1
|
Kim H, Takegahara N, Choi Y. Protocadherin-7 Regulates Monocyte Migration Through Regulation of Small GTPase RhoA and Rac1. Int J Mol Sci 2025; 26:572. [PMID: 39859288 PMCID: PMC11766416 DOI: 10.3390/ijms26020572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup within the cadherin superfamily. Pcdh7 has been shown to control osteoclast differentiation via the protein phosphatase 2A (PP2A)-glycogen synthase kinase-3β (GSK3β)-small GTPase signaling axis. As protocadherins serve multiple biological functions, a deeper understanding of Pcdh7's biological features is valuable. Using an in vitro mouse monocyte cell culture system, we demonstrate that Pcdh7 plays a role in regulating monocyte migration by modulating the small GTPases RhoA and Rac1. Pcdh7-deficient (Pcdh7-/-) bone marrow-derived monocytes exhibited impaired migration along with the reduced activation of RhoA and Rac1. This impaired migration was rescued by transduction with constitutively active forms of RhoA and Rac1. Treatment with the PP2A-specific activator DT-061 enhanced cell migration, whereas treatment with the GSK3β-specific inhibitor AR-A014418 inhibited migration in wild-type monocytes. In contrast, treatment with DT-061 failed to restore the impaired migration in Pcdh7-/- monocytes. These findings suggest the involvement of PP2A and GSK3β in monocyte migration, although the forced activation of PP2A alone is insufficient to restore impaired migration in Pcdh7-/- monocytes. Taken together, these results indicate that Pcdh7 regulates monocyte migration through the activation of RhoA and Rac1. Given the pivotal role of cell migration in both physiological and pathological processes, our findings provide a foundation for future research into therapeutic strategies targeting Pcdh7-regulated migration.
Collapse
Affiliation(s)
| | | | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; (H.K.); (N.T.)
| |
Collapse
|
2
|
Borghi R, Petrini S, Apollonio V, Trivisano M, Specchio N, Moreno S, Bertini E, Tartaglia M, Compagnucci C. Altered cytoskeleton dynamics in patient-derived iPSC-based model of PCDH19 clustering epilepsy. Front Cell Dev Biol 2025; 12:1518533. [PMID: 39834389 PMCID: PMC11743388 DOI: 10.3389/fcell.2024.1518533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Protocadherin 19 (PCDH19) is an adhesion molecule involved in cell-cell interaction whose mutations cause a drug-resistant form of epilepsy, named PCDH19-Clustering Epilepsy (PCDH19-CE, MIM 300088). The mechanism by which altered PCDH19 function drive pathogenesis is not yet fully understood. Our previous work showed that PCDH19 dysfunction is associated with altered orientation of the mitotic spindle and accelerated neurogenesis, suggesting a contribution of altered cytoskeleton organization in PCDH19-CE pathogenesis in the control of cell division and differentiation. Here, we evaluate the consequences of altered PCDH19 function on microfilaments and microtubules organization, using a disease model obtained from patient-derived induced pluripotent stem cells. We show that iPSC-derived cortical neurons are characterized by altered cytoskeletal dynamics, suggesting that this protocadherin has a role in modulating stability of MFs and MTs. Consistently, the levels of acetylated-tubulin, which is related with stable MTs, are significantly increased in cortical neurons derived from the patient's iPSCs compared to control cells, supporting the idea that the altered dynamics of the MTs depends on their increased stability. Finally, performing live-imaging experiments using fluorescence recovery after photobleaching and by monitoring GFP-tagged end binding protein 3 (EB3) "comets," we observe an impairment of the plus-end polymerization speed in PCDH19-mutated cortical neurons, therefore confirming the impaired MT dynamics. In addition to altering the mitotic spindle formation, the present data unveil that PCDH19 dysfunction leads to altered cytoskeletal rearrangement, providing therapeutic targets and pharmacological options to treat this disorder.
Collapse
Affiliation(s)
- Rossella Borghi
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Valentina Apollonio
- Confocal Microscopy Core Facility, Laboratories, Bambino Gesù, Children’s Research Hospital, IRCCS, Rome, Italy
| | - Marina Trivisano
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Nicola Specchio
- Neurology, Epilepsy and Movement Disorders Unit, Bambino Gesù Children’s Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Sandra Moreno
- Department of Science, LIME, University Roma Tre, Rome, Italy
| | - Enrico Bertini
- Research Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Claudia Compagnucci
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
3
|
O'Connor AM, Hagenauer MH, Forrester LCT, Maras PM, Arakawa K, Hebda-Bauer EK, Khalil H, Richardson ER, Rob FI, Sannah Y, Watson SJ, Akil H. Adolescent environmental enrichment induces social resilience and alters neural gene expression in a selectively bred rodent model with anxious phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560702. [PMID: 38645129 PMCID: PMC11030238 DOI: 10.1101/2023.10.03.560702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Stress is a major influence on mental health status; the ways that individuals respond to or copes with stressors determine whether they are negatively affected in the future. Stress responses are established by an interplay between genetics, environment, and life experiences. Psychosocial stress is particularly impactful during adolescence, a critical period for the development of mood disorders. In this study we compared two established, selectively-bred Sprague Dawley rat lines, the "internalizing" bred Low Responder (bLR) line versus the "externalizing" bred High Responder (bHR) line, to investigate how genetic temperament and adolescent environment impact future responses to social interactions and psychosocial stress, and how these determinants of stress response interact. Male bLR and bHR rats were exposed to social and environmental enrichment in adolescence prior to experiencing social defeat and were then assessed for social interaction and anxiety-like behavior. Adolescent enrichment caused rats to display more social interaction, as well as nominally less social avoidance, less submission during defeat, and resilience to the effects of social stress on corticosterone, in a manner that seemed more notable in bLRs. For bHRs, enrichment also caused greater aggression during a neutral social encounter and nominally during defeat, and decreased anxiety-like behavior. To explore the neurobiology underlying the development of social resilience in the anxious phenotype bLRs, RNA-seq was conducted on the hippocampus and nucleus accumbens, two brain regions that mediate stress regulation and social behavior. Gene sets previously associated with stress, social behavior, aggression and exploratory activity were enriched with differential expression in both regions, with a particularly large effect on gene sets that regulate social behaviors. Our findings provide further evidence that adolescent enrichment can serve as an inoculating experience against future stressors. The ability to induce social resilience in a usually anxious line of animals by manipulating their environment has translational implications, as it underscores the feasibility of intervention strategies targeted at genetically vulnerable adolescent populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Huda Akil
- Univ. of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Yoo H, La H, Park C, Yoo S, Lee H, Song H, Do JT, Choi Y, Hong K. Common and distinct functions of mouse Dot1l in the regulation of endothelial transcriptome. Front Cell Dev Biol 2023; 11:1176115. [PMID: 37397258 PMCID: PMC10311421 DOI: 10.3389/fcell.2023.1176115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
Epigenetic mechanisms are mandatory for endothelial called lymphangioblasts during cardiovascular development. Dot1l-mediated gene transcription in mice is essential for the development and function of lymphatic ECs (LECs). The role of Dot1l in the development and function of blood ECs blood endothelial cells is unclear. RNA-seq datasets from Dot1l-depleted or -overexpressing BECs and LECs were used to comprehensively analyze regulatory networks of gene transcription and pathways. Dot1l depletion in BECs changed the expression of genes involved in cell-to-cell adhesion and immunity-related biological processes. Dot1l overexpression modified the expression of genes involved in different types of cell-to-cell adhesion and angiogenesis-related biological processes. Genes involved in specific tissue development-related biological pathways were altered in Dot1l-depleted BECs and LECs. Dot1l overexpression altered ion transportation-related genes in BECs and immune response regulation-related genes in LECs. Importantly, Dot1l overexpression in BECs led to the expression of genes related to the angiogenesis and increased expression of MAPK signaling pathways related was found in both Dot1l-overexpressing BECs and LECs. Therefore, our integrated analyses of transcriptomics in Dot1l-depleted and Dot1l-overexpressed ECs demonstrate the unique transcriptomic program of ECs and the differential functions of Dot1l in the regulation of gene transcription in BECs and LECs.
Collapse
|
5
|
Hoshina N, Johnson-Venkatesh EM, Rally VR, Sant J, Hoshina M, Seiglie MP, Umemori H. ASD/OCD-Linked Protocadherin-10 Regulates Synapse, But Not Axon, Development in the Amygdala and Contributes to Fear- and Anxiety-Related Behaviors. J Neurosci 2022; 42:4250-4266. [PMID: 35504727 PMCID: PMC9145243 DOI: 10.1523/jneurosci.1843-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
The Protocadherin-10 (PCDH10) gene is associated with autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), and major depression (MD). The PCDH10 protein is a homophilic cell adhesion molecule that belongs to the δ2-protocadherin family. PCDH10 is highly expressed in the developing brain, especially in the basolateral nucleus of the amygdala (BLA). However, the role of PCDH10 in vivo has been debatable: one paper reported that a Pcdh10 mutant mouse line showed changes in axonal projections; however, another Pcdh10 mutant mouse line was reported to have failed to detect axonal phenotypes. Therefore, the actual roles of PCDH10 in the brain remain to be elucidated. We established a new Pcdh10 KO mouse line using the CRISPR/Cas9 system, without inserting gene cassettes to avoid nonspecific effects, examined the roles of PCDH10 in the brain, and studied the behavioral consequences of Pcdh10 inactivation. Here, we show that Pcdh10 KO mice do not show defects in axonal development. Instead, we find that Pcdh10 KO mice exhibit impaired development of excitatory synapses in the dorsal BLA. We further demonstrate that male Pcdh10 KO mice exhibit reduced anxiety-related behaviors, impaired fear conditioning, decreased stress-coping responses, and mildly impaired social recognition and communication. These results indicate that PCDH10 plays a critical role in excitatory synapse development, but not axon development, in the dorsal BLA and that PCDH10 regulates anxiety-related, fear-related, and stress-related behaviors. Our results reveal the roles of PCDH10 in the brain and its relationship to relevant psychiatric disorders such as ASD, OCD, and MD.SIGNIFICANCE STATEMENTProtocadherin-10 (PCDH10) encodes a cell adhesion molecule and is implicated in autism spectrum disorder (ASD), obsessive-compulsive disorder (OCD), and major depression (MD). PCDH10 is highly expressed in the basolateral nucleus of the amygdala (BLA). However, the phenotypes of previously published Pcdh10 mutant mice are debatable, and some are possibly because of the nonspecific effects of the LacZ/Neo cassette inserted in the mice. We have generated a new Pcdh10 mutant mouse line without the LacZ/Neo cassette. Using our new mouse line, we reveal the roles of PCDH10 for excitatory synapse development in the BLA. The mutant mice exhibit anxiety-related, fear-related, and stress-related behaviors, which are relevant to ASD, OCD, and MD, suggesting a possible treatment strategy for such psychiatric disorders.
Collapse
Affiliation(s)
- Naosuke Hoshina
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Erin M Johnson-Venkatesh
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Veronica R Rally
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jaanvi Sant
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Miyuki Hoshina
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Mariel P Seiglie
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
6
|
Kim H, Takegahara N, Choi Y. Protocadherin-7 Regulates Osteoclast Differentiation through Intracellular SET-Binding Domain-Mediated RhoA and Rac1 Activation. Int J Mol Sci 2021; 22:13117. [PMID: 34884920 PMCID: PMC8658210 DOI: 10.3390/ijms222313117] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/23/2022] Open
Abstract
Protocadherin-7 (Pcdh7) is a member of the non-clustered protocadherin δ1 subgroup of the cadherin superfamily. Although the cell-intrinsic role of Pcdh7 in osteoclast differentiation has been demonstrated, the molecular mechanisms of Pcdh7 regulating osteoclast differentiation remain to be determined. Here, we demonstrate that Pcdh7 contributes to osteoclast differentiation by regulating small GTPases, RhoA and Rac1, through its SET oncoprotein binding domain. Pcdh7 is associated with SET along with RhoA and Rac1 during osteoclast differentiation. Pcdh7-deficient (Pcdh7-/-) cells showed abolished RANKL-induced RhoA and Rac1 activation, and impaired osteoclast differentiation. Impaired osteoclast differentiation in Pcdh7-/- cells was restored by retroviral transduction of full-length Pcdh7 but not by a Pcdh7 mutant that lacks SET binding domain. The direct crosslink of the Pcdh7 intracellular region induced the activation of RhoA and Rac1, which was not observed when Pcdh7 lacks the SET binding domain. Additionally, retroviral transduction of the constitutively active form of RhoA and Rac1 completely restored the impaired osteoclast differentiation in Pcdh7-/- cells. Collectively, these results demonstrate that Pcdh7 controls osteoclast differentiation by regulating RhoA and Rac1 activation through the SET binding domain.
Collapse
Affiliation(s)
| | | | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (H.K.); (N.T.)
| |
Collapse
|
7
|
Pollock NM, Leighton P, Neil G, Allison WT. Transcriptomic analysis of zebrafish prion protein mutants supports conserved cross-species function of the cellular prion protein. Prion 2021; 15:70-81. [PMID: 34139950 PMCID: PMC8216189 DOI: 10.1080/19336896.2021.1924557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 10/31/2022] Open
Abstract
Cellular Prion Protein (PrPC) is a well-studied protein as the substrate for various progressive untreatable neurodegenerative diseases. Normal functions of PrPC are poorly understood, though recent proteomic and transcriptomic approaches have begun to reveal common themes. We use our compound prp1 and prp2 knockout mutant zebrafish at three days post fertilization to take a transcriptomic approach to investigating potentially conserved PrPC functions during development. Gene ontology analysis shows the biological processes with the largest changes in gene expression include redox processing, transport and cell adhesion. Within these categories several different gene families were prevalent including the solute carrier proteins, cytochrome p450 enzymes and protocadherins. Continuing from previous studies identifying cell adhesion as an important function of PrPC we found that in addition to the protocadherins there was a significant reduction in transcript abundance of both ncam1a and st8sia2. These two genes are involved in the early development of vertebrates. The alterations in cell adhesion transcripts were consistent with past findings in zebrafish and mouse prion protein mutants; however E-cadherin processing after prion protein knockdown failed to reveal any differences compared with wild type in either our double prp1/prp2 mutant fish or after prp1 morpholino knockdown. Our data supports a cross species conserved role for PrPC in the development and maintenance of the central nervous system, particularly by regulating various and important cell adhesion processes.
Collapse
Affiliation(s)
- Niall Mungo Pollock
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada
| | - Patricia Leighton
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada
| | - Gavin Neil
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - W. Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Serranito B, Cavalazzi M, Vidal P, Taurisson-Mouret D, Ciani E, Bal M, Rouvellac E, Servin B, Moreno-Romieux C, Tosser-Klopp G, Hall SJG, Lenstra JA, Pompanon F, Benjelloun B, Da Silva A. Local adaptations of Mediterranean sheep and goats through an integrative approach. Sci Rep 2021; 11:21363. [PMID: 34725398 PMCID: PMC8560853 DOI: 10.1038/s41598-021-00682-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 09/03/2021] [Indexed: 11/20/2022] Open
Abstract
Small ruminants are suited to a wide variety of habitats and thus represent promising study models for identifying genes underlying adaptations. Here, we considered local Mediterranean breeds of goats (n = 17) and sheep (n = 25) from Italy, France and Spain. Based on historical archives, we selected the breeds potentially most linked to a territory and defined their original cradle (i.e., the geographical area in which the breed has emerged), including transhumant pastoral areas. We then used the programs PCAdapt and LFMM to identify signatures of artificial and environmental selection. Considering cradles instead of current GPS coordinates resulted in a greater number of signatures identified by the LFMM analysis. The results, combined with a systematic literature review, revealed a set of genes with potentially key adaptive roles in relation to the gradient of aridity and altitude. Some of these genes have been previously implicated in lipid metabolism (SUCLG2, BMP2), hypoxia stress/lung function (BMPR2), seasonal patterns (SOX2, DPH6) or neuronal function (TRPC4, TRPC6). Selection signatures involving the PCDH9 and KLH1 genes, as well as NBEA/NBEAL1, were identified in both species and thus could play an important adaptive role.
Collapse
Affiliation(s)
- Bruno Serranito
- INRA, EA7500, USC1061 GAMAA, Univ. Limoges, 87000, Limoges, France
- CRESCO, Museum National d'Histoire Naturelle (MNHN), 35800, Dinard, France
| | | | - Pablo Vidal
- Universidad Catolica de Valencia, Valencia, Spain
| | - Dominique Taurisson-Mouret
- GEOLAB, UMR 6042, Univ. Limoges, Limoges, France
- CNRS, UMR 5815, Dynamiques du droit, Université de Montpellier, Montpellier, France
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Marie Bal
- GEOLAB, UMR 6042, Univ. Limoges, Limoges, France
| | | | - Bertrand Servin
- GenPhySE, INRAE, ENVT, Université de Toulouse, 31326, Castanet-Tolosan, France
| | | | | | - Stephen J G Hall
- Estonian University of Life Sciences, Kreutzwaldi 5, 51014, Tartu, Estonia
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM, Utrecht, The Netherlands
| | - François Pompanon
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
| | - Badr Benjelloun
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F-38000, Grenoble, France
- National Institute of Agronomic Research (INRA), Regional Centre of Agronomic Research, Beni-Mellal, Morocco
| | - Anne Da Silva
- INRA, EA7500, USC1061 GAMAA, Univ. Limoges, 87000, Limoges, France.
| |
Collapse
|
9
|
Joutsen J, Da Silva AJ, Luoto JC, Budzynski MA, Nylund AS, de Thonel A, Concordet JP, Mezger V, Sabéran-Djoneidi D, Henriksson E, Sistonen L. Heat Shock Factor 2 Protects against Proteotoxicity by Maintaining Cell-Cell Adhesion. Cell Rep 2021; 30:583-597.e6. [PMID: 31940498 DOI: 10.1016/j.celrep.2019.12.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/15/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Maintenance of protein homeostasis, through inducible expression of molecular chaperones, is essential for cell survival under protein-damaging conditions. The expression and DNA-binding activity of heat shock factor 2 (HSF2), a member of the heat shock transcription factor family, increase upon exposure to prolonged proteotoxicity. Nevertheless, the specific roles of HSF2 and the global HSF2-dependent gene expression profile during sustained stress have remained unknown. Here, we found that HSF2 is critical for cell survival during prolonged proteotoxicity. Strikingly, our RNA sequencing (RNA-seq) analyses revealed that impaired viability of HSF2-deficient cells is not caused by inadequate induction of molecular chaperones but is due to marked downregulation of cadherin superfamily genes. We demonstrate that HSF2-dependent maintenance of cadherin-mediated cell-cell adhesion is required for protection against stress induced by proteasome inhibition. This study identifies HSF2 as a key regulator of cadherin superfamily genes and defines cell-cell adhesion as a determinant of proteotoxic stress resistance.
Collapse
Affiliation(s)
- Jenny Joutsen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Alejandro Jose Da Silva
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Jens Christian Luoto
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Marek Andrzej Budzynski
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Anna Serafia Nylund
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Aurelie de Thonel
- CNRS, UMR 7216 "Epigenetic and Cell Fate," 75250 Paris Cedex 13, France; University of Paris Diderot, Sorbonne Paris Cité, 75250 Paris Cedex 13, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Valérie Mezger
- CNRS, UMR 7216 "Epigenetic and Cell Fate," 75250 Paris Cedex 13, France; University of Paris Diderot, Sorbonne Paris Cité, 75250 Paris Cedex 13, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Délara Sabéran-Djoneidi
- CNRS, UMR 7216 "Epigenetic and Cell Fate," 75250 Paris Cedex 13, France; University of Paris Diderot, Sorbonne Paris Cité, 75250 Paris Cedex 13, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Eva Henriksson
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.
| |
Collapse
|
10
|
Disrupted Excitatory Synaptic Contacts and Altered Neuronal Network Activity Underpins the Neurological Phenotype in PCDH19-Clustering Epilepsy (PCDH19-CE). Mol Neurobiol 2021; 58:2005-2018. [PMID: 33411240 DOI: 10.1007/s12035-020-02242-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
PCDH19-Clustering Epilepsy (PCDH19-CE) is an infantile onset disorder caused by mutation of the X-linked PCDH19 gene. Intriguingly, heterozygous females are affected while hemizygous males are not. While there is compelling evidence that this disorder stems from the coexistence of WT and PCDH19-null cells, the cellular mechanism underpinning the neurological phenotype remains unclear. Here, we investigate the impact of Pcdh19 WT and KO neuron mosaicism on synaptogenesis and network activity. Using our previously established knock-in and knock-out mouse models, together with CRISPR-Cas9 genome editing technology, we demonstrate a reduction in excitatory synaptic contacts between PCDH19-expressing and PCDH19-null neurons. Significantly altered neuronal morphology and neuronal network activities were also identified in the mixed populations. In addition, we show that in Pcdh19 heterozygous mice, where the coexistence of WT and KO neurons naturally occurs, aberrant contralateral axonal branching is present. Overall, our data show that mosaic expression of PCDH19 disrupts physiological neurite communication leading to abnormal neuronal activity, a hallmark of PCDH19-CE.
Collapse
|
11
|
Kosuge H, Nakakido M, Nagatoishi S, Fukuda T, Bando Y, Ohnuma SI, Tsumoto K. Proteomic identification and validation of novel interactions of the putative tumor suppressor PRELP with membrane proteins including IGFI-R and p75NTR. J Biol Chem 2021; 296:100278. [PMID: 33428936 PMCID: PMC7948961 DOI: 10.1016/j.jbc.2021.100278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 01/19/2023] Open
Abstract
Proline and arginine-rich end leucine-rich repeat protein (PRELP) is a member of the small leucine-rich repeat proteoglycans (SLRPs) family. Levels of PRELP mRNA are downregulated in many types of cancer, and PRELP has been reported to have suppressive effects on tumor cell growth, although the molecular mechanism has yet to be fully elucidated. Given that other SLRPs regulate signaling pathways through interactions with various membrane proteins, we reasoned that PRELP likely interacts with membrane proteins to maintain cellular homeostasis. To identify membrane proteins that interact with PRELP, we carried out coimmunoprecipitation coupled with mass spectrometry (CoIP-MS). We prepared membrane fractions from Expi293 cells transfected to overexpress FLAG-tagged PRELP or control cells and analyzed samples precipitated with anti-FLAG antibody by mass spectrometry. Comparison of membrane proteins in each sample identified several that seem to interact with PRELP; among them, we noted two growth factor receptors, insulin-like growth factor I receptor (IGFI-R) and low-affinity nerve growth factor receptor (p75NTR), interactions with which might help to explain PRELP's links to cancer. We demonstrated that PRELP directly binds to extracellular domains of these two growth factor receptors with low micromolar affinities by surface plasmon resonance analysis using recombinant proteins. Furthermore, cell-based analysis using recombinant PRELP protein showed that PRELP suppressed cell growth and affected cell morphology of A549 lung carcinoma cells, also at micromolar concentration. These results suggest that PRELP regulates cellular functions through interactions with IGFI-R and p75NTR and provide a broader set of candidate partners for further exploration.
Collapse
Affiliation(s)
- Hirofumi Kosuge
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Nakakido
- School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Shin-Ichi Ohnuma
- The Institute of Ophthalmology, University College London, London, United Kingdom
| | - Kouhei Tsumoto
- School of Engineering, The University of Tokyo, Tokyo, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
12
|
Kim HN, Ruan Y, Ogana H, Kim YM. Cadherins, Selectins, and Integrins in CAM-DR in Leukemia. Front Oncol 2020; 10:592733. [PMID: 33425742 PMCID: PMC7793796 DOI: 10.3389/fonc.2020.592733] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
The interaction between leukemia cells and the bone microenvironment is known to provide drug resistance in leukemia cells. This phenomenon, called cell adhesion-mediated drug resistance (CAM-DR), has been demonstrated in many subsets of leukemia including B- and T-acute lymphoblastic leukemia (B- and T-ALL) and acute myeloid leukemia (AML). Cell adhesion molecules (CAMs) are surface molecules that allow cell-cell or cell-extracellular matrix (ECM) adhesion. CAMs not only recognize ligands for binding but also initiate the intracellular signaling pathways that are associated with cell proliferation, survival, and drug resistance upon binding to their ligands. Cadherins, selectins, and integrins are well-known cell adhesion molecules that allow binding to neighboring cells, ECM proteins, and soluble factors. The expression of cadherin, selectin, and integrin correlates with the increased drug resistance of leukemia cells. This paper will review the role of cadherins, selectins, and integrins in CAM-DR and the results of clinical trials targeting these molecules.
Collapse
Affiliation(s)
- Hye Na Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yongsheng Ruan
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States.,Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Heather Ogana
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| | - Yong-Mi Kim
- Children's Hospital Los Angeles, Keck School of Medicine of University of Southern California, Cancer and Blood Disease Institute, Los Angeles, CA, United States
| |
Collapse
|
13
|
Brandies PA, Tang S, Johnson RSP, Hogg CJ, Belov K. The first Antechinus reference genome provides a resource for investigating the genetic basis of semelparity and age-related neuropathologies. GIGABYTE 2020; 2020:gigabyte7. [PMID: 36824596 PMCID: PMC9631953 DOI: 10.46471/gigabyte.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Antechinus are a genus of mouse-like marsupials that exhibit a rare reproductive strategy known as semelparity and also naturally develop age-related neuropathologies similar to those in humans. We provide the first annotated antechinus reference genome for the brown antechinus (Antechinus stuartii). The reference genome is 3.3 Gb in size with a scaffold N50 of 73Mb and 93.3% complete mammalian BUSCOs. Using bioinformatic methods we assign scaffolds to chromosomes and identify 0.78 Mb of Y-chromosome scaffolds. Comparative genomics revealed interesting expansions in the NMRK2 gene and the protocadherin gamma family, which have previously been associated with aging and age-related dementias respectively. Transcriptome data displayed expression of common Alzheimer's related genes in the antechinus brain and highlight the potential of utilising the antechinus as a future disease model. The valuable genomic resources provided herein will enable future research to explore the genetic basis of semelparity and age-related processes in the antechinus.
Collapse
Affiliation(s)
- Parice A. Brandies
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Tang
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Robert S. P. Johnson
- Zoologica: Veterinary and Zoological Consulting, Millthorpe, New South Wales, Australia
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Tsai TYC, Sikora M, Xia P, Colak-Champollion T, Knaut H, Heisenberg CP, Megason SG. An adhesion code ensures robust pattern formation during tissue morphogenesis. Science 2020; 370:113-116. [PMID: 33004519 PMCID: PMC7879479 DOI: 10.1126/science.aba6637] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Animal development entails the organization of specific cell types in space and time, and spatial patterns must form in a robust manner. In the zebrafish spinal cord, neural progenitors form stereotypic patterns despite noisy morphogen signaling and large-scale cellular rearrangements during morphogenesis and growth. By directly measuring adhesion forces and preferences for three types of endogenous neural progenitors, we provide evidence for the differential adhesion model in which differences in intercellular adhesion mediate cell sorting. Cell type-specific combinatorial expression of different classes of cadherins (N-cadherin, cadherin 11, and protocadherin 19) results in homotypic preference ex vivo and patterning robustness in vivo. Furthermore, the differential adhesion code is regulated by the sonic hedgehog morphogen gradient. We propose that robust patterning during tissue morphogenesis results from interplay between adhesion-based self-organization and morphogen-directed patterning.
Collapse
Affiliation(s)
- Tony Y-C Tsai
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115, USA
| | - Mateusz Sikora
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuberg, Austria
| | - Peng Xia
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuberg, Austria
| | - Tugba Colak-Champollion
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | | - Sean G Megason
- Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115, USA.
| |
Collapse
|
15
|
Kim H, Takegahara N, Walsh MC, Ueda J, Fujihara Y, Ikawa M, Choi Y. Protocadherin-7 contributes to maintenance of bone homeostasis through regulation of osteoclast multinucleation. BMB Rep 2020. [PMID: 32635982 PMCID: PMC7526982 DOI: 10.5483/bmbrep.2020.53.9.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Osteoclasts are hematopoietic-derived cells that resorb bone. They are required to maintain proper bone homeostasis and skeletal strength. Although osteoclast differentiation depends on receptor activator of NFκB ligand (RANKL) stimulation, additional molecules further contribute to osteoclast maturation. Here, we demonstrate that protocadherin-7 (Pcdh7) regulates formation of multinucleated osteoclasts and contributes to maintenance of bone homeostasis. We found that Pcdh7 expression is induced by RANKL stimulation, and that RNAi-mediated knockdown of Pcdh7 resulted in impaired formation of osteoclasts. We generated Pcdh7-deficient mice and found increased bone mass due to decreased bone resorption but without any defect in bone formation. Using an in vitro culture system, it was revealed that formation of multinucleated osteoclasts is impaired in Pcdh7-deficient cultures, while no apparent defects were observed in differentiation and function of Pcdh7-deficient osteoblasts. Taken together, these results reveal an osteoclast cell-intrinsic role for Pcdh7 in maintaining bone homeostasis.
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew C. Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jun Ueda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Kim H, Takegahara N, C M, Walsh, Ueda J, Fujihara Y, Ikawa M, Choi Y. Protocadherin-7 contributes to maintenance of bone homeostasis through regulation of osteoclast multinucleation. BMB Rep 2020; 53:472-477. [PMID: 32635982 PMCID: PMC7526982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 02/15/2024] Open
Abstract
Osteoclasts are hematopoietic-derived cells that resorb bone. They are required to maintain proper bone homeostasis and skeletal strength. Although osteoclast differentiation depends on receptor activator of NF-κB ligand (RANKL) stimulation, additional molecules further contribute to osteoclast maturation. Here, we demonstrate that protocadherin-7 (Pcdh7) regulates formation of multinucleated osteoclasts and contributes to maintenance of bone homeostasis. We found that Pcdh7 expression is induced by RANKL stimulation, and that RNAi-mediated knockdown of Pcdh7 resulted in impaired formation of osteoclasts. We generated Pcdh7-deficient mice and found increased bone mass due to decreased bone resorption but without any defect in bone formation. Using an in vitro culture system, it was revealed that formation of multinucleated osteoclasts is impaired in Pcdh7-deficient cultures, while no apparent defects were observed in differentiation and function of Pcdh7-deficient osteoblasts. Taken together, these results reveal an osteoclast cell-intrinsic role for Pcdh7 in maintaining bone homeostasis. [BMB Reports 2020; 53(9): 472-477].
Collapse
Affiliation(s)
- Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Matthew C
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Walsh
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jun Ueda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
An epigenome-wide association study of early-onset major depression in monozygotic twins. Transl Psychiatry 2020; 10:301. [PMID: 32843619 PMCID: PMC7447798 DOI: 10.1038/s41398-020-00984-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/18/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
Major depression (MD) is a debilitating mental health condition with peak prevalence occurring early in life. Genome-wide examination of DNA methylation (DNAm) offers an attractive complement to studies of allelic risk given it can reflect the combined influence of genes and environment. The current study used monozygotic twins to identify differentially and variably methylated regions of the genome that distinguish twins with and without a lifetime history of early-onset MD. The sample included 150 Caucasian monozygotic twins between the ages of 15 and 20 (73% female; Mage = 17.52 SD = 1.28) who were assessed during a developmental stage characterized by relatively distinct neurophysiological changes. All twins were generally healthy and currently free of medications with psychotropic effects. DNAm was measured in peripheral blood cells using the Infinium Human BeadChip 450 K Array. MD associations with early-onset MD were detected at 760 differentially and variably methylated probes/regions that mapped to 428 genes. Genes and genomic regions involved neural circuitry formation, projection, functioning, and plasticity. Gene enrichment analyses implicated genes related to neuron structures and neurodevelopmental processes including cell-cell adhesion genes (e.g., PCDHA genes). Genes previously implicated in mood and psychiatric disorders as well as chronic stress (e.g., NRG3) also were identified. DNAm regions associated with early-onset MD were found to overlap genetic loci identified in the latest Psychiatric Genomics Consortium meta-analysis of depression. Understanding the time course of epigenetic influences during emerging adulthood may clarify developmental phases where changes in the DNA methylome may modulate individual differences in MD risk.
Collapse
|
18
|
Thompson D, Sorenson J, Greenmyer J, Brissette CA, Watt JA. The Lyme disease bacterium, Borrelia burgdorferi, stimulates an inflammatory response in human choroid plexus epithelial cells. PLoS One 2020; 15:e0234993. [PMID: 32645014 PMCID: PMC7347220 DOI: 10.1371/journal.pone.0234993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/05/2020] [Indexed: 11/19/2022] Open
Abstract
The main functions of the choroid plexus (CP) are the production of cerebral spinal fluid (CSF), the formation of the blood-CSF barrier, and regulation of immune response. This barrier allows for the exchange of specific nutrients, waste, and peripheral immune cells between the blood stream and CSF. Borrelia burgdorferi (Bb), the causative bacteria of Lyme disease, is associated with neurological complications including meningitis-indeed, Bb has been isolated from the CSF of patients. While it is accepted that B. burgdorferi can enter the central nervous system (CNS) of patients, it is unknown how the bacteria crosses this barrier and how the pathogenesis of the disease leads to the observed symptoms in patients. We hypothesize that during infection Borrelia burgdorferi will induce an immune response conducive to the chemotaxis of immune cells and subsequently lead to a pro-inflammatory state with the CNS parenchyma. Primary human choroid plexus epithelial cells were grown in culture and infected with B. burgdorferi strain B31 MI-16 for 48 hours. RNA was isolated and used for RNA sequencing and RT-qPCR validation. Secreted proteins in the supernatant were analyzed via ELISA. Transcriptome analysis based on RNA sequencing determined a total of 160 upregulated genes and 98 downregulated genes. Pathway and biological process analysis determined a significant upregulation in immune and inflammatory genes specifically in chemokine and interferon related pathways. Further analysis revealed downregulation in genes related to cell to cell junctions including tight and adherens junctions. These results were validated via RT-qPCR. Protein analysis of secreted factors showed an increase in inflammatory chemokines, corresponding to our transcriptome analysis. These data further demonstrate the role of the CP in the modulation of the immune response in a disease state and give insight into the mechanisms by which Borrelia burgdorferi may disseminate into, and act upon, the CNS. Future experiments aim to detail the impact of B. burgdorferi on the blood-CSF-barrier (BCSFB) integrity and inflammatory response within animal models.
Collapse
Affiliation(s)
- Derick Thompson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jordyn Sorenson
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Jacob Greenmyer
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Catherine A. Brissette
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - John A. Watt
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, United States of America
| |
Collapse
|
19
|
PCDH7 interacts with GluN1 and regulates dendritic spine morphology and synaptic function. Sci Rep 2020; 10:10951. [PMID: 32616769 PMCID: PMC7331671 DOI: 10.1038/s41598-020-67831-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 06/12/2020] [Indexed: 01/28/2023] Open
Abstract
The N-terminal domain (NTD) of the GluN1 subunit (GluN1-NTD) is important for NMDA receptor structure and function, but the interacting proteins of the GluN1-NTD are not well understood. Starting with an unbiased screen of ~ 1,500 transmembrane proteins using the purified GluN1-NTD protein as a bait, we identify Protocadherin 7 (PCDH7) as a potential interacting protein. PCDH7 is highly expressed in the brain and has been linked to CNS disorders, including epilepsy. Using primary neurons and brain slice cultures, we find that overexpression and knockdown of PCDH7 induce opposing morphological changes of dendritic structures. We also find that PCDH7 overexpression reduces synaptic NMDA receptor currents. These data show that PCDH7 can regulate dendritic spine morphology and synaptic function, possibly via interaction with the GluN1 subunit.
Collapse
|
20
|
Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at the Crossroad of Signaling Pathways. Front Mol Neurosci 2020; 13:117. [PMID: 32694982 PMCID: PMC7339444 DOI: 10.3389/fnmol.2020.00117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/25/2022] Open
Abstract
Protocadherins (Pcdhs) are cell adhesion molecules that belong to the cadherin superfamily, and are subdivided into clustered (cPcdhs) and non-clustered Pcdhs (ncPcdhs) in vertebrates. In this review, we summarize their discovery, expression mechanisms, and roles in neuronal development and cancer, thereby highlighting the context-dependent nature of their actions. We furthermore provide an extensive overview of current structural knowledge, and its implications concerning extracellular interactions between cPcdhs, ncPcdhs, and classical cadherins. Next, we survey the known molecular action mechanisms of Pcdhs, emphasizing the regulatory functions of proteolytic processing and domain shedding. In addition, we outline the importance of Pcdh intracellular domains in the regulation of downstream signaling cascades, and we describe putative Pcdh interactions with intracellular molecules including components of the WAVE complex, the Wnt pathway, and apoptotic cascades. Our overview combines molecular interaction data from different contexts, such as neural development and cancer. This comprehensive approach reveals potential common Pcdh signaling hubs, and points out future directions for research. Functional studies of such key factors within the context of neural development might yield innovative insights into the molecular etiology of Pcdh-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Anna Pancho
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Tania Aerts
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuela D Mitsogiannis
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Bosze B, Ono Y, Mattes B, Sinner C, Gourain V, Thumberger T, Tlili S, Wittbrodt J, Saunders TE, Strähle U, Schug A, Scholpp S. Pcdh18a regulates endocytosis of E-cadherin during axial mesoderm development in zebrafish. Histochem Cell Biol 2020; 154:463-480. [PMID: 32488346 PMCID: PMC7609436 DOI: 10.1007/s00418-020-01887-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2020] [Indexed: 01/07/2023]
Abstract
The notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord.
Collapse
Affiliation(s)
- Bernadett Bosze
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Yosuke Ono
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Benjamin Mattes
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Claude Sinner
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany.,Department of Physics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Victor Gourain
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Thomas Thumberger
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Joachim Wittbrodt
- Centre for Organismal Studies, Heidelberg University, 69120, Heidelberg, Germany
| | - Timothy E Saunders
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.,Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| | - Uwe Strähle
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany
| | - Alexander Schug
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology (KIT), Karlsruhe, 76021, Germany
| | - Steffen Scholpp
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), 76021, Karlsruhe, Germany. .,Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
22
|
Xlr4 as a new candidate gene underlying vulnerability to cocaine effects. Neuropharmacology 2020; 168:108019. [PMID: 32113966 DOI: 10.1016/j.neuropharm.2020.108019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Although several studies have been performed in rodents, non-human primates and humans, the biological basis of vulnerability to develop cocaine addiction remains largely unknown. Exposure to critical early events (as Repeated Cross Fostering (RCF)) has been reported to increase sensitivity to cocaine effects in adult C57BL/6J female mice. Using a microarray approach, here we report data showing a strong engagement of X-linked lymphocyte-regulated 4a and 4b (Xlr4) genes in cocaine effects. The expression of Xlr4, a gene involved in chromatin remodeling and dendritic spine morphology, was reduced into the Nucleus Accumbens (NAc) of adult RCF C57BL/6J female. We used virally mediated accumbal Xlr4 down-modulation (AAVXlr4-KD) to investigate the role of this gene in vulnerability to cocaine effects. AAVXlr4-KD animals show a potentiated behavioral and neurochemical response to cocaine, reinstatement following cocaine withdrawal and cocaine-induced spine density alterations in the Medium-Sized Spiny Neurons of NAc. We propose Xlr4 as a new candidate gene mediating the cocaine effects.
Collapse
|
23
|
Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered δ-Protocadherins. Cell Rep 2020; 30:2655-2671.e7. [PMID: 32101743 PMCID: PMC7082078 DOI: 10.1016/j.celrep.2020.02.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/02/2019] [Accepted: 01/31/2020] [Indexed: 01/21/2023] Open
Abstract
Non-clustered δ1- and δ2-protocadherins, close relatives of clustered protocadherins, function in cell adhesion and motility and play essential roles in neural patterning. To understand the molecular interactions underlying these functions, we used solution biophysics to characterize binding of δ1- and δ2-protocadherins, determined crystal structures of ectodomain complexes from each family, and assessed ectodomain assembly in reconstituted intermembrane junctions by cryoelectron tomography (cryo-ET). Homophilic trans (cell-cell) interactions were preferred for all δ-protocadherins, with additional weaker heterophilic interactions observed exclusively within each subfamily. As expected, δ1- and δ2-protocadherin trans dimers formed through antiparallel EC1-EC4 interfaces, like clustered protocadherins. However, no ectodomain-mediated cis (same-cell) interactions were detectable in solution; consistent with this, cryo-ET of reconstituted junctions revealed dense assemblies lacking the characteristic order observed for clustered protocadherins. Our results define non-clustered protocadherin binding properties and their structural basis, providing a foundation for interpreting their functional roles in neural patterning.
Collapse
|
24
|
Swamy V, McGaughey D. Eye in a Disk: eyeIntegration Human Pan-Eye and Body Transcriptome Database Version 1.0. Invest Ophthalmol Vis Sci 2019; 60:3236-3246. [PMID: 31343654 PMCID: PMC6660187 DOI: 10.1167/iovs.19-27106] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose We develop an accessible and reliable RNA sequencing (RNA-seq) transcriptome database of healthy human eye tissues and a matching reactive web application to query gene expression in eye and body tissues. Methods We downloaded the raw sequence data for 1375 RNA-seq samples across 54 tissues in the Genotype-Tissue Expression (GTEx) project as a noneye reference set. We then queried several public repositories to find all healthy, nonperturbed, human eye-related tissue RNA-seq samples. The 916 eye and 1375 GTEx samples were sent into a Snakemake-based reproducible pipeline we wrote to quantify all known transcripts and genes, removes samples with poor sequence quality and mislabels, normalizes expression values across each tissue, perform 882 differential expression tests, calculate GO term enrichment, and output all as a single SQLite database file: the Eye in a Disk (EiaD) dataset. Furthermore, we rewrote the web application eyeIntegration (available in the public domain at https://eyeIntegration.nei.nih.gov) to display EiaD. Results The new eyeIntegration portal provides quick visualization of human eye-related transcriptomes published to date by database version, gene/transcript, 19 eye tissues, and 54 body tissues. As a test of the value of this unified pan-eye dataset, we showed that fetal and organoid retina are highly similar at a pan-transcriptome level, but display distinct differences in certain pathways and gene families, such as protocadherin and HOXB family members. Conclusions The eyeIntegration v1.0 web app serves the pan-human eye and body transcriptome dataset, EiaD. This offers the eye community a powerful and quick means to test hypotheses on human gene and transcript expression across 54 body and 19 eye tissues.
Collapse
Affiliation(s)
- Vinay Swamy
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David McGaughey
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
25
|
Miralles CP, Taylor MJ, Bear J, Fekete CD, George S, Li Y, Bonhomme B, Chiou TT, De Blas AL. Expression of protocadherin-γC4 protein in the rat brain. J Comp Neurol 2019; 528:840-864. [PMID: 31609469 DOI: 10.1002/cne.24783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022]
Abstract
It has been proposed that the combinatorial expression of γ-protocadherins (Pcdh-γs) and other clustered protocadherins (Pcdhs) provides a code of molecular identity and individuality to neurons, which plays a major role in the establishment of specific synaptic connectivity and formation of neuronal circuits. Particular attention has been directed to the Pcdh-γ family, for which experimental evidence derived from Pcdh-γ-deficient mice shows that they are involved in dendrite self-avoidance, synapse development, dendritic arborization, spine maturation, and prevention of apoptosis of some neurons. Moreover, a triple-mutant mouse deficient in the three C-type members of the Pcdh-γ family (Pcdh-γC3, Pcdh-γC4, and Pcdh-γC5) shows a phenotype similar to the mouse deficient in whole Pcdh-γ family, indicating that the latter is largely due to the absence of C-type Pcdh-γs. The role of each individual C-type Pcdh-γ is not known. We have developed a specific antibody to Pcdh-γC4 to reveal the expression of this protein in the rat brain. The results show that although Pcdh-γC4 is expressed at higher levels in the embryo and earlier postnatal weeks, it is also expressed in the adult rat brain. Pcdh-γC4 is expressed in both neurons and astrocytes. In the adult brain, the regional distribution of Pcdh-γC4 immunoreactivity is similar to that of Pcdh-γC4 mRNA, being highest in the olfactory bulb, dentate gyrus, and cerebellum. Pcdh-γC4 forms puncta that are frequently apposed to glutamatergic and GABAergic synapses. They are also frequently associated with neuron-astrocyte contacts. The results provide new insights into the cell recognition function of Pcdh-γC4 in neurons and astrocytes.
Collapse
Affiliation(s)
- Celia P Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Michael J Taylor
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - John Bear
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher D Fekete
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Shanu George
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Yanfang Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Bevan Bonhomme
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Tzu-Ting Chiou
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| | - Angel L De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
26
|
Shishodia G, Koul S, Koul HK. Protocadherin 7 is overexpressed in castration resistant prostate cancer and promotes aberrant MEK and AKT signaling. Prostate 2019; 79:1739-1751. [PMID: 31449679 DOI: 10.1002/pros.23898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/29/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Castrate resistant prostate cancer (CRPC) accounts for almost all prostate cancer (PCa) deaths. Aberrant activation of ERK/MEK and PI3K/AKT signaling pathways plays an important role in subsets of patients with CRPC. The role of protocadherin 7 (PCDH7) in modulating these signaling pathways is investigated for the first time in PCa in the present investigation. METHODS PCDH7 expression was analyzed in CRPC/neuroendocrine prostate cancer (NEPC) dataset. Protein expression was assessed by Western blotting and immunohistochemistry, and messenger RNA (mRNA) by quantitative real-time polymerase chain reaction. Small hairpin ribonucleic acid was used to knockdown PCDH7. Colony formation, cell migration, and invasion studies were done using standard protocols. RESULTS PCDH7 amplification/mRNA upregulation was observed in 41% of patients in CRPC/NEPC dataset. PCDH7 was also overexpressed in CRPC cells. Increased PCDH protein expression was observed during tumor progression in PCa tissues and in TRAMP mice. Epidermal growth factor treatment resulted in aberrant activation of ERK/AKT. Knockdown of PCDH7 decreased ERK, AKT, and RB phosphorylation and reduced colony formation, decreased cell invasion, and cell migration. CONCLUSIONS These data show for the first time that PCDH7 is overexpressed in a large number of patients with CRPC and suggest that PCDH7 may be an attractive target in subsets of patients with CRPC for whom there is no cure to-date.
Collapse
Affiliation(s)
- Gauri Shishodia
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, Louisiana
- Feist Weiller Cancer Center, Shreveport, Louisiana
| | - Sweaty Koul
- Feist Weiller Cancer Center, Shreveport, Louisiana
- Department of Urology, LSU Health Sciences Center, Shreveport, Louisiana
| | - Hari K Koul
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, Louisiana
- Feist Weiller Cancer Center, Shreveport, Louisiana
- Overton Brooks Veterans Administrative Medical Center, Shreveport, Louisiana
| |
Collapse
|
27
|
Refoyo-Martínez A, da Fonseca RR, Halldórsdóttir K, Árnason E, Mailund T, Racimo F. Identifying loci under positive selection in complex population histories. Genome Res 2019; 29:1506-1520. [PMID: 31362936 PMCID: PMC6724678 DOI: 10.1101/gr.246777.118] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
Abstract
Detailed modeling of a species' history is of prime importance for understanding how natural selection operates over time. Most methods designed to detect positive selection along sequenced genomes, however, use simplified representations of past histories as null models of genetic drift. Here, we present the first method that can detect signatures of strong local adaptation across the genome using arbitrarily complex admixture graphs, which are typically used to describe the history of past divergence and admixture events among any number of populations. The method-called graph-aware retrieval of selective sweeps (GRoSS)-has good power to detect loci in the genome with strong evidence for past selective sweeps and can also identify which branch of the graph was most affected by the sweep. As evidence of its utility, we apply the method to bovine, codfish, and human population genomic data containing panels of multiple populations related in complex ways. We find new candidate genes for important adaptive functions, including immunity and metabolism in understudied human populations, as well as muscle mass, milk production, and tameness in specific bovine breeds. We are also able to pinpoint the emergence of large regions of differentiation owing to inversions in the history of Atlantic codfish.
Collapse
Affiliation(s)
- Alba Refoyo-Martínez
- Lundbeck GeoGenetics Centre, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1350, Denmark
| | - Rute R da Fonseca
- Centre for Macroecology, Evolution and Climate, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copehnagen 2100, Denmark
| | - Katrín Halldórsdóttir
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík 107, Iceland
| | - Einar Árnason
- Faculty of Life and Environmental Sciences, University of Iceland, Reykjavík 107, Iceland
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Thomas Mailund
- Bioinformatics Research Centre, Aarhus University, Aarhus 8000, Denmark
| | - Fernando Racimo
- Lundbeck GeoGenetics Centre, The Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1350, Denmark
| |
Collapse
|
28
|
Laufer BI, Hwang H, Vogel Ciernia A, Mordaunt CE, LaSalle JM. Whole genome bisulfite sequencing of Down syndrome brain reveals regional DNA hypermethylation and novel disorder insights. Epigenetics 2019; 14:672-684. [PMID: 31010359 PMCID: PMC6557615 DOI: 10.1080/15592294.2019.1609867] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/08/2019] [Accepted: 04/15/2019] [Indexed: 01/07/2023] Open
Abstract
Down Syndrome (DS) is the most common genetic cause of intellectual disability, in which an extra copy of human chromosome 21 (HSA21) affects regional DNA methylation profiles across the genome. Although DNA methylation has been previously examined at select regulatory regions across the genome in a variety of DS tissues and cells, differentially methylated regions (DMRs) have yet to be examined in an unbiased sequencing-based approach. Here, we present the first analysis of DMRs from whole genome bisulfite sequencing (WGBS) data of human DS and matched control brain, specifically frontal cortex. While no global differences in DNA methylation were observed, we identified 3,152 DS-DMRs across the entire genome, the majority of which were hypermethylated in DS. DS-DMRs were significantly enriched at CpG islands and de-enriched at specific gene body and regulatory regions. Functionally, the hypermethylated DS-DMRs were enriched for one-carbon metabolism, membrane transport, and glutamatergic synaptic signalling, while the hypomethylated DMRs were enriched for proline isomerization, glial immune response, and apoptosis. Furthermore, in a cross-tissue comparison to previous studies of DNA methylation from diverse DS tissues and reference epigenomes, hypermethylated DS-DMRs showed a strong cross-tissue concordance, while a more tissue-specific pattern was observed for the hypomethylated DS-DMRs. Overall, this approach highlights that low-coverage WGBS of clinical samples can identify epigenetic alterations to known biological pathways, which are potentially relevant to therapeutic treatments and include metabolic pathways. These results also provide new insights into the genome-wide effects of genetic alterations on DNA methylation profiles indicative of altered neurodevelopment and brain function.
Collapse
Affiliation(s)
- Benjamin I. Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Hyeyeon Hwang
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Annie Vogel Ciernia
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Charles E. Mordaunt
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| | - Janine M. LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, Genome Center, MIND Institute, University of California, Davis, CA, USA
| |
Collapse
|
29
|
Colás-Algora N, Millán J. How many cadherins do human endothelial cells express? Cell Mol Life Sci 2019; 76:1299-1317. [PMID: 30552441 PMCID: PMC11105309 DOI: 10.1007/s00018-018-2991-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/16/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
Abstract
The vasculature is the paradigm of a compartment generated by parallel cellular barriers that aims to transport oxygen, nutrients and immune cells in complex organisms. Vascular barrier dysfunction leads to fatal acute and chronic inflammatory diseases. The endothelial barrier lines the inner side of vessels and is the main regulator of vascular permeability. Cadherins comprise a superfamily of 114 calcium-dependent adhesion proteins that contain conserved cadherin motifs and form cell-cell junctions in metazoans. In mature human endothelial cells, only VE (vascular endothelial)-cadherin and N (neural)-cadherin have been investigated in detail. Although both cadherins are essential for regulating endothelial permeability, no comprehensive expression studies to identify which other family members could play a relevant role in endothelial cells has so far been performed. Here, we have reviewed gene and protein expression databases to analyze cadherin expression in mature human endothelium and found that at least 24 cadherin superfamily members are significantly expressed. Based on data obtained from other cell types, organisms and experimental models, we discuss their potential functions, many of them unrelated to the formation of endothelial cell-cell junctions. The expression of this new set of endothelial cadherins highlights the important but still poorly defined roles of planar cell polarity, the Hippo pathway and mitochondria metabolism in human vascular homeostasis.
Collapse
Affiliation(s)
- Natalia Colás-Algora
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain
| | - Jaime Millán
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, C/Nicolás Cabrera 1, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
30
|
Liu H, Huang Y, Li J. Bioinformatic analysis for the identification of key candidate genes and pathways in the substantia nigra in Parkinson's disease. J Integr Neurosci 2018; 17:619-631. [PMID: 30010140 DOI: 10.3233/jin-180091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is one of the most common diseases in the elderly population, and the substantia nigra is generally involved in the disease process; however, the signaling pathways and related genes underlying Parkinson's disease remain unclear. This study integrated three cohorts of profile datasets to elucidate the potential key candidate genes and pathways in Parkinson's disease. The expression profiles of GSE8397, GSE20186 and GSE49036 were included 55 available substantia nigra tissue samples from individuals diagnosed with Parkinson's disease and 33 substantia nigra tissue samples from healthy controls. These samples were integrated and thoroughly analyzed. Differentially expressed genes (DEGs) were sorted, and candidate genes and pathway enrichments were analyzed. A DEG-associated protein-protein interaction network analysis was performed. 27 shared downregulated DEGs were identified from the three GSE datasets. The DEGs were clustered based on function and signaling pathway with significant enrichment analysis. 52 edges were identified from the DEG protein-protein interaction network complex, which included dopamine metabolism, nerve conduction, reduced neuronal toxicity and proliferation pathways. Using integrated bioinformatic analysis, we identified candidate genes and pathways in Parkinson's disease that could improve our understanding of underlying molecular events, which could be potential therapeutic targets for Parkinson's disease.
Collapse
Affiliation(s)
- Hongbin Liu
- The Department of Internal Neurology, Beijing Geriatric Hospital, Beijing, China
| | - Yongjun Huang
- The Department of Internal Neurology, Beijing Geriatric Hospital, Beijing, China
| | - Jinyi Li
- The Department of Urology, Mount Sinai Hospital, New York, US
| |
Collapse
|
31
|
Guemez-Gamboa A, Çağlayan AO, Stanley V, Gregor A, Zaki MS, Saleem SN, Musaev D, McEvoy-Venneri J, Belandres D, Akizu N, Silhavy JL, Schroth J, Rosti RO, Copeland B, Lewis SM, Fang R, Issa MY, Per H, Gumus H, Bayram AK, Kumandas S, Akgumus GT, Erson-Omay EZ, Yasuno K, Bilguvar K, Heimer G, Pillar N, Shomron N, Weissglas-Volkov D, Porat Y, Einhorn Y, Gabriel S, Ben-Zeev B, Gunel M, Gleeson JG. Loss of Protocadherin-12 Leads to Diencephalic-Mesencephalic Junction Dysplasia Syndrome. Ann Neurol 2018; 84:638-647. [PMID: 30178464 PMCID: PMC6510237 DOI: 10.1002/ana.25327] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/27/2018] [Accepted: 08/29/2018] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To identify causes of the autosomal-recessive malformation, diencephalic-mesencephalic junction dysplasia (DMJD) syndrome. METHODS Eight families with DMJD were studied by whole-exome or targeted sequencing, with detailed clinical and radiological characterization. Patient-derived induced pluripotent stem cells were derived into neural precursor and endothelial cells to study gene expression. RESULTS All patients showed biallelic mutations in the nonclustered protocadherin-12 (PCDH12) gene. The characteristic clinical presentation included progressive microcephaly, craniofacial dysmorphism, psychomotor disability, epilepsy, and axial hypotonia with variable appendicular spasticity. Brain imaging showed brainstem malformations and with frequent thinned corpus callosum with punctate brain calcifications, reflecting expression of PCDH12 in neural and endothelial cells. These cells showed lack of PCDH12 expression and impaired neurite outgrowth. INTERPRETATION DMJD patients have biallelic mutations in PCDH12 and lack of protein expression. These patients present with characteristic microcephaly and abnormalities of white matter tracts. Such pathogenic variants predict a poor outcome as a result of brainstem malformation and evidence of white matter tract defects, and should be added to the phenotypic spectrum associated with PCDH12-related conditions. Ann Neurol 2018;84:646-655.
Collapse
Affiliation(s)
- Alicia Guemez-Gamboa
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | | | - Valentina Stanley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Anne Gregor
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Maha S Zaki
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Sahar N Saleem
- Radiology Department-Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Damir Musaev
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | | | - Denice Belandres
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Naiara Akizu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Jennifer L Silhavy
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Jana Schroth
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| | - Rasim Ozgur Rosti
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Brett Copeland
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Steven M Lewis
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Rebecca Fang
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
| | - Mahmoud Y Issa
- Department of Clinical Genetics, National Research Centre, Cairo, Egypt
| | - Huseyin Per
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Hakan Gumus
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayse Kacar Bayram
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Sefer Kumandas
- Department of Paediatrics, Division of Paediatric Neurology, School of Medicine, Erciyes University, Kayseri, Turkey
| | - Gozde Tugce Akgumus
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Emine Z Erson-Omay
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Katsuhito Yasuno
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Kaya Bilguvar
- Departments of Neurosurgery, Neurobiology and Genetics, Yale School of Medicine, New Haven, CT
| | - Gali Heimer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Pillar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | - Stacey Gabriel
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA
| | - Bruria Ben-Zeev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT
| | - Joseph G Gleeson
- Howard Hughes Medical Institute, Laboratory for Pediatric Brain Disease, Rockefeller University, New York, NY
- Department of Neurosciences, University of California, San Diego, La Jolla, CA
| |
Collapse
|
32
|
Dendritic Self-Avoidance and Morphological Development of Cerebellar Purkinje Cells. THE CEREBELLUM 2018; 17:701-708. [DOI: 10.1007/s12311-018-0984-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Jabeen S, Thirumalai V. The interplay between electrical and chemical synaptogenesis. J Neurophysiol 2018; 120:1914-1922. [PMID: 30067121 PMCID: PMC6230774 DOI: 10.1152/jn.00398.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neurons communicate with each other via electrical or chemical synaptic connections. The pattern and strength of connections between neurons are critical for generating appropriate output. What mechanisms govern the formation of electrical and/or chemical synapses between two neurons? Recent studies indicate that common molecular players could regulate the formation of both of these classes of synapses. In addition, electrical and chemical synapses can mutually coregulate each other’s formation. Electrical activity, generated spontaneously by the nervous system or initiated from sensory experience, plays an important role in this process, leading to the selection of appropriate connections and the elimination of inappropriate ones. In this review, we discuss recent studies that shed light on the formation and developmental interactions of chemical and electrical synapses.
Collapse
Affiliation(s)
- Shaista Jabeen
- National Centre for Biological Sciences, Tata Institute for Fundamental Research , Bangalore , India.,Manipal Academy of Higher Education, Madhav Nagar, Manipal , India
| | - Vatsala Thirumalai
- National Centre for Biological Sciences, Tata Institute for Fundamental Research , Bangalore , India
| |
Collapse
|
34
|
Helmbacher F. Tissue-specific activities of the Fat1 cadherin cooperate to control neuromuscular morphogenesis. PLoS Biol 2018; 16:e2004734. [PMID: 29768404 PMCID: PMC5973635 DOI: 10.1371/journal.pbio.2004734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 05/29/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Muscle morphogenesis is tightly coupled with that of motor neurons (MNs). Both MNs and muscle progenitors simultaneously explore the surrounding tissues while exchanging reciprocal signals to tune their behaviors. We previously identified the Fat1 cadherin as a regulator of muscle morphogenesis and showed that it is required in the myogenic lineage to control the polarity of progenitor migration. To expand our knowledge on how Fat1 exerts its tissue-morphogenesis regulator activity, we dissected its functions by tissue-specific genetic ablation. An emblematic example of muscle under such morphogenetic control is the cutaneous maximus (CM) muscle, a flat subcutaneous muscle in which progenitor migration is physically separated from the process of myogenic differentiation but tightly associated with elongating axons of its partner MNs. Here, we show that constitutive Fat1 disruption interferes with expansion and differentiation of the CM muscle, with its motor innervation and with specification of its associated MN pool. Fat1 is expressed in muscle progenitors, in associated mesenchymal cells, and in MN subsets, including the CM-innervating pool. We identify mesenchyme-derived connective tissue (CT) as a cell type in which Fat1 activity is required for the non-cell-autonomous control of CM muscle progenitor spreading, myogenic differentiation, motor innervation, and for motor pool specification. In parallel, Fat1 is required in MNs to promote their axonal growth and specification, indirectly influencing muscle progenitor progression. These results illustrate how Fat1 coordinates the coupling of muscular and neuronal morphogenesis by playing distinct but complementary actions in several cell types.
Collapse
|
35
|
Suzuki-Muromoto S, Wakusawa K, Miyabayashi T, Sato R, Okubo Y, Endo W, Inui T, Togashi N, Kato A, Oba H, Nakashima M, Saitsu H, Matsumoto N, Haginoya K. A case of new PCDH12 gene variants presented as dyskinetic cerebral palsy with epilepsy. J Hum Genet 2018; 63:749-753. [DOI: 10.1038/s10038-018-0432-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 01/29/2023]
|
36
|
Lu WC, Zhou YX, Qiao P, Zheng J, Wu Q, Shen Q. The protocadherin alpha cluster is required for axon extension and myelination in the developing central nervous system. Neural Regen Res 2018; 13:427-433. [PMID: 29623926 PMCID: PMC5900504 DOI: 10.4103/1673-5374.228724] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In adult mammals, axon regeneration after central nervous system injury is very poor, resulting in persistent functional loss. Enhancing the ability of axonal outgrowth may be a potential treatment strategy because mature neurons of the adult central nervous system may retain the intrinsic ability to regrow axons after injury. The protocadherin (Pcdh) clusters are thought to function in neuronal morphogenesis and in the assembly of neural circuitry in the brain. We cultured primary hippocampal neurons from E17.5 Pcdhα deletion (del-α) mouse embryos. After culture for 1 day, axon length was obviously shorter in del-α neurons compared with wild-type neurons. RNA sequencing of hippocampal E17.5 RNA showed that expression levels of BDNF, Fmod, Nrp2, OGN, and Sema3d, which are associated with axon extension, were significantly down-regulated in the absence of the Pcdhα gene cluster. Using transmission electron microscopy, the ratio of myelinated nerve fibers in the axons of del-α hippocampal neurons was significantly decreased; myelin sheaths of P21 Pcdhα-del mice showed lamellar disorder, discrete appearance, and vacuoles. These results indicate that the Pcdhα cluster can promote the growth and myelination of axons in the neurodevelopmental stage.
Collapse
Affiliation(s)
- Wen-Cheng Lu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Xiao Zhou
- Center for Comparative Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Institute of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Qiao
- Department of Orthopedics, People's Hospital of Zhangqiu, Zhangqiu, Shandong Province, China
| | - Jin Zheng
- Center for Comparative Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Institute of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Wu
- Center for Comparative Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Institute of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Shen
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Peek SL, Mah KM, Weiner JA. Regulation of neural circuit formation by protocadherins. Cell Mol Life Sci 2017; 74:4133-4157. [PMID: 28631008 PMCID: PMC5643215 DOI: 10.1007/s00018-017-2572-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/01/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022]
Abstract
The protocadherins (Pcdhs), which make up the most diverse group within the cadherin superfamily, were first discovered in the early 1990s. Data implicating the Pcdhs, including ~60 proteins encoded by the tandem Pcdha, Pcdhb, and Pcdhg gene clusters and another ~10 non-clustered Pcdhs, in the regulation of neural development have continually accumulated, with a significant expansion of the field over the past decade. Here, we review the many roles played by clustered and non-clustered Pcdhs in multiple steps important for the formation and function of neural circuits, including dendrite arborization, axon outgrowth and targeting, synaptogenesis, and synapse elimination. We further discuss studies implicating mutation or epigenetic dysregulation of Pcdh genes in a variety of human neurodevelopmental and neurological disorders. With recent structural modeling of Pcdh proteins, the prospects for uncovering molecular mechanisms of Pcdh extracellular and intracellular interactions, and their role in normal and disrupted neural circuit formation, are bright.
Collapse
Affiliation(s)
- Stacey L Peek
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, 143 Biology Building, Iowa City, IA, 52242, USA.
| |
Collapse
|
38
|
Santos VR, Pun RYK, Arafa SR, LaSarge CL, Rowley S, Khademi S, Bouley T, Holland KD, Garcia-Cairasco N, Danzer SC. PTEN deletion increases hippocampal granule cell excitability in male and female mice. Neurobiol Dis 2017; 108:339-351. [PMID: 28855130 DOI: 10.1016/j.nbd.2017.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 08/26/2017] [Indexed: 02/06/2023] Open
Abstract
Deletion of the mTOR pathway inhibitor PTEN from postnatally-generated hippocampal dentate granule cells causes epilepsy. Here, we conducted field potential, whole cell recording and single cell morphology studies to begin to elucidate the mechanisms by which granule cell-specific PTEN-loss produces disease. Cells from both male and female mice were recorded to identify sex-specific effects. PTEN knockout granule cells showed altered intrinsic excitability, evident as a tendency to fire in bursts. PTEN knockout granule cells also exhibited increased frequency of spontaneous excitatory synaptic currents (sEPSCs) and decreased frequency of inhibitory currents (sIPSCs), further indicative of a shift towards hyperexcitability. Morphological studies of PTEN knockout granule cells revealed larger dendritic trees, more dendritic branches and an impairment of dendrite self-avoidance. Finally, cells from both female control and female knockout mice received more sEPSCs and more sIPSCs than corresponding male cells. Despite the difference, the net effect produced statistically equivalent EPSC/IPSC ratios. Consistent with this latter observation, extracellularly evoked responses in hippocampal slices were similar between male and female knockouts. Both groups of knockouts were abnormal relative to controls. Together, these studies reveal a host of physiological and morphological changes among PTEN knockout cells likely to underlie epileptogenic activity. SIGNIFICANCE STATEMENT Hyperactivation of the mTOR pathway is associated with numerous neurological diseases, including autism and epilepsy. Here, we demonstrate that deletion of the mTOR negative regulator, PTEN, from a subset of hippocampal dentate granule impairs dendritic patterning, increases excitatory input and decreases inhibitory input. We further demonstrate that while granule cells from female mice receive more excitatory and inhibitory input than males, PTEN deletion produces mostly similar changes in both sexes. Together, these studies provide new insights into how the relatively small number (≈200,000) of PTEN knockout granule cells instigates the development of the profound epilepsy syndrome evident in both male and female animals in this model.
Collapse
Affiliation(s)
- Victor R Santos
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raymund Y K Pun
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Salwa R Arafa
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; University of Cincinnati, College of Pharmacy, Cincinnati, OH 45267, United States
| | - Candi L LaSarge
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Shane Rowley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Shadi Khademi
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Tom Bouley
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Katherine D Holland
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Steve C Danzer
- Department of Anesthesia, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45267, United States.
| |
Collapse
|
39
|
Mah KM, Weiner JA. Regulation of Wnt signaling by protocadherins. Semin Cell Dev Biol 2017; 69:158-171. [PMID: 28774578 PMCID: PMC5586504 DOI: 10.1016/j.semcdb.2017.07.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/21/2017] [Accepted: 07/28/2017] [Indexed: 12/23/2022]
Abstract
The ∼70 protocadherins comprise the largest group within the cadherin superfamily. Their diversity, the complexity of the mechanisms through which their genes are regulated, and their many critical functions in nervous system development have engendered a growing interest in elucidating the intracellular signaling pathways through which they act. Recently, multiple protocadherins across several subfamilies have been implicated as modulators of Wnt signaling pathways, and through this as potential tumor suppressors. Here, we review the extant data on the regulation by protocadherins of Wnt signaling pathways and components, and highlight some key unanswered questions that could shape future research.
Collapse
Affiliation(s)
- Kar Men Mah
- Department of Biology, The University of Iowa, Iowa City, IA, USA.
| | - Joshua A Weiner
- Department of Biology, The University of Iowa, Iowa City, IA, USA; Department of Psychiatry, The University of Iowa, Iowa City, IA, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
40
|
Abstract
In mammals, taste buds typically contain 50-100 tightly packed taste receptor cells (TRCs) representing all five basic qualities: sweet, sour, bitter, salty and umami1,2. Notably, mature taste cells have life spans of only 5-20 days, and consequently, are constantly replenished by differentiation of taste stem cells3. Given the importance of establishing and maintaining appropriate connectivity between TRCs and their partner ganglion neurons (i.e. ensuring that a labeled line from sweet TRCs connects to sweet neurons, bitter TRCs to bitter neurons, sour to sour, etc.), we examined how new connections are specified to retain fidelity of signal transmission. Our results show that bitter and sweet TRCs provide instructive signals to bitter and sweet target neurons via different guidance molecules (Sema3A and Sema7A)4-6. Here, we demonstrate that targeted expression of Sema3A or Sema7A in different classes of TRCs produce peripheral taste systems with miswired sweet or bitter cells. Indeed, we engineered animals whereby bitter neurons now respond to sweet tastants, sweet neurons respond to bitter, or with sweet neurons responding to sour stimuli. Together, these results uncover the basic logic of the wiring of the taste system at the periphery, and illustrate how a labeled-line sensory circuit preserves signaling integrity despite rapid and stochastic turnover of receptor cells.
Collapse
|
41
|
Hayashi S, Inoue Y, Hattori S, Kaneko M, Shioi G, Miyakawa T, Takeichi M. Loss of X-linked Protocadherin-19 differentially affects the behavior of heterozygous female and hemizygous male mice. Sci Rep 2017; 7:5801. [PMID: 28724954 PMCID: PMC5517645 DOI: 10.1038/s41598-017-06374-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/12/2017] [Indexed: 11/09/2022] Open
Abstract
Mutations in the X-linked gene Protocadherin-19 (Pcdh19) cause female-limited epilepsy and mental retardation in humans. Although Pcdh19 is known to be a homophilic cell-cell adhesion molecule, how its mutations bring about female-specific disorders remains elusive. Here, we report the effects of Pcdh19 knockout in mice on their development and behavior. Pcdh19 was expressed in various brain regions including the cerebral cortex and hippocampus. Although Pcdh19-positive cells were evenly distributed in layer V of wild-type cortices, their distribution became a mosaic in Pcdh19 heterozygous female cortices. In cortical and hippocampal neurons, Pcdh19 was localized along their dendrites, showing occasional accumulation on synapses. Pcdh19 mutants, however, displayed no detectable abnormalities in dendrite and spine morphology of layer V neurons. Nevertheless, Pcdh19 hemizygous males and heterozygous females showed impaired behaviors including activity defects under stress conditions. Notably, only heterozygous females exhibited decreased fear responses. In addition, Pcdh19 overexpression in wild-type cortices led to ectopic clustering of Pcdh19-positive neurons. These results suggest that Pcdh19 is required for behavioral control in mice, but its genetic loss differentially affects the male and female behavior, as seen in human, and they also support the hypothesis that the mosaic expression of Pcdh19 in brains perturbs neuronal interactions.
Collapse
Affiliation(s)
- Shuichi Hayashi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan. .,Department of Physiology, Anatomy and Genetics, Le Gros Clark Building, University of Oxford, South Parks Road, Oxford, OX1 3QX, UK.
| | - Yoko Inoue
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan
| | - Mari Kaneko
- Animal Resource Development Unit, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan.,Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Go Shioi
- Genetic Engineering Team, RIKEN Center for Life Science Technologies, Kobe, 650-0047, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, 470-1192, Japan.,Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, 38 Nishigonaka, Okazaki, Aichi, 444-8787, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-Minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
42
|
Epigenetic dysregulation of protocadherins in human disease. Semin Cell Dev Biol 2017; 69:172-182. [PMID: 28694114 DOI: 10.1016/j.semcdb.2017.07.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/12/2022]
Abstract
Protocadherins (Pcdhs) are a group of cell-cell adhesion molecules that are highly expressed in the nervous system and have a major function in dendrite development and neural circuit formation. However, the role protocadherins play in human health and disease remains unclear. Several recent studies have associated epigenetic dysregulation of protocadherins with possible implications for disease pathogenesis. In this review, we briefly recap the various epigenetic mechanisms regulating protocadherin genes, particularly the clustered Pcdhs. We further outline research describing altered epigenetic regulation of protocadherins in neurological and psychiatric disorders, as well as in cancer and during aging. We additionally present preliminary data on DNA methylation dynamics of clustered protocadherins during fetal brain development, as well as the epigenetic differences distinguishing adult neuronal and glial cells. A deeper understanding of the role of protocadherins in disease is crucial for designing novel diagnostic tools and therapies targeting brain disorders.
Collapse
|
43
|
Abstract
All animals with large brains must have molecular mechanisms to regulate neuronal process outgrowth and prevent neurite self-entanglement. In vertebrates, two major gene families implicated in these mechanisms are the clustered protocadherins and the atypical cadherins. However, the molecular mechanisms utilized in complex invertebrate brains, such as those of the cephalopods, remain largely unknown. Recently, we identified protocadherins and atypical cadherins in the octopus. The octopus protocadherin expansion shares features with the mammalian clustered protocadherins, including enrichment in neural tissues, clustered head-to-tail orientations in the genome, and a large first exon encoding all cadherin domains. Other octopus cadherins, including a newly-identified cadherin with 77 extracellular cadherin domains, are elevated in the suckers, a striking cephalopod novelty. Future study of these octopus genes may yield insights into the general functions of protocadherins in neural wiring and cadherin-related proteins in complex morphogenesis.
Collapse
Affiliation(s)
- Z Yan Wang
- 947 E 58th St., Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| | - Clifton W Ragsdale
- 947 E 58th St., Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
44
|
Sakurai T. The role of cell adhesion molecules in brain wiring and neuropsychiatric disorders. Mol Cell Neurosci 2017; 81:4-11. [PMID: 27561442 DOI: 10.1016/j.mcn.2016.08.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) in the nervous system have long been a research focus, but many mice lacking CAMs show very subtle phenotypes, giving an impression that CAMs may not be major players in constructing the nervous system. However, recent human genetic studies suggest CAM involvement in many neuropsychiatric disorders, implicating that they must have significant functions in nervous system development, namely in circuitry formation. As CAMs can provide specificity through their molecular interactions, this review summarizes possible mechanisms on how alterations of CAMs can result in neuropsychiatric disorders through circuitry modification.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin Kawaharacho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
45
|
Gennarini G, Furley A. Cell adhesion molecules in neural development and disease. Mol Cell Neurosci 2017; 81:1-3. [DOI: 10.1016/j.mcn.2017.03.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
46
|
Gonçalves NP, Martins D, Saraiva MJ. Overexpression of Protocadherin-10 in Transthyretin-Related Familial Amyloidotic Polyneuropathy. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 186:1913-24. [PMID: 27338109 DOI: 10.1016/j.ajpath.2016.02.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/27/2016] [Accepted: 02/23/2016] [Indexed: 10/21/2022]
Abstract
Overwhelming data suggest that oncogenic and neurodegenerative pathways share several altered cellular responses to insults such as oxidative stress, extracellular matrix remodeling, inflammation, or cell dyscommunication. Protocadherin-10 (Pcdh10) is an adhesion molecule found to protect against tumorigenesis and essential for axonal elongation and actin dynamics during development. Here, by using genome microarrays we identified for the first time Pcdh10 up-regulation in tissues from transgenic mouse models, cultured Schwann cells, and human samples from a familial form of peripheral neuropathy (familial amyloidotic polyneuropathy). Familial amyloidotic polyneuropathy is characterized by poor functional recovery and impaired nerve regenerative response after misfolding and deposition in the peripheral nervous system of mutant transthyretin. Not only increased transcriptional and translational Pcdh10 levels occurred in axons and Schwann cells of nerves with deposited transthyretin aggregates but the pattern also extended to associated cues of axon guidance like neuropilin-1 and F-actin. These findings suggest that Pcdh10 may influence subcellular actin cytoskeletal organization and axon-axon interactions in the course of familial amyloidotic polyneuropathy. Moreover, when preventing nonfibrillar transthyretin deposition with anakinra or transthyretin siRNA, Pcdh10 protein levels were reduced, highlighting its potential as a novel disease biomarker. Whether Pcdh10 overexpression in familial amyloidotic polyneuropathy represents a protective or deleterious response, enhancing survival or promoting cell death will need further investigation.
Collapse
Affiliation(s)
- Nádia P Gonçalves
- Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto, Porto, Portugal; Molecular Neurobiology Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Diana Martins
- Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto, Porto, Portugal; Molecular Neurobiology Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Maria João Saraiva
- Instituto de Inovação e Investigação em Saúde (I3S), Universidade do Porto, Porto, Portugal; Molecular Neurobiology Group, IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
47
|
Laufer BI, Chater-Diehl EJ, Kapalanga J, Singh SM. Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: From mouse models to human children with fetal alcohol spectrum disorders. Alcohol 2017; 60:67-75. [PMID: 28187949 DOI: 10.1016/j.alcohol.2016.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Rodent models of Fetal Alcohol Spectrum Disorders (FASD) have revealed that prenatal alcohol exposure (PAE) results in differential DNA cytosine methylation in the developing brain. The resulting genome-wide methylation changes are enriched in genes with neurodevelopmental functions. The profile of differential methylation is dynamic and present in some form for life. The methylation changes are transmitted across subsequent mitotic divisions, where they are maintained and further modified over time. More recent follow up has identified a profile of the differential methylation in the buccal swabs of young children born with FASD. While distinct from the profile observed in brain tissue from rodent models, there are similarities. These include changes in genes belonging to a number of neurodevelopmental and behavioral pathways. Specifically, there is increased methylation at the clustered protocadherin genes and deregulation of genomically imprinted genes, even though no single gene is affected in all patients studied to date. These novel results suggest further development of a methylation based strategy could enable early and accurate diagnostics and therapeutics, which have remained a challenge in FASD research. There are two aspects of this challenge that must be addressed in the immediate future: First, the long-term differential methylomics observed in rodent models must be functionally confirmed. Second, the similarities in differential methylation must be further established in humans at a methylomic level and overcome a number of technical limitations. While a cure for FASD is challenging, there is an opportunity for the development of early diagnostics and attenuations towards a higher quality of life.
Collapse
|
48
|
Gennarini G, Bizzoca A, Picocci S, Puzzo D, Corsi P, Furley AJW. The role of Gpi-anchored axonal glycoproteins in neural development and neurological disorders. Mol Cell Neurosci 2016; 81:49-63. [PMID: 27871938 DOI: 10.1016/j.mcn.2016.11.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/06/2023] Open
Abstract
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.38)% identity at the aminoacid level. They are components of the cell surface, from which they may be released in soluble forms. They bind heterophilically to multiple partners in cis and in trans, including members of the related L1CAM family and of the Neurexin family Contactin-associated proteins (CNTNAPs or Casprs). Such interactions are important for organising the neuronal membrane, as well as for modulating the growth and pathfinding of axon tracts. In addition, they also mediate the functional maturation of axons by promoting their interactions with myelinating cells at the nodal, paranodal and juxtaparanodal regions. Such interactions also mediate differential ionic channels (both Na+ and K+) distribution, which is of critical relevance in the generation of the peak-shaped action potential. Indeed, thanks to their interactions with Ankyrin G, Na+ channels map within the nodal regions, where they drive axonal depolarization. However, no ionic channels are found in the flanking Contactin1-containing paranodal regions, where CNTN1 interactions with Caspr1 and with the Ig superfamily component Neurofascin 155 in cis and in trans, respectively, build a molecular barrier between the node and the juxtaparanode. In this region K+ channels are clustered, depending upon molecular interactions with Contactin 2 and with Caspr2. In addition to these functions, the Contactins appear to have also a role in degenerative and inflammatory disorders: indeed Contactin 2 is involved in neurodegenerative disorders with a special reference to the Alzheimer disease, given its ability to work as a ligand of the Alzheimer Precursor Protein (APP), which results in increased Alzheimer Intracellular Domain (AICD) release in a γ-secretase-dependent manner. On the other hand Contactin 1 drives Notch signalling activation via the Hes pathway, which could be consistent with its ability to modulate neuroinflammation events, and with the possibility that Contactin 1-dependent interactions may participate to the pathogenesis of the Multiple Sclerosis and of other inflammatory disorders.
Collapse
Affiliation(s)
- Gianfranco Gennarini
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy.
| | - Antonella Bizzoca
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Sabrina Picocci
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Daniela Puzzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Patrizia Corsi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Medical School, University of Bari Policlinico. Piazza Giulio Cesare. I-70124 Bari, Italy
| | - Andrew J W Furley
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2NT, UK
| |
Collapse
|
49
|
Everson TM, Armstrong DA, Jackson BP, Green BB, Karagas MR, Marsit CJ. Maternal cadmium, placental PCDHAC1, and fetal development. Reprod Toxicol 2016; 65:263-271. [PMID: 27544570 PMCID: PMC5226342 DOI: 10.1016/j.reprotox.2016.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 10/21/2022]
Abstract
Cadmium (Cd) is a ubiquitous environmental contaminant implicated as a developmental toxicant, yet the underlying mechanisms that confer this toxicity are unknown. Mother-infant pairs from a Rhode Island birth cohort were investigated for the potential effects of maternal Cd exposure on fetal growth, and the possible role of the PCDHAC1 gene on this association. Mothers with higher toenail Cd concentrations were at increased odds of giving birth to an infant that was small for gestational age or with a decreased head circumference. These associations were strongest amongst those with low levels of DNA methylation in the promoter region of placental PCDHAC1. Further, we found placental PCDHAC1 expression to be inversely associated with maternal Cd, and PCDHAC1 expression positively associated with fetal growth. Our findings suggest that maternal Cd affects fetal growth even at very low concentrations, and some of these effects may be due to the differential expression of PCDHAC1.
Collapse
Affiliation(s)
- Todd M Everson
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA; Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - David A Armstrong
- Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Benjamin B Green
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA; Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Carmen J Marsit
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA; Department of Pharmacology and Toxicology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
50
|
Shan M, Su Y, Kang W, Gao R, Li X, Zhang G. Aberrant expression and functions of protocadherins in human malignant tumors. Tumour Biol 2016; 37:12969-12981. [PMID: 27449047 DOI: 10.1007/s13277-016-5169-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Protocadherins (PCDHs) are a group of transmembrane proteins belonging to the cadherin superfamily and are subdivided into "clustered" and "non-clustered" groups. PCDHs vary in both structure and interaction partners and thus regulate multiple biological responses in complex and versatile patterns. Previous researches showed that PCDHs regulated the development of brain and were involved in some neuronal diseases. Recently, studies have revealed aberrant expression of PCDHs in various human malignant tumors. The down-regulation or absence of PCDHs in malignant cells has been associated with cancer progression. Further researches suggest that PCDHs may play major functions as tumor suppressor by inhibiting the proliferation and metastasis of cancer cells. In this review, we focus on the altered expression of PCDHs and their roles in the development of cancer progression. We also discuss the potential mechanisms, by which PCDHs are aberrantly expressed, and its implications in regulating cancers.
Collapse
Affiliation(s)
- Ming Shan
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Yonghui Su
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Wenli Kang
- Department of Oncology, General Hospital of Hei Longjiang Province Land Reclamation Headquarter, Harbin, China
| | - Ruixin Gao
- Department of Breast Surgery, The First Hospital of Qiqihaer City, Qiqihaer, China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin, China.
| | - Guoqiang Zhang
- Department of Breast Surgery, the Affiliated Tumor Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|