1
|
Fu Y, Huang S, Pan R, Chen X, Liu T, Zhang R, Zhu F, Fang Q, Wu L, Dai J, Wang O, Lu L, Wei X, Wang L, Lu X. The PDE4DIP-AKAP9 axis promotes lung cancer growth through modulation of PKA signalling. Commun Biol 2025; 8:178. [PMID: 39905234 PMCID: PMC11794602 DOI: 10.1038/s42003-025-07621-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025] Open
Abstract
Phosphodiesterase 4D interacting protein (PDE4DIP) is a Golgi/centrosome-associated protein that plays critical roles in the regulation of microtubule dynamics and maintenance of the Golgi structure. However, its biological role in human cancer remains largely unknown. In this study, we showed that PDE4DIP is overexpressed in human non-small cell lung cancer (NSCLC) tissues and that upregulated PDE4DIP expression is associated with poor prognosis in patients with lung cancer. We demonstrated that PDE4DIP knockdown inhibits NSCLC cell proliferation in vitro and tumorigenicity in vivo. We further demonstrated that PDE4DIP knockdown triggers apoptosis and cell cycle arrest in NSCLC cells by activating the Protein kinase A (PKA) /CREB signalling pathway. PDE4DIP coordinates with A-kinase anchoring proteins 9 (AKAP9) to enhance the Golgi localization and stability of PKA RIIα. Depletion of PDE4DIP mislocalizes PKA RIIα from the Golgi and leads to its degradation, thereby compromising its negative regulatory effect on PKA signalling. Overall, our findings provide novel insights into the roles of the PDE4DIP-AKAP9 complex in regulating PKA signalling and NSCLC growth and highlight PDE4DIP as a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yangyang Fu
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shishun Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rulu Pan
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xingan Chen
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ting Liu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Rongzhe Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangsheng Zhu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiwei Fang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liyue Wu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiduan Wei
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangxing Wang
- Division of Pulmonary Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Yang S, Au FK, Li G, Lin J, Li XD, Qi RZ. Autoinhibitory mechanism controls binding of centrosomin motif 1 to γ-tubulin ring complex. J Cell Biol 2023; 222:e202007101. [PMID: 37213089 PMCID: PMC10202828 DOI: 10.1083/jcb.202007101] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/03/2023] [Accepted: 03/24/2023] [Indexed: 05/23/2023] Open
Abstract
The γ-tubulin ring complex (γTuRC) is the principal nucleator of cellular microtubules, and the microtubule-nucleating activity of the complex is stimulated by binding to the γTuRC-mediated nucleation activator (γTuNA) motif. The γTuNA is part of the centrosomin motif 1 (CM1), which is widely found in γTuRC stimulators, including CDK5RAP2. Here, we show that a conserved segment within CM1 binds to the γTuNA and blocks its association with γTuRCs; therefore, we refer to this segment as the γTuNA inhibitor (γTuNA-In). Mutational disruption of the interaction between the γTuNA and the γTuNA-In results in a loss of autoinhibition, which consequently augments microtubule nucleation on centrosomes and the Golgi complex, the two major microtubule-organizing centers. This also causes centrosome repositioning, leads to defects in Golgi assembly and organization, and affects cell polarization. Remarkably, phosphorylation of the γTuNA-In, probably by Nek2, counteracts the autoinhibition by disrupting the γTuNA‒γTuNA-In interaction. Together, our data reveal an on-site mechanism for controlling γTuNA function.
Collapse
Affiliation(s)
- Shaozhong Yang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Franco K.C. Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Gefei Li
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Jianwei Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Xiang David Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Robert Z. Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| |
Collapse
|
3
|
Pan R, Dai J, Liang W, Wang H, Ye L, Ye S, Lin Z, Huang S, Xiong Y, Zhang L, Lu L, Wang O, Shen X, Liao W, Lu X. PDE4DIP contributes to colorectal cancer growth and chemoresistance through modulation of the NF1/RAS signaling axis. Cell Death Dis 2023; 14:373. [PMID: 37355626 PMCID: PMC10290635 DOI: 10.1038/s41419-023-05885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/26/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
Phosphodiesterase 4D interacting protein (PDE4DIP) is a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterases. PDE4DIP is commonly mutated in human cancers, and its alteration in mice leads to a predisposition to intestinal cancer. However, the biological function of PDE4DIP in human cancer remains obscure. Here, we report for the first time the oncogenic role of PDE4DIP in colorectal cancer (CRC) growth and adaptive MEK inhibitor (MEKi) resistance. We show that the expression of PDE4DIP is upregulated in CRC tissues and associated with the clinical characteristics and poor prognosis of CRC patients. Knockdown of PDE4DIP impairs the growth of KRAS-mutant CRC cells by inhibiting the core RAS signaling pathway. PDE4DIP plays an essential role in the full activation of oncogenic RAS/ERK signaling by suppressing the expression of the RAS GTPase-activating protein (RasGAP) neurofibromin (NF1). Mechanistically, PDE4DIP promotes the recruitment of PLCγ/PKCε to the Golgi apparatus, leading to constitutive activation of PKCε, which triggers the degradation of NF1. Upregulation of PDE4DIP results in adaptive MEKi resistance in KRAS-mutant CRC by reactivating the RAS/ERK pathway. Our work reveals a novel functional link between PDE4DIP and NF1/RAS signal transduction and suggests that targeting PDE4DIP is a promising therapeutic strategy for KRAS-mutant CRC.
Collapse
Affiliation(s)
- Rulu Pan
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Juji Dai
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Weicheng Liang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hongxiao Wang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Lin Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Siqi Ye
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ziqi Lin
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shishun Huang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yan Xiong
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Li Zhang
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Liting Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ouchen Wang
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wanqin Liao
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| | - Xincheng Lu
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
4
|
Mohamed BA, Elkenani M, Mobarak S, Marques Rodrigues D, Annamalai K, Schnelle M, Bader M, Hasenfuss G, Toischer K. Hemodynamic stress-induced cardiac remodelling is not modulated by ablation of phosphodiesterase 4D interacting protein. J Cell Mol Med 2022; 26:4440-4452. [PMID: 35860864 PMCID: PMC9357604 DOI: 10.1111/jcmm.17468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/13/2022] [Accepted: 06/19/2022] [Indexed: 11/28/2022] Open
Abstract
Adrenergic stimulation in the heart activates the protein kinase A (PKA), which phosphorylates key proteins involved in intracellular Ca2+ handling. PKA is held in proximity to its substrates by protein scaffolds, the A kinase anchoring proteins (AKAPs). We have previously identified the transcript of phosphodiesterase 4D interacting protein (Pde4dip; also known as myomegalin), one of the sarcomeric AKAPs, as being differentially expressed following hemodynamic overload, a condition inducing hyperadrenergic state in the heart. Here, we addressed whether PDE4DIP is involved in the adverse cardiac remodelling following hemodynamic stress. Homozygous Pde4dip knockout (KO) mice, generated by CRISPR-Cas9 technology, and wild-type (WT) littermates were exposed to aortocaval shunt (shunt) or transthoracic aortic constriction (TAC) to induce hemodynamic volume overload (VO) or pressure overload (PO), respectively. The mortality, cardiac structure, function and pathological cardiac remodelling were followed up after hemodynamic injuries. The PDE4DIP protein level was markedly downregulated in volume-overloaded- but upregulated in pressure-overloaded-WT hearts. Following shunt or TAC, mortality rates were comparably increased in both genotypes. Twelve weeks after shunt or TAC, Pde4dip-KO animals showed a similar degree of cardiac hypertrophy, dilatation and dysfunction as WT mice. Cardiomyocyte hypertrophy, myocardial fibrosis, reactivation of cardiac stress genes and downregulation of ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 transcript did not differ between WT and Pde4dip-KO hearts following shunt or TAC. In summary, despite a differential expression of PDE4DIP protein in remodelled WT hearts, Pde4dip deficiency does not modulate adverse cardiac remodelling after hemodynamic VO or PO.
Collapse
Affiliation(s)
- Belal A Mohamed
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Manar Elkenani
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Sherok Mobarak
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Marques Rodrigues
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Karthika Annamalai
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), Göttingen, Germany.,Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin-Buch, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin, Germany.,Charité Universitätsmedizin, Berlin, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Göttingen, Germany
| |
Collapse
|
5
|
Wu S, Li L, Wu X, Wong CKC, Sun F, Cheng CY. AKAP9 supports spermatogenesis through its effects on microtubule and actin cytoskeletons in the rat testis. FASEB J 2021; 35:e21925. [PMID: 34569663 DOI: 10.1096/fj.202100960r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
In mammalian testes, extensive remodeling of the microtubule (MT) and actin cytoskeletons takes place in Sertoli cells across the seminiferous epithelium to support spermatogenesis. However, the mechanism(s) involving regulatory and signaling proteins remains poorly understood. Herein, A-kinase anchoring protein 9 (AKAP9, a member of the AKAP multivalent scaffold protein family) was shown to be one of these crucial regulatory proteins in the rat testis. Earlier studies have shown that AKAP9 serves as a signaling platform by recruiting multiple signaling and regulatory proteins to create a large protein complex that binds to the Golgi and centrosome to facilitate the assembly of the MT-nucleating γ-tubulin ring complex to initiate MT polymerization. We further expanded our earlier studies based on a Sertoli cell-specific AKAP9 knockout mouse model to probe the function of AKAP9 by using the techniques of immunofluorescence analysis, RNA interference (RNAi), and biochemical assays on an in vitro primary Sertoli cell culture model, and an adjudin-based animal model. AKAP9 robustly expressed across the seminiferous epithelium in adult rat testes, colocalizing with MT-based tracks, and laid perpendicular across the seminiferous epithelium, and prominently expressed at the Sertoli-spermatid cell-cell anchoring junction (called apical ectoplasmic specialization [ES]) and at the Sertoli cell-cell interface (called basal ES, which together with tight junction [TJ] created the blood-testis barrier [BTB]) stage specifically. AKAP9 knockdown in Sertoli cells by RNAi was found to perturb the TJ-permeability barrier through disruptive changes in the distribution of BTB-associated proteins at the Sertoli cell cortical zone, mediated by a considerable loss of ability to induce both MT polymerization and actin filament bundling. A considerable decline in AKAP9 expression and a disruptive distribution of AKAP9 across the seminiferous tubules was also noted during adjudin-induced germ cell (GC) exfoliation in this animal model, illustrating AKAP9 is essential to maintain the homeostasis of cytoskeletons to maintain Sertoli and GC adhesion in the testis.
Collapse
Affiliation(s)
- Siwen Wu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiaolong Wu
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - Chris K C Wong
- Department of Biology, Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Kowloon, China
| | - Fei Sun
- Institute of Reproductive Medicine, Nantong University School of Medicine, Nantong, China
| | - C Yan Cheng
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
6
|
Hu H, Zhang Q, Huang R, Gao Z, Yuan Z, Tang Q, Gao F, Wang M, Zhang W, Ma T, Qiao T, Jin Y, Wang G. Genomic Analysis Reveals Heterogeneity Between Lesions in Synchronous Primary Right-Sided and Left-Sided Colon Cancer. Front Mol Biosci 2021; 8:689466. [PMID: 34422903 PMCID: PMC8371635 DOI: 10.3389/fmolb.2021.689466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 01/05/2023] Open
Abstract
Background: The synchronous primary right-sided and left-sided colon cancer (sRL-CC) is a peculiar subtype of colorectal cancer. However, the genomic landscape of sRL-CC remains elusive. Methods: Twenty-eight paired tumor samples and their corresponding normal mucosa samples from 14 patients were collected from the Second Affiliated Hospital of Harbin Medical University from 2011 to 2018. The clinical-pathological data were obtained, and whole-exome sequencing was performed based on formalin-fixed and paraffin-embedded samples of these patients, and then, comprehensive bioinformatic analyses were conducted. Results: Both the lesions of sRL-CC presented dissimilar histological grade and differentiation. Based on sequencing data, few overlapping SNV signatures, onco-driver gene mutations, and SMGs were identified. Moreover, the paired lesions harbored a different distribution of copy number variants (CNVs) and loss of heterozygosity. The clonal architecture analysis demonstrated the polyclonal origin of sRL-CC and inter-cancerous heterogeneity between two lesions. Conclusion: Our work provides evidence that lesions of sRL-CC share few overlapping mutational signatures and CNVs, and may originate from different clones.
Collapse
Affiliation(s)
- Hanqing Hu
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Zhang
- Colorectal Cancer Surgery Department, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Rui Huang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhifeng Gao
- Department of Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ziming Yuan
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingchao Tang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Feng Gao
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Wang
- Colorectal Cancer Surgery Department, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Weiyuan Zhang
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianyi Ma
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianyu Qiao
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yinghu Jin
- Colorectal Cancer Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guiyu Wang
- Colorectal Cancer Surgery Department, Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| |
Collapse
|
7
|
Abstract
As one of four filament types, microtubules are a core component of the cytoskeleton and are essential for cell function. Yet how microtubules are nucleated from their building blocks, the αβ-tubulin heterodimer, has remained a fundamental open question since the discovery of tubulin 50 years ago. Recent structural studies have shed light on how γ-tubulin and the γ-tubulin complex proteins (GCPs) GCP2 to GCP6 form the γ-tubulin ring complex (γ-TuRC). In parallel, functional and single-molecule studies have informed on how the γ-TuRC nucleates microtubules in real time, how this process is regulated in the cell and how it compares to other modes of nucleation. Another recent surprise has been the identification of a second essential nucleation factor, which turns out to be the well-characterized microtubule polymerase XMAP215 (also known as CKAP5, a homolog of chTOG, Stu2 and Alp14). This discovery helps to explain why the observed nucleation activity of the γ-TuRC in vitro is relatively low. Taken together, research in recent years has afforded important insight into how microtubules are made in the cell and provides a basis for an exciting era in the cytoskeleton field.
Collapse
Affiliation(s)
- Akanksha Thawani
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
8
|
Peng H, Zhang J, Ya A, Ma W, Villa S, Sukenik S, Ge X. Myomegalin regulates Hedgehog pathway by controlling PDE4D at the centrosome. Mol Biol Cell 2021; 32:1807-1817. [PMID: 34260267 PMCID: PMC8684712 DOI: 10.1091/mbc.e21-02-0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Mutations in the hedgehog (Hh) signaling are implicated in birth defects and cancers, including medulloblastoma (MB), one of the most malignant pediatric brain tumors. Current Hh inhibitors face the challenge of drug resistance and tumor relapse, urging new insights in the Hh pathway regulation. Our previous study revealed how PDE4D controls global levels of cAMP in the cytoplasm to positively regulate Hh signaling; in the present study, we found that a specific isoform PDE4D3 is tethered to the centrosome by Myomegalin (Mmg), a centrosome/Golgi-associated protein. Mmg loss dislocates PDE4D3 from the centrosome, leading to local PKA overactivation and inhibition of the Hh signaling, leaving other PKA-related pathways unaffected. Mmg loss suppresses the proliferation of granule neuron precursors and blocks the growth of MB in mouse model. Our findings specify a new regulatory mechanism of the Hh pathway and highlight an exciting therapeutic avenue for Hh-related cancers with reduced side effects.
Collapse
Affiliation(s)
- Hualing Peng
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340
| | - Jingyi Zhang
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340
| | - Amanda Ya
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340
| | - Winston Ma
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340
| | - Sammy Villa
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340
| | - Shahar Sukenik
- Department of Chemistry and Chemical Biology, University of California, Merced, Merced, CA 95340
| | - Xuecai Ge
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95340
| |
Collapse
|
9
|
Basu MK, Massicano F, Yu L, Halkidis K, Pillai V, Cao W, Zheng L, Zheng XL. Exome Sequencing Identifies Abnormalities in Glycosylation and ANKRD36C in Patients with Immune-Mediated Thrombotic Thrombocytopenic Purpura. Thromb Haemost 2020; 121:506-517. [PMID: 33184803 DOI: 10.1055/s-0040-1719030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Immune-mediated thrombotic thrombocytopenic purpura (iTTP) is a potentially fatal blood disorder, resulting from autoantibodies against ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13). However, the mechanism underlying anti-ADAMTS13 autoantibody formation is not known, nor it is known how genetic aberrations contribute to the pathogenesis of iTTP. METHODS Here we performed whole exome sequencing (WES) of DNA samples from 40 adult patients with iTTP and 15 local healthy subjects with no history of iTTP and other hematological disorders. RESULTS WES revealed variations in the genes involved in protein glycosylation, including O-linked glycosylation, to be a major pathway affected in patients with iTTP. Moreover, variations in the ANKRD gene family, particularly ANKRD36C and its paralogs, were also more prevalent in patients with iTTP than in the healthy controls. The ANKRD36 family of proteins have been implicated in inflammation. Mass spectrometry revealed a dramatic alternation in plasma glycoprotein profile in patients with iTTP compared with the healthy controls. CONCLUSION Altered glycosylation may affect the disease onset and progression in various ways: it may predispose patients to produce ADAMTS13 autoantibodies or affect their binding properties; it may also alter clearance kinetics of hemostatic and inflammatory proteins. Together, our findings provide novel insights into plausible mechanisms underlying the pathogenesis of iTTP.
Collapse
Affiliation(s)
- Malay Kumar Basu
- Division of Genomic Diagnostics and Bioinformatics, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Felipe Massicano
- Division of Genomic Diagnostics and Bioinformatics, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Lijia Yu
- Division of Genomic Diagnostics and Bioinformatics, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Konstantine Halkidis
- Division of Hematology/Oncology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Vikram Pillai
- Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Wenjing Cao
- Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Liang Zheng
- Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
| | - X Long Zheng
- Department of Pathology & Laboratory Medicine, The University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
10
|
Yang SZ, Wildonger J. Golgi Outposts Locally Regulate Microtubule Orientation in Neurons but Are Not Required for the Overall Polarity of the Dendritic Cytoskeleton. Genetics 2020; 215:435-447. [PMID: 32265236 PMCID: PMC7268992 DOI: 10.1534/genetics.119.302979] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/29/2020] [Indexed: 11/24/2022] Open
Abstract
Microtubule-organizing centers often play a central role in organizing the cellular microtubule networks that underlie cell function. In neurons, microtubules in axons and dendrites have distinct polarities. Dendrite-specific Golgi "outposts," in particular multicompartment outposts, have emerged as regulators of acentrosomal microtubule growth, raising the question of whether outposts contribute to establishing or maintaining the overall polarity of the dendritic microtubule cytoskeleton. Using a combination of genetic approaches and live imaging in a Drosophila model, we found that dendritic microtubule polarity is unaffected by eliminating known regulators of Golgi-dependent microtubule organization including the cis-Golgi matrix protein GM130, the fly AKAP450 ortholog pericentrin-like protein, and centrosomin. This indicates that Golgi outposts are not essential for the formation or maintenance of a dendrite-specific cytoskeleton. However, the overexpression of GM130, which promotes the formation of ectopic multicompartment units, is sufficient to alter dendritic microtubule polarity. Axonal microtubule polarity is similarly disrupted by the presence of ectopic multicompartment Golgi outposts. Notably, multicompartment outposts alter microtubule polarity independently of microtubule nucleation mediated by the γ-tubulin ring complex. Thus, although Golgi outposts are not essential to dendritic microtubule polarity, altering their organization correlates with changes to microtubule polarity. Based on these data, we propose that the organization of Golgi outposts is carefully regulated to ensure proper dendritic microtubule polarity.
Collapse
Affiliation(s)
- Sihui Z Yang
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Wisconsin 53706
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Jill Wildonger
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
11
|
Bioinformatic Analysis Reveals Phosphodiesterase 4D-Interacting Protein as a Key Frontal Cortex Dementia Switch Gene. Int J Mol Sci 2020; 21:ijms21113787. [PMID: 32471155 PMCID: PMC7313474 DOI: 10.3390/ijms21113787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/11/2022] Open
Abstract
The mechanisms that initiate dementia are poorly understood and there are currently no treatments that can slow their progression. The identification of key genes and molecular pathways that may trigger dementia should help reveal potential therapeutic reagents. In this study, SWItch Miner software was used to identify phosphodiesterase 4D-interacting protein as a key factor that may lead to the development of Alzheimer’s disease, vascular dementia, and frontotemporal dementia. Inflammation, PI3K-AKT, and ubiquitin-mediated proteolysis were identified as the main pathways that are dysregulated in these dementias. All of these dementias are regulated by 12 shared transcription factors. Protein–chemical interaction network analysis of dementia switch genes revealed that valproic acid may be neuroprotective for these dementias. Collectively, we identified shared and unique dysregulated gene expression, pathways and regulatory factors among dementias. New key mechanisms that lead to the development of dementia were revealed and it is expected that these data will advance personalized medicine for patients.
Collapse
|
12
|
Fourriere L, Jimenez AJ, Perez F, Boncompain G. The role of microtubules in secretory protein transport. J Cell Sci 2020; 133:133/2/jcs237016. [PMID: 31996399 DOI: 10.1242/jcs.237016] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Microtubules are part of the dynamic cytoskeleton network and composed of tubulin dimers. They are the main tracks used in cells to organize organelle positioning and trafficking of cargos. In this Review, we compile recent findings on the involvement of microtubules in anterograde protein transport. First, we highlight the importance of microtubules in organelle positioning. Second, we discuss the involvement of microtubules within different trafficking steps, in particular between the endoplasmic reticulum and the Golgi complex, traffic through the Golgi complex itself and in post-Golgi processes. A large number of studies have assessed the involvement of microtubules in transport of cargo from the Golgi complex to the cell surface. We focus here on the role of kinesin motor proteins and protein interactions in post-Golgi transport, as well as the impact of tubulin post-translational modifications. Last, in light of recent findings, we highlight the role microtubules have in exocytosis, the final step of secretory protein transport, occurring close to focal adhesions.
Collapse
Affiliation(s)
- Lou Fourriere
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Ana Joaquina Jimenez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Franck Perez
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| | - Gaelle Boncompain
- Dynamics of Intracellular Organization Laboratory, Institut Curie, PSL Research University, CNRS UMR 144, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
13
|
Verma NK, Chalasani MLS, Scott JD, Kelleher D. CG-NAP/Kinase Interactions Fine-Tune T Cell Functions. Front Immunol 2019; 10:2642. [PMID: 31781123 PMCID: PMC6861388 DOI: 10.3389/fimmu.2019.02642] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/24/2019] [Indexed: 01/04/2023] Open
Abstract
CG-NAP, also known as AKAP450, is an anchoring/adaptor protein that streamlines signal transduction in various cell types by localizing signaling proteins and enzymes with their substrates. Great efforts are being devoted to elucidating functional roles of this protein and associated macromolecular signaling complex. Increasing understanding of pathways involved in regulating T lymphocytes suggests that CG-NAP can facilitate dynamic interactions between kinases and their substrates and thus fine-tune T cell motility and effector functions. As a result, new binding partners of CG-NAP are continually being uncovered. Here, we review recent advances in CG-NAP research, focusing on its interactions with kinases in T cells with an emphasis on the possible role of this anchoring protein as a target for therapeutic intervention in immune-mediated diseases.
Collapse
Affiliation(s)
- Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | | | - John D Scott
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA, United States
| | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore.,Departments of Medicine and Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Ravichandran Y, Goud B, Manneville JB. The Golgi apparatus and cell polarity: Roles of the cytoskeleton, the Golgi matrix, and Golgi membranes. Curr Opin Cell Biol 2019; 62:104-113. [PMID: 31751898 DOI: 10.1016/j.ceb.2019.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
Membrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle. Closer to the Golgi membranes, a matrix of long coiled-coiled proteins not only selectively captures transport intermediates but also participates in signaling events during polarization of membrane trafficking. Finally, the Golgi membranes themselves serve as active signaling platforms during cell polarity events. We review here the recent findings that link the Golgi apparatus to cell polarity, focusing on the roles of the cytoskeleton, the Golgi matrix, and the Golgi membranes.
Collapse
Affiliation(s)
- Yamini Ravichandran
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Institut Pasteur, CNRS, UMR 3691, 25 rue du Docteur Roux F-75014, Paris, France
| | - Bruno Goud
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France
| | - Jean-Baptiste Manneville
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France; Sorbonne Université, UPMC University Paris 06, CNRS, UMR 144, 26 rue d'Ulm F-75005, Paris, France.
| |
Collapse
|
15
|
Yamada M, Hayashi K. Microtubule nucleation in the cytoplasm of developing cortical neurons and its regulation by brain‐derived neurotrophic factor. Cytoskeleton (Hoboken) 2019; 76:339-345. [DOI: 10.1002/cm.21550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Mimori Yamada
- Department of Materials and Life SciencesFaculty of Science and Technology, Sophia University Tokyo Japan
| | - Kensuke Hayashi
- Department of Materials and Life SciencesFaculty of Science and Technology, Sophia University Tokyo Japan
| |
Collapse
|
16
|
Blanco C, Morales D, Mogollones I, Vergara‐Jaque A, Vargas C, Álvarez A, Riquelme D, Leiva‐Salcedo E, González W, Morales D, Maureira D, Aldunate I, Cáceres M, Varela D, Cerda O. EB1‐ and EB2‐dependent anterograde trafficking of TRPM4 regulates focal adhesion turnover and cell invasion. FASEB J 2019; 33:9434-9452. [DOI: 10.1096/fj.201900136r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Constanza Blanco
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Danna Morales
- Program of Physiology and Biophysics Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Ignacio Mogollones
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Ariela Vergara‐Jaque
- Program of Physiology and Biophysics Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
- Multidisciplinary Scientific Nucleus Universidad de Talca Talca Chile
- Center for Bioinformatics and Molecular Simulation Universidad de Talca Talca Chile
| | - Carla Vargas
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Alhejandra Álvarez
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Denise Riquelme
- Department of Biology Faculty of Chemistry and Biology Universidad de Santiago de Chile Santiago Chile
| | - Elías Leiva‐Salcedo
- Department of Biology Faculty of Chemistry and Biology Universidad de Santiago de Chile Santiago Chile
| | - Wendy González
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
- Center for Bioinformatics and Molecular Simulation Universidad de Talca Talca Chile
| | - Diego Morales
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Diego Maureira
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Ismael Aldunate
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
| | - Mónica Cáceres
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
- The Wound Repair Treatment, and Health (WoRTH) Initiative Santiago Chile
| | - Diego Varela
- Program of Physiology and Biophysics Institute of Biomedical Sciences Faculty of Medicine Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
| | - Oscar Cerda
- Program of Cellular and Molecular Biology Universidad de Chile Santiago Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD) Santiago Chile
- The Wound Repair Treatment, and Health (WoRTH) Initiative Santiago Chile
| |
Collapse
|
17
|
Tormanen K, Ton C, Waring BM, Wang K, Sütterlin C. Function of Golgi-centrosome proximity in RPE-1 cells. PLoS One 2019; 14:e0215215. [PMID: 30986258 PMCID: PMC6464164 DOI: 10.1371/journal.pone.0215215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/28/2019] [Indexed: 11/23/2022] Open
Abstract
The close physical proximity between the Golgi and the centrosome is a unique feature of mammalian cells that has baffled scientists for years. Several knockdown and overexpression studies have linked the spatial relationship between these two organelles to the control of directional protein transport, directional migration, ciliogenesis and mitotic entry. However, most of these conditions have not only separated these two organelles, but also caused extensive fragmentation of the Golgi, making it difficult to dissect the specific contribution of Golgi-centrosome proximity. In this study, we present our results with stable retinal pigment epithelial (RPE-1) cell lines in which GM130 was knocked out using a CRISPR/Cas9 approach. While Golgi and centrosome organization appeared mostly intact in cells lacking GM130, there was a clear separation of these organelles from each other. We show that GM130 may control Golgi-centrosome proximity by anchoring AKAP450 to the Golgi. We also provide evidence that the physical proximity between these two organelles is dispensable for protein transport, cell migration, and ciliogenesis. These results suggest that Golgi-centrosome proximity per se is not necessary for the normal function of RPE-1 cells.
Collapse
Affiliation(s)
- Kati Tormanen
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Celine Ton
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Barbara M. Waring
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Kevin Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Christine Sütterlin
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Microtubules are major constituents of the cytoskeleton in all eukaryotic cells. They are essential for chromosome segregation during cell division, for directional intracellular transport and for building specialized cellular structures such as cilia or flagella. Their assembly has to be controlled spatially and temporally. For this, the cell uses multiprotein complexes containing γ-tubulin. γ-Tubulin has been found in two different types of complexes, γ-tubulin small complexes and γ-tubulin ring complexes. Binding to adaptors and activator proteins transforms these complexes into structural templates that drive the nucleation of new microtubules in a highly controlled manner. This review discusses recent advances on the mechanisms of assembly, recruitment and activation of γ-tubulin complexes at microtubule-organizing centres.
Collapse
Affiliation(s)
- Dorian Farache
- Centre de Biologie Intégrative, Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France
| | - Laurent Emorine
- Centre de Biologie Intégrative, Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France
| | - Laurence Haren
- Centre de Biologie Intégrative, Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France
| | - Andreas Merdes
- Centre de Biologie Intégrative, Centre de Biologie du Développement, CNRS-Université Toulouse III, 31062 Toulouse, France
| |
Collapse
|
19
|
Aoki T, Nishita M, Sonoda J, Ikeda T, Kakeji Y, Minami Y. Intraflagellar transport 20 promotes collective cancer cell invasion by regulating polarized organization of Golgi-associated microtubules. Cancer Sci 2019; 110:1306-1316. [PMID: 30742741 PMCID: PMC6447847 DOI: 10.1111/cas.13970] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/27/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
Collective invasion is an important strategy of cancers of epithelial origin, including colorectal cancer (CRC), to infiltrate efficiently into local tissues as collective cell groups. Within the groups, cells at the invasive front, called leader cells, are highly polarized and motile, thereby providing the migratory traction that guides the follower cells. However, its underlying mechanisms remain unclear. We have previously shown that signaling emanating from the receptor tyrosine kinase Ror2 can promote invasion of human osteosarcoma cells and that intraflagellar transport 20 (IFT20) mediates its signaling to regulate Golgi structure and transport. Herein, we investigated the role of Ror2 and IFT20 in collective invasion of CRC cells, where Ror2 expression is either silenced or nonsilenced. We show by cell biological analyses that IFT20 promotes collective invasion of CRC cells, irrespective of expression and function of Ror2. Intraflagellar transport 20 is required for organization of Golgi‐associated, stabilized microtubules, oriented toward the direction of invasion in leader cells. Our results also indicate that IFT20 promotes reorientation of the Golgi apparatus toward the front side of leader cells. Live cell imaging of the microtubule plus‐end binding protein EB1 revealed that IFT20 is required for continuous polarized microtubule growth in leader cells. These results indicate that IFT20 plays an important role in collective invasion of CRC cells by regulating organization of Golgi‐associated, stabilized microtubules and Golgi polarity in leader cells.
Collapse
Affiliation(s)
- Tomoaki Aoki
- Division of Cell Physiology, Department of Physiology and Cell biology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Michiru Nishita
- Division of Cell Physiology, Department of Physiology and Cell biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Junya Sonoda
- Division of Cell Physiology, Department of Physiology and Cell biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Taro Ikeda
- Division of Cell Physiology, Department of Physiology and Cell biology, Graduate School of Medicine, Kobe University, Kobe, Japan.,Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal Surgery, Department of Surgery, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell biology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
20
|
Song K, Gras C, Capin G, Gimber N, Lehmann M, Mohd S, Puchkov D, Rödiger M, Wilhelmi I, Daumke O, Schmoranzer J, Schürmann A, Krauss M. A SEPT1-based scaffold is required for Golgi integrity and function. J Cell Sci 2019; 132:132/3/jcs225557. [PMID: 30709970 PMCID: PMC6382012 DOI: 10.1242/jcs.225557] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Compartmentalization of membrane transport and signaling processes is of pivotal importance to eukaryotic cell function. While plasma membrane compartmentalization and dynamics are well known to depend on the scaffolding function of septin GTPases, the roles of septins at intracellular membranes have remained largely elusive. Here, we show that the structural and functional integrity of the Golgi depends on its association with a septin 1 (SEPT1)-based scaffold, which promotes local microtubule nucleation and positioning of the Golgi. SEPT1 function depends on the Golgi matrix protein GM130 (also known as GOLGA2) and on centrosomal proteins, including CEP170 and components of γ-tubulin ring complex (γ-Turc), to facilitate the perinuclear concentration of Golgi membranes. Accordingly, SEPT1 depletion triggers a massive fragmentation of the Golgi ribbon, thereby compromising anterograde membrane traffic at the level of the Golgi.
Collapse
Affiliation(s)
- Kyungyeun Song
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| | - Claudia Gras
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| | - Gabrielle Capin
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| | - Niclas Gimber
- Charité Universitätsmedizin Berlin, Advanced Medical Bioimaging Core Facility - AMBIO, 10117 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Cellular Imaging Facility, 13125 Berlin, Germany
| | - Saif Mohd
- Max-Delmbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Cellular Imaging Facility, 13125 Berlin, Germany
| | - Maria Rödiger
- Deutsches Institut für Ernährungsforschung, Potsdam Rehbrücke, and German Center for Diabetes Research (DZD), München-Neuherberg, 14558 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- Deutsches Institut für Ernährungsforschung, Potsdam Rehbrücke, and German Center for Diabetes Research (DZD), München-Neuherberg, 14558 Potsdam-Rehbrücke, Germany
| | - Oliver Daumke
- Max-Delmbrück-Centrum für Molekulare Medizin, 13125 Berlin, Germany
| | - Jan Schmoranzer
- Charité Universitätsmedizin Berlin, Advanced Medical Bioimaging Core Facility - AMBIO, 10117 Berlin, Germany
| | - Annette Schürmann
- Deutsches Institut für Ernährungsforschung, Potsdam Rehbrücke, and German Center for Diabetes Research (DZD), München-Neuherberg, 14558 Potsdam-Rehbrücke, Germany
| | - Michael Krauss
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Molecular Pharmacology and Cell Biology, 13125 Berlin, Germany
| |
Collapse
|
21
|
Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem 2018; 62:765-780. [PMID: 30315097 PMCID: PMC6281477 DOI: 10.1042/ebc20180028] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022]
Abstract
In this short review, we give an overview of microtubule nucleation within cells. It is nearly 30 years since the discovery of γ-tubulin, a member of the tubulin superfamily essential for proper microtubule nucleation in all eukaryotes. γ-tubulin associates with other proteins to form multiprotein γ-tubulin ring complexes (γ-TuRCs) that template and catalyse the otherwise kinetically unfavourable assembly of microtubule filaments. These filaments can be dynamic or stable and they perform diverse functions, such as chromosome separation during mitosis and intracellular transport in neurons. The field has come a long way in understanding γ-TuRC biology but several important and unanswered questions remain, and we are still far from understanding the regulation of microtubule nucleation in a multicellular context. Here, we review the current literature on γ-TuRC assembly, recruitment, and activation and discuss the potential importance of γ-TuRC heterogeneity, the role of non-γ-TuRC proteins in microtubule nucleation, and whether γ-TuRCs could serve as good drug targets for cancer therapy.
Collapse
|
22
|
Gavilan MP, Gandolfo P, Balestra FR, Arias F, Bornens M, Rios RM. The dual role of the centrosome in organizing the microtubule network in interphase. EMBO Rep 2018; 19:embr.201845942. [PMID: 30224411 DOI: 10.15252/embr.201845942] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we address the regulation of microtubule nucleation during interphase by genetically ablating one, or two, of three major mammalian γ-TuRC-binding factors namely pericentrin, CDK5Rap2, and AKAP450. Unexpectedly, we find that while all of them participate in microtubule nucleation at the Golgi apparatus, they only modestly contribute at the centrosome where CEP192 has a more predominant function. We also show that inhibiting microtubule nucleation at the Golgi does not affect centrosomal activity, whereas manipulating the number of centrosomes with centrinone modifies microtubule nucleation activity of the Golgi apparatus. In centrosome-free cells, inhibition of Golgi-based microtubule nucleation triggers pericentrin-dependent formation of cytoplasmic-nucleating structures. Further depletion of pericentrin under these conditions leads to the generation of individual microtubules in a γ-tubulin-dependent manner. In all cases, a conspicuous MT network forms. Strikingly, centrosome loss increases microtubule number independently of where they were growing from. Our results lead to an unexpected view of the interphase centrosome that would control microtubule network organization not only by nucleating microtubules, but also by modulating the activity of alternative microtubule-organizing centers.
Collapse
Affiliation(s)
- Maria P Gavilan
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Pablo Gandolfo
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Fernando R Balestra
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Francisco Arias
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | | | - Rosa M Rios
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
23
|
Procter DJ, Banerjee A, Nukui M, Kruse K, Gaponenko V, Murphy EA, Komarova Y, Walsh D. The HCMV Assembly Compartment Is a Dynamic Golgi-Derived MTOC that Controls Nuclear Rotation and Virus Spread. Dev Cell 2018; 45:83-100.e7. [PMID: 29634939 DOI: 10.1016/j.devcel.2018.03.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/08/2018] [Accepted: 03/14/2018] [Indexed: 10/17/2022]
Abstract
Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.
Collapse
Affiliation(s)
- Dean J Procter
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Masatoshi Nukui
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Forge Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Kevin Kruse
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Eain A Murphy
- Department of Translational Medicine, Baruch S. Blumberg Research Institute, Doylestown, PA 18902, USA; Forge Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18902, USA
| | - Yulia Komarova
- Department of Pharmacology and The Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Derek Walsh
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
24
|
Coming into Focus: Mechanisms of Microtubule Minus-End Organization. Trends Cell Biol 2018; 28:574-588. [PMID: 29571882 DOI: 10.1016/j.tcb.2018.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/17/2018] [Accepted: 02/27/2018] [Indexed: 11/22/2022]
Abstract
Microtubule organization has a crucial role in regulating cell architecture. The geometry of microtubule arrays strongly depends on the distribution of sites responsible for microtubule nucleation and minus-end attachment. In cycling animal cells, the centrosome often represents a dominant microtubule-organizing center (MTOC). However, even in cells with a radial microtubule system, many microtubules are not anchored at the centrosome, but are instead linked to the Golgi apparatus or other structures. Non-centrosomal microtubules predominate in many types of differentiated cell and in mitotic spindles. In this review, we discuss recent advances in understanding how the organization of centrosomal and non-centrosomal microtubule networks is controlled by proteins involved in microtubule nucleation and specific factors that recognize free microtubule minus ends and regulate their localization and dynamics.
Collapse
|
25
|
Martin M, Veloso A, Wu J, Katrukha EA, Akhmanova A. Control of endothelial cell polarity and sprouting angiogenesis by non-centrosomal microtubules. eLife 2018; 7:33864. [PMID: 29547120 PMCID: PMC5898915 DOI: 10.7554/elife.33864] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
Microtubules control different aspects of cell polarization. In cells with a radial microtubule system, a pivotal role in setting up asymmetry is attributed to the relative positioning of the centrosome and the nucleus. Here, we show that centrosome loss had no effect on the ability of endothelial cells to polarize and move in 2D and 3D environments. In contrast, non-centrosomal microtubules stabilized by the microtubule minus-end-binding protein CAMSAP2 were required for directional migration on 2D substrates and for the establishment of polarized cell morphology in soft 3D matrices. CAMSAP2 was also important for persistent endothelial cell sprouting during in vivo zebrafish vessel development. In the absence of CAMSAP2, cell polarization in 3D could be partly rescued by centrosome depletion, indicating that in these conditions the centrosome inhibited cell polarity. We propose that CAMSAP2-protected non-centrosomal microtubules are needed for establishing cell asymmetry by enabling microtubule enrichment in a single-cell protrusion. Networks of blood vessels grow like trees. Sprouts appear on existing vessels, stretching out to form new branches in a process called angiogenesis. The cells responsible are the same cells that line the finished vessels. These “endothelial cells” start the process by reorganizing themselves to face the direction of the new sprout, changing shape to become asymmetrical, and then they begin to migrate. Beneath the surface, a network of protein scaffolding supports each migrating cell. The scaffolding includes tube-like fibers called microtubules that extend towards the cell membrane and organize the inside of the cell. Destroying microtubules damages blood vessel formation, but their exact role remains unclear. A structure called the centrosome can organize microtubules within cells. The centrosome was generally believed to act like a compass, pointing in the direction that the cell will move. Microtubules can anchor to the centrosome, and this structure is thought to play an important role in cell migration. Yet, many microtubules organize without it; these microtubules instead are organized by a compartment of the cell called the Golgi apparatus and are stabilized by a protein named CAMSAP2. Martin et al. now report that removing the cells’ centrosomes did not affect cell migration, but getting rid of CAMSAP2 did. Analysis of cell shape and movement in cells grown in the laboratory and in living animals revealed that cells cannot become asymmetrical, or “polarize”, and migrate without CAMSAP2. In a two-dimensional wound-healing assay, a sheet of cells originally grown from the vessels of a human umbilical cord was scratched, and a microscope was then used to record the cell’s movement as they repaired the injury. Normally, the cells on either side move in a straight line using their microtubules, and though the process was not affected in cells without centrosomes, it was in those without CAMSAP2. Even more striking results were seen in three-dimensional assays. When the same blood vessel cells from human umbilical cords are grown as spheres inside collagen gels, they form sprouts as they would in the body. Without CAMSAP2, the cells could not organize their microtubules and they were unable to elongate in one direction and form stable sprouts. Lastly, depleting CAMSAP2 also prevented the normal formation of blood vessels in zebrafish embryos. Taken together, these findings change our understanding of how microtubules affect cell movement and how important the centrosome is for this process. Further work could have an impact on human health, not least in cancer research. Tumors need a good blood supply to grow, so understanding how to block blood vessel formation could lead to new treatments. Microtubules are already a target for cancer therapy, so future work could help to optimize the use of existing drugs.
Collapse
Affiliation(s)
- Maud Martin
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Alexandra Veloso
- Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium.,GIGA-Molecular Biology in Diseases, University of Liège, Liège, Belgium
| | - Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Eugene A Katrukha
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
26
|
EB1-binding-myomegalin protein complex promotes centrosomal microtubules functions. Proc Natl Acad Sci U S A 2017; 114:E10687-E10696. [PMID: 29162697 DOI: 10.1073/pnas.1705682114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Control of microtubule dynamics underlies several fundamental processes such as cell polarity, cell division, and cell motility. To gain insights into the mechanisms that control microtubule dynamics during cell motility, we investigated the interactome of the microtubule plus-end-binding protein end-binding 1 (EB1). Via molecular mapping and cross-linking mass spectrometry we identified and characterized a large complex associating a specific isoform of myomegalin termed "SMYLE" (for short myomegalin-like EB1 binding protein), the PKA scaffolding protein AKAP9, and the pericentrosomal protein CDK5RAP2. SMYLE was associated through an evolutionarily conserved N-terminal domain with AKAP9, which in turn was anchored at the centrosome via CDK5RAP2. SMYLE connected the pericentrosomal complex to the microtubule-nucleating complex (γ-TuRC) via Galectin-3-binding protein. SMYLE associated with nascent centrosomal microtubules to promote microtubule assembly and acetylation. Disruption of SMYLE interaction with EB1 or AKAP9 prevented microtubule nucleation and their stabilization at the leading edge of migrating cells. In addition, SMYLE depletion led to defective astral microtubules and abnormal orientation of the mitotic spindle and triggered G1 cell-cycle arrest, which might be due to defective centrosome integrity. As a consequence, SMYLE loss of function had a profound impact on tumor cell motility and proliferation, suggesting that SMYLE might be an important player in tumor progression.
Collapse
|
27
|
Microtubule-Organizing Centers: Towards a Minimal Parts List. Trends Cell Biol 2017; 28:176-187. [PMID: 29173799 DOI: 10.1016/j.tcb.2017.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Despite decades of molecular analysis of the centrosome, an important microtubule-organizing center (MTOC) of animal cells, the molecular basis of microtubule organization remains obscure. A major challenge is the sheer complexity of the interplay of the hundreds of proteins that constitute the centrosome. However, this complexity owes not only to the centrosome's role as a MTOC but also to the requirements of its duplication cycle and to various other functions such as the formation of cilia, the integration of various signaling pathways, and the organization of actin filaments. Thus, rather than using the parts lists to reconstruct the centrosome, we propose to identify the subset of proteins minimally needed to assemble a MTOC and to study this process at non-centrosomal sites.
Collapse
|
28
|
Sanders AAWM, Chang K, Zhu X, Thoppil RJ, Holmes WR, Kaverina I. Nonrandom γ-TuNA-dependent spatial pattern of microtubule nucleation at the Golgi. Mol Biol Cell 2017; 28:3181-3192. [PMID: 28931596 PMCID: PMC5687021 DOI: 10.1091/mbc.e17-06-0425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 01/12/2023] Open
Abstract
Noncentrosomal microtubule (MT) nucleation at the Golgi generates MT network asymmetry in motile vertebrate cells. Investigating the Golgi-derived MT (GDMT) distribution, we find that MT asymmetry arises from nonrandom nucleation sites at the Golgi (hotspots). Using computational simulations, we propose two plausible mechanistic models of GDMT nucleation leading to this phenotype. In the "cooperativity" model, formation of a single GDMT promotes further nucleation at the same site. In the "heterogeneous Golgi" model, MT nucleation is dramatically up-regulated at discrete and sparse locations within the Golgi. While MT clustering in hotspots is equally well described by both models, simulating MT length distributions within the cooperativity model fits the data better. Investigating the molecular mechanism underlying hotspot formation, we have found that hotspots are significantly smaller than a Golgi subdomain positive for scaffolding protein AKAP450, which is thought to recruit GDMT nucleation factors. We have further probed potential roles of known GDMT-promoting molecules, including γ-TuRC-mediated nucleation activator (γ-TuNA) domain-containing proteins and MT stabilizer CLASPs. While both γ-TuNA inhibition and lack of CLASPs resulted in drastically decreased GDMT nucleation, computational modeling revealed that only γ-TuNA inhibition suppressed hotspot formation. We conclude that hotspots require γ-TuNA activity, which facilitates clustered GDMT nucleation at distinct Golgi sites.
Collapse
Affiliation(s)
- Anna A W M Sanders
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Kevin Chang
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Xiaodong Zhu
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - Roslin J Thoppil
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| | - William R Holmes
- Physics and Astronomy, Vanderbilt University, Nashville, TN 37240
| | - Irina Kaverina
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
29
|
Shen Y, Liu P, Jiang T, Hu Y, Au FKC, Qi RZ. The catalytic subunit of DNA polymerase δ inhibits γTuRC activity and regulates Golgi-derived microtubules. Nat Commun 2017; 8:554. [PMID: 28916777 PMCID: PMC5601897 DOI: 10.1038/s41467-017-00694-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 07/20/2017] [Indexed: 11/09/2022] Open
Abstract
γ-Tubulin ring complexes (γTuRCs) initiate microtubule growth and mediate microtubule attachment at microtubule-organizing centers, such as centrosomes and the Golgi complex. However, the mechanisms that control γTuRC-mediated microtubule nucleation have remained mostly unknown. Here, we show that the DNA polymerase δ catalytic subunit (PolD1) binds directly to γTuRCs and potently inhibits γTuRC-mediated microtubule nucleation. Whereas PolD1 depletion through RNA interference does not influence centrosome-based microtubule growth, the depletion augments microtubule nucleation at the Golgi complex. Conversely, PolD1 overexpression inhibits Golgi-based microtubule nucleation. Golgi-derived microtubules are required for the assembly and maintenance of the proper Golgi structure, and we found that alteration of PolD1 levels affects Golgi structural organization. Moreover, suppression of PolD1 expression impairs Golgi reassembly after nocodazole-induced disassembly and causes defects in Golgi reorientation and directional cell migration. Collectively, these results reveal a mechanism that controls noncentrosomal γTuRC activity and regulates the organization of Golgi-derived microtubules. Microtubule organization requires γ-tubulin ring complexes (γTuRCs), but the mechanisms that control γTuRC-mediated microtubule nucleation are unclear. Here the authors show that the DNA polymerase δ catalytic subunit controls noncentrosomal γTuRC activity and regulates the organization of Golgi-derived microtubules.
Collapse
Affiliation(s)
- Yuehong Shen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Pengfei Liu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Taolue Jiang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yu Hu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Franco K C Au
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Robert Z Qi
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
30
|
Yang C, Wu J, de Heus C, Grigoriev I, Liv N, Yao Y, Smal I, Meijering E, Klumperman J, Qi RZ, Akhmanova A. EB1 and EB3 regulate microtubule minus end organization and Golgi morphology. J Cell Biol 2017; 216:3179-3198. [PMID: 28814570 PMCID: PMC5626540 DOI: 10.1083/jcb.201701024] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 06/08/2017] [Accepted: 07/18/2017] [Indexed: 12/19/2022] Open
Abstract
End-binding proteins regulate the dynamics and function of microtubule plus ends by recruiting a plethora of diverse factors. Yang et al. show that EB1 and EB3 also affect microtubule minus ends by participating in their attachment to Golgi membranes. This function is important for cell polarity and migration. End-binding proteins (EBs) are the core components of microtubule plus end tracking protein complexes, but it is currently unknown whether they are essential for mammalian microtubule organization. Here, by using CRISPR/Cas9-mediated knockout technology, we generated stable cell lines lacking EB2 and EB3 and the C-terminal partner-binding half of EB1. These cell lines show only mild defects in cell division and microtubule polymerization. However, the length of CAMSAP2-decorated stretches at noncentrosomal microtubule minus ends in these cells is reduced, microtubules are detached from Golgi membranes, and the Golgi complex is more compact. Coorganization of microtubules and Golgi membranes depends on the EB1/EB3–myomegalin complex, which acts as membrane–microtubule tether and counteracts tight clustering of individual Golgi stacks. Disruption of EB1 and EB3 also perturbs cell migration, polarity, and the distribution of focal adhesions. EB1 and EB3 thus affect multiple interphase processes and have a major impact on microtubule minus end organization.
Collapse
Affiliation(s)
- Chao Yang
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Cecilia de Heus
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ilya Grigoriev
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nalan Liv
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Yao Yao
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ihor Smal
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Erik Meijering
- Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands.,Department of Radiology, Biomedical Imaging Group Rotterdam, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Judith Klumperman
- Department of Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Robert Z Qi
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
31
|
Abstract
The organization of microtubule networks is crucial for controlling chromosome segregation during cell division, for positioning and transport of different organelles, and for cell polarity and morphogenesis. The geometry of microtubule arrays strongly depends on the localization and activity of the sites where microtubules are nucleated and where their minus ends are anchored. Such sites are often clustered into structures known as microtubule-organizing centers, which include the centrosomes in animals and spindle pole bodies in fungi. In addition, other microtubules, as well as membrane compartments such as the cell nucleus, the Golgi apparatus, and the cell cortex, can nucleate, stabilize, and tether microtubule minus ends. These activities depend on microtubule-nucleating factors, such as γ-tubulin-containing complexes and their activators and receptors, and microtubule minus end-stabilizing proteins with their binding partners. Here, we provide an overview of the current knowledge on how such factors work together to control microtubule organization in different systems.
Collapse
Affiliation(s)
- Jingchao Wu
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| | - Anna Akhmanova
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 Utrecht, The Netherlands; ,
| |
Collapse
|
32
|
Wei JH, Seemann J. Golgi ribbon disassembly during mitosis, differentiation and disease progression. Curr Opin Cell Biol 2017; 47:43-51. [PMID: 28390244 DOI: 10.1016/j.ceb.2017.03.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 11/16/2022]
Abstract
The Golgi apparatus is tightly integrated into the cellular system where it plays essential roles required for a variety of cellular processes. Its vital functions include not only processing and sorting of proteins and lipids, but also serving as a signaling hub and a microtubule-organizing center. Golgi stacks in mammalian cells are interconnected into a compact ribbon in the perinuclear region. However, the ribbon can undergo distinct disassembly processes that reflect the cellular state or environmental demands and stress. For instance, its most dramatic change takes place in mitosis when the ribbon is efficiently disassembled into vesicles through a combination of ribbon unlinking, cisternal unstacking and vesiculation. Furthermore, the ribbon can also be detached and positioned at specific cellular locations to gain additional functionalities during differentiation, or fragmented to different degrees along disease progression or upon cell death. Here, we describe the major morphological alterations of Golgi ribbon disassembly under physiological and pathological conditions and discuss the underlying mechanisms that drive these changes.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Joachim Seemann
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
33
|
Nishita M, Satake T, Minami Y, Suzuki A. Regulatory mechanisms and cellular functions of non-centrosomal microtubules. J Biochem 2017; 162:1-10. [DOI: 10.1093/jb/mvx018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/02/2017] [Indexed: 02/07/2023] Open
|
34
|
Wu J, de Heus C, Liu Q, Bouchet B, Noordstra I, Jiang K, Hua S, Martin M, Yang C, Grigoriev I, Katrukha E, Altelaar A, Hoogenraad C, Qi R, Klumperman J, Akhmanova A. Molecular Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell 2016; 39:44-60. [DOI: 10.1016/j.devcel.2016.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 05/23/2016] [Accepted: 08/21/2016] [Indexed: 10/21/2022]
|
35
|
Dirks-Naylor AJ. The benefits of coffee on skeletal muscle. Life Sci 2015; 143:182-186. [PMID: 26546720 DOI: 10.1016/j.lfs.2015.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/06/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
Coffee is consumed worldwide with greater than a billion cups of coffee ingested every day. Epidemiological studies have revealed an association of coffee consumption with reduced incidence of a variety of chronic diseases as well as all-cause mortality. Current research has primarily focused on the effects of coffee or its components on various organ systems such as the cardiovascular system, with relatively little attention on skeletal muscle. Summary of current literature suggests that coffee has beneficial effects on skeletal muscle. Coffee has been shown to induce autophagy, improve insulin sensitivity, stimulate glucose uptake, slow the progression of sarcopenia, and promote the regeneration of injured muscle. Much more research is needed to reveal the full scope of benefits that coffee consumption may exert on skeletal muscle structure and function.
Collapse
Affiliation(s)
- Amie J Dirks-Naylor
- School of Pharmacy, Wingate University, 515 N. Main Street, Wingate, NC 28174, United States.
| |
Collapse
|
36
|
Copeland SJ, Thurston SF, Copeland JW. Actin- and microtubule-dependent regulation of Golgi morphology by FHDC1. Mol Biol Cell 2015; 27:260-76. [PMID: 26564798 PMCID: PMC4713130 DOI: 10.1091/mbc.e15-02-0070] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
The coordinated action of the actin and microtubule cytoskeletal networks is required for Golgi ribbon assembly. The novel formin FHDC1 accumulates on the Golgi-derived microtubule network, where it acts to regulate Golgi ribbon assembly in an actin- and microtubule-dependent manner. The Golgi apparatus is the central hub of intracellular trafficking and consists of tethered stacks of cis, medial, and trans cisternae. In mammalian cells, these cisternae are stitched together as a perinuclear Golgi ribbon, which is required for the establishment of cell polarity and normal subcellular organization. We previously identified FHDC1 (also known as INF1) as a unique microtubule-binding member of the formin family of cytoskeletal-remodeling proteins. We show here that endogenous FHDC1 regulates Golgi ribbon formation and has an apparent preferential association with the Golgi-derived microtubule network. Knockdown of FHDC1 expression results in defective Golgi assembly and suggests a role for FHDC1 in maintenance of the Golgi-derived microtubule network. Similarly, overexpression of FHDC1 induces dispersion of the Golgi ribbon into functional ministacks. This effect is independent of centrosome-derived microtubules and instead likely requires the interaction between the FHDC1 microtubule-binding domain and the Golgi-derived microtubule network. These effects also depend on the interaction between the FHDC1 FH2 domain and the actin cytoskeleton. Thus our results suggest that the coordination of actin and microtubule dynamics by FHDC1 is required for normal Golgi ribbon formation.
Collapse
Affiliation(s)
- Sarah J Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Susan F Thurston
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - John W Copeland
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
37
|
Sanders AAWM, Kaverina I. Nucleation and Dynamics of Golgi-derived Microtubules. Front Neurosci 2015; 9:431. [PMID: 26617483 PMCID: PMC4639703 DOI: 10.3389/fnins.2015.00431] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/23/2015] [Indexed: 11/13/2022] Open
Abstract
Integrity of the Golgi apparatus requires the microtubule (MT) network. A subset of MTs originates at the Golgi itself, which in this case functions as a MT-organizing center (MTOC). Golgi-derived MTs serve important roles in post-Golgi trafficking, maintenance of Golgi integrity, cell polarity and motility, as well as cell type-specific functions, including neurite outgrowth/branching. Here, we discuss possible models describing the formation and dynamics of Golgi-derived MTs. How Golgi-derived MTs are formed is not fully understood. A widely discussed model implicates that the critical step of the process is recruitment of molecular factors, which drive MT nucleation (γ-tubulin ring complex, or γ-TuRC), to the Golgi membrane via specific scaffolding interactions. Based on recent findings, we propose to introduce an additional level of regulation, whereby MT-binding proteins and/or local tubulin dimer concentration at the Golgi helps to overcome kinetic barriers at the initial nucleation step. According to our model, emerging MTs are subsequently stabilized by Golgi-associated MT-stabilizing proteins. We discuss molecular factors potentially involved in all three steps of MT formation. To preserve proper cell functioning, a balance must be maintained between MT subsets at the centrosome and the Golgi. Recent work has shown that certain centrosomal factors are important in maintaining this balance, suggesting a close connection between regulation of centrosomal and Golgi-derived MTs. Finally, we will discuss potential functions of Golgi-derived MTs based on their nucleation site location within a Golgi stack.
Collapse
Affiliation(s)
- Anna A W M Sanders
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center Nashville, TN, USA
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center Nashville, TN, USA
| |
Collapse
|
38
|
Borek WE, Groocock LM, Samejima I, Zou J, de Lima Alves F, Rappsilber J, Sawin KE. Mto2 multisite phosphorylation inactivates non-spindle microtubule nucleation complexes during mitosis. Nat Commun 2015; 6:7929. [PMID: 26243668 PMCID: PMC4918325 DOI: 10.1038/ncomms8929] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 06/25/2015] [Indexed: 01/09/2023] Open
Abstract
Microtubule nucleation is highly regulated during the eukaryotic cell cycle, but the underlying molecular mechanisms are largely unknown. During mitosis in fission yeast Schizosaccharomyces pombe, cytoplasmic microtubule nucleation ceases simultaneously with intranuclear mitotic spindle assembly. Cytoplasmic nucleation depends on the Mto1/2 complex, which binds and activates the γ-tubulin complex and also recruits the γ-tubulin complex to both centrosomal (spindle pole body) and non-centrosomal sites. Here we show that the Mto1/2 complex disassembles during mitosis, coincident with hyperphosphorylation of Mto2 protein. By mapping and mutating multiple Mto2 phosphorylation sites, we generate mto2-phosphomutant strains with enhanced Mto1/2 complex stability, interaction with the γ-tubulin complex and microtubule nucleation activity. A mutant with 24 phosphorylation sites mutated to alanine, mto2[24A], retains interphase-like behaviour even in mitotic cells. This provides a molecular-level understanding of how phosphorylation ‘switches off' microtubule nucleation complexes during the cell cycle and, more broadly, illuminates mechanisms regulating non-centrosomal microtubule nucleation. In S. pombe, cytoplasmic microtubule nucleation, which depends on the Mto1/2 complex, ceases during mitosis. Here, Borek et al., show that multisite phosphorylation of Mto1/2 during mitosis disassembles the Mto1/2 complex and prevents microtubule nucleation activity.
Collapse
Affiliation(s)
- Weronika E Borek
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lynda M Groocock
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Itaru Samejima
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juan Zou
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Juri Rappsilber
- 1] Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK [2] Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin 13355, Germany
| | - Kenneth E Sawin
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
39
|
Targeting of γ-tubulin complexes to microtubule organizing centers: conservation and divergence. Trends Cell Biol 2015; 25:296-307. [DOI: 10.1016/j.tcb.2014.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 11/29/2022]
|