1
|
Jang J, Bentsen M, Bu J, Chen L, Campos AR, Looso M, Li D. HDAC7 promotes cardiomyocyte proliferation by suppressing myocyte enhancer factor 2. J Mol Cell Biol 2025; 16:mjae044. [PMID: 39394661 PMCID: PMC12059635 DOI: 10.1093/jmcb/mjae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/21/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024] Open
Abstract
Postnatal mammalian cardiomyocytes (CMs) rapidly lose proliferative capacity and exit the cell cycle to undergo further differentiation and maturation. Cell cycle activation has been a major strategy to stimulate postnatal CM proliferation, albeit achieving modest effects. One impediment is that postnatal CMs may need to undergo dedifferentiation before proliferation, if not simultaneously. Here, we report that overexpression of Hdac7 in neonatal mouse CMs results in significant CM dedifferentiation and proliferation. Mechanistically, we show that histone deacetylase 7 (HDAC7)-mediated CM proliferation is contingent on dedifferentiation, which is accomplished by suppressing myocyte enhance factor 2 (MEF2). Hdac7 overexpression in CM shifts the chromatin state from binding with MEF2, which favors the transcriptional program toward differentiation, to binding with AP-1, which favors the transcriptional program toward proliferation. Furthermore, we found that HDAC7 interacts with minichromosome maintenance complex components to initiate cell cycle progression. Our findings reveal that HDAC7 promotes CM proliferation by its dual action on CM dedifferentiation and proliferation, uncovering a potential new strategy for heart regeneration/repair.
Collapse
Affiliation(s)
- Jihyun Jang
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Mette Bentsen
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jin Bu
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Ling Chen
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Alexandre Rosa Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Mario Looso
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Deqiang Li
- Center for Cardiovascular Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| |
Collapse
|
2
|
de Mattos K, Scott-Boyer MP, Droit A, Viger RS, Tremblay JJ. Identification of MEF2A, MEF2C, and MEF2D interactomes in basal and Fsk-stimulated mouse MA-10 Leydig cells. Andrology 2025. [PMID: 40277654 DOI: 10.1111/andr.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/06/2025] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Myocyte enhancer factor 2 transcription factors regulate essential transcriptional programs in various cell types. The activity of myocyte enhancer factor 2 factors is modulated through interactions with cofactors, chromatin remodelers, and other regulatory proteins, which are dependent on cell context and physiological state. In steroidogenic Leydig cells, MEF2A, MEF2C, and MEF2D are key regulators of genes involved in steroid hormone synthesis, reproductive function, and oxidative stress defense. However, the specific network of myocyte enhancer factor 2-interacting proteins in Leydig cells remains unknown. OBJECTIVE To identify the interactome of each MEF2 factor present in Leydig cells. MATERIALS AND METHODS TurboID proximity-mediated biotinylation combined with mass spectrometry and bioinformatic analyses were used to identify the protein‒protein interaction networks of MEF2A, MEF2C, and MEF2D in MA-10 Leydig cells under basal and stimulated conditions. RESULTS We identified 109 potential myocyte enhancer factor 2-interacting proteins, including some previously known myocyte enhancer factor 2 partners. The interactome for each myocyte enhancer factor 2 factor is dynamic and exhibits unique and shared interaction networks between basal and stimulated conditions. Further analysis through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment categorized these interactions, revealing involvement in pathways related to cellular metabolism, transcriptional regulation, and steroidogenesis. DISCUSSION AND CONCLUSION These findings suggest that myocyte enhancer factor 2 factors can participate in diverse transcriptional activities, capable of gene activation or repression, depending on different protein‒protein interactions. In addition, the differential interactome for each myocyte enhancer factor 2 factor suggests unique regulatory roles for each factor in modulating Leydig cell function. Overall, this study provides new mechanistic insights into myocyte enhancer factor 2 action in Leydig cells by identifying interacting partners that likely influence their functions.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
| | - Marie-Pier Scott-Boyer
- Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
| | - Arnaud Droit
- Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Department of Molecular Medicine, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Robert S Viger
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Canada
| | - Jacques J Tremblay
- Reproduction, Santé de la Mère et de l'enfant, Centre de Recherche du CHU de Québec, Université Laval, Quebec City, Canada
- Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, Canada
| |
Collapse
|
3
|
Minisini M, Mascaro M, Brancolini C. HDAC-driven mechanisms in anticancer resistance: epigenetics and beyond. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:46. [PMID: 39624079 PMCID: PMC11609180 DOI: 10.20517/cdr.2024.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 01/03/2025]
Abstract
The emergence of drug resistance leading to cancer recurrence is one of the challenges in the treatment of cancer patients. Several mechanisms can lead to drug resistance, including epigenetic changes. Histone deacetylases (HDACs) play a key role in chromatin regulation through epigenetic mechanisms and are also involved in drug resistance. The control of histone acetylation and the accessibility of regulatory DNA sequences such as promoters, enhancers, and super-enhancers are known mechanisms by which HDACs influence gene expression. Other targets of HDACs that are not histones can also contribute to resistance. This review describes the contribution of HDACs to the mechanisms that, in some cases, may determine resistance to chemotherapy or other cancer treatments.
Collapse
Affiliation(s)
| | | | - Claudio Brancolini
- Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine 33100, Italy
| |
Collapse
|
4
|
Dubey PK, Dubey S, Aggarwal J, Kathiravan P, Mukesh M, Dige MS, Mishra BP, Kataria RS. Identification of novel polymorphism in mammary-derived growth inhibitor gene of water buffalo and its expression analysis in the mammary gland. Anim Biotechnol 2023; 34:2999-3007. [PMID: 36170026 DOI: 10.1080/10495398.2022.2126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Mammary-derived growth inhibitor (MDGI), a member of the lipophilic family of fatty acid-binding proteins, plays an important role in the development, regulation, and differentiation of the mammary gland. The aim of the study was to identify polymorphism in the MDGI gene and its expression analysis in the mammary gland at various stages of lactation, in Indian buffalo. Nucleotide sequence analysis of MDGI gene in different breeds of riverine and swamp buffaloes revealed a total of 16 polymorphic sites and one Indel. Different transcription factor binding sites were predicted for buffalo MDGI gene promoter sequence, using online tools and in-silico analysis indicating that the SNPs in this region can impact the gene expression regulation. Phylogenetic analysis exhibited the MDGI of buffalo being closer to other ruminants like cattle, yak, sheep, and goats. Further, the expression analysis revealed that buffalo MDGI being highly expressed in well-developed mammary glands of lactating buffalo as compared to involution/non-lactating and before functional development to start the milk production stage in heifers. Stage-specific variation in expression levels signifies the important functional role of the MDGI gene in mammary gland development and milk production in buffalo, an important dairy species in Southeast Asia.
Collapse
Affiliation(s)
- P K Dubey
- National Bureau of Animal Genetic Resources, Karnal, India
| | - S Dubey
- National Bureau of Animal Genetic Resources, Karnal, India
| | - J Aggarwal
- National Bureau of Animal Genetic Resources, Karnal, India
| | - P Kathiravan
- National Bureau of Animal Genetic Resources, Karnal, India
| | - M Mukesh
- National Bureau of Animal Genetic Resources, Karnal, India
| | - M S Dige
- National Bureau of Animal Genetic Resources, Karnal, India
| | - B P Mishra
- National Bureau of Animal Genetic Resources, Karnal, India
| | - R S Kataria
- National Bureau of Animal Genetic Resources, Karnal, India
| |
Collapse
|
5
|
Song Y, Fioramonti M, Bouvencourt G, Dubois C, Blanpain C, Van Keymeulen A. Cell type and stage specific transcriptional, chromatin and cell-cell communication landscapes in the mammary gland. Heliyon 2023; 9:e17842. [PMID: 37456014 PMCID: PMC10339025 DOI: 10.1016/j.heliyon.2023.e17842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
The mammary gland (MG) is composed of three main epithelial lineages, the basal cells (BC), the estrogen receptor (ER) positive luminal cells (ER+ LC), and the ER negative LC (ER- LC). Defining the cell identity of each lineage and how it is modulated throughout the different stages of life is important to understand how these cells function and communicate throughout life. Here, we used transgenic mice specifically labelling ER+ LC combined to cell surface markers to isolate with high purity the 3 distinct cell lineages of the mammary gland and defined their expression profiles and chromatin landscapes by performing bulk RNAseq and ATACseq of these isolated populations in puberty, adulthood and mid-pregnancy. Our analysis identified conserved genes, ligands and transcription factor (TF) associated with a specific lineage throughout life as well as genes, ligands and TFs specific for a particular stage of the MG. In summary, our study identified genes and TF network associated with the identity, function and cell-cell communication of the different epithelial lineages of the MG at different stages of life.
Collapse
Affiliation(s)
- Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marco Fioramonti
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gaëlle Bouvencourt
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
- WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
6
|
Cuttini E, Goi C, Pellarin E, Vida R, Brancolini C. HDAC4 in cancer: A multitasking platform to drive not only epigenetic modifications. Front Mol Biosci 2023; 10:1116660. [PMID: 36762207 PMCID: PMC9902726 DOI: 10.3389/fmolb.2023.1116660] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Controlling access to genomic information and maintaining its stability are key aspects of cell life. Histone acetylation is a reversible epigenetic modification that allows access to DNA and the assembly of protein complexes that regulate mainly transcription but also other activities. Enzymes known as histone deacetylases (HDACs) are involved in the removal of the acetyl-group or in some cases of small hydrophobic moieties from histones but also from the non-histone substrate. The main achievement of HDACs on histones is to repress transcription and promote the formation of more compact chromatin. There are 18 different HDACs encoded in the human genome. Here we will discuss HDAC4, a member of the class IIa family, and its possible contribution to cancer development.
Collapse
Affiliation(s)
- Emma Cuttini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Camilla Goi
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Ester Pellarin
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Riccardo Vida
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy
| | - Claudio Brancolini
- Scuola Superiore Universitaria di Toppo Wassermann, Università degli Studi di Udine, Udine, Italy,Laboratory of Epigenomics, Department of Medicine, Università degli Studi di Udine, Udine, Italy,*Correspondence: Claudio Brancolini,
| |
Collapse
|
7
|
Upadhyay N, Tilekar K, Safuan S, Kumar AP, Schweipert M, Meyer-Almes FJ, C S R. Multi-target weapons: diaryl-pyrazoline thiazolidinediones simultaneously targeting VEGFR-2 and HDAC cancer hallmarks. RSC Med Chem 2021; 12:1540-1554. [PMID: 34671737 PMCID: PMC8459325 DOI: 10.1039/d1md00125f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
In anticancer drug discovery, multi-targeting compounds have been beneficial due to their advantages over single-targeting compounds. For instance, VEGFR-2 has a crucial role in angiogenesis and cancer management, whereas HDACs are well-known regulators of epigenetics and have been known to contribute significantly to angiogenesis and carcinogenesis. Herein, we have reported nineteen novel VEGFR-2 and HDAC dual-targeting analogs containing diaryl-pyrazoline thiazolidinediones and their in vitro and in vivo biological evaluation. In particular, the most promising compound 14c has emerged as a dual inhibitor of VEGFR-2 and HDAC. It demonstrated anti-angiogenic activity by inhibiting in vitro HUVEC proliferation, migration, and tube formation. Moreover, an in vivo CAM assay showed that 14c repressed new capillary formation in CAMs. In particular, 14c exhibited cytotoxicity potential on different cancer cell lines such as MCF-7, K562, A549, and HT-29. Additionally, 14c demonstrated significant potency and selectivity against HDAC4 in the sub-micromolar range. To materialize the hypothesis, we also performed molecular docking on the crystal structures of both VEGFR-2 (PDB ID: 1YWN) and HDAC4 (PDB-ID: 4CBY), which corroborated the designing and biological activity. The results indicated that compound 14c could be a potential lead to develop more optimized multi-target analogs with enhanced potency and selectivity.
Collapse
Affiliation(s)
- Neha Upadhyay
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy Navi Mumbai India
| | - Kalpana Tilekar
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy Navi Mumbai India
| | - Sabreena Safuan
- Universiti Sains Malaysia School of Health Sciences Health Campus Universiti Sains Malaysia 16150 Kubang Kerian Kelantan Malaysia
| | - Alan P Kumar
- Cancer Science Institute of Singapore, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore Singapore
| | - Markus Schweipert
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt Germany
| | - Franz-Josef Meyer-Almes
- Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt Germany
| | - Ramaa C S
- Department of Pharmaceutical Chemistry, Bharati Vidyapeeth's College of Pharmacy Navi Mumbai India
| |
Collapse
|
8
|
Di Giorgio E, Paluvai H, Dalla E, Ranzino L, Renzini A, Moresi V, Minisini M, Picco R, Brancolini C. HDAC4 degradation during senescence unleashes an epigenetic program driven by AP-1/p300 at selected enhancers and super-enhancers. Genome Biol 2021; 22:129. [PMID: 33966634 PMCID: PMC8108360 DOI: 10.1186/s13059-021-02340-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/06/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Cellular senescence is a permanent state of replicative arrest defined by a specific pattern of gene expression. The epigenome in senescent cells is sculptured in order to sustain the new transcriptional requirements, particularly at enhancers and super-enhancers. How these distal regulatory elements are dynamically modulated is not completely defined. RESULTS Enhancer regions are defined by the presence of H3K27 acetylation marks, which can be modulated by class IIa HDACs, as part of multi-protein complexes. Here, we explore the regulation of class IIa HDACs in different models of senescence. We find that HDAC4 is polyubiquitylated and degraded during all types of senescence and it selectively binds and monitors H3K27ac levels at specific enhancers and super-enhancers that supervise the senescent transcriptome. Frequently, these HDAC4-modulated elements are also monitored by AP-1/p300. The deletion of HDAC4 in transformed cells which have bypassed oncogene-induced senescence is coupled to the re-appearance of senescence and the execution of the AP-1/p300 epigenetic program. CONCLUSIONS Overall, our manuscript highlights a role of HDAC4 as an epigenetic reader and controller of enhancers and super-enhancers that supervise the senescence program. More generally, we unveil an epigenetic checkpoint that has important consequences in aging and cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | | | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Liliana Ranzino
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Alessandra Renzini
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, via Antonio Scarpa 16, 00161, Rome, Italy
| | - Viviana Moresi
- DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, via Antonio Scarpa 16, 00161, Rome, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Raffaella Picco
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100, Udine, Italy.
| |
Collapse
|
9
|
Davegårdh C, Säll J, Benrick A, Broholm C, Volkov P, Perfilyev A, Henriksen TI, Wu Y, Hjort L, Brøns C, Hansson O, Pedersen M, Würthner JU, Pfeffer K, Nilsson E, Vaag A, Stener-Victorin E, Pircs K, Scheele C, Ling C. VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics. Nat Commun 2021; 12:2431. [PMID: 33893273 PMCID: PMC8065135 DOI: 10.1038/s41467-021-22068-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 02/25/2021] [Indexed: 02/02/2023] Open
Abstract
Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and VPS39 is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of Vps39+/- mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D.
Collapse
Affiliation(s)
- Cajsa Davegårdh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Johanna Säll
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Anna Benrick
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Christa Broholm
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tora Ida Henriksen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Yanling Wu
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Line Hjort
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Brøns
- Diabetes and Bone-metabolic Research Unit, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Ola Hansson
- Genomics, Diabetes and Endocrinology Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Emma Nilsson
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Allan Vaag
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | | | - Karolina Pircs
- Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
10
|
Giorgio ED, Cutano V, Minisini M, Tolotto V, Dalla E, Brancolini C. A regulative epigenetic circuit supervised by HDAC7 represses IGFBP6 and IGFBP7 expression to sustain mammary stemness. Epigenomics 2021; 13:683-698. [PMID: 33878891 DOI: 10.2217/epi-2020-0347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: In the breast, the pleiotropic epigenetic regulator HDAC7 can influence stemness. Materials & Methods: The authors used MCF10 cells knocked-out for HDAC7 to explore the contribution of HDAC7 to IGF1 signaling. Results: HDAC7 buffers H3K27ac levels at the IGFBP6 and IGFBP7 genomic loci and influences their expression. In this manner, HDAC7 can tune IGF1 signaling to sustain stemness. In HDAC7 knocked-out cells, RXRA promotes the upregulation of IGFBP6/7 mRNAs. By contrast, HDAC7 increases FABP5 expression, possibly through repression of miR-218. High levels of FABP5 can reduce the delivery of all-trans-retinoic acid to RXRA. Accordingly, the silencing of FABP5 increases IGFBP6 and IGFBP7 expression and reduces mammosphere generation. Conclusion: The authors propose that HDAC7 controls the uptake of all-trans-retinoic acid, thus influencing RXRA activity and IGF1 signaling.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Valentina Cutano
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Martina Minisini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Vanessa Tolotto
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Emiliano Dalla
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine. P.le Kolbe 4, Udine, 33100, Italy
| |
Collapse
|
11
|
Gagliano T, Brancolini C. Epigenetic Mechanisms beyond Tumour-Stroma Crosstalk. Cancers (Basel) 2021; 13:cancers13040914. [PMID: 33671588 PMCID: PMC7926949 DOI: 10.3390/cancers13040914] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/18/2022] Open
Abstract
Despite cancer having been usually considered the result of genetic mutations, it is now well established that epigenetic dysregulations play pivotal roles in cancer onset and progression. Hence, inactivation of tumour suppressor genes can be gained not only by genetic mutations, but also by epigenetic mechanisms such as DNA methylation and histone modifications. To occur, epigenetic events need to be triggered by genetic alterations of the epigenetic regulators, or they can be mediated by intracellular and extracellular stimuli. In this last setting, the tumour microenvironment (TME) plays a fundamental role. Therefore, to decipher how epigenetic changes are associated with TME is a challenge still open. The complex signalling between tumour cells and stroma is currently under intensive investigation, and most of the molecules and pathways involved still need to be identified. Neoplastic initiation and development are likely to involve a back-and-forth crosstalk among cancer and stroma cells. An increasing number of studies have highlighted that the cancer epigenome can be influenced by tumour microenvironment and vice versa. Here, we discuss about the recent literature on tumour-stroma interactions that focus on epigenetic mechanisms and the reciprocal regulation between cancer and TME cells.
Collapse
|
12
|
Myocyte Enhancer Factor 2C as a New Player in Human Breast Cancer Brain Metastases. Cells 2021; 10:cells10020378. [PMID: 33673112 PMCID: PMC7917785 DOI: 10.3390/cells10020378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 12/24/2022] Open
Abstract
Myocyte enhancer factor 2C (MEF2C) is increasingly expressed in mice along with breast cancer brain metastases (BCBM) development. We aim to ascertain MEF2C expression in human BCBM, establish the relationship with disease severity, disclose the involvement of vascular endothelial growth factor receptor-2 (VEGFR-2) and β-catenin, also known as KDR and CTNNB1, respectively, and investigate if matched primary tumors express the protein. We studied resected BCBM for the expression of MEF2C, VEGFR-2, and ß-catenin, as well as proliferation (Ki-67) and epithelial (pan Cytokeratin) markers, and related experimental and clinical data. MEF2C expression was further assessed in matched primary tumors and non-BCBM samples used as controls. MEF2C expression was observed in BCBM, but not in controls, and was categorized into three phenotypes (P): P1, with extranuclear location; P2, with extranuclear and nuclear staining, and P3, with nuclear location. Nuclear translocation increased with metastases extension and Ki-67-positive cells number. P1 was associated with higher VEFGR-2 plasma membrane immunoreactivity, whereas P2 and P3 were accompanied by protein dislocation. P1 was accompanied by β-catenin membrane expression, while P2 and P3 exhibited β-catenin nuclear translocation. Primary BC samples expressed MEF2C in mammary ducts and scattered cells in the parenchyma. MEF2C emerges as a player in BCBM associated with disease severity and VEGFR-2 and β-catenin signaling.
Collapse
|
13
|
Brancolini C, Di Giorgio E, Formisano L, Gagliano T. Quis Custodiet Ipsos Custodes (Who Controls the Controllers)? Two Decades of Studies on HDAC9. Life (Basel) 2021; 11:life11020090. [PMID: 33513699 PMCID: PMC7912504 DOI: 10.3390/life11020090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022] Open
Abstract
Understanding how an epigenetic regulator drives different cellular responses can be a tricky task. Very often, their activities are modulated by large multiprotein complexes, the composition of which is context- and time-dependent. As a consequence, experiments aimed to unveil the functions of an epigenetic regulator can provide different outcomes and conclusions, depending on the circumstances. HDAC9 (histone deacetylase), an epigenetic regulator that influences different differentiating and adaptive responses, makes no exception. Since its discovery, different phenotypes and/or dysfunctions have been observed after the artificial manipulation of its expression. The cells and the microenvironment use multiple strategies to control and monitor HDAC9 activities. To date, some of the genes under HDAC9 control have been identified. However, the exact mechanisms through which HDAC9 can achieve all the different tasks so far described, remain mysterious. Whether it can assemble into different multiprotein complexes and how the cells modulate these complexes is not clearly defined. In summary, despite several cellular responses are known to be affected by HDAC9, many aspects of its network of interactions still remain to be defined.
Collapse
Affiliation(s)
- Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
- Correspondence:
| | - Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
| | - Luigi Formisano
- Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Via Pansini, 5, 80131 Naples, Italy;
| | - Teresa Gagliano
- Department of Medicine, Università degli Studi di Udine, p.le Kolbe 4, 33100 Udine, Italy; (E.D.G.); (T.G.)
| |
Collapse
|
14
|
Wakeling E, McEntagart M, Bruccoleri M, Shaw-Smith C, Stals KL, Wakeling M, Barnicoat A, Beesley C, Hanson-Kahn AK, Kukolich M, Stevenson DA, Campeau PM, Ellard S, Elsea SH, Yang XJ, Caswell RC. Missense substitutions at a conserved 14-3-3 binding site in HDAC4 cause a novel intellectual disability syndrome. HGG ADVANCES 2021; 2:100015. [PMID: 33537682 PMCID: PMC7841527 DOI: 10.1016/j.xhgg.2020.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/16/2020] [Indexed: 11/24/2022] Open
Abstract
Histone deacetylases play crucial roles in the regulation of chromatin structure and gene expression in the eukaryotic cell, and disruption of their activity causes a wide range of developmental disorders in humans. Loss-of-function alleles of HDAC4, a founding member of the class IIa deacetylases, have been reported in brachydactyly-mental retardation syndrome (BDMR). However, while disruption of HDAC4 activity and deregulation of its downstream targets may contribute to the BDMR phenotype, loss of HDAC4 function usually occurs as part of larger deletions of chromosome 2q37; BDMR is also known as chromosome 2q37 deletion syndrome, and the precise role of HDAC4 within the phenotype remains uncertain. Thus, identification of missense variants should shed new light on the role of HDAC4 in normal development. Here, we report seven unrelated individuals with a phenotype distinct from that of BDMR, all of whom have heterozygous de novo missense variants that affect a major regulatory site of HDAC4, required for signal-dependent 14-3-3 binding and nucleocytoplasmic shuttling. Two individuals possess variants altering Thr244 or Glu247, whereas the remaining five all carry variants altering Pro248, a key residue for 14-3-3 binding. We propose that the variants in all seven individuals impair 14-3-3 binding (as confirmed for the first two variants by immunoprecipitation assays), thereby identifying deregulation of HDAC4 as a pathological mechanism in a previously uncharacterized developmental disorder.
Collapse
Affiliation(s)
- Emma Wakeling
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Meriel McEntagart
- Medical Genetics, Floor 0 Jenner Wing, St George’s University Hospitals NHS Foundation Trust, Cranmer Terrace, London SW17 0RE, UK
| | - Michael Bruccoleri
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, QC H3A 1A3, Canada
- Department of Medicine, McGill University Health Center, Montreal, Quebec, QC H3A 1A3, Canada
| | - Charles Shaw-Smith
- Department of Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter EX1 2ED, UK
| | - Karen L. Stals
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Matthew Wakeling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Angela Barnicoat
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
| | - Clare Beesley
- Rare & Inherited Disease Laboratory, North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, 37 Queen Square, London WC1N 3BH, UK
| | - DDD Study
- Deciphering Developmental Disorders, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Andrea K. Hanson-Kahn
- Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, H315, Stanford, CA 94305-5208, USA
- Department of Pediatrics, Division of Medical Genetics, Stanford University, 300 Pasteur Drive, H315, Stanford, CA 94305-5208, USA
| | - Mary Kukolich
- Clinical Genetics, Cook Children’s Medical Center, Fort Worth, TX 76104, USA
| | - David A. Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, 300 Pasteur Drive, H315, Stanford, CA 94305-5208, USA
| | - Philippe M. Campeau
- Department of Pediatrics, CHU Sainte-Justine Hospital, University of Montreal, Montreal, Quebec, QC H3T 1C4, Canada
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiang-Jiao Yang
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, QC H3A 1A3, Canada
- Department of Medicine, McGill University Health Center, Montreal, Quebec, QC H3A 1A3, Canada
- Department of Biochemistry, McGill University Health Center, Montreal, Quebec, QC, Canada
| | - Richard C. Caswell
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter EX2 5DW, UK
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| |
Collapse
|
15
|
Holloran SM, Nosirov B, Walter KR, Trinca GM, Lai Z, Jin VX, Hagan CR. Reciprocal fine-tuning of progesterone and prolactin-regulated gene expression in breast cancer cells. Mol Cell Endocrinol 2020; 511:110859. [PMID: 32407979 PMCID: PMC8941988 DOI: 10.1016/j.mce.2020.110859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Progesterone and prolactin are two key hormones involved in development and remodeling of the mammary gland. As such, both hormones have been linked to breast cancer. Despite the overlap between biological processes ascribed to these two hormones, little is known about how co-expression of both hormones affects their individual actions. Progesterone and prolactin exert many of their effects on the mammary gland through activation of gene expression, either directly (progesterone, binding to the progesterone receptor [PR]) or indirectly (multiple transcription factors being activated downstream of prolactin, most notably STAT5). Using RNA-seq in T47D breast cancer cells, we characterized the gene expression programs regulated by progestin and prolactin, either alone or in combination. We found significant crosstalk and fine-tuning between the transcriptional programs executed by each hormone independently and in combination. We divided and characterized the transcriptional programs into four broad categories. All crosstalk/fine-tuning shown to be modulated by progesterone was dependent upon the expression of PR. Moreover, PR was recruited to enhancer regions of all regulated genes. Interestingly, despite the canonical role for STAT5 in transducing prolactin-signaling in the normal and lactating mammary gland, very few of the prolactin-regulated transcriptional programs fine-tuned by progesterone in this breast cancer cell line model system were in fact dependent upon STAT5. Cumulatively, these data suggest that the interplay of progesterone and prolactin in breast cancer impacts gene expression in a more complex and nuanced manner than previously thought, and likely through different transcriptional regulators than those observed in the normal mammary gland. Studying gene regulation when both hormones are present is most clinically relevant, particularly in the context of breast cancer.
Collapse
Affiliation(s)
- Sean M Holloran
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bakhtiyor Nosirov
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Katherine R Walter
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Gloria M Trinca
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Zhao Lai
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA; Greehey Children's Cancer Research Institute, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Victor X Jin
- Department of Molecular Medicine, University of Texas Health San Antonio (UTHSA), San Antonio, TX, 78229, USA
| | - Christy R Hagan
- Department of Biochemistry and Molecular Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
16
|
Kong X, Sawalha AH. Takayasu arteritis risk locus in IL6 represses the anti-inflammatory gene GPNMB through chromatin looping and recruiting MEF2-HDAC complex. Ann Rheum Dis 2019; 78:1388-1397. [PMID: 31315839 PMCID: PMC7147956 DOI: 10.1136/annrheumdis-2019-215567] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Previous work has revealed a genetic association between Takayasu arteritis and a non-coding genetic variant in an enhancer region within IL6 (rs2069837 A/G). The risk allele in this variant (allele A) has a protective effect against chronic viral infection and cancer. The goal of this study was to characterise the functional consequences of this disease-associated risk locus. METHODS A combination of experimental and bioinformatics tools were used to mechanistically understand the effects of the disease-associated genetic locus in IL6. These included electrophoretic mobility shift assay, DNA affinity precipitation assays followed by mass spectrometry and western blotting, luciferase reporter assays and chromosome conformation capture (3C) to identify chromatin looping in the IL6 locus. Both cell lines and peripheral blood primary monocyte-derived macrophages were used. RESULTS We identified the monocyte/macrophage anti-inflammatory gene GPNMB,~520 kb from IL6, as a target gene regulated by rs2069837. We revealed preferential recruitment of myocyte enhancer factor 2-histone deacetylase (MEF2-HDAC) repressive complex to the Takayasu arteritis risk allele. Further, we demonstrated suppression of GPNMB expression in monocyte-derived macrophages from healthy individuals with AA compared with AG genotype, which was reversed by histone deacetylase inhibition. Our data show that the risk allele in rs2069837 represses the expression of GPNMB by recruiting MEF2-HDAC complex, enabled through a long-range intrachromatin looping. Suppression of this anti-inflammatory gene might mediate increased susceptibility in Takayasu arteritis and enhance protective immune responses in chronic infection and cancer. CONCLUSIONS Takayasu arteritis risk locus in IL6 might increase disease susceptibility by suppression of the anti-inflammatory gene GPNMB through chromatin looping and recruitment of MEF2-HDAC epigenetic repressive complex. Our data highlight long-range chromatin interactions in functional genomic and epigenomic studies in autoimmunity.
Collapse
Affiliation(s)
- Xiufang Kong
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Amr H Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Rheumatology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Lupus Center of Excellence, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
17
|
Cutano V, Di Giorgio E, Minisini M, Picco R, Dalla E, Brancolini C. HDAC7-mediated control of tumour microenvironment maintains proliferative and stemness competence of human mammary epithelial cells. Mol Oncol 2019; 13:1651-1668. [PMID: 31081251 PMCID: PMC6670296 DOI: 10.1002/1878-0261.12503] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/12/2019] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
HDAC7 is a pleiotropic transcriptional coregulator that controls different cellular fates. Here, we demonstrate that in human mammary epithelial cells, HDAC7 sustains cell proliferation and favours a population of stem-like cells, by maintaining a proficient microenvironment. In particular, HDAC7 represses a repertoire of cytokines and other environmental factors, including elements of the insulin-like growth factor signalling pathway, IGFBP6 and IGFBP7. This HDAC7-regulated secretome signature predicts negative prognosis for luminal A breast cancers. ChIP-seq experiments revealed that HDAC7 binds locally to the genome, more frequently distal from the transcription start site. HDAC7 can colocalize with H3K27-acetylated domains and its deletion further increases H3K27ac at transcriptionally active regions. HDAC7 levels are increased in RAS-transformed cells, in which this protein was required not only for proliferation and cancer stem-like cell growth, but also for invasive features. We show that an important direct target of HDAC7 is IL24, which is sufficient to suppress the growth of cancer stem-like cells.
Collapse
Affiliation(s)
| | | | | | | | - Emiliano Dalla
- Department of MedicineUniversità degli Studi di UdineItaly
| | | |
Collapse
|
18
|
Di Giorgio E, Hancock WW, Brancolini C. MEF2 and the tumorigenic process, hic sunt leones. Biochim Biophys Acta Rev Cancer 2018; 1870:261-273. [PMID: 29879430 DOI: 10.1016/j.bbcan.2018.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/25/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022]
Abstract
While MEF2 transcription factors are well known to cooperate in orchestrating cell fate and adaptive responses during development and adult life, additional studies over the last decade have identified a wide spectrum of genetic alterations of MEF2 in different cancers. The consequences of these alterations, including triggering and maintaining the tumorigenic process, are not entirely clear. A deeper knowledge of the molecular pathways that regulate MEF2 expression and function, as well as the nature and consequences of MEF2 mutations are necessary to fully understand the many roles of MEF2 in malignant cells. This review discusses the current knowledge of MEF2 transcription factors in cancer.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
19
|
Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, Gigantino V, Pierri B, Cimmino G, Milanesi L, Ambrosino C, Nyman TA, Nassa G, Weisz A. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol 2017; 18:189. [PMID: 29017520 PMCID: PMC5634881 DOI: 10.1186/s13059-017-1321-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Collapse
Affiliation(s)
- Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Luca Ricciardi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanna Marchese
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Teresa Rocco
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Biancamaria Pierri
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, University of Campania'L. Vanvitelli', Naples, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate, MI, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
- IRGS Biogem, Ariano Irpino, AV, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
20
|
Di Giorgio E, Franforte E, Cefalù S, Rossi S, Dei Tos AP, Brenca M, Polano M, Maestro R, Paluvai H, Picco R, Brancolini C. The co-existence of transcriptional activator and transcriptional repressor MEF2 complexes influences tumor aggressiveness. PLoS Genet 2017; 13:e1006752. [PMID: 28419090 PMCID: PMC5413110 DOI: 10.1371/journal.pgen.1006752] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/02/2017] [Accepted: 04/10/2017] [Indexed: 12/18/2022] Open
Abstract
The contribution of MEF2 TFs to the tumorigenic process is still mysterious. Here we clarify that MEF2 can support both pro-oncogenic or tumor suppressive activities depending on the interaction with co-activators or co-repressors partners. Through these interactions MEF2 supervise histone modifications associated with gene activation/repression, such as H3K4 methylation and H3K27 acetylation. Critical switches for the generation of a MEF2 repressive environment are class IIa HDACs. In leiomyosarcomas (LMS), this two-faced trait of MEF2 is relevant for tumor aggressiveness. Class IIa HDACs are overexpressed in 22% of LMS, where high levels of MEF2, HDAC4 and HDAC9 inversely correlate with overall survival. The knock out of HDAC9 suppresses the transformed phenotype of LMS cells, by restoring the transcriptional proficiency of some MEF2-target loci. HDAC9 coordinates also the demethylation of H3K4me3 at the promoters of MEF2-target genes. Moreover, we show that class IIa HDACs do not bind all the regulative elements bound by MEF2. Hence, in a cell MEF2-target genes actively transcribed and strongly repressed can coexist. However, these repressed MEF2-targets are poised in terms of chromatin signature. Overall our results candidate class IIa HDACs and HDAC9 in particular, as druggable targets for a therapeutic intervention in LMS. The tumorigenic process is characterized by profound alterations of the transcriptional landscape, aimed to sustain uncontrolled cell growth, resistance to apoptosis and metastasis. The contribution of MEF2, a pleiotropic family of transcription factors, to these changes is controversial, since both pro-oncogenic and tumor-suppressive activities have been reported. To clarify this paradox, we studied the role of MEF2 in an aggressive type of soft-tissue sarcomas, the leiomyosarcomas (LMS). We found that in LMS cells MEF2 become oncogenes when in complex with class IIa HDACs. We have identified different sub-classes of MEF2-target genes and observed that HDAC9 converts MEF2 into transcriptional repressors on some, but not all, MEF2-regulated loci. This conversion correlates with the acquisition by MEF2 of oncogenic properties. We have also elucidated some epigenetic re-arrangements supervised by MEF2. In summary, our studies suggest that the paradoxical actions of MEF2 in cancer can be explained by their dual role as activators/repressors of transcription and open new possibilities for therapeutic interventions.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Elisa Franforte
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Sebastiano Cefalù
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Sabrina Rossi
- Department of Anatomical Pathology, Treviso General Hospital, Treviso, Italy
| | - Angelo Paolo Dei Tos
- Department of Anatomical Pathology, Treviso General Hospital, Treviso, Italy.,Department of Medicine, University of Padua, Padua, Italy
| | - Monica Brenca
- Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | - Maurizio Polano
- Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | - Roberta Maestro
- Experimental Oncology 1, CRO National Cancer Institute, Aviano, Italy
| | - Harikrishnareddy Paluvai
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Raffaella Picco
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| | - Claudio Brancolini
- Department of Medical and Biological Sciences, Università degli Studi di Udine. P.le Kolbe 4-Udine Italy
| |
Collapse
|
21
|
Di Giorgio E, Brancolini C. Regulation of class IIa HDAC activities: it is not only matter of subcellular localization. Epigenomics 2016; 8:251-69. [DOI: 10.2217/epi.15.106] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In response to environmental cues, enzymes that influence the functions of proteins, through reversible post-translational modifications supervise the coordination of cell behavior like orchestral conductors. Class IIa histone deacetylases (HDACs) belong to this category. Even though in vertebrates these deacetylases have discarded the core enzymatic activity, class IIa HDACs can assemble into multiprotein complexes devoted to transcriptional reprogramming, including but not limited to epigenetic changes. Class IIa HDACs are subjected to variegated and interconnected layers of regulation, which reflect the wide range of biological responses under the scrutiny of this gene family. Here, we discuss about the key mechanisms that fine tune class IIa HDACs activities.
Collapse
Affiliation(s)
- Eros Di Giorgio
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medical & Biological Sciences, Università degli Studi di Udine., P.le Kolbe 4 - 33100 Udine, Italy
| |
Collapse
|
22
|
Clocchiatti A, Di Giorgio E, Viviani G, Streuli C, Sgorbissa A, Picco R, Cutano V, Brancolini C. The MEF2–HDAC axis controls proliferation of mammary epithelial cells and acini formation in vitro. Development 2015. [DOI: 10.1242/dev.132589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|