1
|
Martin E, Girardello R, Dittmar G, Ludwig A. Time-resolved proximity proteomics uncovers a membrane tension-sensitive caveolin-1 interactome at the rear of migrating cells. eLife 2024; 13:e85601. [PMID: 39315773 PMCID: PMC11509677 DOI: 10.7554/elife.85601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/23/2024] [Indexed: 09/25/2024] Open
Abstract
Caveolae are small membrane pits with fundamental roles in mechanotransduction. Several studies have shown that caveolae flatten out in response to increased membrane tension, thereby acting as a mechanosensitive membrane reservoir that buffers acute mechanical stress. Caveolae have also been implicated in the control of RhoA/ROCK-mediated actomyosin contractility at the rear of migrating cells. However, how membrane tension controls the organisation of caveolae and their role in mechanotransduction remains unclear. To address this, we systematically quantified protein-protein interactions of caveolin-1 in migrating RPE1 cells at steady state and in response to an acute increase in membrane tension using biotin-based proximity labelling and quantitative mass spectrometry. Our data show that caveolae are highly enriched at the rear of migrating RPE1 cells and that membrane tension rapidly and reversibly disrupts the caveolar protein coat. Membrane tension also detaches caveolin-1 from focal adhesion proteins and several mechanosensitive regulators of cortical actin including filamins and cortactin. In addition, we present evidence that ROCK and the RhoGAP ARHGAP29 associate with caveolin-1 in a manner dependent on membrane tension, with ARHGAP29 influencing caveolin-1 Y14 phosphorylation, caveolae rear localisation, and RPE1 cell migration. Taken together, our work uncovers a membrane tension-sensitive coupling between caveolae and the rear-localised F-actin cytoskeleton. This provides a framework for dissecting the molecular mechanisms underlying caveolae-regulated mechanotransduction pathways.
Collapse
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| | - Rossana Girardello
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- NTU Institute of Structural Biology (NISB), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
2
|
Lang D, Ni H, Medvedev RY, Liu F, Alvarez-Baron CP, Tyan L, Turner DG, Warden A, Morotti S, Schrauth TA, Chanda B, Kamp TJ, Robertson GA, Grandi E, Glukhov AV. Caveolar Compartmentalization of Pacemaker Signaling is Required for Stable Rhythmicity of Sinus Nodal Cells and is Disrupted in Heart Failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.14.589457. [PMID: 38659841 PMCID: PMC11042225 DOI: 10.1101/2024.04.14.589457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Heart rhythm relies on complex interactions between electrogenic membrane proteins and intracellular Ca2+ signaling in sinoatrial node (SAN) myocytes; however, mechanisms underlying the functional organization of proteins involved in SAN pacemaking and its structural foundation remain elusive. Caveolae are nanoscale, plasma membrane pits that compartmentalize various ion channels and transporters, including those involved in SAN pacemaking, via binding with the caveolin-3 scaffolding protein, but the precise role of caveolae in cardiac pacemaker function is unknown. Our objective was to determine the role of caveolae in SAN pacemaking and dysfunction (SND). Methods Biochemical co-purification, in vivo electrocardiogram monitoring, ex vivo optical mapping, in vitro confocal Ca2+ imaging, and immunofluorescent and electron microscopy analyses were performed in wild type, cardiac-specific caveolin-3 knockout, and 8-weeks post-myocardial infarction heart failure (HF) mice. SAN tissue samples from donor human hearts were used for biochemical studies. We utilized a novel 3-dimensional single SAN cell mathematical model to determine the functional outcomes of protein nanodomain-specific localization and redistribution in SAN pacemaking. Results In both mouse and human SANs, caveolae compartmentalized HCN4, Cav1.2, Cav1.3, Cav3.1 and NCX1 proteins within discrete pacemaker signalosomes via direct association with caveolin-3. This compartmentalization positioned electrogenic sarcolemmal proteins near the subsarcolemmal sarcoplasmic reticulum (SR) membrane and ensured fast and robust activation of NCX1 by subsarcolemmal local SR Ca2+ release events (LCRs), which diffuse across ~15-nm subsarcolemmal cleft. Disruption of caveolae led to the development of SND via suppression of pacemaker automaticity through a 50% decrease of the L-type Ca2+ current, a negative shift of the HCN current (I f) activation curve, and a 40% reduction of Na+/Ca2+-exchanger function, along with ~2.3-times widening of the sarcolemma-SR distance. These changes significantly decreased the SAN depolarizing force, both during diastolic depolarization and upstroke phase, leading to bradycardia, sinus pauses, recurrent development of SAN quiescence, and significant increase in heart rate lability. Computational modeling, supported by biochemical studies, identified NCX1 redistribution to extra-caveolar membrane as the primary mechanism of SAN pauses and quiescence due to the impaired ability of NCX1 to be effectively activated by LCRs and trigger action potentials. HF remodeling mirrored caveolae disruption leading to NCX1-LCR uncoupling and SND. Conclusions SAN pacemaking is driven by complex protein interactions within a nanoscale caveolar pacemaker signalosome. Disruption of caveolae leads to SND, potentially demonstrating a new dimension of SAN remodeling and providing a newly recognized target for therapy.
Collapse
Affiliation(s)
- Di Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Haibo Ni
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Roman Y. Medvedev
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Fang Liu
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Leonid Tyan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel G.P. Turner
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleah Warden
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Stefano Morotti
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Thomas A. Schrauth
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Baron Chanda
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Timothy J. Kamp
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Gail A. Robertson
- Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Eleonora Grandi
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Alexey V. Glukhov
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
Shi J, Wei L. ROCK1 deficiency preserves caveolar compartmentalization of signaling molecules and cell membrane integrity. FASEB Bioadv 2024; 6:85-102. [PMID: 38463696 PMCID: PMC10918988 DOI: 10.1096/fba.2024-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
In this study, we investigated the roles of ROCK1 in regulating structural and functional features of caveolae located at the cell membrane of cardiomyocytes, adipocytes, and mouse embryonic fibroblasts (MEFs) as well as related physiopathological effects. Caveolae are small bulb-shaped cell membrane invaginations, and their roles have been associated with disease conditions. One of the unique features of caveolae is that they are physically linked to the actin cytoskeleton that is well known to be regulated by RhoA/ROCKs pathway. In cardiomyocytes, we observed that ROCK1 deficiency is coincident with an increased caveolar density, clusters, and caveolar proteins including caveolin-1 and -3. In the mouse cardiomyopathy model with transgenic overexpressing Gαq in myocardium, we demonstrated the reduced caveolar density at cell membrane and reduced caveolar protein contents. Interestingly, coexisting ROCK1 deficiency in cardiomyocytes can rescue these defects and preserve caveolar compartmentalization of β-adrenergic signaling molecules including β1-adrenergic receptor and type V/VI adenylyl cyclase. In cardiomyocytes and adipocytes, we detected that ROCK1 deficiency increased insulin signaling with increased insulin receptor activation in caveolae. In MEFs, we identified that ROCK1 deficiency increased caveolar and total levels of caveolin-1 and cell membrane repair ability after mechanical or chemical disruptions. Together, these results demonstrate that ROCK1 can regulate caveolae plasticity and multiple functions including compartmentalization of signaling molecules and cell membrane repair following membrane disruption by mechanical force and oxidative damage. These findings provide possible molecular insights into the beneficial effects of ROCK1 deletion/inhibition in cardiomyocytes, adipocytes, and MEFs under certain diseased conditions.
Collapse
Affiliation(s)
- Jianjian Shi
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Lei Wei
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, School of MedicineIndiana UniversityIndianapolisIndianaUSA
| |
Collapse
|
4
|
Brooks JW, Tillu V, Eckert J, Verma S, Collins BM, Parton RG, Yap AS. Caveola mechanotransduction reinforces the cortical cytoskeleton to promote epithelial resilience. Mol Biol Cell 2023; 34:ar120. [PMID: 37672337 PMCID: PMC10846620 DOI: 10.1091/mbc.e23-05-0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/08/2023] Open
Abstract
As physical barriers, epithelia must preserve their integrity when challenged by mechanical stresses. Cell-cell junctions linked to the cortical cytoskeleton play key roles in this process, often with mechanotransduction mechanisms that reinforce tissues. Caveolae are mechanosensitive organelles that buffer tension via disassembly. Loss of caveolae, through caveolin-1 or cavin1 depletion, causes activation of PtdIns(4, 5)P2 signaling, recruitment of FMNL2 formin, and enhanced-cortical actin assembly. How this equates to physiological responses in epithelial cells containing endogenous caveolae is unknown. Here we examined the effect of mechanically inducing acute disassembly of caveolae in epithelia. We show that perturbation of caveolae, through direct mechanical stress, reinforces the actin cortex at adherens junctions. Increasing interactions with membrane lipids by introducing multiple phosphatidylserine-binding undecad cavin1 (UC1) repeat domains into cavin1 rendered caveolae more stable to mechanical stimuli. This molecular stabilization blocked cortical reinforcement in response to mechanical stress. Cortical reinforcement elicited by the mechanically induced disassembly of caveolae increased epithelial resilience against tensile stresses. These findings identify the actin cortex as a target of caveola mechanotransduction that contributes to epithelial integrity.
Collapse
Affiliation(s)
- John W. Brooks
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Vikas Tillu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Julia Eckert
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Suzie Verma
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| |
Collapse
|
5
|
Kenworthy AK, Han B, Ariotti N, Parton RG. The Role of Membrane Lipids in the Formation and Function of Caveolae. Cold Spring Harb Perspect Biol 2023; 15:a041413. [PMID: 37277189 PMCID: PMC10513159 DOI: 10.1101/cshperspect.a041413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Caveolae are plasma membrane invaginations with a distinct lipid composition. Membrane lipids cooperate with the structural components of caveolae to generate a metastable surface domain. Recent studies have provided insights into the structure of essential caveolar components and how lipids are crucial for the formation, dynamics, and disassembly of caveolae. They also suggest new models for how caveolins, major structural components of caveolae, insert into membranes and interact with lipids.
Collapse
Affiliation(s)
- Anne K Kenworthy
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | - Bing Han
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia 22903, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia 22903, USA
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, 4072 Brisbane, Australia
| |
Collapse
|
6
|
Shu Y, Jin S. Caveolin-1 in endothelial cells: A potential therapeutic target for atherosclerosis. Heliyon 2023; 9:e18653. [PMID: 37554846 PMCID: PMC10405014 DOI: 10.1016/j.heliyon.2023.e18653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease characterized by lipid accumulation and the activation of the inflammatory response; it remains the leading nation-wide cause of death. Early in the progression of AS, stimulation by pro-inflammatory agonists (TNF-α, LPS, and others), oxidized lipoproteins (ox-LDL), and biomechanical stimuli (low shear stress) lead to endothelial cell activation and dysfunction. Consequently, it is crucial to investigate how endothelial cells respond to different stressors and ways to alter endothelial cell activation in AS development, as they are the earliest cells to respond. Caveolin-1 (Cav1) is a 21-24-kDa membrane protein located in caveolae and highly expressed in endothelial cells, which plays a vital role in regulating lipid transport, inflammatory responses, and various cellular signaling pathways and has atherogenic effects. This review summarizes recent studies on the structure and physiological functions of Cav1 and outlines the potential mechanisms it mediates in AS development. Included are the roles of Cav1 in the regulation of endothelial cell autophagy, response to shear stress, modulation of the eNOS/NO axis, and transduction of inflammatory signaling pathways. This review provides a rationale for proposing Cav1 as a novel target for the prevention of AS, as well as new ideas for therapeutic strategies for early AS.
Collapse
Affiliation(s)
- Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, China
| |
Collapse
|
7
|
Larsson E, Morén B, McMahon KA, Parton RG, Lundmark R. Dynamin2 functions as an accessory protein to reduce the rate of caveola internalization. J Cell Biol 2023; 222:213853. [PMID: 36729022 PMCID: PMC9929934 DOI: 10.1083/jcb.202205122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 02/03/2023] Open
Abstract
Caveolae are small membrane invaginations that generally are stably attached to the plasma membrane. Their release is believed to depend on the GTPase dynamin 2 (Dyn2), in analogy with its role in fission of clathrin-coated vesicles. The mechanistic understanding of caveola fission is, however, sparse. Here, we used microscopy-based tracking of individual caveolae in living cells to determine the role of Dyn2 in caveola dynamics. We report that Dyn2 stably associated with the bulb of a subset of caveolae, but was not required for formation or fission of caveolae. Dyn2-positive caveolae displayed longer plasma membrane duration times, whereas depletion of Dyn2 resulted in shorter duration times and increased caveola fission. The stabilizing role of Dyn2 was independent of its GTPase activity and the caveola stabilizing protein EHD2. Thus, we propose that, in contrast to the current view, Dyn2 is not a core component of the caveolae machinery, but rather functions as an accessory protein that restrains caveola internalization.
Collapse
Affiliation(s)
- Elin Larsson
- https://ror.org/05kb8h459Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Björn Morén
- https://ror.org/05kb8h459Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Kerrie-Ann McMahon
- https://ror.org/00rqy9422Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Robert G. Parton
- https://ror.org/00rqy9422Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia,Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland, Australia
| | - Richard Lundmark
- https://ror.org/05kb8h459Integrative Medical Biology, Umeå University, Umeå, Sweden,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden,Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden,Correspondence to Richard Lundmark:
| |
Collapse
|
8
|
Davis MA, Gale M. Assessing Cytoskeletal Destruction During Pyroptosis. Methods Mol Biol 2023; 2641:179-188. [PMID: 37074651 DOI: 10.1007/978-1-0716-3040-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Pyroptosis is an inflammatory form of cell death driven by the activation of caspase-1 and/or caspase-11 which cleaves and activates the pore-forming and cell-permeabilizing protein gasdermin-D. Pyroptosis is characterized by cell swelling and release of inflammatory cytosolic content, which were thought to be driven by colloid-osmotic lysis. Instead, we previously demonstrated that in vitro, pyroptotic cells do not in fact lyse. We also demonstrated that calpain cleaves vimentin, leading to loss of intermediate filaments, which in turn makes cells fragile and susceptible to rupture by extrinsic pressure. However, if, as our observations suggest, cells do not swell due to osmotic forces, what then causes cell rupture? Interestingly, in addition to intermediate filament loss, we demonstrated that other cytoskeletal networks, such as microtubules, actin, and nuclear lamina, are similarly lost during pyroptosis; however, the mechanisms driving these cytoskeletal disruptions as well as their functional significance are unclear. To facilitate the study of these processes, we present here the immunocytochemical methods by which we detected and assayed cytoskeletal destruction during pyroptosis.
Collapse
Affiliation(s)
- Michael A Davis
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA.
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Isik OA, Cizmecioglu O. Rafting on the Plasma Membrane: Lipid Rafts in Signaling and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1436:87-108. [PMID: 36648750 DOI: 10.1007/5584_2022_759] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The plasma membrane is not a uniform phospholipid bilayer; it has specialized membrane nano- or microdomains called lipid rafts. Lipid rafts are small cholesterol and sphingolipid-rich plasma membrane islands. Although their existence was long debated, their presence in the plasma membrane of living cells is now well accepted with the advent of super-resolution imaging techniques. It is interesting to note that lipid rafts function to compartmentalize receptors and their regulators and substantially modulate cellular signaling. In this review, we will examine the role of lipid rafts and caveolae-lipid raft-like microdomains with a distinct 3D morphology-in cellular signaling. Moreover, we will investigate how raft compartmentalized signaling regulates diverse physiological processes such as proliferation, apoptosis, immune signaling, and development. Also, the deregulation of lipid raft-mediated signaling during tumorigenesis and metastasis will be explored.
Collapse
Affiliation(s)
- Ozlem Aybuke Isik
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
10
|
Andrade V, Echard A. Mechanics and regulation of cytokinetic abscission. Front Cell Dev Biol 2022; 10:1046617. [PMID: 36506096 PMCID: PMC9730121 DOI: 10.3389/fcell.2022.1046617] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Cytokinetic abscission leads to the physical cut of the intercellular bridge (ICB) connecting the daughter cells and concludes cell division. In different animal cells, it is well established that the ESCRT-III machinery is responsible for the constriction and scission of the ICB. Here, we review the mechanical context of abscission. We first summarize the evidence that the ICB is initially under high tension and explain why, paradoxically, this can inhibit abscission in epithelial cells by impacting on ESCRT-III assembly. We next detail the different mechanisms that have been recently identified to release ICB tension and trigger abscission. Finally, we discuss whether traction-induced mechanical cell rupture could represent an ancient alternative mechanism of abscission and suggest future research avenues to further understand the role of mechanics in regulating abscission.
Collapse
Affiliation(s)
- Virginia Andrade
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,Collège Doctoral, Sorbonne Université, Paris, France
| | - Arnaud Echard
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,*Correspondence: Arnaud Echard,
| |
Collapse
|
11
|
Lolo FN, Pavón DM, Grande-García A, Elosegui-Artola A, Segatori VI, Sánchez S, Trepat X, Roca-Cusachs P, del Pozo MA. Caveolae couple mechanical stress to integrin recycling and activation. eLife 2022; 11:e82348. [PMID: 36264062 PMCID: PMC9747151 DOI: 10.7554/elife.82348] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
Cells are subjected to multiple mechanical inputs throughout their lives. Their ability to detect these environmental cues is called mechanosensing, a process in which integrins play an important role. During cellular mechanosensing, plasma membrane (PM) tension is adjusted to mechanical stress through the buffering action of caveolae; however, little is known about the role of caveolae in early integrin mechanosensing regulation. Here, we show that Cav1KO fibroblasts increase adhesion to FN-coated beads when pulled with magnetic tweezers, as compared to wild type fibroblasts. This phenotype is Rho-independent and mainly derived from increased active β1-integrin content on the surface of Cav1KO fibroblasts. Florescence recovery after photobleaching analysis and endocytosis/recycling assays revealed that active β1-integrin is mostly endocytosed through the clathrin independent carrier/glycosylphosphatidyl inositol (GPI)-enriched endocytic compartment pathway and is more rapidly recycled to the PM in Cav1KO fibroblasts, in a Rab4 and PM tension-dependent manner. Moreover, the threshold for PM tension-driven β1-integrin activation is lower in Cav1KO mouse embryonic fibroblasts (MEFs) than in wild type MEFs, through a mechanism dependent on talin activity. Our findings suggest that caveolae couple mechanical stress to integrin cycling and activation, thereby regulating the early steps of the cellular mechanosensing response.
Collapse
Affiliation(s)
- Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Dácil María Pavón
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Araceli Grande-García
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | | | - Valeria Inés Segatori
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Sara Sánchez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| | - Xavier Trepat
- Institute for Bioengineering of CataloniaBarcelonaSpain
| | | | - Miguel A del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and developmental Biology Area, Centro Nacional de Investigaciones CardiovascularesMadridSpain
| |
Collapse
|
12
|
Postrigan AE, Babushkina NP, Svintsova LI, Plotnikova IV, Skryabin NA. Clinical and Genetic Characteristics of Congenital Long QT Syndrome. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Jones JH, Minshall RD. Endothelial Transcytosis in Acute Lung Injury: Emerging Mechanisms and Therapeutic Approaches. Front Physiol 2022; 13:828093. [PMID: 35431977 PMCID: PMC9008570 DOI: 10.3389/fphys.2022.828093] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023] Open
Abstract
Acute Lung Injury (ALI) is characterized by widespread inflammation which in its severe form, Acute Respiratory Distress Syndrome (ARDS), leads to compromise in respiration causing hypoxemia and death in a substantial number of affected individuals. Loss of endothelial barrier integrity, pneumocyte necrosis, and circulating leukocyte recruitment into the injured lung are recognized mechanisms that contribute to the progression of ALI/ARDS. Additionally, damage to the pulmonary microvasculature by Gram-negative and positive bacteria or viruses (e.g., Escherichia coli, SARS-Cov-2) leads to increased protein and fluid permeability and interstitial edema, further impairing lung function. While most of the vascular leakage is attributed to loss of inter-endothelial junctional integrity, studies in animal models suggest that transendothelial transport of protein through caveolar vesicles, known as transcytosis, occurs in the early phase of ALI/ARDS. Here, we discuss the role of transcytosis in healthy and injured endothelium and highlight recent studies that have contributed to our understanding of the process during ALI/ARDS. We also cover potential approaches that utilize caveolar transport to deliver therapeutics to the lungs which may prevent further injury or improve recovery.
Collapse
Affiliation(s)
- Joshua H. Jones
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States
| | - Richard D. Minshall
- Department of Pharmacology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,Department of Anesthesiology, University of Illinois College of Medicine at Chicago, Chicago, IL, United States,*Correspondence: Richard D. Minshall,
| |
Collapse
|
14
|
Sancho M, Fletcher J, Welsh DG. Inward Rectifier Potassium Channels: Membrane Lipid-Dependent Mechanosensitive Gates in Brain Vascular Cells. Front Cardiovasc Med 2022; 9:869481. [PMID: 35419431 PMCID: PMC8995785 DOI: 10.3389/fcvm.2022.869481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral arteries contain two primary and interacting cell types, smooth muscle (SMCs) and endothelial cells (ECs), which are each capable of sensing particular hemodynamic forces to set basal tone and brain perfusion. These biomechanical stimuli help confer tone within arterial networks upon which local neurovascular stimuli function. Tone development is intimately tied to arterial membrane potential (VM) and changes in intracellular [Ca2+] driven by voltage-gated Ca2+ channels (VGCCs). Arterial VM is in turn set by the dynamic interplay among ion channel species, the strongly inward rectifying K+ (Kir) channel being of special interest. Kir2 channels possess a unique biophysical signature in that they strongly rectify, display negative slope conductance, respond to elevated extracellular K+ and are blocked by micromolar Ba2+. While functional Kir2 channels are expressed in both smooth muscle and endothelium, they lack classic regulatory control, thus are often viewed as a simple background conductance. Recent literature has provided new insight, with two membrane lipids, phosphatidylinositol 4,5-bisphosphate (PIP2) and cholesterol, noted to (1) stabilize Kir2 channels in a preferred open or closed state, respectively, and (2) confer, in association with the cytoskeleton, caveolin-1 (Cav1) and syntrophin, hemodynamic sensitivity. It is these aspects of vascular Kir2 channels that will be the primary focus of this review.
Collapse
Affiliation(s)
- Maria Sancho
- Department of Pharmacology, University of Vermont, Burlington, VT, United States
- Department of Physiology, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Maria Sancho,
| | - Jacob Fletcher
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Donald G. Welsh
- Department of Physiology and Pharmacology, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Donald G. Welsh,
| |
Collapse
|
15
|
Lachowski D, Matellan C, Gopal S, Cortes E, Robinson BK, Saiani A, Miller AF, Stevens MM, del Río Hernández AE. Substrate Stiffness-Driven Membrane Tension Modulates Vesicular Trafficking via Caveolin-1. ACS NANO 2022; 16:4322-4337. [PMID: 35255206 PMCID: PMC9007531 DOI: 10.1021/acsnano.1c10534] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Liver fibrosis, a condition characterized by extensive deposition and cross-linking of extracellular matrix (ECM) proteins, is idiosyncratic in cases of chronic liver injury. The dysregulation of ECM remodeling by hepatic stellate cells (HSCs), the main mediators of fibrosis, results in an elevated ECM stiffness that drives the development of chronic liver disease such as cirrhosis and hepatocellular carcinoma. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is a key element in the regulation of ECM remodeling, which modulates the degradation and turnover of ECM components. We have previously reported that a rigid, fibrotic-like substrate can impact TIMP-1 expression at the protein level in HSCs without altering its mRNA expression. While HSCs are known to be highly susceptible to mechanical stimuli, the mechanisms through which mechanical cues regulate TIMP-1 at the post-translational level remain unclear. Here, we show a mechanism of regulation of plasma membrane tension by matrix stiffness. We found that this effect is orchestrated by the β1 integrin/RhoA axis and results in elevated exocytosis and secretion of TIMP-1 in a caveolin-1- and dynamin-2-dependent manner. We then show that TIMP-1 and caveolin-1 expression increases in cirrhosis and hepatocellular carcinoma. These conditions are associated with fibrosis, and this effect can be recapitulated in 3D fibrosis models consisting of hepatic stellate cells encapsulated in a self-assembling polypeptide hydrogel. This work positions stiffness-dependent membrane tension as a key regulator of enzyme secretion and function and a potential target for therapeutic strategies that aim at modulating ECM remodeling in chronic liver disease.
Collapse
Affiliation(s)
- Dariusz Lachowski
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
- Manchester
BIOGEL, Mereside, Alderley Park, Alderley Edge, Cheshire SK10 4TG, United Kingdom
| | - Carlos Matellan
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sahana Gopal
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ernesto Cortes
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Benjamin K. Robinson
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Alberto Saiani
- Department
of Materials and Manchester Institute of Biotechnology, Faculty of
Science and Engineering, The University
of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Manchester
BIOGEL, Mereside, Alderley Park, Alderley Edge, Cheshire SK10 4TG, United Kingdom
| | - Aline F. Miller
- Department
of Chemical Engineering and Manchester Institute of Biotechnology,
Faculty of Science and Engineering, The
University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Manchester
BIOGEL, Mereside, Alderley Park, Alderley Edge, Cheshire SK10 4TG, United Kingdom
| | - Molly M. Stevens
- Department
of Materials, Department of Bioengineering and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Armando E. del Río Hernández
- Cellular
and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
16
|
De Ieso ML, Kuhn M, Bernatchez P, Elliott MH, Stamer WD. A Role of Caveolae in Trabecular Meshwork Mechanosensing and Contractile Tone. Front Cell Dev Biol 2022; 10:855097. [PMID: 35372369 PMCID: PMC8969750 DOI: 10.3389/fcell.2022.855097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Polymorphisms in the CAV1/2 gene loci impart increased risk for primary open-angle glaucoma (POAG). CAV1 encodes caveolin-1 (Cav1), which is required for biosynthesis of plasma membrane invaginations called caveolae. Cav1 knockout mice exhibit elevated intraocular pressure (IOP) and decreased outflow facility, but the mechanistic role of Cav1 in IOP homeostasis is unknown. We hypothesized that caveolae sequester/inhibit RhoA, to regulate trabecular meshwork (TM) mechanosensing and contractile tone. Using phosphorylated myosin light chain (pMLC) as a surrogate indicator for Rho/ROCK activity and contractile tone, we found that pMLC was elevated in Cav1-deficient TM cells compared to control (131 ± 10%, n = 10, p = 0.016). Elevation of pMLC levels following Cav1 knockdown occurred in cells on a soft surface (137 ± 7%, n = 24, p < 0.0001), but not on a hard surface (122 ± 17%, n = 12, p = 0.22). In Cav1-deficient TM cells where pMLC was elevated, Rho activity was also increased (123 ± 7%, n = 6, p = 0.017), suggesting activation of the Rho/ROCK pathway. Cyclic stretch reduced pMLC/MLC levels in TM cells (69 ± 7% n = 9, p = 0.002) and in Cav1-deficient TM cells, although not significantly (77 ± 11% n = 10, p = 0.059). Treatment with the Cav1 scaffolding domain mimetic, cavtratin (1 μM) caused a reduction in pMLC (70 ± 5% n = 7, p = 0.001), as did treatment with the scaffolding domain mutant cavnoxin (1 μM) (82 ± 7% n = 7, p = 0.04). Data suggest that caveolae differentially regulate RhoA signaling, and that caveolae participate in TM mechanotransduction. Cav1 regulation of these key TM functions provide evidence for underlying mechanisms linking polymorphisms in the Cav1/2 gene loci with increased POAG risk.
Collapse
Affiliation(s)
- Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| | - Pascal Bernatchez
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Heart + Lung Innovation Centre, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Michael H. Elliott
- Department of Ophthalmology, Dean McGee Eye Institute University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
| |
Collapse
|
17
|
Aurora A and AKT Kinase Signaling Associated with Primary Cilia. Cells 2021; 10:cells10123602. [PMID: 34944109 PMCID: PMC8699881 DOI: 10.3390/cells10123602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of kinase signaling is associated with various pathological conditions, including cancer, inflammation, and autoimmunity; consequently, the kinases involved have become major therapeutic targets. While kinase signaling pathways play crucial roles in multiple cellular processes, the precise manner in which their dysregulation contributes to disease is dependent on the context; for example, the cell/tissue type or subcellular localization of the kinase or substrate. Thus, context-selective targeting of dysregulated kinases may serve to increase the therapeutic specificity while reducing off-target adverse effects. Primary cilia are antenna-like structures that extend from the plasma membrane and function by detecting extracellular cues and transducing signals into the cell. Cilia formation and signaling are dynamically regulated through context-dependent mechanisms; as such, dysregulation of primary cilia contributes to disease in a variety of ways. Here, we review the involvement of primary cilia-associated signaling through aurora A and AKT kinases with respect to cancer, obesity, and other ciliopathies.
Collapse
|
18
|
Passive coupling of membrane tension and cell volume during active response of cells to osmosis. Proc Natl Acad Sci U S A 2021; 118:2103228118. [PMID: 34785592 PMCID: PMC8617515 DOI: 10.1073/pnas.2103228118] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2021] [Indexed: 12/25/2022] Open
Abstract
Tension is the force-opposing stretch of lipid membranes. It controls cell functions involving membranes. Membranes rupture above a tension threshold, causing cell death if tension is not properly buffered. However, how cell membrane tension is quantitatively regulated is unknown because it is difficult to measure. Using a fluorescent membrane tension probe, we explored the coupling between membrane tension and cell volume changes during osmosis. This coupling is described by an equilibrium theory linking tension to folding and unfolding of the membrane. This coupling is nevertheless actively regulated by cell components such as the cytoskeleton, ion transporters, and mTOR pathways. Our results highlight that cell volume regulation and membrane tension homeostasis are independent from the regulation of their coupling. During osmotic changes of their environment, cells actively regulate their volume and plasma membrane tension that can passively change through osmosis. How tension and volume are coupled during osmotic adaptation remains unknown, as their quantitative characterization is lacking. Here, we performed dynamic membrane tension and cell volume measurements during osmotic shocks. During the first few seconds following the shock, cell volume varied to equilibrate osmotic pressures inside and outside the cell, and membrane tension dynamically followed these changes. A theoretical model based on the passive, reversible unfolding of the membrane as it detaches from the actin cortex during volume increase quantitatively describes our data. After the initial response, tension and volume recovered from hypoosmotic shocks but not from hyperosmotic shocks. Using a fluorescent membrane tension probe (fluorescent lipid tension reporter [Flipper-TR]), we investigated the coupling between tension and volume during these asymmetric recoveries. Caveolae depletion and pharmacological inhibition of ion transporters and channels, mTORCs, and the cytoskeleton all affected tension and volume responses. Treatments targeting mTORC2 and specific downstream effectors caused identical changes to both tension and volume responses, their coupling remaining the same. This supports that the coupling of tension and volume responses to osmotic shocks is primarily regulated by mTORC2.
Collapse
|
19
|
mDia1 Assembles a Linear F-Actin Coat at Membrane Invaginations To Drive Listeria monocytogenes Cell-to-Cell Spreading. mBio 2021; 12:e0293921. [PMID: 34781738 PMCID: PMC8593688 DOI: 10.1128/mbio.02939-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Direct cell-to-cell spreading of Listeria monocytogenes requires the bacteria to induce actin-based finger-like membrane protrusions in donor host cells that are endocytosed through caveolin-rich membrane invaginations by adjacent receiving cells. An actin shell surrounds these endocytic sites; however, its structure, composition, and functional significance remain elusive. Here, we show that the formin mDia1, but surprisingly not the Arp2/3 complex, is enriched at the membrane invaginations generated by L. monocytogenes during HeLa and Jeg-3 cell infections. Electron microscopy reveals a band of linear actin filaments that run along the longitudinal axis of the invagination membrane. Mechanistically, mDia1 expression is vital for the assembly of this F-actin shell. mDia1 is also required for the recruitment of Filamin A, a caveola-associated F-actin cross-linking protein, and caveolin-1 to the invaginations. Importantly, mixed-cell infection assays show that optimal caveolin-based L. monocytogenes cell-to-cell spreading correlates with the formation of the linear actin filament-containing shell by mDia1. IMPORTANCE Listeria monocytogenes spreads from one cell to another to colonize tissues. This cell-to-cell movement requires the propulsive force of an actin-rich comet tail behind the advancing bacterium, which ultimately distends the host plasma membrane into a slender bacterium-containing membrane protrusion. These membrane protrusions induce a corresponding invagination in the membrane of the adjacent host cell. The host cell that receives the protrusion utilizes caveolin-based endocytosis to internalize the structures, and filamentous actin lines these membrane invaginations. Here, we set out to determine the structure and function of this filamentous actin "shell." We demonstrate that the formin mDia1, but not the Arp2/3 complex, localizes to the invaginations. Morphologically, we show that this actin is organized into linear arrays and not branched dendritic networks. Mechanistically, we show that the actin shell is assembled by mDia1 and that mDia1 is required for efficient cell-to-cell transfer of L. monocytogenes.
Collapse
|
20
|
Liu W, Tang D, Xu XX, Liu YJ, Jiu Y. How Physical Factors Coordinate Virus Infection: A Perspective From Mechanobiology. Front Bioeng Biotechnol 2021; 9:764516. [PMID: 34778236 PMCID: PMC8585752 DOI: 10.3389/fbioe.2021.764516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Pandemics caused by viruses have threatened lives of thousands of people. Understanding the complicated process of viral infection provides significantly directive implication to epidemic prevention and control. Viral infection is a complex and diverse process, and substantial studies have been complemented in exploring the biochemical and molecular interactions between viruses and hosts. However, the physical microenvironment where infections implement is often less considered, and the role of mechanobiology in viral infection remains elusive. Mechanobiology focuses on sensation, transduction, and response to intracellular and extracellular physical factors by tissues, cells, and extracellular matrix. The intracellular cytoskeleton and mechanosensors have been proven to be extensively involved in the virus life cycle. Furthermore, innovative methods based on micro- and nanofabrication techniques are being utilized to control and modulate the physical and chemical cell microenvironment, and to explore how extracellular factors including stiffness, forces, and topography regulate viral infection. Our current review covers how physical factors in the microenvironment coordinate viral infection. Moreover, we will discuss how this knowledge can be harnessed in future research on cross-fields of mechanobiology and virology.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Daijiao Tang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Xin Xu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Department of Systems Biology for Medicine, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Vyhlidal MJ, Adesida AB. Mechanotransduction in meniscus fibrochondrocytes: What about caveolae? J Cell Physiol 2021; 237:1171-1181. [PMID: 34676536 DOI: 10.1002/jcp.30616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/19/2021] [Accepted: 10/08/2021] [Indexed: 12/28/2022]
Abstract
Meniscus fibrochondrocytes (MFCs) are an important cell population responsible for regulating the biomechanical properties of the knee meniscus. Despite their significance, not much is known about them, including how they sense and respond to mechanical stimuli. Due to the mechanical nature of the knee joint, it is therefore paramount to our understanding of the meniscus that its mechanotransductive mechanism be elucidated. In this review, we will summarize the current knowledge on mechanotransduction in MFCs and highlight the relevance of caveolae in lieu of a recent discovery. Additionally, we will discuss the importance of future studies in this area to help advance the field of meniscus research.
Collapse
Affiliation(s)
- Margaret J Vyhlidal
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada.,Division of Otolaryngology, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Charpentier JC, King PD. Mechanisms and functions of endocytosis in T cells. Cell Commun Signal 2021; 19:92. [PMID: 34503523 PMCID: PMC8427877 DOI: 10.1186/s12964-021-00766-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/17/2021] [Indexed: 11/11/2022] Open
Abstract
Once thought of primarily as a means to neutralize pathogens or to facilitate feeding, endocytosis is now known to regulate a wide range of eukaryotic cell processes. Among these are regulation of signal transduction, mitosis, lipid homeostasis, and directed migration, among others. Less well-appreciated are the roles various forms of endocytosis plays in regulating αβ and, especially, γδ T cell functions, such as T cell receptor signaling, antigen discovery by trogocytosis, and activated cell growth. Herein we examine the contribution of both clathrin-mediated and clathrin-independent mechanisms of endocytosis to T cell biology. Video Abstract
Collapse
Affiliation(s)
- John C Charpentier
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, 6606 Med Sci II, 1150 West Medical Center Drive, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|
23
|
Zhou Y, Ariotti N, Rae J, Liang H, Tillu V, Tee S, Bastiani M, Bademosi AT, Collins BM, Meunier FA, Hancock JF, Parton RG. Caveolin-1 and cavin1 act synergistically to generate a unique lipid environment in caveolae. J Cell Biol 2021; 220:211716. [PMID: 33496726 PMCID: PMC7844427 DOI: 10.1083/jcb.202005138] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 11/20/2020] [Accepted: 12/21/2020] [Indexed: 01/09/2023] Open
Abstract
Caveolae are specialized domains of the vertebrate cell surface with a well-defined morphology and crucial roles in cell migration and mechanoprotection. Unique compositions of proteins and lipids determine membrane architectures. The precise caveolar lipid profile and the roles of the major caveolar structural proteins, caveolins and cavins, in selectively sorting lipids have not been defined. Here, we used quantitative nanoscale lipid mapping together with molecular dynamic simulations to define the caveolar lipid profile. We show that caveolin-1 (CAV1) and cavin1 individually sort distinct plasma membrane lipids. Intact caveolar structures composed of both CAV1 and cavin1 further generate a unique lipid nano-environment. The caveolar lipid sorting capability includes selectivities for lipid headgroups and acyl chains. Because lipid headgroup metabolism and acyl chain remodeling are tightly regulated, this selective lipid sorting may allow caveolae to act as transit hubs to direct communications among lipid metabolism, vesicular trafficking, and signaling.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX
| | - Nicholas Ariotti
- University of New South Wales Sydney, Mark Wainwright Analytical Center, Sydney, New South Wales, Australia.,University of New South Wales Sydney, Department of Pathology, School of Medical Sciences, Kensington, Sydney, New South Wales, Australia
| | - James Rae
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX
| | - Vikas Tillu
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Shern Tee
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Michele Bastiani
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia
| | - Adekunle T Bademosi
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Brett M Collins
- University of New South Wales Sydney, Department of Pathology, School of Medical Sciences, Kensington, Sydney, New South Wales, Australia
| | - Frederic A Meunier
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia.,Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, Queensland, Australia
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Medical School, Houston, TX.,Program in Cell and Regulatory Biology, University of Texas Graduate School of Biomedical Sciences, Houston, TX
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland, Australia.,The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 2021; 8:662410. [PMID: 34434970 PMCID: PMC8382116 DOI: 10.3389/fcvm.2021.662410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.
Collapse
Affiliation(s)
- Daniel Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Chen Kang
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Juan Hong
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Rajan Sah
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
25
|
Djakbarova U, Madraki Y, Chan ET, Kural C. Dynamic interplay between cell membrane tension and clathrin-mediated endocytosis. Biol Cell 2021; 113:344-373. [PMID: 33788963 PMCID: PMC8898183 DOI: 10.1111/boc.202000110] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Deformability of the plasma membrane, the outermost surface of metazoan cells, allows cells to be dynamic, mobile and flexible. Factors that affect this deformability, such as tension on the membrane, can regulate a myriad of cellular functions, including membrane resealing, cell motility, polarisation, shape maintenance, membrane area control and endocytic vesicle trafficking. This review focuses on mechanoregulation of clathrin-mediated endocytosis (CME). We first delineate the origins of cell membrane tension and the factors that yield to its spatial and temporal fluctuations within cells. We then review the recent literature demonstrating that tension on the membrane is a fast-acting and reversible regulator of CME. Finally, we discuss tension-based regulation of endocytic clathrin coat formation during physiological processes.
Collapse
Affiliation(s)
| | - Yasaman Madraki
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Emily T. Chan
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Molecular Biophysics Training Program, The Ohio State University, Columbus, OH 43210, USA
| | - Comert Kural
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Interdiscipiinary Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Graceffa V. Physical and mechanical cues affecting biomaterial-mediated plasmid DNA delivery: insights into non-viral delivery systems. J Genet Eng Biotechnol 2021; 19:90. [PMID: 34142237 PMCID: PMC8211807 DOI: 10.1186/s43141-021-00194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Whilst traditional strategies to increase transfection efficiency of non-viral systems aimed at modifying the vector or the polyplexes/lipoplexes, biomaterial-mediated gene delivery has recently sparked increased interest. This review aims at discussing biomaterial properties and unravelling underlying mechanisms of action, for biomaterial-mediated gene delivery. DNA internalisation and cytoplasmic transport are initially discussed. DNA immobilisation, encapsulation and surface-mediated gene delivery (SMD), the role of extracellular matrix (ECM) and topographical cues, biomaterial stiffness and mechanical stimulation are finally outlined. MAIN TEXT Endocytic pathways and mechanisms to escape the lysosomal network are highly variable. They depend on cell and DNA complex types but can be diverted using appropriate biomaterials. 3D scaffolds are generally fabricated via DNA immobilisation or encapsulation. Degradation rate and interaction with the vector affect temporal patterns of DNA release and transgene expression. In SMD, DNA is instead coated on 2D surfaces. SMD allows the incorporation of topographical cues, which, by inducing cytoskeletal re-arrangements, modulate DNA endocytosis. Incorporation of ECM mimetics allows cell type-specific transfection, whereas in spite of discordances in terms of optimal loading regimens, it is recognised that mechanical loading facilitates gene transfection. Finally, stiffer 2D substrates enhance DNA internalisation, whereas in 3D scaffolds, the role of stiffness is still dubious. CONCLUSION Although it is recognised that biomaterials allow the creation of tailored non-viral gene delivery systems, there still are many outstanding questions. A better characterisation of endocytic pathways would allow the diversion of cell adhesion processes and cytoskeletal dynamics, in order to increase cellular transfection. Further research on optimal biomaterial mechanical properties, cell ligand density and loading regimens is limited by the fact that such parameters influence a plethora of other different processes (e.g. cellular adhesion, spreading, migration, infiltration, and proliferation, DNA diffusion and release) which may in turn modulate gene delivery. Only a better understanding of these processes may allow the creation of novel robust engineered systems, potentially opening up a whole new area of biomaterial-guided gene delivery for non-viral systems.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
- Department of Life Sciences, Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
| |
Collapse
|
27
|
Song Y, Wu Y, Xu L, Jiang T, Tang C, Yin C. Caveolae-Mediated Endocytosis Drives Robust siRNA Delivery of Polymeric Nanoparticles to Macrophages. ACS NANO 2021; 15:8267-8282. [PMID: 33915044 DOI: 10.1021/acsnano.0c08596] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cytosolic delivery of small interfering RNA (siRNA) remains challenging, and a profound understanding of the cellular uptake and intracellular processing of siRNA delivery systems could greatly improve the development of siRNA-based therapeutics. Here, we show that caveolae-mediated endocytosis (CvME) accounts for the robust siRNA delivery of mannose-modified trimethyl chitosan-cysteine/tripolyphosphate nanoparticles (MTC/TPP NPs) to macrophages by circumventing lysosomes. We show that the Golgi complex and ER are key organelles required for the efficient delivery of siRNA to macrophages in which the siRNA accumulation positively correlates with its silencing efficiency (r = 0.94). We also identify syntaxin6 and Niemann-Pick type C1 (NPC1) as indispensable regulators for MTC/TPP NPs-delivered siRNA into macrophages both in vitro and in vivo. Syntaxin6 and NPC1 knockout substantially decrease the cellular uptake and gene silencing of the siRNA delivered in MTC/TPP NPs in macrophages, which result in poor therapeutic outcomes for mice bearing acute hepatic injury. Our results suggest that highly efficient siRNA delivery can be achieved via CvME, which would give ideas for designing optimal delivery vectors to facilitate the clinical translation of siRNA drugs.
Collapse
Affiliation(s)
- Yudong Song
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Lu Xu
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Ting Jiang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Cui Tang
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| | - Chunhua Yin
- State Key Laboratory of Genetic Engineering, Department of Pharmaceutical Sciences, School of Life Sciences, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
28
|
McGinn J, Hallou A, Han S, Krizic K, Ulyanchenko S, Iglesias-Bartolome R, England FJ, Verstreken C, Chalut KJ, Jensen KB, Simons BD, Alcolea MP. A biomechanical switch regulates the transition towards homeostasis in oesophageal epithelium. Nat Cell Biol 2021; 23:511-525. [PMID: 33972733 PMCID: PMC7611004 DOI: 10.1038/s41556-021-00679-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
Epithelial cells rapidly adapt their behaviour in response to increasing tissue demands. However, the processes that finely control these cell decisions remain largely unknown. The postnatal period covering the transition between early tissue expansion and the establishment of adult homeostasis provides a convenient model with which to explore this question. Here, we demonstrate that the onset of homeostasis in the epithelium of the mouse oesophagus is guided by the progressive build-up of mechanical strain at the organ level. Single-cell RNA sequencing and whole-organ stretching experiments revealed that the mechanical stress experienced by the growing oesophagus triggers the emergence of a bright Krüppel-like factor 4 (KLF4) committed basal population, which balances cell proliferation and marks the transition towards homeostasis in a yes-associated protein (YAP)-dependent manner. Our results point to a simple mechanism whereby mechanical changes experienced at the whole-tissue level are integrated with those sensed at the cellular level to control epithelial cell fate.
Collapse
Affiliation(s)
- Jamie McGinn
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Oncology, University of Cambridge and Cancer Research UK Cambridge Centre, Cambridge, UK
| | - Adrien Hallou
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, UK
| | - Seungmin Han
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Kata Krizic
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Svetlana Ulyanchenko
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Frances J England
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | | | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Kim B Jensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Benjamin D Simons
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Maria P Alcolea
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Oncology, University of Cambridge and Cancer Research UK Cambridge Centre, Cambridge, UK.
| |
Collapse
|
29
|
Allard A, Lopes Dos Santos R, Campillo C. Remodelling of membrane tubules by the actin cytoskeleton. Biol Cell 2021; 113:329-343. [PMID: 33826772 DOI: 10.1111/boc.202000148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Inside living cells, the remodelling of membrane tubules by actomyosin networks is crucial for processes such as intracellular trafficking or organelle reshaping. In this review, we first present various in vivo situations in which actin affects membrane tubule remodelling, then we recall some results on force production by actin dynamics and on membrane tubules physics. Finally, we show that our knowledge of the underlying mechanisms by which actomyosin dynamics affect tubule morphology has recently been moved forward. This is thanks to in vitro experiments that mimic cellular membranes and actin dynamics and allow deciphering the physics of tubule remodelling in biochemically controlled conditions, and shed new light on tubule shape regulation.
Collapse
Affiliation(s)
- Antoine Allard
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France.,Sorbonne Université, UPMC, Paris 06, Paris, France.,Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, Paris, France.,Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | | | - Clément Campillo
- LAMBE, Université d'Évry, CNRS, CEA, Université Paris-Saclay, Évry-Courcouronnes, 91025, France
| |
Collapse
|
30
|
Shi X, Wen Z, Wang Y, Liu YJ, Shi K, Jiu Y. Feedback-Driven Mechanisms Between Phosphorylated Caveolin-1 and Contractile Actin Assemblies Instruct Persistent Cell Migration. Front Cell Dev Biol 2021; 9:665919. [PMID: 33928090 PMCID: PMC8076160 DOI: 10.3389/fcell.2021.665919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
The actin cytoskeleton and membrane-associated caveolae contribute to active processes, such as cell morphogenesis and motility. How these two systems interact and control directional cell migration is an outstanding question but remains understudied. Here we identified a negative feedback between contractile actin assemblies and phosphorylated caveolin-1 (CAV-1) in migrating cells. Cytoplasmic CAV-1 vesicles display actin-associated motilities by sliding along actin filaments or/and coupling to do retrograde flow with actomyosin bundles. Inhibition of contractile stress fibers, but not Arp2/3-dependent branched actin filaments, diminished the phosphorylation of CAV-1 on site Tyr14, and resulted in substantially increased size and decreased motility of cytoplasmic CAV-1 vesicles. Reciprocally, both the CAV-1 phospho-deficient mutation on site Tyr14 and CAV-1 knockout resulted in dramatic AMPK phosphorylation, further causing reduced active level of RhoA-myosin II and increased active level of Rac1-PAK1-Cofilin, consequently led to disordered contractile stress fibers and prominent lamellipodia. As a result, cells displayed depolarized morphology and compromised directional migration. Collectively, we propose a model in which feedback-driven regulation between actin and CAV-1 instructs persistent cell migration.
Collapse
Affiliation(s)
- Xuemeng Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zeyu Wen
- Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Wang
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Institute of Cardiovascular Diseases, and Institutes of Biomedical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kun Shi
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yaming Jiu
- The Joint Program in Infection and Immunity, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,The Joint Program in Infection and Immunity, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Yang C, He B, Dai W, Zhang H, Zheng Y, Wang X, Zhang Q. The role of caveolin-1 in the biofate and efficacy of anti-tumor drugs and their nano-drug delivery systems. Acta Pharm Sin B 2021; 11:961-977. [PMID: 33996409 PMCID: PMC8105775 DOI: 10.1016/j.apsb.2020.11.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/24/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
As one of the most important components of caveolae, caveolin-1 is involved in caveolae-mediated endocytosis and transcytosis pathways, and also plays a role in regulating the cell membrane cholesterol homeostasis and mediating signal transduction. In recent years, the relationship between the expression level of caveolin-1 in the tumor microenvironment and the prognostic effect of tumor treatment and drug treatment resistance has also been widely explored. In addition, the interplay between caveolin-1 and nano-drugs is bidirectional. Caveolin-1 could determine the intracellular biofate of specific nano-drugs, preventing from lysosomal degradation, and facilitate them penetrate into deeper site of tumors by transcytosis; while some nanocarriers could also affect caveolin-1 levels in tumor cells, thereby changing certain biophysical function of cells. This article reviews the role of caveolin-1 in tumor prognosis, chemotherapeutic drug resistance, antibody drug sensitivity, and nano-drug delivery, providing a reference for the further application of caveolin-1 in nano-drug delivery systems.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- ADC, antibody drug conjugates
- BBB, blood–brain barrier
- Biofate
- CAFs, cancer-associated fibroblasts
- CPT, camptothecin
- CSD, caveolin scaffolding domain
- CTB, cholera toxins B
- Cancer
- Caveolin-1
- Drug resistance
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- ER, endoplasmic reticulum
- ERK, extracellular regulated protein kinases
- FGF2, fibroblast growth factor 2
- GGT, γ-glutamyl transpeptidase
- GPI, glycosylphosphatidylinositol
- HER2, human epidermal growth factor receptor 2
- HMG-CoA, 3-hydroxy-3-methylglutaryl-coenzyme A
- HSA, human serum albumin
- IBC, infiltrating breast cancer
- IR, insulin receptor
- MAPK, mitogen-activated protein kinase
- MDR, multidrug resistance
- MSV, multistage nanovectors
- NPs, nanoparticles
- Nano-drug delivery systems
- PC, prostate cancer
- PDGF, platelet-derived growth factor
- PFS, progression free survival
- ROS, reactive oxygen species
- SCLC, small cell lung cancer
- SV40, simian virus 40
- Transcytosis
- cell SMA, styrene maleic acid
Collapse
|
32
|
Lolo FN, Jiménez-Jiménez V, Sánchez-Álvarez M, Del Pozo MÁ. Tumor-stroma biomechanical crosstalk: a perspective on the role of caveolin-1 in tumor progression. Cancer Metastasis Rev 2021; 39:485-503. [PMID: 32514892 DOI: 10.1007/s10555-020-09900-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tumor stiffening is a hallmark of malignancy that actively drives tumor progression and aggressiveness. Recent research has shed light onto several molecular underpinnings of this biomechanical process, which has a reciprocal crosstalk between tumor cells, stromal fibroblasts, and extracellular matrix remodeling at its core. This dynamic communication shapes the tumor microenvironment; significantly determines disease features including therapeutic resistance, relapse, or metastasis; and potentially holds the key for novel antitumor strategies. Caveolae and their components emerge as integrators of different aspects of cell function, mechanotransduction, and ECM-cell interaction. Here, we review our current knowledge on the several pivotal roles of the essential caveolar component caveolin-1 in this multidirectional biomechanical crosstalk and highlight standing questions in the field.
Collapse
Affiliation(s)
- Fidel Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Víctor Jiménez-Jiménez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Miguel Ángel Del Pozo
- Mechanoadaptation and Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
| |
Collapse
|
33
|
Matthaeus C, Taraska JW. Energy and Dynamics of Caveolae Trafficking. Front Cell Dev Biol 2021; 8:614472. [PMID: 33692993 PMCID: PMC7939723 DOI: 10.3389/fcell.2020.614472] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Caveolae are 70–100 nm diameter plasma membrane invaginations found in abundance in adipocytes, endothelial cells, myocytes, and fibroblasts. Their bulb-shaped membrane domain is characterized and formed by specific lipid binding proteins including Caveolins, Cavins, Pacsin2, and EHD2. Likewise, an enrichment of cholesterol and other lipids makes caveolae a distinct membrane environment that supports proteins involved in cell-type specific signaling pathways. Their ability to detach from the plasma membrane and move through the cytosol has been shown to be important for lipid trafficking and metabolism. Here, we review recent concepts in caveolae trafficking and dynamics. Second, we discuss how ATP and GTP-regulated proteins including dynamin and EHD2 control caveolae behavior. Throughout, we summarize the potential physiological and cell biological roles of caveolae internalization and trafficking and highlight open questions in the field and future directions for study.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Justin W Taraska
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
Jheng JR, Chen YS, Horng JT. Regulation of the proteostasis network during enterovirus infection: A feedforward mechanism for EV-A71 and EV-D68. Antiviral Res 2021; 188:105019. [PMID: 33484748 DOI: 10.1016/j.antiviral.2021.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 10/25/2022]
Abstract
The proteostasis network guarantees successful protein synthesis, folding, transportation, and degradation. Mounting evidence has revealed that this network maintains proteome integrity and is linked to cellular physiology, pathology, and virus infection. Human enterovirus A71 (EV-A71) and EV-D68 are suspected causative agents of acute flaccid myelitis, a severe poliomyelitis-like neurologic syndrome with no known cure. In this context, further clarification of the molecular mechanisms underlying EV-A71 and EV-D68 infection is paramount. Here, we summarize the components of the proteostasis network that are intercepted by EV-A71 and EV-D68, as well as antivirals that target this network and may help develop improved antiviral drugs.
Collapse
Affiliation(s)
- Jia-Rong Jheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yuan-Siao Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jim-Tong Horng
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
35
|
Božič B, Zemljič Jokhadar Š, Kristanc L, Gomišček G. Cell Volume Changes and Membrane Ruptures Induced by Hypotonic Electrolyte and Sugar Solutions. Front Physiol 2020; 11:582781. [PMID: 33364974 PMCID: PMC7750460 DOI: 10.3389/fphys.2020.582781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/06/2020] [Indexed: 01/09/2023] Open
Abstract
The cell volume changes induced by hypotonic electrolyte and sucrose solutions were studied in Chinese-hamster-ovary epithelial cells. The effects in the solutions with osmolarities between 32 and 315 mosM/L and distilled water were analyzed using bright-field and fluorescence confocal microscopy. The changes of the cell volume, accompanied by the detachment of cells, the formation of blebs, and the occurrence of almost spherical vesicle-like cells (“cell-vesicles”), showed significant differences in the long-time responses of the cells in the electrolyte solutions compared with the sucrose-containing solutions. A theoretical model based on different permeabilities of ions and sucrose molecules and on the action of Na+/K+-ATPase pumps is applied. It is consistent with the observed temporal behavior of the cells’ volume and the occurrence of tension-induced membrane ruptures and explains lower long-time responses of the cells in the sucrose solutions.
Collapse
Affiliation(s)
- Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Špela Zemljič Jokhadar
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| | - Luka Kristanc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Gomišček
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
36
|
Jones JH, Friedrich E, Hong Z, Minshall RD, Malik AB. PV1 in Caveolae Controls Lung Endothelial Permeability. Am J Respir Cell Mol Biol 2020; 63:531-539. [PMID: 32663411 DOI: 10.1165/rcmb.2020-0102oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Caveolae are prominent plasmalemmal invaginations in endothelial cells, especially in the lung vasculature, which comprises a vast surface area. PV1 (plasmalemmal vesicle-associated protein-1), a 60-kD glycoprotein expressed in endothelial cells, is essential for generating spoke-like diaphragmatic structures that span the neck region of endothelial caveolae. However, their role in caveolae-mediated uptake and endothelial-barrier function is unknown. Here, we generated mice with endothelial cell-specific deletion of PV1 through tamoxifen-induced Cdh5.Cre.ERT2 (endothelial-specific vascular cadherin.Cre.estrogen receptor 2)-mediated excision of the floxed PV1 allele. We observed that loss of PV1 specifically in endothelial cells increased lung vascular permeability of fluid and protein, indicating that PV1 is required for maintenance of lung vascular-barrier integrity. Endothelial-specific PV1 deletion also increased caveolae-mediated uptake of tracer albumin compared with controls, promoted Au-albumin accumulation in the bulb of caveolae, and induced caveolar swelling. In addition, we observed the progressive loss of plasma proteins from the circulation and reduced arterial pressure resulting from transudation of water and protein as well as edema formation in multiple tissues, including lungs. These changes seen after endothelial-specific PV1 deletion occurred in the absence of disruption of endothelial junctions. We demonstrated that exposure of wild-type mice to endotoxin, which is known to cause acute lung injury and increase protein permeability, also significantly reduced PV1 protein expression. We conclude that the key function of PV1 is to regulate lung endothelial permeability through its ability to restrict the entry of plasma proteins such as albumin into caveolae and their transport through the endothelial barrier.
Collapse
Affiliation(s)
- Joshua H Jones
- Department of Pharmacology.,Medical Scientist Training Program
| | | | | | - Richard D Minshall
- Department of Pharmacology.,Center for Lung and Vascular Biology, and.,Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, Illinois
| | - Asrar B Malik
- Department of Pharmacology.,Center for Lung and Vascular Biology, and
| |
Collapse
|
37
|
Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proc Natl Acad Sci U S A 2020; 117:30476-30487. [PMID: 33214152 DOI: 10.1073/pnas.2007443117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous β2-adrenoreceptor (β2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated β2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated β2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.
Collapse
|
38
|
Kruglikov I. Acoustic Waves in Axonal Membrane and Caveolins are the New Targets for Pain Treatment with High Frequency Ultrasound. J Pain Res 2020; 13:2791-2798. [PMID: 33173328 PMCID: PMC7646452 DOI: 10.2147/jpr.s281468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022] Open
Abstract
Reciprocal interaction between electrical and mechanical waves observed in axonal membrane during its excitation leads to a paradigm shift in pain research making the uncoupling of electro-mechanical signals an interesting target in pain treatment. This uncoupling can be realized either through direct disturbance of the mechanical surface waves in axonal membrane or through shifting of the thermodynamic state of this membrane far from its phase transition point. Both effects can be effectively realized through application of the very high frequency ultrasound waves. Additional target for application of ultrasound in pain treatment is the caveolin-1, which is abundantly present in Schwann cells as well as in the non-axonal tissues. Both targets demonstrate frequency-dependent reactions, thus making a very high frequency ultrasound a promising treatment modality in pain treatment.
Collapse
Affiliation(s)
- Ilja Kruglikov
- Scientific Department, Wellcomet GmbH, Karlsruhe, Germany
| |
Collapse
|
39
|
Del Pozo MA, Lolo FN, Echarri A. Caveolae: Mechanosensing and mechanotransduction devices linking membrane trafficking to mechanoadaptation. Curr Opin Cell Biol 2020; 68:113-123. [PMID: 33188985 DOI: 10.1016/j.ceb.2020.10.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Mechanical forces (extracellular matrix stiffness, vascular shear stress, and muscle stretching) reaching the plasma membrane (PM) determine cell behavior. Caveolae are PM-invaginated nanodomains with specific lipid and protein composition. Being highly abundant in mechanically challenged tissues (muscles, lungs, vessels, and adipose tissues), they protect cells from mechanical stress damage. Caveolae flatten upon increased PM tension, enabling both force sensing and accommodation, critical for cell mechanoprotection and homeostasis. Thus, caveolae are highly plastic, ranging in complexity from flattened membranes to vacuolar invaginations surrounded by caveolae-rosettes-which also contribute to mechanoprotection. Caveolar components crosstalk with mechanotransduction pathways and recent studies show that they translocate from the PM to the nucleus to convey stress information. Furthermore, caveolae components can regulate membrane traffic from/to the PM to adapt to environmental mechanical forces. The interdependence between lipids and caveolae starts to be understood, and the relevance of caveolae-dependent membrane trafficking linked to mechanoadaption to different physiopathological processes is emerging.
Collapse
Affiliation(s)
- Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Fidel-Nicolás Lolo
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Area of Cell & Developmental Biology, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
40
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
41
|
Unidirectional Regulation of Vimentin Intermediate Filaments to Caveolin-1. Int J Mol Sci 2020; 21:ijms21207436. [PMID: 33050149 PMCID: PMC7650580 DOI: 10.3390/ijms21207436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/12/2020] [Accepted: 09/14/2020] [Indexed: 12/22/2022] Open
Abstract
Both the mechanosensitive vimentin cytoskeleton and endocytic caveolae contribute to various active processes such as cell migration, morphogenesis, and stress response. However, the crosstalk between these two systems has remained elusive. Here, we find that the subcellular expression between vimentin and caveolin-1 is mutual exclusive, and vimentin filaments physically arrest the cytoplasmic motility of caveolin-1 vesicles. Importantly, vimentin depletion increases the phosphorylation of caveolin-1 on site Tyr14, and restores the compromised cell migration rate and directionality caused by caveolin-1 deprivation. Moreover, upon hypo-osmotic shock, vimentin-knockout recovers the reduced intracellular motility of caveolin-1 vesicles. In contrary, caveolin-1 depletion shows no effect on the expression, phosphorylation (on sites Ser39, Ser56, and Ser83), distribution, solubility, and cellular dynamics of vimentin filaments. Taken together, our data reveals a unidirectional regulation of vimentin to caveolin-1, at least on the cellular level.
Collapse
|
42
|
Mierke CT. Mechanical Cues Affect Migration and Invasion of Cells From Three Different Directions. Front Cell Dev Biol 2020; 8:583226. [PMID: 33043017 PMCID: PMC7527720 DOI: 10.3389/fcell.2020.583226] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Cell migration and invasion is a key driving factor for providing essential cellular functions under physiological conditions or the malignant progression of tumors following downward the metastatic cascade. Although there has been plentiful of molecules identified to support the migration and invasion of cells, the mechanical aspects have not yet been explored in a combined and systematic manner. In addition, the cellular environment has been classically and frequently assumed to be homogeneous for reasons of simplicity. However, motility assays have led to various models for migration covering only some aspects and supporting factors that in some cases also include mechanical factors. Instead of specific models, in this review, a more or less holistic model for cell motility in 3D is envisioned covering all these different aspects with a special emphasis on the mechanical cues from a biophysical perspective. After introducing the mechanical aspects of cell migration and invasion and presenting the heterogeneity of extracellular matrices, the three distinct directions of cell motility focusing on the mechanical aspects are presented. These three different directions are as follows: firstly, the commonly used invasion tests using structural and structure-based mechanical environmental signals; secondly, the mechano-invasion assay, in which cells are studied by mechanical forces to migrate and invade; and thirdly, cell mechanics, including cytoskeletal and nuclear mechanics, to influence cell migration and invasion. Since the interaction between the cell and the microenvironment is bi-directional in these assays, these should be accounted in migration and invasion approaches focusing on the mechanical aspects. Beyond this, there is also the interaction between the cytoskeleton of the cell and its other compartments, such as the cell nucleus. In specific, a three-element approach is presented for addressing the effect of mechanics on cell migration and invasion by including the effect of the mechano-phenotype of the cytoskeleton, nucleus and the cell's microenvironment into the analysis. In precise terms, the combination of these three research approaches including experimental techniques seems to be promising for revealing bi-directional impacts of mechanical alterations of the cellular microenvironment on cells and internal mechanical fluctuations or changes of cells on the surroundings. Finally, different approaches are discussed and thereby a model for the broad impact of mechanics on cell migration and invasion is evolved.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
43
|
Caveolin-3: A Causative Process of Chicken Muscular Dystrophy. Biomolecules 2020; 10:biom10091206. [PMID: 32825241 PMCID: PMC7565761 DOI: 10.3390/biom10091206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022] Open
Abstract
The etiology of chicken muscular dystrophy is the synthesis of aberrant WW domain containing E3 ubiquitin-protein ligase 1 (WWP1) protein made by a missense mutation of WWP1 gene. The β-dystroglycan that confers stability to sarcolemma was identified as a substrate of WWP protein, which induces the next molecular collapse. The aberrant WWP1 increases the ubiquitin ligase-mediated ubiquitination following severe degradation of sarcolemmal and cytoplasmic β-dystroglycan, and an erased β-dystroglycan in dystrophic αW fibers will lead to molecular imperfection of the dystrophin-glycoprotein complex (DGC). The DGC is a core protein of costamere that is an essential part of force transduction and protects the muscle fibers from contraction-induced damage. Caveolin-3 (Cav-3) and dystrophin bind competitively to the same site of β-dystroglycan, and excessive Cav-3 on sarcolemma will block the interaction of dystrophin with β-dystroglycan, which is another reason for the disruption of the DGC. It is known that fast-twitch glycolytic fibers are more sensitive and vulnerable to contraction-induced small tears than slow-twitch oxidative fibers under a variety of diseased conditions. Accordingly, the fast glycolytic αW fibers must be easy with rapid damage of sarcolemma corruption seen in chicken muscular dystrophy, but the slow oxidative fibers are able to escape from these damages.
Collapse
|
44
|
Strippoli R, Sandoval P, Moreno-Vicente R, Rossi L, Battistelli C, Terri M, Pascual-Antón L, Loureiro M, Matteini F, Calvo E, Jiménez-Heffernan JA, Gómez MJ, Jiménez-Jiménez V, Sánchez-Cabo F, Vázquez J, Tripodi M, López-Cabrera M, Del Pozo MÁ. Caveolin1 and YAP drive mechanically induced mesothelial to mesenchymal transition and fibrosis. Cell Death Dis 2020; 11:647. [PMID: 32811813 PMCID: PMC7435273 DOI: 10.1038/s41419-020-02822-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022]
Abstract
Despite their emerging relevance to fully understand disease pathogenesis, we have as yet a poor understanding as to how biomechanical signals are integrated with specific biochemical pathways to determine cell behaviour. Mesothelial-to-mesenchymal transition (MMT) markers colocalized with TGF-β1-dependent signaling and yes-associated protein (YAP) activation across biopsies from different pathologies exhibiting peritoneal fibrosis, supporting mechanotransduction as a central driving component of these class of fibrotic lesions and its crosstalk with specific signaling pathways. Transcriptome and proteome profiling of the response of mesothelial cells (MCs) to linear cyclic stretch revealed molecular changes compatible with bona fide MMT, which (i) overlapped with established YAP target gene subsets, and were largely dependent on endogenous TGF-β1 signaling. Importantly, TGF-β1 blockade blunts the transcriptional upregulation of these gene signatures, but not the mechanical activation and nuclear translocation of YAP per se. We studied the role therein of caveolin-1 (CAV1), a plasma membrane mechanotransducer. Exposure of CAV1-deficient MCs to cyclic stretch led to a robust upregulation of MMT-related gene programs, which was blunted upon TGF-β1 inhibition. Conversely, CAV1 depletion enhanced both TGF-β1 and TGFBRI expression, whereas its re-expression blunted mechanical stretching-induced MMT. CAV1 genetic deficiency exacerbated MMT and adhesion formation in an experimental murine model of peritoneal ischaemic buttons. Taken together, these results support that CAV1-YAP/TAZ fine-tune the fibrotic response through the modulation of MMT, onto which TGF-β1-dependent signaling coordinately converges. Our findings reveal a cooperation between biomechanical and biochemical signals in the triggering of MMT, representing a novel potential opportunity to intervene mechanically induced disorders coursing with peritoneal fibrosis, such as post-surgical adhesions.
Collapse
Affiliation(s)
- Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy. .,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy. .,Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.
| | - Pilar Sandoval
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular "Severo Ochoa"-CSIC, 28049, Madrid, Spain
| | - Roberto Moreno-Vicente
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Lucia Rossi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Michela Terri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Lucía Pascual-Antón
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular "Severo Ochoa"-CSIC, 28049, Madrid, Spain
| | - Marta Loureiro
- Cardiovascular Proteomics laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francesca Matteini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Enrique Calvo
- Cardiovascular Proteomics laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - José Antonio Jiménez-Heffernan
- Departamento de Anatomía Patológica, Hospital Universitario La Princesa, Instituto de Investigación Sanitaria Princesa (IP), 28006, Madrid, Spain
| | - Manuel José Gómez
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Victor Jiménez-Jiménez
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029, Madrid, Spain
| | - Jesús Vázquez
- Cardiovascular Proteomics laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and CIBER Cardiovascular Diseases (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149, Rome, Italy
| | - Manuel López-Cabrera
- Programa de Homeostasis de Tejidos y Organos, Centro de Biología Molecular "Severo Ochoa"-CSIC, 28049, Madrid, Spain.
| | - Miguel Ángel Del Pozo
- Mechanoadaptation & Caveolae Biology Lab, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029, Madrid, Spain.
| |
Collapse
|
45
|
Salvage SC, Huang CLH, Jackson AP. Cell-Adhesion Properties of β-Subunits in the Regulation of Cardiomyocyte Sodium Channels. Biomolecules 2020; 10:biom10070989. [PMID: 32630316 PMCID: PMC7407995 DOI: 10.3390/biom10070989] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/25/2020] [Accepted: 06/27/2020] [Indexed: 12/17/2022] Open
Abstract
Voltage-gated sodium (Nav) channels drive the rising phase of the action potential, essential for electrical signalling in nerves and muscles. The Nav channel α-subunit contains the ion-selective pore. In the cardiomyocyte, Nav1.5 is the main Nav channel α-subunit isoform, with a smaller expression of neuronal Nav channels. Four distinct regulatory β-subunits (β1–4) bind to the Nav channel α-subunits. Previous work has emphasised the β-subunits as direct Nav channel gating modulators. However, there is now increasing appreciation of additional roles played by these subunits. In this review, we focus on β-subunits as homophilic and heterophilic cell-adhesion molecules and the implications for cardiomyocyte function. Based on recent cryogenic electron microscopy (cryo-EM) data, we suggest that the β-subunits interact with Nav1.5 in a different way from their binding to other Nav channel isoforms. We believe this feature may facilitate trans-cell-adhesion between β1-associated Nav1.5 subunits on the intercalated disc and promote ephaptic conduction between cardiomyocytes.
Collapse
Affiliation(s)
- Samantha C. Salvage
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| | - Christopher L.-H. Huang
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Antony P. Jackson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK;
- Correspondence: (S.C.S.); (A.P.J.); Tel.: +44-1223-765950 (S.C.S.); +44-1223-765951 (A.P.J.)
| |
Collapse
|
46
|
Yasuoka Y. Morphogenetic mechanisms forming the notochord rod: The turgor pressure-sheath strength model. Dev Growth Differ 2020; 62:379-390. [PMID: 32275068 DOI: 10.1111/dgd.12665] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
The notochord is a defining feature of chordates. During notochord formation in vertebrates and tunicates, notochord cells display dynamic morphogenetic movement, called convergent extension, in which cells intercalate and align at the dorsal midline. However, in cephalochordates, the most basal group of chordates, the notochord is formed without convergent extension. It is simply developed from mesodermal cells at the dorsal midline. This suggests that convergent extension movement of notochord cells is a secondarily acquired developmental attribute in the common ancestor of olfactores (vertebrates + tunicates), and that the chordate ancestor innovated the notochord upon a foundation of morphogenetic mechanisms independent of cell movement. Therefore, this review focuses on biological features specific to notochord cells, which have been well studied using clawed frogs, zebrafish, and tunicates. Attributes of notochord cells, such as vacuolation, membrane trafficking, extracellular matrix formation, and apoptosis, can be understood in terms of two properties: turgor pressure of vacuoles and strength of the notochord sheath. To maintain the straight rod-like structure of the notochord, these parameters must be counterbalanced. In the future, the turgor pressure-sheath strength model, proposed in this review, will be examined in light of quantitative molecular data and mathematical simulations, illuminating the evolutionary origin of the notochord.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.,Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
47
|
Pol A, Morales-Paytuví F, Bosch M, Parton RG. Non-caveolar caveolins – duties outside the caves. J Cell Sci 2020; 133:133/9/jcs241562. [DOI: 10.1242/jcs.241562] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.
Collapse
Affiliation(s)
- Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Robert G. Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis (CMM) IMB, The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
| |
Collapse
|
48
|
Tang K, Li S, Li P, Xia Q, Yang R, Li T, Li L, Jiang Y, Qin X, Yang H, Wu C, You F, Tan Y, Liu Y. Shear stress stimulates integrin β1 trafficking and increases directional migration of cancer cells via promoting deacetylation of microtubules. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118676. [DOI: 10.1016/j.bbamcr.2020.118676] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/09/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022]
|
49
|
Formoso K, Susperreguy S, Freichel M, Birnbaumer L. RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways. Sci Rep 2020; 10:7227. [PMID: 32350291 PMCID: PMC7190874 DOI: 10.1038/s41598-020-61177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The seven-member transient receptor potential canonical genes (TRPC1-7) encode cation channels linked to several human diseases. There is little understanding of the participation of each TRPC in each pathology, considering functional redundancy. Also, most of the inhibitors available are not specific. Thus, we developed mice that lack all of the TRPCs and performed a transcriptome analysis in eight tissues. The aim of this research was to address the impact of the absence of all TRPC channels on gene expression. We obtained a total of 4305 differentially expressed genes (DEGs) in at least one tissue where spleen showed the highest number of DEGs (1371). Just 21 genes were modified in all the tissues. Performing a pathway enrichment analysis, we found that many important signaling pathways were modified in more than one tissue, including PI3K (phosphatidylinositol 3-kinase/protein kinase-B) signaling pathway, cytokine-cytokine receptor interaction, extracellular matrix (ECM)-receptor interaction and circadian rhythms. We describe for the first time the changes at the transcriptome level due to the lack of all TRPC proteins in a mouse model and provide a starting point to understand the function of TRPC channels and their possible roles in pathologies.
Collapse
Affiliation(s)
- Karina Formoso
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Sebastian Susperreguy
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Marc Freichel
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Lutz Birnbaumer
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina. .,Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
50
|
Castillo-Badillo JA, Bandi AC, Harlalka S, Gautam N. SRRF-Stream Imaging of Optogenetically Controlled Furrow Formation Shows Localized and Coordinated Endocytosis and Exocytosis Mediating Membrane Remodeling. ACS Synth Biol 2020; 9:902-919. [PMID: 32155337 DOI: 10.1021/acssynbio.9b00521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cleavage furrow formation during cytokinesis involves extensive membrane remodeling. In the absence of methods to exert dynamic control over these processes, it has been a challenge to examine the basis of this remodeling. Here we used a subcellular optogenetic approach to induce this at will and found that furrow formation is mediated by actomyosin contractility, retrograde plasma membrane flow, localized decrease in membrane tension, and endocytosis. FRAP, 4-D imaging, and inhibition or upregulation of endocytosis or exocytosis show that ARF6 and Exo70 dependent localized exocytosis supports a potential model for intercellular bridge elongation. TIRF and Super Resolution Radial Fluctuation (SRRF) stream microscopy show localized VAMP2-mediated exocytosis and incorporation of membrane lipids from vesicles into the plasma membrane at the front edge of the nascent daughter cell. Thus, spatially separated but coordinated plasma membrane depletion and addition are likely contributors to membrane remodeling during cytokinetic processes.
Collapse
|