1
|
Huang Y, Roig I. Genetic control of meiosis surveillance mechanisms in mammals. Front Cell Dev Biol 2023; 11:1127440. [PMID: 36910159 PMCID: PMC9996228 DOI: 10.3389/fcell.2023.1127440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
Meiosis is a specialized cell division that generates haploid gametes and is critical for successful sexual reproduction. During the extended meiotic prophase I, homologous chromosomes progressively pair, synapse and desynapse. These chromosomal dynamics are tightly integrated with meiotic recombination (MR), during which programmed DNA double-strand breaks (DSBs) are formed and subsequently repaired. Consequently, parental chromosome arms reciprocally exchange, ultimately ensuring accurate homolog segregation and genetic diversity in the offspring. Surveillance mechanisms carefully monitor the MR and homologous chromosome synapsis during meiotic prophase I to avoid producing aberrant chromosomes and defective gametes. Errors in these critical processes would lead to aneuploidy and/or genetic instability. Studies of mutation in mouse models, coupled with advances in genomic technologies, lead us to more clearly understand how meiosis is controlled and how meiotic errors are linked to mammalian infertility. Here, we review the genetic regulations of these major meiotic events in mice and highlight our current understanding of their surveillance mechanisms. Furthermore, we summarize meiotic prophase genes, the mutations that activate the surveillance system leading to meiotic prophase arrest in mouse models, and their corresponding genetic variants identified in human infertile patients. Finally, we discuss their value for the diagnosis of causes of meiosis-based infertility in humans.
Collapse
Affiliation(s)
- Yan Huang
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ignasi Roig
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.,Histology Unit, Department of Cell Biology, Physiology, and Immunology, Cytology, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
2
|
A cryo-fixation protocol to study the structure of the synaptonemal complex. Chromosome Res 2022; 30:385-400. [PMID: 35486207 DOI: 10.1007/s10577-022-09689-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/28/2022] [Indexed: 01/25/2023]
Abstract
Genetic variability in sexually reproducing organisms results from an exchange of genetic material between homologous chromosomes. The genetic exchange mechanism is dependent on the synaptonemal complex (SC), a protein structure localized between the homologous chromosomes. The current structural models of the mammalian SC are based on electron microscopy, superresolution, and expansion microscopy studies using chemical fixatives and sample dehydration of gonads, which are methodologies known to produce structural artifacts. To further analyze the structure of the SC, without chemical fixation, we have adapted a cryo-fixation method for electron microscopy where pachytene cells are isolated from mouse testis by FACS, followed by cryo-fixation, cryo-substitution, and electron tomography. In parallel, we performed conventional chemical fixation and electron tomography on mouse seminiferous tubules to compare the SC structure obtained with the two fixation methods. We found several differences in the structure and organization of the SC in cryo-fixed samples when compared to chemically preserved samples. We found the central region of the SC to be wider and the transverse filaments to be more densely packed in the central region of the SC.
Collapse
|
3
|
Zhang FG, Zhang RR, Gao JM. The organization, regulation, and biological functions of the synaptonemal complex. Asian J Androl 2021; 23:580-589. [PMID: 34528517 PMCID: PMC8577265 DOI: 10.4103/aja202153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific proteinaceous macromolecular structure that assembles between paired homologous chromosomes during meiosis in various eukaryotes. The SC has a highly conserved ultrastructure and plays critical roles in controlling multiple steps in meiotic recombination and crossover formation, ensuring accurate meiotic chromosome segregation. Recent studies in different organisms, facilitated by advances in super-resolution microscopy, have provided insights into the macromolecular structure of the SC, including the internal organization of the meiotic chromosome axis and SC central region, the regulatory pathways that control SC assembly and dynamics, and the biological functions exerted by the SC and its substructures. This review summarizes recent discoveries about how the SC is organized and regulated that help to explain the biological functions associated with this meiosis-specific structure.
Collapse
Affiliation(s)
- Feng-Guo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Rui-Rui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| | - Jin-Min Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
4
|
The synaptonemal complex imposes crossover interference and heterochiasmy in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2023613118. [PMID: 33723072 PMCID: PMC8000504 DOI: 10.1073/pnas.2023613118] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Meiotic recombination promotes genetic diversity by shuffling parental chromosomes. As observed by the very first geneticists, crossovers inhibit the formation of another crossover nearby, an elusive phenomenon called crossover interference. Another intriguing observation is heterochiasmy, the marked difference in male and female crossover rates observed in many species. Here, we show that the synaptonemal complex, a structure that zips homologous chromosomes together during meiosis, is essential for crossover interference in Arabidopsis. This suggests that a signal that inhibits crossover formation nearby a first crossover propagates along this specific structure. Furthermore, in the absence of the synaptonemal complex, crossover frequencies become identical in both sexes, suggesting that heterochiasmy is due to variation of crossover interference imposed by the synaptonemal complex. Meiotic crossovers (COs) have intriguing patterning properties, including CO interference, the tendency of COs to be well-spaced along chromosomes, and heterochiasmy, the marked difference in male and female CO rates. During meiosis, transverse filaments transiently associate the axes of homologous chromosomes, a process called synapsis that is essential for CO formation in many eukaryotes. Here, we describe the spatial organization of the transverse filaments in Arabidopsis (ZYP1) and show it to be evolutionary conserved. We show that in the absence of ZYP1 (zyp1a zyp1b null mutants), chromosomes associate in pairs but do not synapse. Unexpectedly, in absence of ZYP1, CO formation is not prevented but increased. Furthermore, genome-wide analysis of recombination revealed that CO interference is abolished, with the frequent observation of close COs. In addition, heterochiasmy was erased, with identical CO rates in males and females. This shows that the tripartite synaptonemal complex is dispensable for CO formation and has a key role in regulating their number and distribution, imposing CO interference and heterochiasmy.
Collapse
|
5
|
Hernández-López D, Geisinger A, Trovero MF, Santiñaque FF, Brauer M, Folle GA, Benavente R, Rodríguez-Casuriaga R. Familial primary ovarian insufficiency associated with an SYCE1 point mutation: defective meiosis elucidated in humanized mice. Mol Hum Reprod 2021; 26:485-497. [PMID: 32402064 DOI: 10.1093/molehr/gaaa032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022] Open
Abstract
More than 50% of cases of primary ovarian insufficiency (POI) and nonobstructive azoospermia in humans are classified as idiopathic infertility. Meiotic defects may relate to at least some of these cases. Mutations in genes coding for synaptonemal complex (SC) components have been identified in humans, and hypothesized to be causative for the observed infertile phenotype. Mutation SYCE1 c.721C>T (former c.613C>T)-a familial mutation reported in two sisters with primary amenorrhea-was the first such mutation found in an SC central element component-coding gene. Most fundamental mammalian oogenesis events occur during the embryonic phase, and eventual defects are identified many years later, thus leaving few possibilities to study the condition's etiology and pathogenesis. Aiming to validate an approach to circumvent this difficulty, we have used the CRISPR/Cas9 technology to generate a mouse model with an SYCE1 c.721C>T equivalent genome alteration. We hereby present the characterization of the homozygous mutant mice phenotype, compared to their wild type and heterozygous littermates. Our results strongly support a causative role of this mutation for the POI phenotype in human patients, and the mechanisms involved would relate to defects in homologous chromosome synapsis. No SYCE1 protein was detected in homozygous mutants and Syce1 transcript level was highly diminished, suggesting transcript degradation as the basis of the infertility mechanism. This is the first report on the generation of a humanized mouse model line for the study of an infertility-related human mutation in an SC component-coding gene, thus representing a proof of principle.
Collapse
Affiliation(s)
- Diego Hernández-López
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay
| | - Adriana Geisinger
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay.,Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11400 Montevideo, Uruguay
| | | | | | - Mónica Brauer
- Laboratory of Cell Biology, Department of Experimental Neuropharmacology, IIBCE, 11600 Montevideo, Uruguay
| | - Gustavo A Folle
- Department of Genetics, IIBCE, 11600 Montevideo, Uruguay.,Flow Cytometry and Cell Sorting Core, IIBCE, 11600 Montevideo, Uruguay
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Rosana Rodríguez-Casuriaga
- Department of Molecular Biology, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), 11600 Montevideo, Uruguay.,Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República (UdelaR), 11400 Montevideo, Uruguay
| |
Collapse
|
6
|
ZYP1 is required for obligate cross-over formation and cross-over interference in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2021671118. [PMID: 33782125 PMCID: PMC8040812 DOI: 10.1073/pnas.2021671118] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific proteinaceous ultrastructure required to ensure cross-over (CO) formation in the majority of sexually reproducing eukaryotes. It is composed of two lateral elements adjoined by transverse filaments. Even though the general structure of the SC is conserved throughout kingdoms, phenotypic differences between mutants perpetuate the enigmatic role of the SC. Here, we have used genetic and cytogenetic approaches to show that the transverse filament protein, ZYP1, acts on multiple pathways of meiotic recombination in Arabidopsis. ZYP1 is required for CO assurance, thus ensuring that every chromosome pair receives at least one CO. ZYP1 limits the number of COs and mediates CO interference, the phenomenon that reduces the probability of multiple COs forming close together. The synaptonemal complex is a tripartite proteinaceous ultrastructure that forms between homologous chromosomes during prophase I of meiosis in the majority of eukaryotes. It is characterized by the coordinated installation of transverse filament proteins between two lateral elements and is required for wild-type levels of crossing over and meiotic progression. We have generated null mutants of the duplicated Arabidopsis transverse filament genes zyp1a and zyp1b using a combination of T-DNA insertional mutants and targeted CRISPR/Cas mutagenesis. Cytological and genetic analysis of the zyp1 null mutants reveals loss of the obligate chiasma, an increase in recombination map length by 1.3- to 1.7-fold and a virtual absence of cross-over (CO) interference, determined by a significant increase in the number of double COs. At diplotene, the numbers of HEI10 foci, a marker for Class I interference-sensitive COs, are twofold greater in the zyp1 mutant compared to wild type. The increase in recombination in zyp1 does not appear to be due to the Class II interference-insensitive COs as chiasmata were reduced by ∼52% in msh5/zyp1 compared to msh5. These data suggest that ZYP1 limits the formation of closely spaced Class I COs in Arabidopsis. Our data indicate that installation of ZYP1 occurs at ASY1-labeled axial bridges and that loss of the protein disrupts progressive coalignment of the chromosome axes.
Collapse
|
7
|
Ortiz R, Chavero SJ, Echeverría OM, Hernandez-Hernandez A. Synaptonemal complex formation produces a particular arrangement of the lateral element-associated DNA. Exp Cell Res 2021; 399:112455. [PMID: 33400935 DOI: 10.1016/j.yexcr.2020.112455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/30/2020] [Accepted: 12/19/2020] [Indexed: 11/27/2022]
Abstract
During meiosis, homologous chromosomes exchange genetic material. This exchange or meiotic recombination is mediated by a proteinaceous scaffold known as the Synaptonemal complex (SC). Any defects in its formation produce failures in meiotic recombination, chromosome segregation and meiosis completion. It has been proposed that DNA repair events that will be resolved by crossover between homologous chromosomes are predetermined by the SC. Hence, structural analysis of the organization of the DNA in the SC could shed light on the process of crossover interference. In this work, we employed an ultrastructural DNA staining technique on mouse testis and followed nuclei of pachytene cells. We observed structures organized similarly to the SCs stained with conventional techniques. These structures, presumably the DNA in the SCs, are delineating the edges of both lateral elements and no staining was observed between them. DNA in the LEs resembles two parallel tracks. However, a bubble-like staining pattern in certain regions of the SC was observed. Furthermore, this staining pattern is found in SCs formed between non-homologous chromosomes, in SCs formed between sister chromatids and in SCs without lateral elements, suggesting that this particular organization of the DNA is determined by the synapsis of the chromosomes despite their lack of homology or the presence of partially formed SCs.
Collapse
Affiliation(s)
- Rosario Ortiz
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Silvia Juárez Chavero
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Olga M Echeverría
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abrahan Hernandez-Hernandez
- Biología de Células Individuales (BIOCELIN), Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, CDMX, Mexico.
| |
Collapse
|
8
|
Agbleke AA, Amitai A, Buenrostro JD, Chakrabarti A, Chu L, Hansen AS, Koenig KM, Labade AS, Liu S, Nozaki T, Ovchinnikov S, Seeber A, Shaban HA, Spille JH, Stephens AD, Su JH, Wadduwage D. Advances in Chromatin and Chromosome Research: Perspectives from Multiple Fields. Mol Cell 2020; 79:881-901. [PMID: 32768408 PMCID: PMC7888594 DOI: 10.1016/j.molcel.2020.07.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
Nucleosomes package genomic DNA into chromatin. By regulating DNA access for transcription, replication, DNA repair, and epigenetic modification, chromatin forms the nexus of most nuclear processes. In addition, dynamic organization of chromatin underlies both regulation of gene expression and evolution of chromosomes into individualized sister objects, which can segregate cleanly to different daughter cells at anaphase. This collaborative review shines a spotlight on technologies that will be crucial to interrogate key questions in chromatin and chromosome biology including state-of-the-art microscopy techniques, tools to physically manipulate chromatin, single-cell methods to measure chromatin accessibility, computational imaging with neural networks and analytical tools to interpret chromatin structure and dynamics. In addition, this review provides perspectives on how these tools can be applied to specific research fields such as genome stability and developmental biology and to test concepts such as phase separation of chromatin.
Collapse
Affiliation(s)
| | - Assaf Amitai
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Aditi Chakrabarti
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Lingluo Chu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristen M Koenig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; JHDSF Program, Harvard University, Cambridge, MA 02138, USA
| | - Ajay S Labade
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Sirui Liu
- FAS Division of Science, Harvard University, Cambridge, MA 02138, USA
| | - Tadasu Nozaki
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sergey Ovchinnikov
- JHDSF Program, Harvard University, Cambridge, MA 02138, USA; FAS Division of Science, Harvard University, Cambridge, MA 02138, USA
| | - Andrew Seeber
- JHDSF Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA.
| | - Haitham A Shaban
- Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA; Spectroscopy Department, Physics Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Jan-Hendrik Spille
- Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Andrew D Stephens
- Biology Department, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jun-Han Su
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Dushan Wadduwage
- JHDSF Program, Harvard University, Cambridge, MA 02138, USA; Center for Advanced Imaging, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
9
|
Alternative Synaptonemal Complex Structures: Too Much of a Good Thing? Trends Genet 2020; 36:833-844. [PMID: 32800626 DOI: 10.1016/j.tig.2020.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 12/21/2022]
Abstract
The synaptonemal complex (SC), a highly conserved structure built between homologous meiotic chromosomes, is required for crossover formation and ensuring proper chromosome segregation. In many organisms, SC components can also form alternative structures, including repeating SC structures that are known as polycomplexes (PCs), and extensively modified SC structures that are maintained late in meiosis. PCs display differences in their ability to localize with lateral element proteins, recombination machinery, and DNA. They can be created by defects in post-translational modification, suggesting that these modifications have roles in preventing alternate SC structures. These SC-like structures provide insight into the rules for building and maintaining the SC by offering an 'in vivo laboratory' for models of SC assembly, structure, and disassembly. Here, we discuss what these structures can tell us about the rules for building the SC and the roles of the SC in meiotic processes.
Collapse
|
10
|
Zwettler FU, Spindler MC, Reinhard S, Klein T, Kurz A, Benavente R, Sauer M. Tracking down the molecular architecture of the synaptonemal complex by expansion microscopy. Nat Commun 2020; 11:3222. [PMID: 32591508 PMCID: PMC7320163 DOI: 10.1038/s41467-020-17017-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 06/08/2020] [Indexed: 01/03/2023] Open
Abstract
The synaptonemal complex (SC) is a meiosis-specific nuclear multiprotein complex that is essential for proper synapsis, recombination and segregation of homologous chromosomes. We combined structured illumination microscopy (SIM) with different expansion microscopy (ExM) protocols including U-ExM, proExM, and magnified analysis of the proteome (MAP) to investigate the molecular organization of the SC. Comparison with structural data obtained by single-molecule localization microscopy of unexpanded SCs allowed us to investigate ultrastructure preservation of expanded SCs. For image analysis, we developed an automatic image processing software that enabled unbiased comparison of structural properties pre- and post-expansion. Here, MAP-SIM provided the best results and enabled reliable three-color super-resolution microscopy of the SCs of a whole set of chromosomes in a spermatocyte with 20-30 nm spatial resolution. Our data demonstrate that post-expansion labeling by MAP-SIM improves immunolabeling efficiency and allowed us thus to unravel previously hidden details of the molecular organization of SCs.
Collapse
Affiliation(s)
- Fabian U Zwettler
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marie-Christin Spindler
- Department of Cell and Developmental Biology Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sebastian Reinhard
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Teresa Klein
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Kurz
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ricardo Benavente
- Department of Cell and Developmental Biology Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Markus Sauer
- Department of Biotechnology and Biophysics Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
11
|
Liu H, Huang T, Li M, Li M, Zhang C, Jiang J, Yu X, Yin Y, Zhang F, Lu G, Luo MC, Zhang LR, Li J, Liu K, Chen ZJ. SCRE serves as a unique synaptonemal complex fastener and is essential for progression of meiosis prophase I in mice. Nucleic Acids Res 2019; 47:5670-5683. [PMID: 30949703 PMCID: PMC6582318 DOI: 10.1093/nar/gkz226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/02/2022] Open
Abstract
Meiosis is a specialized cell division for producing haploid gametes from diploid germ cells. During meiosis, synaptonemal complex (SC) mediates the alignment of homologs and plays essential roles in homologous recombination and therefore in promoting accurate chromosome segregation. In this study, we have identified a novel protein SCRE (synaptonemal complex reinforcing element) as a key molecule in maintaining the integrity of SC during meiosis prophase I in mice. Deletion of Scre (synaptonemal complex reinforcing element) caused germ cell death in both male and female mice, resulting in infertility. Our mechanistic studies showed that the synapses and SCs in Scre knockout mice were unstable due to the lack of the SC reinforcing function of SCRE, which is sparsely localized as discrete foci along the central elements in normal synaptic homologous chromosomes. The lack of Scre leads to meiosis collapse at the late zygotene stage. We further showed that SCRE interacts with synaptonemal complex protein 1 (SYCP1) and synaptonemal complex central element 3 (SYCE3). We conclude that the function of SCRE is to reinforce the integrity of the central elements, thereby stabilizing the SC and ensuring meiotic cell cycle progression. Our study identified SCRE as a novel SC fastener protein that is distinct from other known SC proteins.
Collapse
Affiliation(s)
- Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Miao Li
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Jing Jiang
- Genome Tagging Project (GTP) Center, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Yingying Yin
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Fan Zhang
- Genome Tagging Project (GTP) Center, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Gang Lu
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Meng-Cheng Luo
- Department of Tissue and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, China, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Liang-Ran Zhang
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Jinsong Li
- Genome Tagging Project (GTP) Center, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kui Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Department of Obstetrics and Gynecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Haiyuan First Road 1, Shenzhen 518053, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China; The Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
12
|
Dapper AL, Payseur BA. Molecular evolution of the meiotic recombination pathway in mammals. Evolution 2019; 73:2368-2389. [PMID: 31579931 DOI: 10.1111/evo.13850] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023]
Abstract
Meiotic recombination shapes evolution and helps to ensure proper chromosome segregation in most species that reproduce sexually. Recombination itself evolves, with species showing considerable divergence in the rate of crossing-over. However, the genetic basis of this divergence is poorly understood. Recombination events are produced via a complicated, but increasingly well-described, cellular pathway. We apply a phylogenetic comparative approach to a carefully selected panel of genes involved in the processes leading to crossovers-spanning double-strand break formation, strand invasion, the crossover/non-crossover decision, and resolution-to reconstruct the evolution of the recombination pathway in eutherian mammals and identify components of the pathway likely to contribute to divergence between species. Eleven recombination genes, predominantly involved in the stabilization of homologous pairing and the crossover/non-crossover decision, show evidence of rapid evolution and positive selection across mammals. We highlight TEX11 and associated genes involved in the synaptonemal complex and the early stages of the crossover/non-crossover decision as candidates for the evolution of recombination rate. Evolutionary comparisons to MLH1 count, a surrogate for the number of crossovers, reveal a positive correlation between genome-wide recombination rate and the rate of evolution at TEX11 across the mammalian phylogeny. Our results illustrate the power of viewing the evolution of recombination from a pathway perspective.
Collapse
Affiliation(s)
- Amy L Dapper
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, 53706.,Department of Biological Sciences, Mississippi State University, Mississippi, 39762
| | - Bret A Payseur
- Laboratory of Genetics, University of Wisconsin, Madison, Wisconsin, 53706
| |
Collapse
|
13
|
Quantitative basis of meiotic chromosome synapsis analyzed by electron tomography. Sci Rep 2019; 9:16102. [PMID: 31695079 PMCID: PMC6834585 DOI: 10.1038/s41598-019-52455-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/16/2019] [Indexed: 11/08/2022] Open
Abstract
The synaptonemal complex is a multiprotein complex, which mediates the synapsis and recombination between homologous chromosomes during meiosis. The complex is comprised of two lateral elements and a central element connected by perpendicular transverse filaments (TFs). A 3D model based on actual morphological data of the SC is missing. Here, we applied electron tomography (ET) and manual feature extraction to generate a quantitative 3D model of the murine SC. We quantified the length (90 nm) and width (2 nm) of the TFs. Interestingly, the 80 TFs/µm are distributed asymmetrically in the central region of the SC challenging available models of SC organization. Furthermore, our detailed 3D topological analysis does not support a bilayered organization of the central region as proposed earlier. Overall, our quantitative analysis is relevant to understand the functions and dynamics of the SC and provides the basis for analyzing multiprotein complexes in their morphological context using ET.
Collapse
|
14
|
Molecular Cloning and Characterization of SYCP3 and TSEG2 Genes in the Testicles of Sexually Mature and Immature Yak. Genes (Basel) 2019; 10:genes10110867. [PMID: 31671664 PMCID: PMC6896015 DOI: 10.3390/genes10110867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 11/17/2022] Open
Abstract
Testis-specific genes play an essential part in the centromere union during meiosis in male germ cells, spermatogenesis, and in fertility. Previously, there was no research report available on the expression pattern of SYCP3 and TSEG2 genes in different ages of yaks. Therefore, the current research compared the expression profiling of SYCP3 and TSEG2 genes in testes of yaks. The expression pattern of SYCP3 and TSEG2 mRNA was investigated using qPCR, semi-quantitative PCR, western blot, immunohistochemistry, and molecular bioinformatics. Our findings displayed that SYCP3 and TSEG2 genes were prominently expressed in the testicles of yaks as compared to other organs. On the other hand, the protein encoded by yak SYCP3 contains Cor1/Xlr/Xmr conserved regions, while the protein encoded by yak TSEG2 contains synaptonemal complex central element protein 3. Additionally, multiple alignments sequences indicated that proteins encoded by Datong yak SYCP3 and TSEG2 were highly conserved among mammals. Moreover, western blot analysis specified that the molecular mass of SYCP3 protein was 34-kDa and TSEG2 protein 90-kDa in the yak. Furthermore, the results of immunohistochemistry also revealed the prominent expression of these proteins in the testis of mature yaks, which indicated that SYCP3 and TSEG2 might be essential for spermatogenesis, induction of central element assembly, and homologous recombination.
Collapse
|
15
|
A first genetic portrait of synaptonemal complex variation. PLoS Genet 2019; 15:e1008337. [PMID: 31449519 PMCID: PMC6730954 DOI: 10.1371/journal.pgen.1008337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/06/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022] Open
Abstract
The synaptonemal complex (SC) is a proteinaceous scaffold required for synapsis and recombination between homologous chromosomes during meiosis. Although the SC has been linked to differences in genome-wide crossover rates, the genetic basis of standing variation in SC structure remains unknown. To investigate the possibility that recombination evolves through changes to the SC, we characterized the genetic architecture of SC divergence on two evolutionary timescales. Applying a novel digital image analysis technique to spermatocyte spreads, we measured total SC length in 9,532 spermatocytes from recombinant offspring of wild-derived mouse strains with differences in this fundamental meiotic trait. Using this large dataset, we identified the first known genomic regions involved in the evolution of SC length. Distinct loci affect total SC length divergence between and within subspecies, with the X chromosome contributing to both. Joint genetic analysis of MLH1 foci—immunofluorescent markers of crossovers—from the same spermatocytes revealed that two of the identified loci also confer differences in the genome-wide recombination rate. Causal mediation analysis suggested that one pleiotropic locus acts early in meiosis to designate crossovers prior to SC assembly, whereas a second locus primarily shapes crossover number through its effect on SC length. One genomic interval shapes the relationship between SC length and recombination rate, likely modulating the strength of crossover interference. Our findings pinpoint SC formation as a key step in the evolution of recombination and demonstrate the power of genetic mapping on standing variation in the context of the recombination pathway. During the first stages of meiosis, the chromosome axes are organized along a protein scaffold in preparation for recombination and their subsequent segregation. This scaffold, known as the synaptonemal complex (SC), is critical for the regular progression of recombination. A complex relationship exists between the organization of the SC, the frequency of recombination, and the likelihood of improper chromosome segregation. In this study, we investigate the genetics of synaptonemal complex variation in the house mouse and connect it with variation in the rate of recombination. We found five loci and several compelling candidate genes responsible for the evolution of synaptonemal complex length within and between mouse subspecies. Several of these loci also affect recombination rate, and our joint analyses of the phenotypes suggest an order by which their effects manifest within the recombination pathway. Our results show that evolution of SC length is crucial to recombination rate divergence. Our work here also demonstrates that genetic analysis of additional meiotic phenotypes can help explain the evolution of recombination, a fundamental evolutionary force.
Collapse
|
16
|
Bolcun-Filas E, Handel MA. Meiosis: the chromosomal foundation of reproduction. Biol Reprod 2019; 99:112-126. [PMID: 29385397 DOI: 10.1093/biolre/ioy021] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/23/2018] [Indexed: 12/14/2022] Open
Abstract
Meiosis is the chromosomal foundation of reproduction, with errors in this important process leading to aneuploidy and/or infertility. In this review celebrating the 50th anniversary of the founding of the Society for the Study of Reproduction, the important chromosomal structures and dynamics contributing to genomic integrity across generations are highlighted. Critical unsolved biological problems are identified, and the advances that will lead to their ultimate resolution are predicted.
Collapse
|
17
|
Crossover recombination and synapsis are linked by adjacent regions within the N terminus of the Zip1 synaptonemal complex protein. PLoS Genet 2019; 15:e1008201. [PMID: 31220082 PMCID: PMC6605668 DOI: 10.1371/journal.pgen.1008201] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 07/02/2019] [Accepted: 05/17/2019] [Indexed: 11/19/2022] Open
Abstract
Accurate chromosome segregation during meiosis relies on the prior establishment of at least one crossover recombination event between homologous chromosomes. Most meiotic recombination intermediates that give rise to interhomolog crossovers are embedded within a hallmark chromosomal structure called the synaptonemal complex (SC), but the mechanisms that coordinate the processes of SC assembly (synapsis) and crossover recombination remain poorly understood. Among known structural components of the budding yeast SC, the Zip1 protein is unique for its independent role in promoting crossover recombination; Zip1 is specifically required for the large subset of crossovers that also rely on the meiosis-specific MutSγ complex. Here we report that adjacent regions within Zip1’s N terminus encompass its crossover and synapsis functions. We previously showed that deletion of Zip1 residues 21–163 abolishes tripartite SC assembly and prevents robust SUMOylation of the SC central element component, Ecm11, but allows excess MutSγ crossover recombination. We find the reciprocal phenotype when Zip1 residues 2–9 or 10–14 are deleted; in these mutants SC assembles and Ecm11 is hyperSUMOylated, but MutSγ crossovers are strongly diminished. Interestingly, Zip1 residues 2–9 or 2–14 are required for the normal localization of Zip3, a putative E3 SUMO ligase and pro-MutSγ crossover factor, to Zip1 polycomplex structures and to recombination initiation sites. By contrast, deletion of Zip1 residues 15–20 does not detectably prevent Zip3’s localization at Zip1 polycomplex and supports some MutSγ crossing over but prevents normal SC assembly and Ecm11 SUMOylation. Our results highlight distinct N terminal regions that are differentially critical for Zip1’s roles in crossing over and SC assembly; we speculate that the adjacency of these regions enables Zip1 to serve as a liaison, facilitating crosstalk between the two processes by bringing crossover recombination and synapsis factors within close proximity of one another. Reproductive cell formation relies on a nuclear division cycle called meiosis, wherein two homologous sets of chromosomes are reduced to one. At the crux of (and critically required for) meiotic chromosome segregation is a transient association between homologous chromosomes established by a crossover recombination event. Recombination intermediates embed within a ~100 nm wide proteinaceous structure that connects aligned homologous axes, the synaptonemal complex (SC). While genetic data implicate certain SC structural proteins in crossover formation, it is unclear how such coiled-coil, rod-like proteins carry out their recombination function. Our structure-function analysis of the yeast SC transverse filament protein, Zip1, reveals pro-crossover and pro-synapsis functions that are encompassed by adjacent N terminal regions. We also discovered that the pro-crossover region of Zip1 promotes proper localization of pro-crossover factor and putative SUMO ligase, Zip3, to meiotic recombination sites. Zip3 is known to not only promote crossovers but also to influence the post-translational modification of another SC structural component, Ecm11, which is dispensable for crossovers. Our findings raise the possibility that Zip1’s N terminus acts as a liaison to connect pro-crossover factors (like Zip3) to SC assembly proteins (such as Ecm11) in order to coordinate the two landmark meiotic chromosomal processes.
Collapse
|
18
|
Hesse S, Zelkowski M, Mikhailova EI, Keijzer CJ, Houben A, Schubert V. Ultrastructure and Dynamics of Synaptonemal Complex Components During Meiotic Pairing and Synapsis of Standard (A) and Accessory (B) Rye Chromosomes. FRONTIERS IN PLANT SCIENCE 2019; 10:773. [PMID: 31281324 PMCID: PMC6596450 DOI: 10.3389/fpls.2019.00773] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 05/03/2023]
Abstract
During prophase I a meiosis-specific proteinaceous tripartite structure, the synaptonemal complex (SC), forms a scaffold to connect homologous chromosomes along their lengths. This process, called synapsis, is required in most organisms to promote recombination between homologs facilitating genetic variability and correct chromosome segregations during anaphase I. Recent studies in various organisms ranging from yeast to mammals identified several proteins involved in SC formation. However, the process of SC disassembly remains largely enigmatic. In this study we determined the structural changes during SC formation and disassembly in rye meiocytes containing accessory (B) chromosomes. The use of electron and super-resolution microscopy (3D-SIM) combined with immunohistochemistry and FISH allowed us to monitor the structural changes during prophase I. Visualization of the proteins ASY1, ZYP1, NSE4A, and HEI10 revealed an extensive SC remodeling during prophase I. The ultrastructural investigations of the dynamics of these four proteins showed that the SC disassembly is accompanied by the retraction of the lateral and axial elements from the central region of the SC. In addition, SC fragmentation and the formation of ball-like SC structures occur at late diakinesis. Moreover, we show that the SC composition of rye B chromosomes does not differ from that of the standard (A) chromosome complement. Our ultrastructural investigations indicate that the dynamic behavior of the studied proteins is involved in SC formation and synapsis. In addition, they fulfill also functions during desynapsis and chromosome condensation to realize proper recombination and homolog separation. We propose a model for the homologous chromosome behavior during prophase I based on the observed dynamics of ASY1, ZYP1, NSE4A, and HEI10.
Collapse
Affiliation(s)
- Susann Hesse
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Mateusz Zelkowski
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Elena I. Mikhailova
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Saint-Petersburg State University, Saint-Petersburg, Russia
| | | | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
19
|
Dunne OM, Davies OR. A molecular model for self-assembly of the synaptonemal complex protein SYCE3. J Biol Chem 2019; 294:9260-9275. [PMID: 31023827 PMCID: PMC6556580 DOI: 10.1074/jbc.ra119.008404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/23/2019] [Indexed: 11/19/2022] Open
Abstract
The synaptonemal complex (SC) is a supramolecular protein assembly that mediates homologous chromosome synapsis during meiosis. This zipper-like structure assembles in a continuous manner between homologous chromosome axes, enforcing a 100-nm separation along their entire length and providing the necessary three-dimensional framework for cross-over formation. The mammalian SC comprises eight components-synaptonemal complex protein 1-3 (SYCP1-3), synaptonemal complex central element protein 1-3 (SYCE1-3), testis-expressed 12 (TEX12), and six6 opposite strand transcript 1 (SIX6OS1)-arranged in transverse and longitudinal structures. These largely α-helical, coiled-coil proteins undergo heterotypic interactions, coupled with recursive self-assembly of SYCP1, SYCE2-TEX12, and SYCP2-SYCP3, to achieve the vast supramolecular SC structure. Here, we report a novel self-assembly mechanism of the SC central element component SYCE3, identified through multi-angle light scattering and small-angle X-ray scattering (SAXS) experiments. These analyses revealed that SYCE3 adopts a dimeric four-helical bundle structure that acts as the building block for concentration-dependent self-assembly into a series of discrete higher-order oligomers. We observed that this is achieved through staggered lateral interactions between self-assembly surfaces of SYCE3 dimers and through end-on interactions that likely occur through intermolecular domain swapping between dimer folds. These mechanisms are combined to achieve potentially limitless SYCE3 assembly, particularly favoring formation of dodecamers of three laterally associated end-on tetramers. Our findings extend the family of self-assembling proteins within the SC and reveal additional means for structural stabilization of the SC central element.
Collapse
Affiliation(s)
- Orla M Dunne
- From the Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Owen R Davies
- From the Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
20
|
Sciurano RB, Pigozzi MI, Benavente R. Disassembly of the synaptonemal complex in chicken oocytes analyzed by super-resolution microscopy. Chromosoma 2019; 128:443-451. [PMID: 30793238 DOI: 10.1007/s00412-019-00693-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 12/27/2022]
Abstract
The synaptonemal complex is an evolutionarily conserved, supramolecular structure that holds the homologous chromosomes together during the pachytene stage of the first meiotic prophase. Among vertebrates, synaptonemal complex dynamics has been analyzed in mouse spermatocytes following the assembly of its components from leptotene to pachytene stages. With few exceptions, a detailed study of the disassembly of SCs and the behavior of SC components at recombination sites at the onset of diplotene has not been accomplished. Here, we describe for the first time the progressive disassembly of the SC in chicken oocytes during the initial steps of desynapsis using immunolocalization of specific SC proteins and super-resolution microscopy. We found that transverse filament protein SYCP1 and central element component SYCE3 remain associated with the lateral elements at the beginning of chromosomal axis separation. As the separation between lateral elements widens, these proteins eventually disappear, without any evidence of subsequent association. Our observations support the idea that post-translational modifications of the central region components have a role at the initial phases of the SC disassembly. At the crossover sites, signaled by persistent MLH1 foci, the central region proteins are no longer detected when the SYCP3-positive lateral elements are widely separated. These findings are indicative that SC disassembly follows a general pattern along the desynaptic bivalents. The present work shows that the use of avian oocytes at prophase I provides a valuable model to explore the time course and chromosomal localization of SC proteins and its relationship with local changes along meiotic bivalents.
Collapse
Affiliation(s)
- Roberta B Sciurano
- 2da. U.A. Biología Celular, Histología, Embriología y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
- CONICET, Buenos Aires, Argentina
| | - María Inés Pigozzi
- Instituto de Investigaciones Biomédicas, INBIOMED, CONICET-Universidad de Buenos Aires, Paraguay 2155, piso 10, C1121ABG, Buenos Aires, Argentina.
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany.
| |
Collapse
|
21
|
Dunne OM, Davies OR. Molecular structure of human synaptonemal complex protein SYCE1. Chromosoma 2019; 128:223-236. [PMID: 30607510 PMCID: PMC6823292 DOI: 10.1007/s00412-018-00688-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/07/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
The reduction in chromosome number during meiosis is essential for the production of haploid germ cells and thereby fertility. To achieve this, homologous chromosomes are first synapsed together by a protein assembly, the synaptonemal complex (SC), which permits genetic exchange by crossing over and the subsequent accurate segregation of homologues. The mammalian SC is formed of a zipper-like array of SYCP1 molecules that bind together homologous chromosomes through self-assembly in the midline that is structurally supported by the central element. The SC central element contains five proteins—SYCE1, SYCE3, SIX6OS1, and SYCE2-TEX12—that permit SYCP1 assembly to extend along the chromosome length to achieve full synapsis. Here, we report the structure of human SYCE1 through solution biophysical methods including multi-angle light scattering and small-angle X-ray scattering. The structural core of SYCE1 is formed by amino acids 25–179, within the N-terminal half of the protein, which mediates SYCE1 dimerization. This α-helical core adopts a curved coiled-coil structure of 20-nm length in which the two chains are arranged in an anti-parallel configuration. This structure is retained within full-length SYCE1, in which long C-termini adopt extended conformations to achieve an elongated molecule of over 50 nm in length. The SYCE1 structure is compatible with it functioning as a physical strut that tethers other components to achieve structural stability of the SC central element.
Collapse
Affiliation(s)
- Orla M Dunne
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
22
|
Dunce JM, Dunne OM, Ratcliff M, Millán C, Madgwick S, Usón I, Davies OR. Structural basis of meiotic chromosome synapsis through SYCP1 self-assembly. Nat Struct Mol Biol 2018; 25:557-569. [PMID: 29915389 DOI: 10.1038/s41594-018-0078-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/25/2018] [Indexed: 11/10/2022]
Abstract
Meiotic chromosomes adopt unique structures in which linear arrays of chromatin loops are bound together in homologous chromosome pairs by a supramolecular protein assembly, the synaptonemal complex. This three-dimensional scaffold provides the essential structural framework for genetic exchange by crossing over and subsequent homolog segregation. The core architecture of the synaptonemal complex is provided by SYCP1. Here we report the structure and self-assembly mechanism of human SYCP1 through X-ray crystallographic and biophysical studies. SYCP1 has an obligate tetrameric structure in which an N-terminal four-helical bundle bifurcates into two elongated C-terminal dimeric coiled-coils. This building block assembles into a zipper-like lattice through two self-assembly sites. N-terminal sites undergo cooperative head-to-head assembly in the midline, while C-terminal sites interact back to back on the chromosome axis. Our work reveals the underlying molecular structure of the synaptonemal complex in which SYCP1 self-assembly generates a supramolecular lattice that mediates meiotic chromosome synapsis.
Collapse
Affiliation(s)
- James M Dunce
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Orla M Dunne
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew Ratcliff
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Claudia Millán
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Suzanne Madgwick
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Isabel Usón
- Crystallographic Methods, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain.,ICREA, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
23
|
Agostinho A, Kouznetsova A, Hernández-Hernández A, Bernhem K, Blom H, Brismar H, Höög C. Sexual dimorphism in the width of the mouse synaptonemal complex. J Cell Sci 2018; 131:jcs.212548. [PMID: 29420300 DOI: 10.1242/jcs.212548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
Sexual dimorphism has been used to describe morphological differences between the sexes, but can be extended to any biologically related process that varies between males and females. The synaptonemal complex (SC) is a tripartite structure that connects homologous chromosomes in meiosis. Here, aided by super-resolution microscopy techniques, we show that the SC is subject to sexual dimorphism, in mouse germ cells. We have identified a significantly narrower SC in oocytes and have established that this difference does not arise from a different organization of the lateral elements nor from a different isoform of transverse filament protein SYCP1. Instead, we provide evidence for the existence of a narrower central element and a different integration site for the C-termini of SYCP1, in females. In addition to these female-specific features, we speculate that post-translation modifications affecting the SYCP1 coiled-coil region could render a more compact conformation, thus contributing to the narrower SC observed in females.
Collapse
Affiliation(s)
- Ana Agostinho
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Abrahan Hernández-Hernández
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, 06720 México, D.F., Mexico
| | - Kristoffer Bernhem
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Hans Blom
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| |
Collapse
|
24
|
Gao J, Colaiácovo MP. Zipping and Unzipping: Protein Modifications Regulating Synaptonemal Complex Dynamics. Trends Genet 2017; 34:232-245. [PMID: 29290403 DOI: 10.1016/j.tig.2017.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022]
Abstract
The proteinaceous zipper-like structure known as the synaptonemal complex (SC), which forms between pairs of homologous chromosomes during meiosis from yeast to humans, plays important roles in promoting interhomolog crossover formation, regulating cessation of DNA double-strand break (DSB) formation following crossover designation, and ensuring accurate meiotic chromosome segregation. Recent studies are starting to reveal critical roles for different protein modifications in regulating SC dynamics. Protein SUMOylation, N-terminal acetylation, and phosphorylation have been shown to be essential for the regulated assembly and disassembly of the SC. Moreover, phosphorylation of specific SC components has been found to link changes in SC dynamics with meiotic recombination. This review highlights the latest findings on how protein modifications regulate SC dynamics and functions.
Collapse
Affiliation(s)
- Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
25
|
Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex. Proc Natl Acad Sci U S A 2017; 114:E6857-E6866. [PMID: 28760978 DOI: 10.1073/pnas.1705623114] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The synaptonemal complex (SC), a structure highly conserved from yeast to mammals, assembles between homologous chromosomes and is essential for accurate chromosome segregation at the first meiotic division. In Drosophila melanogaster, many SC components and their general positions within the complex have been dissected through a combination of genetic analyses, superresolution microscopy, and electron microscopy. Although these studies provide a 2D understanding of SC structure in Drosophila, the inability to optically resolve the minute distances between proteins in the complex has precluded its 3D characterization. A recently described technology termed expansion microscopy (ExM) uniformly increases the size of a biological sample, thereby circumventing the limits of optical resolution. By adapting the ExM protocol to render it compatible with structured illumination microscopy, we can examine the 3D organization of several known Drosophila SC components. These data provide evidence that two layers of SC are assembled. We further speculate that each SC layer may connect two nonsister chromatids, and present a 3D model of the Drosophila SC based on these findings.
Collapse
|
26
|
Gómez-H L, Felipe-Medina N, Sánchez-Martín M, Davies OR, Ramos I, García-Tuñón I, de Rooij DG, Dereli I, Tóth A, Barbero JL, Benavente R, Llano E, Pendas AM. C14ORF39/SIX6OS1 is a constituent of the synaptonemal complex and is essential for mouse fertility. Nat Commun 2016; 7:13298. [PMID: 27796301 PMCID: PMC5095591 DOI: 10.1038/ncomms13298] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022] Open
Abstract
Meiotic recombination generates crossovers between homologous chromosomes that are essential for genome haploidization. The synaptonemal complex is a ‘zipper'-like protein assembly that synapses homologue pairs together and provides the structural framework for processing recombination sites into crossovers. Humans show individual differences in the number of crossovers generated across the genome. Recently, an anonymous gene variant in C14ORF39/SIX6OS1 was identified that influences the recombination rate in humans. Here we show that C14ORF39/SIX6OS1 encodes a component of the central element of the synaptonemal complex. Yeast two-hybrid analysis reveals that SIX6OS1 interacts with the well-established protein synaptonemal complex central element 1 (SYCE1). Mice lacking SIX6OS1 are defective in chromosome synapsis at meiotic prophase I, which provokes an arrest at the pachytene-like stage and results in infertility. In accordance with its role as a modifier of the human recombination rate, SIX6OS1 is essential for the appropriate processing of intermediate recombination nodules before crossover formation. The synaptonemal complex is a meiosis-specific proteinaceous structure that supports homologous chromosome pairs during meiosis. Here, the authors show that SIX6OS1 (of previously unknown function) is part of the synaptonemal complex central element and upon deletion in mice, causes defective chromosome synapsis and infertility.
Collapse
Affiliation(s)
- Laura Gómez-H
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Natalia Felipe-Medina
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Manuel Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain.,Transgenic Facility, Nucleus platform, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Isabel Ramos
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Ignacio García-Tuñón
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3584CM Utrecht, The Netherlands
| | - Ihsan Dereli
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - Attila Tóth
- Institute of Physiological Chemistry, Medical Faculty of TU Dresden, Fiedlerstrasse 42, 01307 Dresden, Germany
| | - José Luis Barbero
- Departamento de Biología Celular y Molecular, Centro de Investigaciones Biológicas (CSIC), Madrid 28040, Spain
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Elena Llano
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain.,Departamento de Fisiología y Farmacología, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Alberto M Pendas
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), 37007 Salamanca, Spain
| |
Collapse
|