1
|
Wang T, Zhou Z, Luo E, Zhong J, Zhao D, Dong H, Yao B. Comprehensive RNA sequencing in primary murine keratinocytes and fibroblasts identifies novel biomarkers and provides potential therapeutic targets for skin-related diseases. Cell Mol Biol Lett 2021; 26:42. [PMID: 34602061 PMCID: PMC8489068 DOI: 10.1186/s11658-021-00285-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/24/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Keratinocytes and fibroblasts represent the major cell types in the epidermis and dermis of the skin and play a significant role in maintenance of skin homeostasis. However, the biological characteristics of keratinocytes and fibroblasts remain to be elucidated. The purpose of this study was to compare the gene expression pattern between keratinocytes and fibroblasts and to explore novel biomarker genes so as to provide potential therapeutic targets for skin-related diseases such as burns, wounds, and aging. METHODS Skin keratinocytes and fibroblasts were isolated from newborn mice. To fully understand the heterogeneity of gene expression between keratinocytes and fibroblasts, differentially expressed genes (DEGs) between the two cell types were detected by RNA-seq technology. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the known genes of keratinocytes and fibroblasts and verify the RNA-seq results. RESULTS Transcriptomic data showed a total of 4309 DEGs (fold-change > 1.5 and q-value < 0.05). Among them, 2197 genes were highly expressed in fibroblasts and included 10 genes encoding collagen, 16 genes encoding transcription factors, and 14 genes encoding growth factors. Simultaneously, 2112 genes were highly expressed in keratinocytes and included 7 genes encoding collagen, 14 genes encoding transcription factors, and 8 genes encoding growth factors. Furthermore, we summarized 279 genes specifically expressed in keratinocytes and 33 genes specifically expressed in fibroblasts, which may represent distinct molecular signatures of each cell type. Additionally, we observed some novel specific biomarkers for fibroblasts such as Plac8 (placenta-specific 8), Agtr2 (angiotensin II receptor, type 2), Serping1 (serpin peptidase inhibitor, clade G, member 1), Ly6c1 (lymphocyte antigen 6 complex, locus C1), Dpt (dermatopontin), and some novel specific biomarkers for keratinocytes such as Ly6a (lymphocyte antigen 6 complex, locus A) and Lce3c (late cornified envelope 3C), Ccer2 (coiled-coil glutamate-rich protein 2), Col18a1 (collagen, type XVIII, alpha 1) and Col17a1 (collagen type XVII, alpha 1). In summary, these data provided novel identifying biomarkers for two cell types, which can provide a resource of DEGs for further investigations.
Collapse
Affiliation(s)
- Tiancheng Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhenwei Zhou
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Enjing Luo
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jinghong Zhong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Haisi Dong
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| | - Baojin Yao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China.
| |
Collapse
|
2
|
Xu H, Ma G, Mu F, Ning B, Li H, Wang N. STAT3 Partly Inhibits Cell Proliferation via Direct Negative Regulation of FST Gene Expression. Front Genet 2021; 12:678667. [PMID: 34239543 PMCID: PMC8259742 DOI: 10.3389/fgene.2021.678667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Follistatin (FST) is a secretory glycoprotein and belongs to the TGF-β superfamily. Previously, we found that two single nucleotide polymorphisms (SNPs) of sheep FST gene were significantly associated with wool quality traits in Chinese Merino sheep (Junken type), indicating that FST is involved in the regulation of hair follicle development and hair trait formation. The transcription regulation of human and mouse FST genes has been widely investigated, and many transcription factors have been identified to regulate FST gene. However, to date, the transcriptional regulation of sheep FST is largely unknown. In the present study, genome walking was used to close the genomic gap upstream of the sheep genomic FST gene and to obtain the FST gene promoter sequence. Transcription factor binding site analysis showed sheep FST promoter region contained a conserved putative binding site for signal transducer and activator of transcription 3 (STAT3), located at nucleotides -423 to -416 relative to the first nucleotide (A, +1) of the initiation codon (ATG) of sheep FST gene. The dual-luciferase reporter assay demonstrated that STAT3 inhibited the FST promoter activity and that the mutation of the putative STAT3 binding site attenuated the inhibitory effect of STAT3 on the FST promoter activity. Additionally, chromatin immunoprecipitation assay (ChIP) exhibited that STAT3 is directly bound to the FST promoter. Cell proliferation assay displayed that FST and STAT3 played opposite roles in cell proliferation. Overexpression of sheep FST significantly promoted the proliferation of sheep fetal fibroblasts (SFFs) and human keratinocyte (HaCaT) cells, and overexpression of sheep STAT3 displayed opposite results, which was accompanied by a significantly reduced expression of FST gene (P < 0.05). Taken together, STAT3 directly negatively regulates sheep FST gene and depresses cell proliferation. Our findings may contribute to understanding molecular mechanisms that underlie hair follicle development and morphogenesis.
Collapse
Affiliation(s)
- Haidong Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Guangwei Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China.,Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Fang Mu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Bolin Ning
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
3
|
Zhang P, Ishikawa M, Doyle A, Nakamura T, He B, Yamada Y. Pannexin 3 regulates skin development via Epiprofin. Sci Rep 2021; 11:1779. [PMID: 33469169 PMCID: PMC7815752 DOI: 10.1038/s41598-021-81074-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Pannexin 3 (Panx3), a member of the gap junction pannexin family is required for the development of hard tissues including bone, cartilage and teeth. However, the role of Panx3 in skin development remains unclear. Here, we demonstrate that Panx3 regulates skin development by modulating the transcription factor, Epiprofin (Epfn). Panx3-/- mice have impaired skin development and delayed hair follicle regeneration. Loss of Panx3 in knockout mice and suppression by shRNA both elicited a reduction of Epfn expression in the epidermis. In cell culture, Panx3 overexpression promoted HaCaT cell differentiation, cell cycle exit and enhanced Epfn expression. Epfn-/- mice and inhibition of Epfn by siRNA showed no obvious differences of Panx3 expression. Furthermore, Panx3 promotes Akt/NFAT signaling pathway in keratinocyte differentiation by both Panx3 ATP releasing channel and ER Ca2+ channel functions. Our results reveal that Panx3 has a key role factor for the skin development by regulating Epfn.
Collapse
Affiliation(s)
- Peipei Zhang
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Masaki Ishikawa
- Division of Operative Dentistry, Department of Restorative Dentistry, Tohoku University, Graduate School of Dentistry 4-1, Seiryo chou, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Andrew Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, 980-8575, Japan
| | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yoshihiko Yamada
- Molecular Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Smith CEL, Whitehouse LLE, Poulter JA, Wilkinson Hewitt L, Nadat F, Jackson BR, Manfield IW, Edwards TA, Rodd HD, Inglehearn CF, Mighell AJ. A missense variant in specificity protein 6 (SP6) is associated with amelogenesis imperfecta. Hum Mol Genet 2020; 29:1417-1425. [PMID: 32167558 PMCID: PMC7268548 DOI: 10.1093/hmg/ddaa041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 01/01/2023] Open
Abstract
Amelogenesis is the process of enamel formation. For amelogenesis to proceed, the cells of the inner enamel epithelium (IEE) must first proliferate and then differentiate into the enamel-producing ameloblasts. Amelogenesis imperfecta (AI) is a heterogeneous group of genetic conditions that result in defective or absent tooth enamel. We identified a 2 bp variant c.817_818GC>AA in SP6, the gene encoding the SP6 transcription factor, in a Caucasian family with autosomal dominant hypoplastic AI. The resulting missense protein change, p.(Ala273Lys), is predicted to alter a DNA-binding residue in the first of three zinc fingers. SP6 has been shown to be crucial to both proliferation of the IEE and to its differentiation into ameloblasts. SP6 has also been implicated as an AI candidate gene through its study in rodent models. We investigated the effect of the missense variant in SP6 (p.(Ala273Lys)) using surface plasmon resonance protein-DNA binding studies. We identified a potential SP6 binding motif in the AMBN proximal promoter sequence and showed that wild-type (WT) SP6 binds more strongly to it than the mutant protein. We hypothesize that SP6 variants may be a very rare cause of AI due to the critical roles of SP6 in development and that the relatively mild effect of the missense variant identified in this study is sufficient to affect amelogenesis causing AI, but not so severe as to be incompatible with life. We suggest that current AI cohorts, both with autosomal recessive and dominant disease, be screened for SP6 variants.
Collapse
Affiliation(s)
- Claire E L Smith
- Division of Molecular Medicine, Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Laura L E Whitehouse
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LU, UK
| | - James A Poulter
- Division of Molecular Medicine, Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Laura Wilkinson Hewitt
- Protein Production Facility, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Fatima Nadat
- Protein Production Facility, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Brian R Jackson
- Protein Production Facility, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Iain W Manfield
- Centre for Biomolecular Interactions Technology Facility, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds LS2 9JT, UK
| | - Thomas A Edwards
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Helen D Rodd
- Academic Unit of Oral Health Dentistry and Society, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, Faculty of Medicine and Health, St James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Alan J Mighell
- School of Dentistry, Faculty of Medicine and Health, University of Leeds, Leeds LS2 9LU, UK
| |
Collapse
|
5
|
Nakamura T, Iwamoto T, Nakamura HM, Shindo Y, Saito K, Yamada A, Yamada Y, Fukumoto S, Nakamura T. Regulation of miR-1-Mediated Connexin 43 Expression and Cell Proliferation in Dental Epithelial Cells. Front Cell Dev Biol 2020; 8:156. [PMID: 32258035 PMCID: PMC7089876 DOI: 10.3389/fcell.2020.00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Many genes encoding growth factors, receptors, and transcription factors are induced by the epithelial-mesenchymal interaction during tooth development. Recently, numerous functions of microRNAs (miRNAs) are reportedly involved in organogenesis and disease. miRNAs regulate gene expression by inhibiting translation and destabilizing mRNAs. However, the expression and function of miRNAs in tooth development remain poorly understood. This study aimed to analyze the expression of miRNAs produced during tooth development using a microarray system to clarify the role of miRNAs in dental development. miR-1 showed a unique expression pattern in the developing tooth. miR-1 expression in the tooth germ peaked on embryonic day 16.5, decreasing gradually on postnatal days 1 and 3. An in situ hybridization assay revealed that miR-1 is expressed at the cervical loop of the dental epithelium. The expression of miR-1 and connexin (Cx) 43, a target of miR-1, were inversely correlated both in vitro and in vivo. Knockdown of miR-1 induced the expression of Cx43 in dental epithelial cells. Interestingly, cells with miR-1 downregulation proliferated slower than the control cells. Immunocytochemistry revealed that Cx43 in cells with miR-1 knockdown formed both cell-cell gap junctions and hemichannels at the plasma membrane. Furthermore, the rate of ATP release was higher in cells with miR-1 knockdown than in control cells. Furthermore, Cx43 downregulation in developing molars was observed in Epiprofin-knockout mice, along with the induction of miR-1 expression. These results suggest that the expression pattern of Cx43 is modulated by miR-1 to control cell proliferation activity during dental epithelial cell differentiation.
Collapse
Affiliation(s)
- Tomoaki Nakamura
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hannah M Nakamura
- Division of Nephrology and Endocrinology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yuki Shindo
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, United States
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
6
|
Scully D, Sfyri P, Wilkinson HN, Acebes-Huerta A, Verpoorten S, Muñoz-Turrillas MC, Parnell A, Patel K, Hardman MJ, Gutiérrez L, Matsakas A. Optimising platelet secretomes to deliver robust tissue-specific regeneration. J Tissue Eng Regen Med 2019; 14:82-98. [PMID: 31603629 DOI: 10.1002/term.2965] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022]
Abstract
Promoting cell proliferation is the cornerstone of most tissue regeneration therapies. As platelet-based applications promote cell division and can be customised for tissue-specific efficacy, this makes them strong candidates for developing novel regenerative therapies. Therefore, the aim of this study was to determine if platelet releasate could be optimised to promote cellular proliferation and differentiation of specific tissues. Growth factors in platelet releasate were profiled for physiological and supraphysiological platelet concentrations. We analysed the effect of physiological and supraphysiological releasate on C2C12 skeletal myoblasts, H9C2 rat cardiomyocytes, human dermal fibroblasts (HDF), HaCaT keratinocytes, and chondrocytes. Cellular proliferation and differentiation were assessed through proliferation assays, mRNA, and protein expression. We show that supraphysiological releasate is not simply a concentrated version of physiological releasate. Physiological releasate promoted C2C12, HDF, and chondrocyte proliferation with no effect on H9C2 or HaCaT cells. Supraphysiological releasate induced stronger proliferation in C2C12 and HDF cells compared with physiological releasate. Importantly, supraphysiological releasate induced proliferation of H9C2 cells. The proliferative effects of skeletal and cardiac muscle cells were in part driven by vascular endothelial growth factor alpha. Furthermore, supraphysiological releasate induced differentiation of H9C2 and C2C12, HDF, and keratinocytes. This study provides insights into the ability of releasate to promote muscle, heart, skin, and cartilage cell proliferation and differentiation and highlights the importance of optimising releasate composition for tissue-specific regeneration.
Collapse
Affiliation(s)
- David Scully
- Molecular Physiology Laboratory, Centre for Atherothrombosis & Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Peggy Sfyri
- Molecular Physiology Laboratory, Centre for Atherothrombosis & Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Holly N Wilkinson
- Molecular Physiology Laboratory, Centre for Atherothrombosis & Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Andrea Acebes-Huerta
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sandrine Verpoorten
- Molecular Physiology Laboratory, Centre for Atherothrombosis & Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - María Carmen Muñoz-Turrillas
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Centro Comunitario de Sangre y Tejidos, de Asturias, Oviedo, Spain
| | - Andrew Parnell
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | - Matthew J Hardman
- Molecular Physiology Laboratory, Centre for Atherothrombosis & Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| | - Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, University of Oviedo, Oviedo, Spain
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Atherothrombosis & Metabolic Disease, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
7
|
Chiba Y, He B, Yoshizaki K, Rhodes C, Ishijima M, Bleck CKE, Stempinski E, Chu EY, Nakamura T, Iwamoto T, de Vega S, Saito K, Fukumoto S, Yamada Y. The transcription factor AmeloD stimulates epithelial cell motility essential for tooth morphology. J Biol Chem 2018; 294:3406-3418. [PMID: 30504223 DOI: 10.1074/jbc.ra118.005298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Indexed: 02/05/2023] Open
Abstract
The development of ectodermal organs, such as teeth, requires epithelial-mesenchymal interactions. Basic helix-loop-helix (bHLH) transcription factors regulate various aspects of tissue development, and we have previously identified a bHLH transcription factor, AmeloD, from a tooth germ cDNA library. Here, we provide both in vitro and in vivo evidence that AmeloD is important in tooth development. We created AmeloD-knockout (KO) mice to identify the in vivo functions of AmeloD that are critical for tooth morphogenesis. We found that AmeloD-KO mice developed enamel hypoplasia and small teeth because of increased expression of E-cadherin in inner enamel epithelial (IEE) cells, and it may cause inhibition of the cell migration. We used the CLDE dental epithelial cell line to conduct further mechanistic analyses to determine whether AmeloD overexpression in CLDE cells suppresses E-cadherin expression and promotes cell migration. Knockout of epiprofin (Epfn), another transcription factor required for tooth morphogenesis and development, and analysis of AmeloD expression and deletion revealed that AmeloD also contributed to multiple tooth formation in Epfn-KO mice by promoting the invasion of dental epithelial cells into the mesenchymal region. Thus, AmeloD appears to play an important role in tooth morphogenesis by modulating E-cadherin and dental epithelial-mesenchymal interactions. These findings provide detailed insights into the mechanism of ectodermal organ development.
Collapse
Affiliation(s)
- Yuta Chiba
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences and
| | - Bing He
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Keigo Yoshizaki
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Division of Oral Health, Growth and Development, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan
| | - Craig Rhodes
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Muneaki Ishijima
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Department of Medicine for Orthopaedics and Motor Organ and
| | - Christopher K E Bleck
- Electron Microscopy Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Erin Stempinski
- Electron Microscopy Core Facility, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Emily Y Chu
- Laboratory of Oral Connective Tissue Biology, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Takashi Nakamura
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Tsutomu Iwamoto
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima 770-8504, Japan
| | - Susana de Vega
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Research Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences and
| | - Satoshi Fukumoto
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences and
| | - Yoshihiko Yamada
- From the Molecular Biology Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892,
| |
Collapse
|
8
|
Walton E, Cecil CA, Suderman M, Liu J, Turner JA, Calhoun V, Ehrlich S, Relton CL, Barker ED. Longitudinal epigenetic predictors of amygdala:hippocampus volume ratio. J Child Psychol Psychiatry 2017; 58:1341-1350. [PMID: 28480579 PMCID: PMC5677591 DOI: 10.1111/jcpp.12740] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The ratio between amygdala:hippocampal (AH) volume has been associated with multiple psychiatric problems, including anxiety and aggression. Yet, little is known about its biological underpinnings. Here, we used a methylome-wide approach to test (a) whether DNA methylation in early life (birth, age 7) prospectively associates with total AH volume ratio in early adulthood, and (b) whether significant DNA methylation markers are influenced by prenatal risk factors. METHODS Analyses were based on a subsample (n = 109 males) from the Avon Longitudinal Study of Parents and Children, which included measures of prenatal risk, DNA methylation (Infinium Illumina 450k), T1-weighted brain scans and psychopathology in early adulthood (age 18-21). Amygdala and hippocampus measures were derived using Freesurfer 5.3.0. Methylation markers related to AH volume ratio across time were identified using longitudinal multilevel modeling. RESULTS Amygdala:hippocampal volume ratio correlated positively with age 18 psychosis-like symptoms (p = .007). Methylation of a probe in the gene SP6 associated longitudinally with (a) higher AH volume ratio (FDR q-value = .01) and (b) higher stressful life events during pregnancy (p = .046). SP6 is expressed in the hippocampus and amygdala and has been implicated in cognitive decline in Alzheimer's disease. The association between SP6 DNA methylation, AH volume ratio and psychopathology was replicated in an independent dataset of 101 patients with schizophrenia and 111 healthy controls. CONCLUSIONS Our findings suggest that epigenetic alterations in genes implicated in neurodevelopment may contribute to a brain-based biomarker of psychopathology.
Collapse
Affiliation(s)
- Esther Walton
- Department of PsychologyInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
- Department of PsychologyGeorgia State UniversityAtlantaGAUSA
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - Charlotte A.M. Cecil
- Department of PsychologyInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Matthew Suderman
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - Jingyu Liu
- The Mind Research NetworkAlbuquerqueNMUSA
- Department of Electrical EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | | | - Vince Calhoun
- The Mind Research NetworkAlbuquerqueNMUSA
- Department of Electrical EngineeringUniversity of New MexicoAlbuquerqueNMUSA
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental NeurosciencesFaculty of MedicineTU DresdenDresdenGermany
| | - Caroline L. Relton
- Medical Research Council Integrative Epidemiology UnitUniversity of BristolBristolUK
| | - Edward D. Barker
- Department of PsychologyInstitute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| |
Collapse
|
9
|
JMJD3 and NF-κB-dependent activation of Notch1 gene is required for keratinocyte migration during skin wound healing. Sci Rep 2017; 7:6494. [PMID: 28747631 PMCID: PMC5529578 DOI: 10.1038/s41598-017-06750-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/16/2017] [Indexed: 12/18/2022] Open
Abstract
It has been shown that epigenetic regulation plays an important role in skin wound healing. We previously found that histone H3K27me3 demethylase JMJD3 regulates inflammation and cell migration in keratinocyte wound healing. In this study, we identified Notch1 as a direct target of JMJD3 and NF-κB in wounded keratinocytes using in vitro cell and in vivo animal models. We found that Notch1 is up-regulated in the wound edge and its expression is dependent on JMJD3 and NF-κB in wounded keratinocytes. We also found that Notch1 activates the expression of RhoU and PLAU gene, which are critical regulators of cell migration. Consistently, depletion or inactivation of Notch1 resulted in decreased filopodia formation, increased focal adhesion and actin stress fiber, leading to reduced keratinocyte migration and skin wound healing. Thus, our findings provide the molecular mechanism involving JMJD3/NF-κB-Notch pathway in keratinocyte wound healing.
Collapse
|
10
|
Chaudhary A, Bag S, Banerjee P, Chatterjee J. Honey Extracted Polyphenolics Reduce Experimental Hypoxia in Human Keratinocytes Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3460-3473. [PMID: 28406019 DOI: 10.1021/acs.jafc.7b00366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hypoxic assault affects fundamental cellular processes and generates oxidative stress on healthy cells/molecules. Honey extracted polyphenolics (HEP) as a natural antioxidant reduced hypoxic cytotoxicity in this study. Different honey samples were physicochemically characterized to identify preferred (jamun) honey [pH 3.55 ± 0.04, conductivity (μs/cm) = 6.66 ± 0.14, water content % (w/w) = 14.70 ± 0.35, total solid content % (w/w) = 85.30 ± 0.35, phenol content (mg GAE/100 g) = 403.55 ± 0.35, flavonoid content (mg QE/100 g) = 276.76 ± 4.10, radical scavenging activity (% 500 μL) = 147.75 ± 3.13, catalase activity (absorbance at 620 nm) = 0.226 ± 0.01]. HEP was tested in different doses on hypoxic and normoxic cells (HaCaT) using viability and antioxidant assays. Cardinal molecular expressions such as cadherin-catenin-cytoskeleton complex (namely, E-cadherin, β-catenin, and F-actin), hypoxia marker (Hif 1 α), proliferation marker (Ki67), and epithelial master regulator (p63) were studied by immuno-cytochemisty (ICC) and qRT-PCR. The 0.063 mg/mL HEP demonstrated better vitality and functionality of HaCaT cells as per viability assay (*, P < 0.01) even under hypoxia. ICC and qRT-PCR observations indicated restoration of cellular survival and homeostasis under 0.063 mg/mL HEP after hypoxic assault. Furthermore, major spectral changes for nucleic acid and membrane phospholipid reorganizations by Fourier transform infrared spectroscopy illustrated a positive impact of 0.063 mg/mL HEP on hypoxic cells considering proliferation and cellular integrity. It was concluded that a specific dose of jamun HEP reduces hypoxic cytotoxicity.
Collapse
Affiliation(s)
- Amrita Chaudhary
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur , Kharagpur 721302, West Bengal, India
| | - Swarnendu Bag
- Department of Biotechnology, National Institute of Technology Sikkim , Barfung Block Ravangla Sub-Division South Sikkim, Ravangla 737139, Sikkim, India
| | - Provas Banerjee
- Banerjees' Biomedical Research Foundation , Sainthia, Birbhum 731234, West Bengal, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur , Kharagpur 721302, West Bengal, India
| |
Collapse
|
11
|
Nakamura T, Jimenez-Rojo L, Koyama E, Pacifici M, de Vega S, Iwamoto M, Fukumoto S, Unda F, Yamada Y. Epiprofin Regulates Enamel Formation and Tooth Morphogenesis by Controlling Epithelial-Mesenchymal Interactions During Tooth Development. J Bone Miner Res 2017; 32:601-610. [PMID: 27787957 DOI: 10.1002/jbmr.3024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/16/2016] [Accepted: 10/22/2016] [Indexed: 01/17/2023]
Abstract
The synchronization of cell proliferation and cytodifferentiation between dental epithelial and mesenchymal cells is required for the morphogenesis of teeth with the correct functional shapes and optimum sizes. Epiprofin (Epfn), a transcription factor belonging to the Sp family, regulates dental epithelial cell proliferation and is essential for ameloblast and odontoblast differentiation. Epfn deficiency results in the lack of enamel and ironically the formation of extra teeth. We investigated the mechanism underlying the functions of Epfn in tooth development through the creation of transgenic mice expressing Epfn under the control of an epithelial cell-specific K5 promoter (K5-Epfn). We found that these K5-Epfn mice developed abnormally shaped incisors and molars and formed fewer molars in the mandible. Remarkably, ameloblasts differentiated ectopically and enamel was formed on the lingual side of the K5-Epfn incisors. By contrast, ameloblasts and enamel were found only on the labial side in wild-type mice, as Follistatin (Fst) expressed in the lingual side inhibits BMP4 signaling necessary for ameloblast differentiation. We showed that Epfn transfection into the dental epithelial cell line SF2 abrogated the inhibitory activity of Fst and promoted ameloblast differentiation of SF2 cells. We found that Epfn induced FGF9 in dental epithelial cells and this dental epithelial cell-derived FGF9 promoted dental mesenchymal cell proliferation via the FGF receptor 1c (FGFR1c). Taken together, these results suggest that Epfn preserves the balance between cell proliferation and cytodifferentiation in dental epithelial and mesenchymal cells during normal tooth development and morphogenesis. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| | - Lucia Jimenez-Rojo
- Institute of Oral Biology, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Eiki Koyama
- Division of Orthopedic Research Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Maurizio Pacifici
- Division of Orthopedic Research Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susana de Vega
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Masahiro Iwamoto
- Division of Orthopedic Research Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Fernando Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
12
|
Nakamura T, Chiba Y, Naruse M, Saito K, Harada H, Fukumoto S. Globoside accelerates the differentiation of dental epithelial cells into ameloblasts. Int J Oral Sci 2016; 8:205-212. [PMID: 27767053 PMCID: PMC5168416 DOI: 10.1038/ijos.2016.35] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2016] [Indexed: 12/23/2022] Open
Abstract
Tooth crown morphogenesis is tightly regulated by the proliferation and differentiation of dental epithelial cells. Globoside (Gb4), a globo-series glycosphingolipid, is highly expressed during embryogenesis as well as organogenesis, including tooth development. We previously reported that Gb4 is dominantly expressed in the neutral lipid fraction of dental epithelial cells. However, because its functional role in tooth development remains unknown, we investigated the involvement of Gb4 in dental epithelial cell differentiation. The expression of Gb4 was detected in ameloblasts of postnatal mouse molars and incisors. A cell culture analysis using HAT-7 cells, a rat-derived dental epithelial cell line, revealed that Gb4 did not promote dental epithelial cell proliferation. Interestingly, exogenous administration of Gb4 enhanced the gene expression of enamel extracellular matrix proteins such as ameloblastin, amelogenin, and enamelin in dental epithelial cells as well as in developing tooth germs. Gb4 also induced the expression of TrkB, one of the key receptors required for ameloblast induction in dental epithelial cells. In contrast, Gb4 downregulated the expression of p75, a receptor for neurotrophins (including neurotrophin-4) and a marker of undifferentiated dental epithelial cells. In addition, we found that exogenous administration of Gb4 to dental epithelial cells stimulated the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase signalling pathways. Furthermore, Gb4 induced the expression of epiprofin and Runx2, the positive regulators for ameloblastin gene transcription. Thus, our results suggest that Gb4 contributes to promoting the differentiation of dental epithelial cells into ameloblasts.
Collapse
Affiliation(s)
- Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuta Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Masahiro Naruse
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hidemitsu Harada
- Division of Developmental Biology and Regenerative Medicine, Department of Anatomy, Iwate Medical University, Yahaba, Japan
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
13
|
Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry. Sci Rep 2016; 6:37828. [PMID: 27892530 PMCID: PMC5124948 DOI: 10.1038/srep37828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023] Open
Abstract
The anatomic and functional combinations of cusps and lophs (ridges) define the tooth shape of rodent molars, which distinguishes species. The species-specific cusp patterns result from the spatiotemporal induction of enamel knots (EKs), which require precisely controlled cellular behavior to control the epithelial invagination. Despite the well-defined roles of EK in cusp patterning, the determinants of the ultimate cuspal shapes and involvement of epithelial cellular geometry are unknown. Using two typical tooth patterns, the lophodont in gerbils and the bunodont in mice, we showed that the cuspal shape is determined by the dental epithelium at the cap stage, whereas the cellular geometry in the inner dental epithelium (IDE) is correlated with the cuspal shape. Intriguingly, fine tuning Rac1 and RhoA interconvert cuspal shapes between two species by remolding the cellular geometry. Either inhibition of Rac1 or ectopic expression of RhoA could region-distinctively change the columnar shape of IDE cells in gerbils to drive invagination to produce cusps. Conversely, RhoA reduction in mice inhibited invagination and developed lophs. Furthermore, we found that Rac1 and RhoA modulate the choices of cuspal shape by coordinating adhesion junctions, actin distribution, and fibronectin localization to drive IDE invagination.
Collapse
|
14
|
McDonald EA, Smith JE, Cederberg RA, White BR. Divergent activity of the gonadotropin-releasing hormone receptor gene promoter among genetic lines of pigs is partially conferred by nuclear factor (NF)-B, specificity protein (SP)1-like and GATA-4 binding sites. Reprod Biol Endocrinol 2016; 14:36. [PMID: 27356969 PMCID: PMC4928339 DOI: 10.1186/s12958-016-0170-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Binding of gonadotropin-releasing hormone (GnRH) to its receptor (GnRHR) on gonadotropes within the anterior pituitary gland is essential to reproduction. In pigs, the GnRHR gene is also located near a genetic marker for ovulation rate, a primary determinant of prolificacy. We hypothesized that pituitary expression of the GnRHR gene is alternatively regulated in genetic strains with elevated ovulation rates (Chinese Meishan and Nebraska Index) vs. standard white crossbred swine (Control). METHODS Luciferase reporter vectors containing 5118 bp of GnRHR gene promoter from either the Control, Index or Meishan swine lines were generated. Transient transfection of line-specific, full length, deletion and mutation constructs into gonadotrope-derived αT3-1 cells were performed to compare promoter activity and identify regions necessary for divergent regulation of the porcine GnRHR gene. Additionally, transcription factors that bind the GnRHR promoter from each line were identified with electrophoretic mobility shift assays (EMSA). RESULTS Dramatic differences in luciferase activity among Control, Index and Meishan promoters (19-, 27- and 49-fold over promoterless control, respectively; P < 0.05) were established. A single bp substitution (-1690) within a previously identified upstream enhancer (-1779/-1667) bound GATA-4 in the Meishan promoter and the p52/p65 subunits of nuclear factor (NF)-κB in the homologous Control/Index promoters. Transient transfection of vectors containing block replacement mutations of either the GATA-4 or NF-κB binding sites within the context of their native promoters resulted in a 50 and 60 % reduction of luciferase activity, respectively (P < 0.05). Furthermore, two single-bp substitutions in the Meishan compared to Control/Index promoters resulted in binding of the p52 and p65 subunits of NF-κB and a specificity protein 1 (SP1)-like factor (-1235) as well as GATA-4 (-845). Vectors containing the full-length Meishan promoter harboring individual mutations spanning these regions reduced luciferase activity by 25 and 20 %, respectively, compared to native sequence (P < 0.05). CONCLUSIONS Elevated activity of the Meishan GnRHR gene promoter over Control/Index promoters in αT3-1 cells is partially due to three single nucleotide polymorphisms resulting in the unique binding of GATA-4 (-1690), the p52/p65 subunits of NF-kB in combination with a SP1-like factor (-1235), and GATA-4 (-845).
Collapse
Affiliation(s)
- Emily A. McDonald
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
- Present address: Center for International Health Research, Rhode Island Hospital, Providence, RI USA
| | - Jacqueline E. Smith
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
- Present address: Stowers Institute for Medical Research, Kansas City, MO USA
| | - Rebecca A. Cederberg
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Brett R. White
- Laboratory of Reproductive Biology, Department of Animal Science, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, Lincoln, NE USA
| |
Collapse
|
15
|
Comparison of the histological morphology between normal skin and scar tissue. ACTA ACUST UNITED AC 2016; 36:265-269. [PMID: 27072974 DOI: 10.1007/s11596-016-1578-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/21/2016] [Indexed: 01/07/2023]
Abstract
Skin wound healing is a complex event, and interrupted wound healing process could lead to scar formation. The aim of this study was to examine the morphological changes of scar tissue. Pathological staining (HE staining, Masson's trichrome staining, methenamine silver staining) was used to evaluate the morphological changes of regenerating epidermis in normal skin and scar tissue, and immunofluorescence staining to detect the expression of collagen IV, a component of basement membrane (BM), and the expression of integrinβ4, a receptor for BM laminins. Additionally, the expression of CK14, CK5, and CK10 was measured to evaluate the proliferation and differentiation of keratinocytes in normal skin and scar tissue. The results showed that the structure of the skin was histologically changed in scar tissue. Collagen IV, expressed under the epidermis of normal skin, was reduced distinctly in scar tissue. Integrinβ4, expressed in the basal layer of normal skin, was found absent in the basal layer of scar tissue. Additionally, it was found that keratinocytes in scarring epidermis were more proliferative than in normal skin. These results indicate that during the skin wound healing, altered formation of BM may affect the proliferation of keratinocytes, reepithelial and tissue remodeling, and then result in scar formation. Thus, remodeling BM structure during wound repair may be beneficial for improving healing in cutaneous wounds during clinical practice.
Collapse
|
16
|
Aurrekoetxea M, Irastorza I, García-Gallastegui P, Jiménez-Rojo L, Nakamura T, Yamada Y, Ibarretxe G, Unda FJ. Wnt/β-Catenin Regulates the Activity of Epiprofin/Sp6, SHH, FGF, and BMP to Coordinate the Stages of Odontogenesis. Front Cell Dev Biol 2016; 4:25. [PMID: 27066482 PMCID: PMC4811915 DOI: 10.3389/fcell.2016.00025] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/14/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We used an in vitro tooth development model to investigate the effects of overactivation of the Wnt/β-catenin pathway during odontogenesis by bromoindirubin oxime reagent (BIO), a specific inhibitor of GSK-3 activity. RESULTS Overactivating the Wnt/β-catenin pathway at tooth initiation upregulated and ectopically expressed the epithelial markers Sonic Hedgehog (Shh), Epiprofin (Epfn), and Fibroblast growth factor8 (Fgf8), which are involved in the delimitation of odontogenic fields in the oral ectoderm. This result indicated an ectopic extension of the odontogenic potential. During tooth morphogenesis, Fibroblast growth factor4 (Fgf4), Fibroblast growth factor10 (Fgf10), Muscle segment homeobox 1 (Msx-1), Bone Morphogenetic protein 4 (Bmp4), and Dickkopf WNT signaling pathway inhibitor 1 (Dkk-1) were overexpressed in first molars cultured with BIO. Conversely, the expression levels of Wingless integration site 10b (Wnt-10b) and Shh were reduced. Additionally, the odontoblast differentiation markers Nestin and Epfn showed ectopic overexpression in the dental mesenchyme of BIO-treated molars. Moreover, alkaline phosphatase activity increased in the dental mesenchyme, again suggesting aberrant, ectopic mesenchymal cell differentiation. Finally, Bmp4 downregulated Epfn expression during dental morphogenesis. CONCLUSIONS We suggest the presence of a positive feedback loop wherein Epfn and β-catenin activate each other. The balance of the expression of these two molecules is essential for proper tooth development. We propose a possible link between Wnt, Bmp, and Epfn that would critically determine the correct patterning of dental cusps and the differentiation of odontoblasts and ameloblasts.
Collapse
Affiliation(s)
- Maitane Aurrekoetxea
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Igor Irastorza
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Patricia García-Gallastegui
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Lucia Jiménez-Rojo
- Center of Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Graduate School of Dentistry, Tohoku University Sendai, Japan
| | - Yoshihiko Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MD, USA
| | - Gaskon Ibarretxe
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| | - Fernando J Unda
- Department of Cell Biology and Histology, Faculty of Medicine and Dentistry, University of the Basque Country UPV/EHU Leioa, Spain
| |
Collapse
|
17
|
Palazzo E, Morandi P, Lotti R, Saltari A, Truzzi F, Schnebert S, Dumas M, Marconi A, Pincelli C. Notch Cooperates with Survivin to Maintain Stemness and to Stimulate Proliferation in Human Keratinocytes during Ageing. Int J Mol Sci 2015; 16:26291-302. [PMID: 26540052 PMCID: PMC4661807 DOI: 10.3390/ijms161125948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/09/2015] [Accepted: 10/22/2015] [Indexed: 01/01/2023] Open
Abstract
The Notch signaling pathway orchestrates cell fate by either inducing cell differentiation or maintaining cells in an undifferentiated state. This study aims to evaluate Notch expression and function in normal human keratinocytes. Notch1 is expressed in all epidermal layers, though to a different degree of intensity, with a dramatic decrease during ageing. Notch1 intracellular domain (N1ICD) levels are decreased during transit from keratinocyte stem cells (KSC) to transit amplifying (TA) cells, mimicking survivin expression in samples from donors of all ages. Calcium markedly reduces N1ICD levels in keratinocytes. N1ICD overexpression induces the up-regulation of survivin and the down-regulation of keratin 10 and involucrin, while increasing the S phase of the cell cycle. On the other hand, Notch1 inhibition (DAPT) dose-dependently decreases survivin, stimulates differentiation, and reduces keratinocyte proliferation in samples from donors of all ages. Silencing Notch downgrades survivin and increases keratin 10. In addition, Notch1 inhibition decreases survivin levels and proliferation both in KSC and TA cells. Finally, while survivin overexpression decreases keratinocyte differentiation and increases N1ICD expression both in KSC and TA cells, silencing survivin results in N1ICD down-regulation and an increase in differentiation markers. These results suggest that the Notch1/survivin crosstalk contributes to the maintenance of stemness in human keratinocytes.
Collapse
Affiliation(s)
- Elisabetta Palazzo
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Paolo Morandi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Roberta Lotti
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Annalisa Saltari
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Francesca Truzzi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | | | - Marc Dumas
- LVMH Recherche, 185 Avenue de Verdun, Saint Jean de Braye 45800, France.
| | - Alessandra Marconi
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| | - Carlo Pincelli
- Laboratory of Cutaneous Biology, Department of Surgical, Medical, Dental and Morphological Sciences, University of Modena and Reggio Emilia, via del Pozzo 71, Modena 41121, Italy.
| |
Collapse
|