate of EGF-induced EGFR degradation, resulting in prolonged activation of downstream signaling. Rab35 is also involved in these processes. Moreover, C-terminal of FLCN binds to and activates Rab35. Of special interest is the observation that erlotinib, a selective EGFR inhibitor, not only obstructs the EGFR-mediated cellular signaling, but also abolishes EGF-stimulated EGFR degradation. Further results reveal that EGF facilitates the activation of Rab35, and FLCN modulates EGF-dependent Rab35 activation and cell growth. Conclusions: Taken together, our study proposes a negative-feedback regulation model in which FLCN mediates EGF-induced Rab35 activation, thereby increasing EGFR degradation and attenuating EGFR signaling.
Collapse
Affiliation(s)
- Jianchao Zheng
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Biao Duan
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Shixiu Sun
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Cui
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Argenzio E, Moolenaar WH. Emerging biological roles of Cl- intracellular channel proteins. J Cell Sci 2017; 129:4165-4174. [PMID: 27852828 DOI: 10.1242/jcs.189795] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cl- intracellular channels (CLICs) are a family of six evolutionary conserved cytosolic proteins that exist in both soluble and membrane-associated forms; however, their functions have long been elusive. Soluble CLICs adopt a glutathione S-transferase (GST)-fold, can induce ion currents in artificial membranes and show oxidoreductase activity in vitro, but there is no convincing evidence of CLICs having such activities in vivo. Recent studies have revealed a role for CLIC proteins in Rho-regulated cortical actin dynamics as well as vesicular trafficking and integrin recycling, the latter of which are under the control of Rab GTPases. In this Commentary, we discuss the emerging roles of CLIC proteins in these processes and the lessons learned from gene-targeting studies. We also highlight outstanding questions regarding the molecular function(s) of these important but still poorly understood proteins.
Collapse
Affiliation(s)
- Elisabetta Argenzio
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Wouter H Moolenaar
- Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
33
|
Flat clathrin lattices are dynamic actin-controlled hubs for clathrin-mediated endocytosis and signalling of specific receptors. Nat Commun 2017; 8:16068. [PMID: 28703125 PMCID: PMC5511353 DOI: 10.1038/ncomms16068] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/18/2017] [Indexed: 11/09/2022] Open
Abstract
Clathrin lattices at the plasma membrane coat both invaginated and flat regions forming clathrin-coated pits and clathrin plaques, respectively. The function and regulation of clathrin-coated pits in endocytosis are well understood but clathrin plaques remain enigmatic nanodomains. Here we use super-resolution microscopy, molecular genetics and cell biology to show that clathrin plaques contain the machinery for clathrin-mediated endocytosis and cell adhesion, and associate with both clathrin-coated pits and filamentous actin. We also find that actin polymerization promoted by N-WASP through the Arp2/3 complex is crucial for the regulation of plaques but not pits. Clathrin plaques oppose cell migration and undergo actin- and N-WASP-dependent disassembly upon activation of LPA receptor 1, but not EGF receptor. Most importantly, plaque disassembly correlates with the endocytosis of LPA receptor 1 and down-modulation of AKT activity. Thus, clathrin plaques serve as dynamic actin-controlled hubs for clathrin-mediated endocytosis and signalling that exhibit receptor specificity.
Collapse
|
34
|
Schulte C, Ripamonti M, Maffioli E, Cappelluti MA, Nonnis S, Puricelli L, Lamanna J, Piazzoni C, Podestà A, Lenardi C, Tedeschi G, Malgaroli A, Milani P. Scale Invariant Disordered Nanotopography Promotes Hippocampal Neuron Development and Maturation with Involvement of Mechanotransductive Pathways. Front Cell Neurosci 2016; 10:267. [PMID: 27917111 PMCID: PMC5114288 DOI: 10.3389/fncel.2016.00267] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/01/2016] [Indexed: 11/18/2022] Open
Abstract
The identification of biomaterials which promote neuronal maturation up to the generation of integrated neural circuits is fundamental for modern neuroscience. The development of neural circuits arises from complex maturative processes regulated by poorly understood signaling events, often guided by the extracellular matrix (ECM). Here we report that nanostructured zirconia surfaces, produced by supersonic cluster beam deposition of zirconia nanoparticles and characterized by ECM-like nanotopographical features, can direct the maturation of neural networks. Hippocampal neurons cultured on such cluster-assembled surfaces displayed enhanced differentiation paralleled by functional changes. The latter was demonstrated by single-cell electrophysiology showing earlier action potential generation and increased spontaneous postsynaptic currents compared to the neurons grown on the featureless unnaturally flat standard control surfaces. Label-free shotgun proteomics broadly confirmed the functional changes and suggests furthermore a vast impact of the neuron/nanotopography interaction on mechanotransductive machinery components, known to control physiological in vivo ECM-regulated axon guidance and synaptic plasticity. Our results indicate a potential of cluster-assembled zirconia nanotopography exploitable for the creation of efficient neural tissue interfaces and cell culture devices promoting neurogenic events, but also for unveiling mechanotransductive aspects of neuronal development and maturation.
Collapse
Affiliation(s)
- Carsten Schulte
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di MilanoMilan, Italy; Fondazione FilareteMilan, Italy
| | - Maddalena Ripamonti
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Elisa Maffioli
- Fondazione FilareteMilan, Italy; Dipartimento di Medicina Veterinaria, Università degli Studi di MilanoMilan, Italy
| | - Martino A Cappelluti
- Fondazione FilareteMilan, Italy; SEMM - European School of Molecular MedicineMilan, Italy
| | - Simona Nonnis
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano Milan, Italy
| | - Luca Puricelli
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Jacopo Lamanna
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Claudio Piazzoni
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Alessandro Podestà
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Cristina Lenardi
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| | - Gabriella Tedeschi
- Fondazione FilareteMilan, Italy; Dipartimento di Medicina Veterinaria, Università degli Studi di MilanoMilan, Italy
| | - Antonio Malgaroli
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute San Raffaele, Università Vita-Salute San Raffaele Milan, Italy
| | - Paolo Milani
- Dipartimento di Fisica, Centro Interdisciplinare Materiali e Interfacce Nanostrutturate, Università degli Studi di Milano Milan, Italy
| |
Collapse
|
35
|
Corne TDJ, Sieprath T, Vandenbussche J, Mohammed D, Te Lindert M, Gevaert K, Gabriele S, Wolf K, De Vos WH. Deregulation of focal adhesion formation and cytoskeletal tension due to loss of A-type lamins. Cell Adh Migr 2016; 11:447-463. [PMID: 27791462 DOI: 10.1080/19336918.2016.1247144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nuclear lamina mechanically integrates the nucleus with the cytoskeleton and extracellular environment and regulates gene expression. These functions are exerted through direct and indirect interactions with the lamina's major constituent proteins, the A-type lamins, which are encoded by the LMNA gene. Using quantitative stable isotope labeling-based shotgun proteomics we have analyzed the proteome of human dermal fibroblasts in which we have depleted A-type lamins by means of a sustained siRNA-mediated LMNA knockdown. Gene ontology analysis revealed that the largest fraction of differentially produced proteins was involved in actin cytoskeleton organization, in particular proteins involved in focal adhesion dynamics, such as actin-related protein 2 and 3 (ACTR2/3), subunits of the ARP2/3 complex, and fascin actin-bundling protein 1 (FSCN1). Functional validation using quantitative immunofluorescence showed a significant reduction in the size of focal adhesion points in A-type lamin depleted cells, which correlated with a reduction in early cell adhesion capacity and an increased cell motility. At the same time, loss of A-type lamins led to more pronounced stress fibers and higher traction forces. This phenotype could not be mimicked or reversed by experimental modulation of the STAT3-IL6 pathway, but it was partly recapitulated by chemical inhibition of the ARP2/3 complex. Thus, our data suggest that the loss of A-type lamins perturbs the balance between focal adhesions and cytoskeletal tension. This imbalance may contribute to mechanosensing defects observed in certain laminopathies.
Collapse
Affiliation(s)
- Tobias D J Corne
- a Laboratory of Cell Biology and Histology , Department of Veterinary Sciences, University of Antwerp , Antwerp , Belgium.,b Cell Systems and Imaging Research Group (CSI) , Department of Molecular Biotechnology, Ghent University , Ghent , Belgium
| | - Tom Sieprath
- a Laboratory of Cell Biology and Histology , Department of Veterinary Sciences, University of Antwerp , Antwerp , Belgium.,b Cell Systems and Imaging Research Group (CSI) , Department of Molecular Biotechnology, Ghent University , Ghent , Belgium
| | - Jonathan Vandenbussche
- c Medical Biotechnology Center, VIB , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Danahe Mohammed
- e Mechanobiology & Soft Matter Research Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons , Mons , Belgium
| | - Mariska Te Lindert
- f Department of Cell Biology , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Kris Gevaert
- c Medical Biotechnology Center, VIB , Belgium.,d Department of Biochemistry , Ghent University , Ghent , Belgium
| | - Sylvain Gabriele
- e Mechanobiology & Soft Matter Research Group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons , Mons , Belgium
| | - Katarina Wolf
- f Department of Cell Biology , Radboud University Medical Center , Nijmegen , The Netherlands
| | - Winnok H De Vos
- a Laboratory of Cell Biology and Histology , Department of Veterinary Sciences, University of Antwerp , Antwerp , Belgium.,b Cell Systems and Imaging Research Group (CSI) , Department of Molecular Biotechnology, Ghent University , Ghent , Belgium
| |
Collapse
|
36
|
Abstract
Integrins are a family of heterodimeric receptors that bind to components of the extracellular matrix and influence cellular processes as varied as proliferation and migration. These effects are achieved by tight spatiotemporal control over intracellular signalling pathways, including those that mediate cytoskeletal reorganisation. The ability of integrins to bind to ligands is governed by integrin conformation, or activity, and this is widely acknowledged to be an important route to the regulation of integrin function. Over the last 15 years, however, the pathways that regulate endocytosis and recycling of integrins have emerged as major players in controlling integrin action, and studying integrin trafficking has revealed fresh insight into the function of this fascinating class of extracellular matrix receptors, in particular in the context of cell migration and invasion. Here, we review our current understanding of the contribution of integrin trafficking to cell motility.
Collapse
Affiliation(s)
- Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | - Patrick T Caswell
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK.
| |
Collapse
|
37
|
Klinkert K, Echard A. Rab35 GTPase: A Central Regulator of Phosphoinositides and F-actin in Endocytic Recycling and Beyond. Traffic 2016; 17:1063-77. [PMID: 27329675 DOI: 10.1111/tra.12422] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/12/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Rab35 is one of the first discovered members of the large Rab GTPase family, yet it received little attention for 10 years being considered merely as a Rab1-like GTPase. In 2006, Rab35 was recognized as a unique Rab GTPase localized both at the plasma membrane and on endosomes, playing essential roles in endocytic recycling and cytokinesis. Since then, Rab35 has become one of the most studied Rabs involved in a growing number of cellular functions, including endosomal trafficking, exosome release, phagocytosis, cell migration, immunological synapse formation and neurite outgrowth. Recently, Rab35 has been acknowledged as an oncogenic GTPase with activating mutations being found in cancer patients. In this review, we provide a comprehensive summary of known Rab35-dependent cellular functions and detail the few Rab35 effectors characterized so far. We also review how the Rab35 GTP/GDP cycle is regulated, and emphasize a newly discovered mechanism that controls its tight activation on newborn endosomes. We propose that the involvement of Rab35 in such diverse and apparently unrelated cellular functions can be explained by the central role of this GTPase in regulating phosphoinositides and F-actin, both on endosomes and at the plasma membrane.
Collapse
Affiliation(s)
- Kerstin Klinkert
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France.,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.,Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de formation doctorale, 75252, Paris, France
| | - Arnaud Echard
- Membrane Traffic and Cell Division Lab, Cell Biology and Infection Department, Institut Pasteur, 25-28 rue du Dr Roux, 75724, Paris, France. .,Centre National de la Recherche Scientifique, UMR3691, 75015, Paris, France.
| |
Collapse
|
38
|
Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development. Int J Mol Sci 2016; 17:ijms17050618. [PMID: 27136540 PMCID: PMC4881444 DOI: 10.3390/ijms17050618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 11/17/2022] Open
Abstract
Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment.
Collapse
|
39
|
Rab35 GTPase couples cell division with initiation of epithelial apico-basal polarity and lumen opening. Nat Commun 2016; 7:11166. [PMID: 27040773 PMCID: PMC4822036 DOI: 10.1038/ncomms11166] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 02/25/2016] [Indexed: 02/08/2023] Open
Abstract
Establishment and maintenance of apico-basal polarity in epithelial organs must be tightly coupled with cell division, but the underlying molecular mechanisms are largely unknown. Using 3D cultures of renal MDCK cells (cysts), we found that the Rab35 GTPase plays a crucial role in polarity initiation and apical lumen positioning during the first cell division of cyst development. At the molecular level, Rab35 physically couples cytokinesis with the initiation of apico-basal polarity by tethering intracellular vesicles containing key apical determinants at the cleavage site. These vesicles transport aPKC, Cdc42, Crumbs3 and the lumen-promoting factor Podocalyxin, and are tethered through a direct interaction between Rab35 and the cytoplasmic tail of Podocalyxin. Consequently, Rab35 inactivation leads to complete inversion of apico-basal polarity in 3D cysts. This novel and unconventional mode of Rab-dependent vesicle targeting provides a simple mechanism for triggering both initiation of apico-basal polarity and lumen opening at the centre of cysts. Establishment and maintenance of apico-basal polarity in epithelial organs needs to be tightly coupled with cell division. Here the authors show that the Rab35 GTPase tethers intracellular vesicles containing key apical determinants at the cleavage site, connecting cytokinesis to apico-basal polarity.
Collapse
|
40
|
Schulte C, Rodighiero S, Cappelluti MA, Puricelli L, Maffioli E, Borghi F, Negri A, Sogne E, Galluzzi M, Piazzoni C, Tamplenizza M, Podestà A, Tedeschi G, Lenardi C, Milani P. Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation. J Nanobiotechnology 2016; 14:18. [PMID: 26955876 PMCID: PMC4784317 DOI: 10.1186/s12951-016-0171-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/25/2016] [Indexed: 02/03/2023] Open
Abstract
Background Thanks to mechanotransductive components cells are competent to perceive nanoscale topographical features of their environment and to convert the immanent information into corresponding physiological responses. Due to its complex configuration, unraveling the role of the extracellular matrix is particularly challenging. Cell substrates with simplified topographical cues, fabricated by top-down micro- and nanofabrication approaches, have been useful in order to identify basic principles. However, the underlying molecular mechanisms of this conversion remain only partially understood. Results Here we present the results of a broad, systematic and quantitative approach aimed at understanding how the surface nanoscale information is converted into cell response providing a profound causal link between mechanotransductive events, proceeding from the cell/nanostructure interface to the nucleus. We produced nanostructured ZrO2 substrates with disordered yet controlled topographic features by the bottom-up technique supersonic cluster beam deposition, i.e. the assembling of zirconia nanoparticles from the gas phase on a flat substrate through a supersonic expansion. We used PC12 cells, a well-established model in the context of neuronal differentiation. We found that the cell/nanotopography interaction enforces a nanoscopic architecture of the adhesion regions that affects the focal adhesion dynamics and the cytoskeletal organization, which thereby modulates the general biomechanical properties by decreasing the rigidity of the cell. The mechanotransduction impacts furthermore on transcription factors relevant for neuronal differentiation (e.g. CREB), and eventually the protein expression profile. Detailed proteomic data validated the observed differentiation. In particular, the abundance of proteins that are involved in adhesome and/or cytoskeletal organization is striking, and their up- or downregulation is in line with their demonstrated functions in neuronal differentiation processes. Conclusion Our work provides a deep insight into the molecular mechanotransductive mechanisms that realize the conversion of the nanoscale topographical information of SCBD-fabricated surfaces into cellular responses, in this case neuronal differentiation. The results lay a profound cell biological foundation indicating the strong potential of these surfaces in promoting neuronal differentiation events which could be exploited for the development of prospective research and/or biomedical applications. These applications could be e.g. tools to study mechanotransductive processes, improved neural interfaces and circuits, or cell culture devices supporting neurogenic processes. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0171-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carsten Schulte
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Martino Alfredo Cappelluti
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Luca Puricelli
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Elisa Maffioli
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Francesca Borghi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Armando Negri
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Elisa Sogne
- SEMM European School of Molecular Medicine, Via Adamello 16, Milan, 20139, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Massimiliano Galluzzi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Claudio Piazzoni
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | | | - Alessandro Podestà
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Gabriella Tedeschi
- DIVET, Università degli Studi di Milano, via Celoria 10, Milan, 20133, Italy. .,Fondazione Filarete, via le Ortles 22/4, Milan, 20139, Italy.
| | - Cristina Lenardi
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| | - Paolo Milani
- CIMAINA, Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, 20133, Italy.
| |
Collapse
|