1
|
Jastrząb P, Car H, Wielgat P. Cell membrane sialome machinery and regulation of receptor tyrosine kinases in gliomas: The functional relevance and therapeutic perspectives. Biomed Pharmacother 2025; 184:117921. [PMID: 39986236 DOI: 10.1016/j.biopha.2025.117921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025] Open
Abstract
Gliomas are the most common primary brain tumors characterized by high aggressive potential, poor therapeutic response, and significantly reduced overall patient survival. Despite significant progress in the diagnosis and therapy of cancer, gliomas remain a clinical challenge due to the high molecular and cellular heterogeneity, which provides for multiple mechanisms of chemoresistance and adaptive plasticity. A better understanding of cellular regulatory mechanisms of intracellular signal transduction enables the development of targeted drug therapies and clinical application. The increasing evidence confirms the role of sialoglycans in the processing of cell membrane receptors via altered dimerization, activation, and autophosphorylation, which results in changes in cellular signaling and promotes cancer progression. Hence, the modified sialylation patterns, as a hallmark of cancer, have been described as modulators of chemotherapy effectiveness and drug resistance. The receptor tyrosine kinases (RTKs)-mediated signaling in glial tumors control cell growth, survival, migration, and angiogenesis. Here, we focus on the engagement of the sialome machinery in RTKs processing in gliomas and its importance as a suitable therapeutic target. The analysis of the sialylation pattern and its impact on the activity of growth factor receptors provides valuable insights into our understanding of the molecular and cellular complexity of glial tumors. This highlights the novel treatment approaches that could improve prognosis and patients' overall survival.
Collapse
Affiliation(s)
- Patrycja Jastrząb
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland
| | - Halina Car
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland; Department of Experimental Pharmacology, Medical University of Bialystok, ul. Szpitalna 37, Bialystok 15-295, Poland
| | - Przemyslaw Wielgat
- Department of Clinical Pharmacology, Medical University of Bialystok, ul. Waszyngtona 15A, Bialystok 15-274, Poland.
| |
Collapse
|
2
|
Wåhlén E, Lennartsson J, Heldin J. Depletion of the Rho GTPases Cdc42, Rac1 or RhoA reduces PDGF-induced STAT1 and STAT3 signaling. Biochem Biophys Rep 2024; 40:101828. [PMID: 39380576 PMCID: PMC11460520 DOI: 10.1016/j.bbrep.2024.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
This study investigates the role of Rho GTPases, specifically Cdc42, Rac1, and RhoA, in platelet-derived growth factor receptors (PDGFRα and PDGFRβ) signaling. Signal transducer and activator of transcription (STAT) proteins, essential for cellular processes such as proliferation and immune response, are activated downstream of PDGFRs. Dysregulation of these pathways is linked to various diseases, including cancer. The current study examines the effects of Rho GTPase depletion on PDGFR phosphorylation, STAT protein stability, and downstream signaling. Results indicate that depletion of Cdc42, Rac1, or RhoA impairs PDGFR phosphorylation and reduces STAT1 and STAT3 signaling, without significantly affecting AKT and ERK1/2 pathways. The findings highlight the critical regulatory roles of Rho GTPases in PDGFR-mediated STAT signaling.
Collapse
Affiliation(s)
- Erik Wåhlén
- Department of Pharmaceutical Biosciences, Uppsala University, Husargatan 3, SE-75124, Uppsala, Sweden
| | | | | |
Collapse
|
3
|
Shan F, Ye J, Xu X, Liang C, Zhao Y, Wang J, Ouyang F, Li J, Lv J, Wu Z, Yao F, Jing J, Zheng M. Galectin-3 inhibition reduces fibrotic scarring and promotes functional recovery after spinal cord injury in mice. Cell Biosci 2024; 14:128. [PMID: 39407295 PMCID: PMC11481377 DOI: 10.1186/s13578-024-01310-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND In the context of spinal cord injury (SCI), infiltrating macrophages assume prominence as the primary inflammatory cells within the lesion core, where the fibrotic scar is predominantly orchestrated by platelet-derived growth factor receptor beta (PDGFRβ+) fibroblasts. Galectin-3, a carbohydrate-binding protein of the lectin family, is notably expressed by infiltrating hematogenous macrophages and mediates cell-cell interactions. Although Galectin-3 has been shown to contribute to the endocytic internalization of PDGFRβ in vitro, its specific role in driving fibrotic scar formation after SCI has not been determined. METHODS We employed a crush mid-thoracic (T10) SCI mouse model. Galectin-3 inhibition after SCI was achieved through intrathecal injection of the Galectin-3 inhibitor TD139 or in situ injection of lentivirus carrying Galectin-3-shRNA (Lv-shLgals3). A fibrosis-induced mice model was established by in situ injection of platelet-derived growth factor D (PDGFD) or recombinant Galectin-3 (rGalectin-3) into the uninjured spinal cord. Galectin-3 internalization experiments were conducted in PDGFRβ+ fibroblasts cocultured in conditioned medium in vitro. RESULTS We identified the spatial and temporal correlation between macrophage-derived Galectin-3 and PDGFRβ in fibroblasts from 3 to 56 days post-injury (dpi). Administration of TD139 via intrathecal injection or in situ injection of Lv-shLgals3 effectively mitigated fibrotic scar formation and extracellular matrix deposition within the injured spinal cord, leading to better neurological outcomes and function recovery after SCI. Furthermore, the fibrosis-inducing effects of exogenous PDGFD in the uninjured spinal cord could be blocked by TD139. In vitro experiments further demonstrated the ability of PDGFRβ+ fibroblasts to internalize Galectin-3, with Galectin-3 inhibition resulting in reduced PDGFRβ expression. CONCLUSIONS Our finding underscores the pivotal role of macrophage-derived Galectin-3 in modulating the sustained internalized activation of PDGFRβ within fibroblasts, providing a novel mechanistic insight into fibrotic scarring post-SCI.
Collapse
Affiliation(s)
- Fangli Shan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianan Ye
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Department of Orthopaedics, Suzhou 100 Hospital, Suzhou, 215000, China
| | - Xinzhong Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Chao Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yuanzhe Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jingwen Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fangru Ouyang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianjian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jianwei Lv
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhonghan Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Fei Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Juehua Jing
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Meige Zheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
4
|
Rubin Sander M, Tsiatsiou AK, Wang K, Papadopoulos N, Rorsman C, Olsson F, Heldin J, Söderberg O, Heldin CH, Lennartsson J. PDGF-induced internalisation promotes proteolytic cleavage of PDGFRβ in mesenchymal cells. Growth Factors 2024; 42:147-160. [PMID: 39387439 DOI: 10.1080/08977194.2024.2413623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
Platelet-derived growth factor (PDGF)-induced signalling via PDGF receptor β (PDGFRβ) leads to activation of downstream signalling pathways which regulate multiple cellular responses. It is unclear how PDGFRβ is degraded; both lysosomal and proteasomal degradation have been suggested. In this study, we have characterised the proteolytic cleavage of ligand-activated PDGFRβ, which results in two fragments: a larger fragment containing the extracellular domain, the transmembrane segment, and a part of the intracellular juxtamembrane region with a molecular mass of ∼130 kDa, and an intracellular ∼70 kDa fragment released into the cytoplasm. The proteolytic processing did not take place without internalisation of PDGFRβ. In addition, chelation of intracellular Ca2+ inhibited proteolytic processing. Inhibition of the proteasome affected signal transduction by increasing the phosphorylation of PDGFRβ, PLCγ, and STAT3 while reducing it on Erk1/2 and not affecting Akt. The proteolytic cleavage was observed in fibroblasts or cells that had undergone epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Agni Karolina Tsiatsiou
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Kehuan Wang
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Natalia Papadopoulos
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Charlotte Rorsman
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Frida Olsson
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Johan Heldin
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, SciLifeLab, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Center, Uppsala, Sweden
| |
Collapse
|
5
|
Bizzotto M, Ostermaier A, Liesenhoff C, Ma W, Geerlof A, Priglinger SG, Priglinger CS, Ohlmann A. Galectin-1 Attenuates PDGF-Mediated AKT Signaling in Retinal Pigment Epithelial Cells. Int J Mol Sci 2024; 25:9267. [PMID: 39273216 PMCID: PMC11395115 DOI: 10.3390/ijms25179267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Galectins have the potential to interact with transmembrane glycoproteins to modulate their functions. Since galectin-1 interacts with PDGF-Rβ, we analyzed the effect of galectin-1 on PDGF-BB-mediated AKT signaling in primary human retinal pigment epithelial (RPE) cells and galectin-1-deficient immortalized human RPE cells (LGALS1-/-/ARPE-19) following incubation with PDGF-BB and galectin-1. Expression and localization of galectin-1, PDGF-Rβ and pAKT were investigated using western blot analysis and immunohistochemical staining. Cell proliferation of RPE cells was analyzed using BrdU ELISA. Following treatment of human RPE cells with human recombinant (hr)-galectin-1 and PDGF-BB, an intense clustering of PDGF-Rβ and colocalization with galectin-1 were detected. By Western blot analysis and immunocytochemistry of human RPE cells, an enhanced PDGF-BB-mediated expression of pAKT was observed, which was substantially reduced by additional incubation with hr-galectin-1. Vice versa, in LGALS1-/-/ARPE-19 cells, the PDGF-BB-induced pAKT signal was enhanced compared to wild-type cells. Furthermore, a decreased expression of PDGF-Rβ in human RPE cells was observed after treatment with PDGF-BB and hr-galectin-1, while in untreated LGALS1-/-/ARPE-19 cells, its constitutive expression was increased. In addition, after treatment of RPE cells with hr-galectin-1, the PDGF-BB-induced proliferation was markedly reduced. In summary, galectin-1 has the distinct potential to reduce PDGF-mediated pAKT signaling and proliferation in human RPE cells-an effect that is most likely facilitated via a decreased expression of PDGF-Rβ.
Collapse
Affiliation(s)
- Martina Bizzotto
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Annabella Ostermaier
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Caspar Liesenhoff
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Wenxiu Ma
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Arie Geerlof
- Protein Expression and Purification Facility, Institute of Structural Biology, Helmholtz Center Munich for Environmental Health, 85764 Neuherberg, Germany;
| | - Siegfried G. Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Claudia S. Priglinger
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| | - Andreas Ohlmann
- Department of Ophthalmology, University Hospital, LMU Munich, Mathildenstrasse 8, 80336 Munich, Germany; (M.B.); (A.O.); (C.L.); (S.G.P.); (C.S.P.)
| |
Collapse
|
6
|
Wang S, Liu X, Meng Z, Feng Q, Lin Y, Niu H, Yu C, Zong Y, Guo L, Yang W, Ma Y, Zhang W, Li C, Yang Y, Wang W, Gao X, Hu Y, Liu C, Nie L. DCBLD2 regulates vascular hyperplasia by modulating the platelet derived growth factor receptor-β endocytosis through Caveolin-1 in vascular smooth muscle cells. FASEB J 2022; 36:e22488. [PMID: 35929441 DOI: 10.1096/fj.202200156rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/11/2022]
Abstract
DCBLD2 is a neuropilin-like transmembrane protein that is up-regulated during arterial remodeling in humans, rats, and mice. Activation of PDGFR-β via PDGF triggers receptor phosphorylation and endocytosis. Subsequent activation of downstream signals leads to the stimulation of phenotypic conversion of VSMCs and arterial wall proliferation, which are common pathological changes in vascular remodeling diseases such as atherosclerosis, hypertension, and restenosis after angioplasty. In this study, we hypothesized that DCBLD2 regulates neointimal hyperplasia through the regulation of PDGFR-β endocytosis of vascular smooth muscle cells (VSMCs) through Caveolin-1 (Cav-1). Compared with wild-type (WT) mice or control littermate mice, the germline or VSMC conditional deletion of the Dcbld2 gene resulted in a significant increase in the thickness of the tunica media in the carotid artery ligation. To elucidate the underlying molecular mechanisms, VSMCs were isolated from the aorta of WT or Dcbld2-/- mice and were stimulated with PDGF. Western blotting assays demonstrated that Dcbld2 deletion increased the PDGF signaling pathway. Biotin labeling test and membrane-cytosol separation test showed that after DCBLD2 was knocked down or knocked out, the level of PDGFR-β on the cell membrane was significantly reduced, while the amount of PDGFR-β in the cytoplasm increased. Co-immunoprecipitation experiments showed that after DCBLD2 gene knock-out, the binding of PDGFR-β and Cav-1 in the cytoplasm significantly increased. Double immunofluorescence staining showed that PDGFR-β accumulated Cav-1/lysosomes earlier than for control cells, which indicated that DCBLD2 gene knock-down or deletion accelerated the endocytosis of PDGF-induced PDGFR-β in VSMCs. In order to confirm that DCBLD2 affects the relationship between Cav-1 and PDGFR-β, proteins extracted from VSMCs cultured in vitro were derived from WT and Dcbld2-/- mice, whereas co-immunoprecipitation suggested that the combination of DCBLD2 and Cav-1 reduced the bond between Cav-1 and PDGFR-β, and DCBLD2 knock-out was able to enhance the interaction between Cav-1 and PDGFR-β. Therefore, the current results suggest that DCBLD2 may inhibit the caveolae-dependent endocytosis of PDGFR-β by anchoring the receptor on the cell membrane. Based on its ability to regulate the activity of PDGFR-β, DCBLD2 may be a novel therapeutic target for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xiaoning Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Zeqi Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Qi Feng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanling Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Honglin Niu
- School of Nursing, Hebei Medical University, Shijiazhuang, China
| | - Chao Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yanhong Zong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Lingling Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Weiwei Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yuehua Ma
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Wenjun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chenyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yunran Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Wenjuan Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xurui Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yaxin Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Chao Liu
- Department of Laboratory Animal Science and Key Laboratory of Animal Science of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Lei Nie
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
- Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
7
|
Rogers MA, Campaña MB, Long R, Fantauzzo KA. PDGFR dimer-specific activation, trafficking and downstream signaling dynamics. J Cell Sci 2022; 135:jcs259686. [PMID: 35946433 PMCID: PMC9482349 DOI: 10.1242/jcs.259686] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Signaling through the platelet-derived growth factor receptors (PDGFRs) plays a critical role in multiple cellular processes during development. The two PDGFRs, PDGFRα and PDGFRβ, dimerize to form homodimers and/or heterodimers. Here, we overcome previous limitations in studying PDGFR dimer-specific dynamics by generating cell lines stably expressing C-terminal fusions of each PDGFR with bimolecular fluorescence complementation (BiFC) fragments corresponding to the N-terminal or C-terminal regions of the Venus fluorescent protein. We find that PDGFRβ receptors homodimerize more quickly than PDGFRα receptors in response to PDGF ligand, with increased levels of autophosphorylation. Furthermore, we demonstrate that PDGFRα homodimers are trafficked and degraded more quickly, whereas PDGFRβ homodimers are more likely to be recycled back to the cell membrane. We show that PDGFRβ homodimer activation results in a greater amplitude of phospho-ERK1/2 and phospho-AKT signaling, as well as increased proliferation and migration. Finally, we demonstrate that inhibition of clathrin-mediated endocytosis leads to changes in cellular trafficking and downstream signaling, particularly for PDGFRα homodimers. Collectively, our findings provide significant insight into how biological specificity is introduced to generate unique responses downstream of PDGFR engagement. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | - Katherine A. Fantauzzo
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Gundu C, Arruri VK, Yadav P, Navik U, Kumar A, Amalkar VS, Vikram A, Gaddam RR. Dynamin-Independent Mechanisms of Endocytosis and Receptor Trafficking. Cells 2022; 11:cells11162557. [PMID: 36010634 PMCID: PMC9406725 DOI: 10.3390/cells11162557] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a “molecular scissor” to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.
Collapse
Affiliation(s)
- Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vijay Kumar Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata 700054, West Bengal, India
| | - Veda Sudhir Amalkar
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
9
|
Funkhouser AT, Strigenz AM, Blair BB, Miller AP, Shealy JC, Ewing JA, Martin JC, Funk CR, Edenfield WJ, Blenda AV. KIT Mutations Correlate with Higher Galectin Levels and Brain Metastasis in Breast and Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14112781. [PMID: 35681762 PMCID: PMC9179545 DOI: 10.3390/cancers14112781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
To investigate a potential role for galectins as biomarkers that enable diagnosis or prognostication of breast or non-small cell lung cancer, the serum levels of galectins -1, -3, -7, -8, and -9 of cancer patients determined by ELISA assays were compared to the mutation status of 50 known cancer-critical genes, which were determined using multiplex PCR in tumors of the same patients. Mutations in the KIT proto-oncogene, which codes for the c-Kit protein, a receptor tyrosine kinase, correlated with higher levels of galectins -1, -3, -8, and -9 in breast cancer patients and galectin-1 in non-small cell lung cancer patients. Mutations in the KIT gene were more likely found in brain metastases from both of these primary cancers. The most common KIT mutation in our panel was p.M541L, a missense mutation in the transmembrane domain of the c-Kit protein. These results demonstrate an association between KIT oncogenic signaling and elevated serum galectins in patients with metastatic disease. Changes in protein trafficking and the glycocalyx composition of cancer cells may explain the observed alterations in galectin expression. This study can be useful for the targeted selection of receptor tyrosine kinase and galectin inhibitor anti-cancer treatments.
Collapse
Affiliation(s)
- Avery T Funkhouser
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Alexander M Strigenz
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Bailey B Blair
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Andrew P Miller
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Jonah C Shealy
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
| | - Joseph A Ewing
- Data Support Core, Prisma Health, Greenville, SC 29605, USA
| | - Julie C Martin
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC 29605, USA
| | - Christopher R Funk
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Anna V Blenda
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, SC 29605, USA
- Prisma Health Cancer Institute, Prisma Health, Greenville, SC 29605, USA
| |
Collapse
|
10
|
Endocytic trafficking of GAS6-AXL complexes is associated with sustained AKT activation. Cell Mol Life Sci 2022; 79:316. [PMID: 35622156 PMCID: PMC9135597 DOI: 10.1007/s00018-022-04312-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022]
Abstract
AXL, a TAM receptor tyrosine kinase (RTK), and its ligand growth arrest-specific 6 (GAS6) are implicated in cancer metastasis and drug resistance, and cellular entry of viruses. Given this, AXL is an attractive therapeutic target, and its inhibitors are being tested in cancer and COVID-19 clinical trials. Still, astonishingly little is known about intracellular mechanisms that control its function. Here, we characterized endocytosis of AXL, a process known to regulate intracellular functions of RTKs. Consistent with the notion that AXL is a primary receptor for GAS6, its depletion was sufficient to block GAS6 internalization. We discovered that upon receptor ligation, GAS6–AXL complexes were rapidly internalized via several endocytic pathways including both clathrin-mediated and clathrin-independent routes, among the latter the CLIC/GEEC pathway and macropinocytosis. The internalization of AXL was strictly dependent on its kinase activity. In comparison to other RTKs, AXL was endocytosed faster and the majority of the internalized receptor was not degraded but rather recycled via SNX1-positive endosomes. This trafficking pattern coincided with sustained AKT activation upon GAS6 stimulation. Specifically, reduced internalization of GAS6–AXL upon the CLIC/GEEC downregulation intensified, whereas impaired recycling due to depletion of SNX1 and SNX2 attenuated AKT signaling. Altogether, our data uncover the coupling between AXL endocytic trafficking and AKT signaling upon GAS6 stimulation. Moreover, our study provides a rationale for pharmacological inhibition of AXL in antiviral therapy as viruses utilize GAS6–AXL-triggered endocytosis to enter cells.
Collapse
|
11
|
Characterisation of PDGF-BB:PDGFRβ signalling pathways in human brain pericytes: evidence of disruption in Alzheimer's disease. Commun Biol 2022; 5:235. [PMID: 35301433 PMCID: PMC8931009 DOI: 10.1038/s42003-022-03180-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/17/2022] [Indexed: 01/03/2023] Open
Abstract
Platelet-derived growth factor-BB (PDGF-BB):PDGF receptor-β (PDGFRβ) signalling in brain pericytes is critical to the development, maintenance and function of a healthy blood-brain barrier (BBB). Furthermore, BBB impairment and pericyte loss in Alzheimer’s disease (AD) is well documented. We found that PDGF-BB:PDGFRβ signalling components were altered in human AD brains, with a marked reduction in vascular PDGFB. We hypothesised that reduced PDGF-BB:PDGFRβ signalling in pericytes may impact on the BBB. We therefore tested the effects of PDGF-BB on primary human brain pericytes in vitro to define pathways related to BBB function. Using pharmacological inhibitors, we dissected distinct aspects of the PDGF-BB response that are controlled by extracellular signal-regulated kinase (ERK) and Akt pathways. PDGF-BB promotes the proliferation of pericytes and protection from apoptosis through ERK signalling. In contrast, PDGF-BB:PDGFRβ signalling through Akt augments pericyte-derived inflammatory secretions. It may therefore be possible to supplement PDGF-BB signalling to stabilise the cerebrovasculature in AD. Smyth et al. use tissue microarrays from Alzheimer’s disease (AD) patient brains to show that PDGF-BB:PDGFRβ signalling components are reduced in AD. They then use primary human brain pericytes to elucidate a pathway by which PDGF-BB:PDGFRβ signalling in brain pericytes is disrupted in AD, thus impairing the blood brain barrier.
Collapse
|
12
|
Sarri N, Wang K, Tsioumpekou M, Castillejo-López C, Lennartsson J, Heldin CH, Papadopoulos N. Deubiquitinating enzymes USP4 and USP17 finetune the trafficking of PDGFRβ and affect PDGF-BB-induced STAT3 signalling. Cell Mol Life Sci 2022; 79:85. [PMID: 35064336 PMCID: PMC8782881 DOI: 10.1007/s00018-022-04128-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/10/2021] [Accepted: 12/29/2021] [Indexed: 12/24/2022]
Abstract
Interaction of platelet-derived growth factor (PDGF) isoforms with their receptors results in activation and internalization of receptors, with a concomitant activation of downstream signalling pathways. Ubiquitination of PDGFRs serves as a mark to direct the internalization and sorting of the receptors. By overexpressing a panel of deubiquitinating enzymes (DUBs), we found that USP17 and USP4 efficiently deubiquitinate PDGF receptor β (PDGFRβ) and are able to remove both Lys63 and Lys48-linked polyubiquitin chains from the receptor. Deubiquitination of PDGFRβ did not affect its stability, but regulated the timing of its trafficking, whereby USP17 prolonged the presence of the receptor at the cell surface, while USP4 affected the speed of trafficking towards early endosomes. Induction of each of the DUBs in BJhTERT fibroblasts and U2OS osteosarcoma cells led to prolonged and/or shifted activation of STAT3 in response to PDGF-BB stimulation, which in turn led to increased transcriptional activity of STAT3. Induction of USP17 promoted acute upregulation of the mRNA expression of STAT3-inducible genes STAT3, CSF1, junB and c-myc, while causing long-term changes in the expression of myc and CDKN1A. Deletion of USP17 was lethal to fibroblasts, while deletion of USP4 led to a decreased proliferative response to stimulation by PDGF-BB. Thus, USP17- and USP4-mediated changes in ubiquitination of PDFGRβ lead to dysregulated signalling and transcription downstream of STAT3, resulting in defects in the control of cell proliferation.
Collapse
Affiliation(s)
- Niki Sarri
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Kehuan Wang
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Maria Tsioumpekou
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | | | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| | - Natalia Papadopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 75123 Uppsala, Sweden
| |
Collapse
|
13
|
Jarahian M, Marofi F, Maashi MS, Ghaebi M, Khezri A, Berger MR. Re-Expression of Poly/Oligo-Sialylated Adhesion Molecules on the Surface of Tumor Cells Disrupts Their Interaction with Immune-Effector Cells and Contributes to Pathophysiological Immune Escape. Cancers (Basel) 2021; 13:5203. [PMID: 34680351 PMCID: PMC8534074 DOI: 10.3390/cancers13205203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022] Open
Abstract
Glycans linked to surface proteins are the most complex biological macromolecules that play an active role in various cellular mechanisms. This diversity is the basis of cell-cell interaction and communication, cell growth, cell migration, as well as co-stimulatory or inhibitory signaling. Our review describes the importance of neuraminic acid and its derivatives as recognition elements, which are located at the outermost positions of carbohydrate chains linked to specific glycoproteins or glycolipids. Tumor cells, especially from solid tumors, mask themselves by re-expression of hypersialylated neural cell adhesion molecule (NCAM), neuropilin-2 (NRP-2), or synaptic cell adhesion molecule 1 (SynCAM 1) in order to protect themselves against the cytotoxic attack of the also highly sialylated immune effector cells. More particularly, we focus on α-2,8-linked polysialic acid chains, which characterize carrier glycoproteins such as NCAM, NRP-2, or SynCam-1. This characteristic property correlates with an aggressive clinical phenotype and endows them with multiple roles in biological processes that underlie all steps of cancer progression, including regulation of cell-cell and/or cell-extracellular matrix interactions, as well as increased proliferation, migration, reduced apoptosis rate of tumor cells, angiogenesis, and metastasis. Specifically, re-expression of poly/oligo-sialylated adhesion molecules on the surface of tumor cells disrupts their interaction with immune-effector cells and contributes to pathophysiological immune escape. Further, sialylated glycoproteins induce immunoregulatory cytokines and growth factors through interactions with sialic acid-binding immunoglobulin-like lectins. We describe the processes, which modulate the interaction between sialylated carrier glycoproteins and their ligands, and illustrate that sialic acids could be targets of novel therapeutic strategies for treatment of cancer and immune diseases.
Collapse
Affiliation(s)
- Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran;
| | - Marwah Suliman Maashi
- Stem Cells and Regenerative Medicine Unit at King Fahad Medical Research Centre, Jeddah 11211, Saudi Arabia;
| | - Mahnaz Ghaebi
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956184, Iran;
| | - Abdolrahman Khezri
- Department of Biotechnology, Inland Norway University of Applied Sciences, 2418 Hamar, Norway;
| | - Martin R. Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit Heidelberg, 69120 Heidelberg, Germany;
| |
Collapse
|
14
|
Sigismund S, Lanzetti L, Scita G, Di Fiore PP. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat Rev Mol Cell Biol 2021; 22:625-643. [PMID: 34075221 DOI: 10.1038/s41580-021-00375-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 02/07/2023]
Abstract
Endocytosis allows cells to transport particles and molecules across the plasma membrane. In addition, it is involved in the termination of signalling through receptor downmodulation and degradation. This traditional outlook has been substantially modified in recent years by discoveries that endocytosis and subsequent trafficking routes have a profound impact on the positive regulation and propagation of signals, being key for the spatiotemporal regulation of signal transmission in cells. Accordingly, endocytosis and membrane trafficking regulate virtually every aspect of cell physiology and are frequently subverted in pathological conditions. Two key aspects of endocytic control over signalling are coming into focus: context-dependency and long-range effects. First, endocytic-regulated outputs are not stereotyped but heavily dependent on the cell-specific regulation of endocytic networks. Second, endocytic regulation has an impact not only on individual cells but also on the behaviour of cellular collectives. Herein, we will discuss recent advancements in these areas, highlighting how endocytic trafficking impacts complex cell properties, including cell polarity and collective cell migration, and the relevance of these mechanisms to disease, in particular cancer.
Collapse
Affiliation(s)
- Sara Sigismund
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Letizia Lanzetti
- Department of Oncology, University of Torino Medical School, Torino, Italy.,Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Torino, Italy
| | - Giorgio Scita
- Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.,IFOM, the FIRC Institute of Molecular Oncology, Milan, Italy
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Haemato-Oncology, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
15
|
Schmidt-Arras D, Rose-John S. Endosomes as Signaling Platforms for IL-6 Family Cytokine Receptors. Front Cell Dev Biol 2021; 9:688314. [PMID: 34141712 PMCID: PMC8204807 DOI: 10.3389/fcell.2021.688314] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Interleukin-6 (IL-6) is the name-giving cytokine of a family of eleven members, including IL-6, CNTF, LIF, and IL-27. IL-6 was first recognized as a B-cell stimulating factor but we now know that the cytokine plays a pivotal role in the orchestration of inflammatory processes as well as in inflammation associated cancer. Moreover, IL-6 is involved in metabolic regulation and it has been shown to be involved in major neural activities such as neuroprotection, which can help to repair and to reduce brain damage. Receptor complexes of all members formed at the plasma membrane contain one or two molecules of the signaling receptor subunit GP130 and the mechanisms of signal transduction are well understood. IL-6 type cytokines can also signal from endomembranes, in particular the endosome, and situations have been reported in which endocytosis of receptor complexes are a prerequisite of intracellular signaling. Moreover, pathogenic GP130 variants were shown to interfere with spatial activation of downstream signals. We here summarize the molecular mechanisms underlying spatial regulation of IL-6 family cytokine signaling and discuss its relevance for pathogenic processes.
Collapse
Affiliation(s)
- Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
16
|
Hirani N, MacKinnon AC, Nicol L, Ford P, Schambye H, Pedersen A, Nilsson UJ, Leffler H, Sethi T, Tantawi S, Gravelle L, Slack RJ, Mills R, Karmakar U, Humphries D, Zetterberg F, Keeling L, Paul L, Molyneaux PL, Li F, Funston W, Forrest IA, Simpson AJ, Gibbons MA, Maher TM. Target inhibition of galectin-3 by inhaled TD139 in patients with idiopathic pulmonary fibrosis. Eur Respir J 2021; 57:13993003.02559-2020. [PMID: 33214209 PMCID: PMC8156151 DOI: 10.1183/13993003.02559-2020] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Galectin (Gal)-3 is a profibrotic β-galactoside-binding lectin that plays a key role in the pathogenesis of idiopathic pulmonary fibrosis (IPF) and IPF exacerbations. TD139 is a novel and potent small-molecule inhibitor of Gal-3. A randomised, double-blind, multicentre, placebo-controlled, phase 1/2a study was conducted to assess the safety, tolerability, pharmacokinetics and pharmacodynamics of inhaled TD139 in 36 healthy subjects and 24 patients with IPF. Six dose cohorts of six healthy subjects were evaluated (4:2 TD139:placebo ratio) with single doses of TD139 (0.15–50 mg) and three dose cohorts of eight patients with IPF (5:3 TD139:placebo ratio) with once-daily doses of TD139 (0.3–10 mg) for 14 days. Inhaled TD139 was well tolerated with no significant treatment-related side-effects. TD139 was rapidly absorbed, with mean time taken to reach maximum plasma concentration (Cmax) values ranging from 0.6 to 3 h and a plasma half-life (T1/2) of 8 h. The concentration of TD139 in the lung was >567-fold higher than in the blood, with systemic exposure predicting exposure in the target compartment. Gal-3 expression on alveolar macrophages was reduced in the 3 and 10 mg dose groups compared with placebo, with a concentration-dependent inhibition demonstrated. Inhibition of Gal-3 expression in the lung was associated with reductions in plasma biomarkers centrally relevant to IPF pathobiology (platelet-derived growth factor-BB, plasminogen activator inhibitor-1, Gal-3, CCL18 and YKL-40). TD139 is safe and well tolerated in healthy subjects and IPF patients. It was shown to suppress Gal-3 expression on bronchoalveolar lavage macrophages and, in a concerted fashion, decrease plasma biomarkers associated with IPF progression. TD139 is a potent inhibitor of galectin-3, a key driver of fibrosis in the lung. In this phase 1/2a clinical study, inhaled TD139 was safe, well tolerated, and demonstrated target engagement and decreased plasma biomarkers associated with IPF progression.https://bit.ly/2JREKx6
Collapse
Affiliation(s)
- Nikhil Hirani
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Alison C MacKinnon
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Galecto, Copenhagen, Denmark
| | - Lisa Nicol
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | | | | | - Hakon Leffler
- Dept of Laboratory Medicine, Lund University, Lund, Sweden
| | | | | | | | | | - Ross Mills
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Utsa Karmakar
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Duncan Humphries
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Lyn Paul
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Philip L Molyneaux
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK
| | - Feng Li
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Wendy Funston
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ian A Forrest
- Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - A John Simpson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.,Respiratory Medicine Unit, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michael A Gibbons
- Respiratory Dept, Institute of Biomedical and Clinical Science, Royal Devon and Exeter NHS Foundation Trust, Medical School, University of Exeter, Exeter, UK
| | - Toby M Maher
- National Institute for Health Research Respiratory Clinical Research Facility, Royal Brompton and Harefield NHS Foundation Trust, and Fibrosis Research Group, National Heart and Lung Institute, Imperial College London, London, UK.,Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Porębska N, Poźniak M, Matynia A, Żukowska D, Zakrzewska M, Otlewski J, Opaliński Ł. Galectins as modulators of receptor tyrosine kinases signaling in health and disease. Cytokine Growth Factor Rev 2021; 60:89-106. [PMID: 33863623 DOI: 10.1016/j.cytogfr.2021.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/11/2022]
Abstract
Receptor tyrosine kinases (RTKs) constitute a large group of cell surface proteins that mediate communication of cells with extracellular environment. RTKs recognize external signals and transfer information to the cell interior, modulating key cellular activities, like metabolism, proliferation, motility, or death. To ensure balanced stream of signals the activity of RTKs is tightly regulated by numerous mechanisms, including receptor expression and degradation, ligand specificity and availability, engagement of co-receptors, cellular trafficking of the receptors or their post-translational modifications. One of the most widespread post-translational modifications of RTKs is glycosylation of their extracellular domains. The sugar chains attached to RTKs form a new layer of information, so called glyco-code that is read by galectins, carbohydrate binding proteins. Galectins are family of fifteen lectins implicated in immune response, inflammation, cell division, motility and death. The versatility of cellular activities attributed to galectins is a result of their high abundance and diversity of their cellular targets. A various sugar specificity of galectins and the differential ability of galectin family members to form oligomers affect the spatial distribution and the function of their cellular targets. Importantly, galectins and RTKs are tightly linked to the development, progression and metastasis of various cancers. A growing number of studies points on the close cooperation between RTKs and galectins in eliciting specific cellular responses. This review focuses on the identified complexes between galectins and RTK members and discusses their relevance for the cell physiology both in healthy tissues and in cancer.
Collapse
Affiliation(s)
- Natalia Porębska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Marta Poźniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Matynia
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Dominika Żukowska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Małgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Łukasz Opaliński
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
18
|
von Zastrow M, Sorkin A. Mechanisms for Regulating and Organizing Receptor Signaling by Endocytosis. Annu Rev Biochem 2021; 90:709-737. [PMID: 33606955 DOI: 10.1146/annurev-biochem-081820-092427] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intricate relationships between endocytosis and cellular signaling, first recognized nearly 40 years ago through the study of tyrosine kinase growth factor receptors, are now known to exist for multiple receptor classes and to affect myriad physiological and developmental processes. This review summarizes our present understanding of how endocytosis orchestrates cellular signaling networks, with an emphasis on mechanistic underpinnings and focusing on two receptor classes-tyrosine kinase and G protein-coupled receptors-that have been investigated in particular detail. Together, these examples provide a useful survey of the current consensus, uncertainties, and controversies in this rapidly advancing area of cell biology.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, California 94143, USA;
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
| |
Collapse
|
19
|
The emerging complexity of PDGFRs: activation, internalization and signal attenuation. Biochem Soc Trans 2021; 48:1167-1176. [PMID: 32369556 DOI: 10.1042/bst20200004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
The platelet-derived growth factor receptor (PDGFR) family of receptor tyrosine kinases allows cells to communicate with the environment to regulate diverse cellular activities. Here, we highlight recent data investigating the structural makeup of individual PDGFRs upon activation, revealing the importance of the whole receptor in the propagation of extracellular ligand binding and dimerization. Furthermore, we review ongoing research demonstrating the significance of receptor internalization and signal attenuation in the regulation of PDGFR activity. Interactions with internalization machinery, signaling from endosomes, receptor degradation and receptor recycling are physiological means by which cells fine-tune PDGFR responses to growth factor stimulation. In this review, we discuss the biophysical, structural, in silico and biochemical data that have provided evidence for these mechanisms. We further highlight the commonalities and differences between PDGFRα and PDGFRβ signaling, revealing critical gaps in knowledge. In total, this review provides a conclusive summary on the state of the PDGFR field and underscores the need for novel techniques to fully elucidate the mechanisms of PDGFR activation, internalization and signal attenuation.
Collapse
|
20
|
Adenoid cystic carcinoma: a review of clinical features, treatment targets and advances in improving the immune response to monoclonal antibody therapy. Biochim Biophys Acta Rev Cancer 2021; 1875:188523. [PMID: 33600823 DOI: 10.1016/j.bbcan.2021.188523] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/06/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
The natural history of adenoid cystic carcinoma (ACC) is relentless, defined by treatment failure heralded by locoregional recurrence and distant metastatic disease. In this review, we present an update of clinical features, molecular classification, current targeted therapies, immune landscapes and novel treatment targets with their respective clinical trials. The presented results are defined by a lack of overall response rate and limited progression free survival, with restriction to stable disease. In addition, ACC is resistant to immune checkpoint inhibition due to low tumour immunogenicity and lack of PD-L1 expression. Here we present a new prospective research paradigm for ACC, including the potential to target prostate specific membrane antigen (PSMA) and the potential for manipulation of target receptors in the clinic. The presentation of this review aims to promote future research to improve response rates and outcomes for therapeutics undergoing clinical trial in ACC.
Collapse
|
21
|
Clathrin- and dynamin-dependent endocytosis limits canonical NF-κB signaling triggered by lymphotoxin β receptor. Cell Commun Signal 2020; 18:176. [PMID: 33148272 PMCID: PMC7640449 DOI: 10.1186/s12964-020-00664-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/18/2020] [Indexed: 02/08/2023] Open
Abstract
Background Lymphotoxin β receptor (LTβR) is a member of tumor necrosis factor receptor (TNFR) superfamily which regulates the immune response. At the cellular level, upon ligand binding, the receptor activates the pro-inflammatory NF-κB and AP-1 pathways. Yet, the intracellular distribution of LTβR, the routes of its endocytosis and their connection to the signaling activation are not characterized. Here, we investigated the contribution of LTβR internalization to its signaling potential. Methods Intracellular localization of LTβR in unstimulated and stimulated cells was analyzed by confocal microscopy. Endocytosis impairment was achieved through siRNA- or CRISPR/Cas9-mediated depletion, or chemical inhibition of proteins regulating endocytic routes. The activation of LTβR-induced signaling was examined. The levels of effector proteins of the canonical and non-canonical branches of the NF-κB pathway, and the phosphorylation of JNK, Akt, ERK1/2, STAT1 and STAT3 involved in diverse signaling cascades, were measured by Western blotting. A transcriptional response to LTβR stimulation was assessed by qRT-PCR analysis. Results We demonstrated that LTβR was predominantly present on endocytic vesicles and the Golgi apparatus. The ligand-bound pool of the receptor localized to endosomes and was trafficked towards lysosomes for degradation. Depletion of regulators of different endocytic routes (clathrin-mediated, dynamin-dependent or clathrin-independent) resulted in the impairment of LTβR internalization, indicating that this receptor uses multiple entry pathways. Cells deprived of clathrin and dynamins exhibited enhanced activation of canonical NF-κB signaling represented by increased degradation of IκBα inhibitor and elevated expression of LTβR target genes. We also demonstrated that clathrin and dynamin deficiency reduced to some extent LTβR-triggered activation of the non-canonical branch of the NF-κB pathway. Conclusions Our work shows that the impairment of clathrin- and dynamin-dependent internalization amplifies a cellular response to LTβR stimulation. We postulate that receptor internalization restricts responsiveness of the cell to subthreshold stimuli. Video Abstract
Graphical abstract ![]()
Supplementary information Supplementary information accompanies this paper at 10.1186/s12964-020-00664-0.
Collapse
|
22
|
Deciphering the secretome of leukocyte-platelet rich fibrin: towards a better understanding of its wound healing properties. Sci Rep 2020; 10:14571. [PMID: 32884030 PMCID: PMC7471699 DOI: 10.1038/s41598-020-71419-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/31/2020] [Indexed: 12/24/2022] Open
Abstract
Leukocyte-platelet rich fibrin (L-PRF) is extensively used in the dentistry field and other clinical scenarios due to its regeneration properties. The goal of the present study was to depict the L-PRF secretome and how it changes over time. We obtained L-PRF membranes and cultured them in DMEM. The secretome was collected at days 3, 7 and 21. The secretome at day 3 was analysed by LC–MS/MS and differences over time were analysed by Sequential Window Acquisition of all Theoretical Mass Spectra (SWATH). Overall, 705 proteins were identified in the secretome of L-PRF membranes after 3 days of culture, including growth factors (EGF, PDGFA) and proteins related to platelet and neutrophil degranulation. A total of 202 differentially secreted proteins were quantified by SWATH when comparing secretomes at days 3, 7 and 21. Most of them were enriched at day 3 such as MMP9, TSP1 and CO3. On the contrary, fibrinogen and CATS were found down-regulated at day 3. Growth factor and western blotting analysis corroborated the proteomic results. This is the most detailed proteome analysis of the L-PRF secretome to date. Proteins and growth factors identified, and their kinetics, provide novel information to further understand the wound healing properties of L-PRF.
Collapse
|
23
|
Pozniak M, Sokolowska-Wedzina A, Jastrzebski K, Szymczyk J, Porebska N, Krzyscik MA, Zakrzewska M, Miaczynska M, Otlewski J, Opalinski L. FGFR1 clustering with engineered tetravalent antibody improves the efficiency and modifies the mechanism of receptor internalization. Mol Oncol 2020; 14:1998-2021. [PMID: 32511887 PMCID: PMC7463352 DOI: 10.1002/1878-0261.12740] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/22/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Fibroblast growth factor receptor 1 (FGFR1) transmits signals through the plasma membrane regulating essential cellular processes like division, motility, metabolism, and death. Overexpression of FGFR1 is observed in numerous tumors and thus constitutes an attractive molecular target for selective cancer treatment. Targeted anti‐cancer therapies aim for the precise delivery of drugs into cancer cells, sparing the healthy ones and thus limiting unwanted side effects. One of the key steps in targeted drug delivery is receptor‐mediated endocytosis. Here, we show that the efficiency and the mechanism of FGFR1 internalization are governed by the spatial distribution of the receptor in the plasma membrane. Using engineered antibodies of different valency, we demonstrate that dimerization of FGFR1 with bivalent antibody triggers clathrin‐mediated endocytosis (CME) of the receptor. Clustering of FGFR1 into larger oligomers with tetravalent antibody stimulates fast and highly efficient uptake of the receptor that occurs via two distinct mechanisms: CME and dynamin‐dependent clathrin‐independent endocytic routes. Furthermore, we show that all endocytic pathways engaged in FGFR1 internalization do not require receptor activation. Our data provide novel insights into the mechanisms of intracellular trafficking of FGFR1 and constitute guidelines for development of highly internalizing antibody‐based drug carriers for targeted therapy of FGFR1‐overproducing cancers.
Collapse
Affiliation(s)
- Marta Pozniak
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | | | - Kamil Jastrzebski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Poland
| | - Jakub Szymczyk
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Natalia Porebska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Mateusz Adam Krzyscik
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland.,Faculty of Biotechnology, Department of Protein Biotechnology, University of Wroclaw, Poland
| | - Malgorzata Zakrzewska
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Poland
| | - Jacek Otlewski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| | - Lukasz Opalinski
- Faculty of Biotechnology, Department of Protein Engineering, University of Wroclaw, Poland
| |
Collapse
|
24
|
Saini H, Rahmani Eliato K, Veldhuizen J, Zare A, Allam M, Silva C, Kratz A, Truong D, Mouneimne G, LaBaer J, Ros R, Nikkhah M. The role of tumor-stroma interactions on desmoplasia and tumorigenicity within a microengineered 3D platform. Biomaterials 2020; 247:119975. [PMID: 32278213 DOI: 10.1016/j.biomaterials.2020.119975] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment has been demonstrated to play a crucial role in modulating cancer progression. Amongst various cell types within the tumor microenvironment, cancer associated fibroblasts (CAFs) are in abundance, serving to modulate the biophysical properties of the stromal matrix, through excessive deposition of extracellular matrix (ECM) proteins that leads to enhanced tumor progression. There is still a critical need to develop a fundamental framework on the role of tumor-stromal cell interactions on desmoplasia and tumorigenicity. Herein, we developed a 3D microengineered organotypic tumor-stroma model incorporated with breast cancer cells surrounded by CAF-embedded collagen matrix. We further integrated our platform with atomic force microscopy (AFM) to study the dynamic changes in stromal stiffness during active tumor invasion. Our findings primarily demonstrated enhanced tumor progression in the presence of CAFs. Furthermore, we highlighted the crucial role of crosstalk between tumor cells and CAFs on stromal desmoplasia, where we identified the role of tumor-secreted PDGF-AA/-BB on elevated matrix stiffness. Inhibition of the activity of PDGFRs in CAFs led to attenuation of stromal stiffness. Overall, our work presents a well-controlled tumor microenvironment model capable of dissecting specific biophysical and biochemical signaling cues which lead to stromal desmoplasia and tumor progression.
Collapse
|
25
|
Banach-Orłowska M, Wyszyńska R, Pyrzyńska B, Maksymowicz M, Gołąb J, Miączyńska M. Cholesterol restricts lymphotoxin β receptor-triggered NF-κB signaling. Cell Commun Signal 2019; 17:171. [PMID: 31878945 PMCID: PMC6933913 DOI: 10.1186/s12964-019-0460-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lymphotoxin β receptor (LTβR) plays important roles in the development of the immune system and immune response. At the cellular level, ligand-bound LTβR activates the pro-inflammatory NF-κB pathway but the detailed mechanisms regulating its signaling remain unknown. Understanding them is of high importance since LTβR and its ligands are promising therapeutic targets. Here, we studied the consequences of perturbed cellular cholesterol content on LTβR-induced NF-κB signaling. METHODS To modulate cholesterol availability and/or level in lung carcinoma A549 and H2228, and endothelial HUVEC cells different treatment regimens with filipin, methyl-β-cyclodextrin and simvastatin were applied. LTβR localization was studied by confocal microscopy. The activity of LTβR-induced NF-κB pathway was assessed by measuring the levels of NF-κB pathway inhibitor IκBα and phosphorylation of RelA transcription factor by Western blotting. The NF-κB transcriptional response, production of chemokines and adhesion molecules were examined by qRT-PCR, ELISA, and Western blotting, respectively. Adherence of different types of primary immune cells to epithelial A549 cells and endothelial HUVECs was measured fluorometrically. Interactions of LTβR with its protein partners were investigated by immunoprecipitation. RESULTS We showed that filipin-mediated sequestration of cholesterol or its depletion from the plasma membrane with methyl-β-cyclodextrin impaired LTβR internalization and potentiated LTβR-dependent activation of the canonical branch of the NF-κB pathway. The latter was manifested by enhanced degradation of IκBα inhibitor, elevated RelA phosphorylation, substantial increase in the expression of NF-κB target genes encoding, among others, cytokines and adhesion molecules known to play important roles in immune response. It was followed by robust secretion of CXCL8 and upregulation of ICAM1, that favored the adhesion of immune cells (NK and T cells, neutrophils) to A549 cells and HUVECs. Mechanistically, we showed that cholesterol depletion stabilized interactions of ligand-stimulated LTβR with modified forms of TRAF2 and NEMO proteins. CONCLUSIONS Our results showed that the reduction of the plasma membrane content of cholesterol or its sequestration strongly potentiated signaling outcome initiated by LTβR. Thus, drugs modulating cholesterol levels could potentially improve efficacy of LTβR-based therapies. Video abstract.
Collapse
Affiliation(s)
- Magdalena Banach-Orłowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland.
| | - Renata Wyszyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Beata Pyrzyńska
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Maksymowicz
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jakub Gołąb
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| |
Collapse
|
26
|
Thottacherry JJ, Sathe M, Prabhakara C, Mayor S. Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annu Rev Cell Dev Biol 2019; 35:55-84. [PMID: 31283376 PMCID: PMC6917507 DOI: 10.1146/annurev-cellbio-100617-062710] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Mugdha Sathe
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Chaitra Prabhakara
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
27
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
28
|
Mai W, Chen M, Huang M, Zhong J, Chen J, Liu X, Deng J, Yang X, Ye W, Zhang R, Zhou Q, Zhang D. Targeting platelet-derived growth factor receptor β inhibits the proliferation and motility of human pterygial fibroblasts. Expert Opin Ther Targets 2019; 23:805-817. [PMID: 31385548 DOI: 10.1080/14728222.2019.1653281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Pterygium, a common eye disease with high postoperative recurrence, lacks effective therapeutic strategies. Therefore, it's urgent to identify specific targets to develop rationally targeted molecular drugs for the pterygial therapy. Methods: The cell proliferation and motility were studied in both the primary human pterygial fibroblasts (hPFs) and an ex vivo pterygium model. hPFs transfected with the pCMV3-PDGFRB plasmid, PDGFRB siRNA and CRISPR/Cas9 system were used to determine the role of PDGFR-β in pterygial fibroblasts functions. Western blotting, immunohistochemistry and immunofluorescence were performed to evaluate the expression of the key proteins. Results: PDGFR-β expression in the pterygial stroma and primary hPFs was significantly higher than that in the conjunctiva and human conjunctival fibroblasts. PDGF-BB promoted the proliferation, migration and invasion of hPFs, which can be significantly suppressed by sunitinib via inhibition of the PDGFR-β/extracellular signal-regulated kinase (ERK) pathway. In the ex vivo model, the knockout of PDGFRB and sunitinib treatment blocked the proliferation and motility of fibroblasts in the pterygial stroma via the suppression of PDGFR-β/ERK pathway. Conclusion: This study demonstrates that PDGFR-β may be a potential therapeutic target for pterygium, and inhibition of PDGFR-β by sunitinib is a promising and effective approach for pterygium treatment.
Collapse
Affiliation(s)
- Weiqian Mai
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Minfeng Chen
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Maohua Huang
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Jincheng Zhong
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Jian Chen
- Eye Institute, Jinan University , Guangzhou , China
| | - Xiaoyong Liu
- The First Affiliated Hospital of Jinan University , Guangzhou , China
| | - Juan Deng
- The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Xiaoxi Yang
- The Sixth Affiliated Hospital of Sun Yat-sen University , Guangzhou , China
| | - Wencai Ye
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| | - Rijia Zhang
- The First Affiliated Hospital of Jinan University , Guangzhou , China
| | - Qing Zhou
- The First Affiliated Hospital of Jinan University , Guangzhou , China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University , Guangzhou , China.,Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University , Guangzhou , China
| |
Collapse
|
29
|
hTAC internalizes via both clathrin-dependent and clathrin-independent endocytosis in mammalian cells. Protein Cell 2019; 9:896-901. [PMID: 29549600 PMCID: PMC6160390 DOI: 10.1007/s13238-018-0508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Yang D, Liu D, Deng H, Zhang J, Qin M, Yuan L, Zou X, Shao B, Li H, Dai W, Zhang H, Wang X, He B, Tang X, Zhang Q. Transferrin Functionization Elevates Transcytosis of Nanogranules across Epithelium by Triggering Polarity-Associated Transport Flow and Positive Cellular Feedback Loop. ACS NANO 2019; 13:5058-5076. [PMID: 31034211 DOI: 10.1021/acsnano.8b07231] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Overcoming the epithelial barriers to enhance drug transport is a focused topic for gastrointestinal, intratracheal, intranasal, vaginal, and intrauterine delivery. Nanomedicines with targeting functionization promote such a process owing to specific ligand-receptor interaction. However, compared to the cell uptake of targeting nanotherapies, currently few studies concentrate on their transcytosis including endocytosis for "in" and exocytosis for "out". In fact, the cellular regulatory mechanism for these pathways as well as the principle of ligand's effect on the transcytosis are almost ignored. Here, we fabricated transferrin (Tf) functionalized nanogranules (Tf-NG) as the nanomedicine model and confirmed the difference in polar distributions of Tf receptors (TfRs) between two epithelium models (bipolarity for Caco-2 and unipolarity for MDCK cells). Compared to the nonspecific reference, Tf-conjugation boosted the endocytosis by different pathways in two cell models and transformed the intracellular route of Tf-NG in both cells differently, affecting exocytosis, recycling, and degradation but not the secretion pathway. Only bipolar cells could establish a complete transport flow from "in" to "out", leading to the enhanced transcytosis of Tf-NG. Importantly, epithelia could make responses to Tf-NG transcytosis. Based on the quantitative proteomics, the intracellular trafficking of Tf-NG altered the protein expression profiles, in which the endocytosis- and transcytosis-related proteins were specifically upregulated. Particularly, only bipolar cells could positively feed back to such trafficking via accelerating the subsequent Tf-NG transcytosis. Here, all the cell transport of Tf-NG was polarity associated. In summary, Tf modification elevated the transcytosis of Tf-NG across the epithelium by triggering the polarity-associated transport flow and positive cell feedback loop. These findings provided an insight into the targeting nanodelivery for efficient transport through epithelial barriers.
Collapse
Affiliation(s)
- Dan Yang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Dechun Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Hailiang Deng
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Jian Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Mengmeng Qin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Lan Yuan
- Centre of Medical and Health Analysis , Peking University , Beijing 100191 , China
| | - Xiajuan Zou
- Centre of Medical and Health Analysis , Peking University , Beijing 100191 , China
| | - Bin Shao
- Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Peking University Cancer Hospital and Institute , Beijing 100142 , China
| | - Huiping Li
- Department of Medical Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) , Peking University Cancer Hospital and Institute , Beijing 100142 , China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| | - Xing Tang
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences , Peking University , Beijing 100191 , China
- School of Pharmacy , Shenyang Pharmaceutical University , Shenyang 110016 , China
- State Key Laboratory of Natural and Biomimetic Drugs , Peking University , Beijing 100191 , China
| |
Collapse
|
31
|
Roth M, Gaceb A, Enström A, Padel T, Genové G, Özen I, Paul G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke. FASEB J 2019; 33:8990-8998. [PMID: 31039042 PMCID: PMC6662981 DOI: 10.1096/fj.201900153r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poststroke recovery requires multiple repair mechanisms, including vascular remodeling and blood-brain barrier (BBB) restoration. Brain pericytes are essential for BBB repair and angiogenesis after stroke, but they also give rise to scar-forming platelet-derived growth factor receptor β (PDGFR-β)–expressing cells. However, many of the molecular mechanisms underlying this pericyte response after stroke still remain unknown. Regulator of G-protein signaling 5 (RGS5) has been associated with pericyte detachment from the vascular wall, but whether it regulates pericyte function and vascular stabilization in the chronic phase of stroke is not known. Using RGS5–knockout (KO) mice, we study how loss of RGS5 affects the pericyte response and vascular remodeling in a stroke model at 7 d after ischemia. Loss of RGS5 leads to a shift toward an increase in the number of perivascular pericytes and reduction in the density of parenchymal PDGFR-β–expressing cells associated with normalized PDGFR-β activation after stroke. The redistribution of pericytes resulted in higher pericyte coverage, increased vascular density, preservation of vessel lengths, and a significant reduction in vascular leakage in RGS5-KO mice compared with controls. Our study demonstrates RGS5 in pericytes as an important target to enhance vascular remodeling.—Roth, M., Gaceb, A., Enström, A., Padel, T., Genové, G., Özen, I., Paul, G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke.
Collapse
Affiliation(s)
- Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Thomas Padel
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Guillem Genové
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Ilknur Özen
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden.,Department of Neurology, Scania University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Heldin J, Sander MR, Leino M, Thomsson S, Lennartsson J, Söderberg O. Dynamin inhibitors impair platelet-derived growth factor β-receptor dimerization and signaling. Exp Cell Res 2019; 380:69-79. [PMID: 30970237 DOI: 10.1016/j.yexcr.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The role of plasma membrane composition and dynamics in the activation process of receptor tyrosine kinases (RTKs) is still poorly understood. In this study we have investigated how signaling via the RTK, platelet-derived growth factor β-receptor (PDGFR-β) is affected by Dynasore or Dyngo-4a, which are commonly used dynamin inhibitors. PDGFR-β preferentially internalizes via clathrin-coated pits and in this pathway, Dynamin II has a major role in the formation and release of vesicles from the plasma membrane by performing the membrane scission. We have found that dynamin inhibitors impedes the activation of PDGFR-β by impairing ligand-induced dimerization of the receptor monomers, which leads to a subsequent lack of phosphorylation and activation both of receptors and downstream effectors, such as ERK1/2 and AKT. In contrast, dynamin inhibitors did not affect epidermal growth factor receptor (EGFR) dimerization and phosphorylation. Our findings suggest that there is a link between plasma membrane dynamics and PDGFR-β activation, and that this link is not shared with the epidermal growth factor receptor.
Collapse
Affiliation(s)
- Johan Heldin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| | - Marie Rubin Sander
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Mattias Leino
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sara Thomsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Johan Lennartsson
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ola Söderberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
Lam I, Pickering CM, Mac Gabhann F. Context-dependent regulation of receptor tyrosine kinases: Insights from systems biology approaches. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1437. [PMID: 30255986 PMCID: PMC6537588 DOI: 10.1002/wsbm.1437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell membrane proteins that provide cells with the ability to sense proteins in their environments. Many RTKs are essential to development and organ growth. Derangement of RTKs-by mutation or by overexpression-is central to several developmental and adult disorders including cancer, short stature, and vascular pathologies. The mechanism of action of RTKs is complex and is regulated by contextual components, including the existence of multiple competing ligands and receptors in many families, the intracellular location of the RTK, the dynamic and cell-specific coexpression of other RTKs, and the commonality of downstream signaling pathways. This means that both the state of the cell and the microenvironment outside the cell play a role, which makes sense given the pivotal location of RTKs as the nexus linking the extracellular milieu to intracellular signaling and modification of cell behavior. In this review, we describe these different contextual components through the lens of systems biology, in which both computational modeling and experimental "omics" approaches have been used to better understand RTK networks. The complexity of these networks is such that using these systems biology approaches is necessary to get a handle on the mechanisms of pathology and the design of therapeutics targeting RTKs. In particular, we describe in detail three concrete examples (involving ErbB3, VEGFR2, and AXL) that illustrate how systems approaches can reveal key mechanistic and therapeutic insights. This article is categorized under: Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Mechanistic Models Translational, Genomic, and Systems Medicine > Therapeutic Methods.
Collapse
Affiliation(s)
- Inez Lam
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Christina M Pickering
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
34
|
Vrijens P, Noppen S, Boogaerts T, Vanstreels E, Ronca R, Chiodelli P, Laporte M, Vanderlinden E, Liekens S, Stevaert A, Naesens L. Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway. J Gen Virol 2019; 100:583-601. [PMID: 30762518 DOI: 10.1099/jgv.0.001235] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The possible resistance of influenza virus against existing antiviral drugs calls for new therapeutic concepts. One appealing strategy is to inhibit virus entry, in particular at the stage of internalization. This requires a better understanding of virus-host interactions during the entry process, including the role of receptor tyrosine kinases (RTKs). To search for cellular targets, we evaluated a panel of 276 protein kinase inhibitors in a multicycle antiviral assay in Madin-Darby canine kidney cells. The RTK inhibitor Ki8751 displayed robust anti-influenza A and B virus activity and was selected for mechanistic investigations. Ki8751 efficiently disrupted the endocytic process of influenza virus in different cell lines carrying platelet-derived growth factor receptor β (PDGFRβ), an RTK that is known to act at GM3 ganglioside-positive lipid rafts. The more efficient virus entry in CHO-K1 cells compared to the wild-type ancestor (CHO-wt) cells indicated a positive effect of GM3, which is abundant in CHO-K1 but not in CHO-wt cells. Entering virus localized to GM3-positive lipid rafts and the PDGFRβ-containing endosomal compartment. PDGFRβ/GM3-dependent virus internalization involved PDGFRβ phosphorylation, which was potently inhibited by Ki8751, and desialylation of activated PDGFRβ by the viral neuraminidase. Virus uptake coincided with strong activation of the Raf/MEK/Erk cascade, but not of PI3K/Akt or phospholipase C-γ. We conclude that influenza virus efficiently hijacks the GM3-enhanced PDGFRβ signalling pathway for cell penetration, providing an opportunity for host cell-targeting antiviral intervention.
Collapse
Affiliation(s)
- Pieter Vrijens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sam Noppen
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Talitha Boogaerts
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Els Vanstreels
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Roberto Ronca
- 2Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Paola Chiodelli
- 2Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Manon Laporte
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Evelien Vanderlinden
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sandra Liekens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Annelies Stevaert
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Lieve Naesens
- 1Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Zhao F, Yan J, Zhao J, Shi B, Ye M, Huang X, Yu B, Lv B, Huang W. Effect of platelet-derived growth factor-BB on gap junction and connexin43 in rat penile corpus cavernosum smooth muscle cells. Andrologia 2018; 51:e13200. [PMID: 30467872 DOI: 10.1111/and.13200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 10/14/2018] [Accepted: 10/20/2018] [Indexed: 01/19/2023] Open
Abstract
We explored whether platelet-derived growth factor (PDGF)-BB regulates corpus cavernosum smooth muscle cell gap junctions and can ameliorate erectile dysfunction and how it modulates connexin43 (CX43) after bilateral cavernous neurectomy. Primary cultured rat corpus cavernosum smooth muscle cells were treated with PDGF-BB with or without a PDGFR inhibitor, Akt siRNA or the depletion or promotion of β-catenin. PDGF-BB improved CCSMCs gap junction coupling and increased CX43 and PDGFRβ expression; inhibition of PDGFR activity down-regulated CX43 and decreased Akt and nuclear β-catenin. Knockdown or promotion of β-catenin down-regulated and up-regulated CX43 expression respectively. Moreover, β-catenin activation induced CX43 nuclear accumulation, which impeded CX43 down-regulation induced by PDGFR inhibition, suggesting that CX43 expression is positively correlated with nuclear β-catenin expression. Furthermore, CX43 promoter luciferase and chromatin immunoprecipitation assays indicated that β-catenin regulates CX43 transcription by directly interacting with its promoter. Male rats underwent bilateral cavernous neurectomy. After 12 weeks, they were injected with PDGF-BB, CX43 and PDGFRβ expression was significantly lower than in the control group, which was reversed by PDGF-BB injection. These results suggested that PDGF-BB contributed to the improvement of gap junction intracellular communication among corpus cavernosum smooth muscle cells, increased CX43 through PDGFRβ/Akt/nuclear β-catenin signalling, and ameliorated cavernous nerve injury-induced erectile dysfunction.
Collapse
Affiliation(s)
- Fan Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junfeng Yan
- Department of Urology, Zhejiang Hospital, Hangzhou, China
| | - Jianfeng Zhao
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bing Shi
- Department of Urology, Nantong Hospital of Traditional Chinese Medicine, Nantong, China
| | - Miaoyong Ye
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaojun Huang
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Yu
- Technology and Development Center for TCM of China, Beijing, China
| | - Bodong Lv
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.,Andrology Laboratory on Integration of Chinese and Western Medicine, Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine, Hangzhou, China
| | - Wenjie Huang
- Department of Urology and Andrology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
36
|
Schoenherr C, Frame MC, Byron A. Trafficking of Adhesion and Growth Factor Receptors and Their Effector Kinases. Annu Rev Cell Dev Biol 2018; 34:29-58. [PMID: 30110558 DOI: 10.1146/annurev-cellbio-100617-062559] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cell adhesion to macromolecules in the microenvironment is essential for the development and maintenance of tissues, and its dysregulation can lead to a range of disease states, including inflammation, fibrosis, and cancer. The biomechanical and biochemical mechanisms that mediate cell adhesion rely on signaling by a range of effector proteins, including kinases and associated scaffolding proteins. The intracellular trafficking of these must be tightly controlled in space and time to enable effective cell adhesion and microenvironmental sensing and to integrate cell adhesion with, and compartmentalize it from, other cellular processes, such as gene transcription, protein degradation, and cell division. Delivery of adhesion receptors and signaling proteins from the plasma membrane to unanticipated subcellular locales is revealing novel biological functions. Here, we review the expected and unexpected trafficking, and sites of activity, of adhesion and growth factor receptors and intracellular kinase partners as we begin to appreciate the complexity and diversity of their spatial regulation.
Collapse
Affiliation(s)
- Christina Schoenherr
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Margaret C Frame
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom;
| |
Collapse
|
37
|
Critchley WR, Pellet-Many C, Ringham-Terry B, Harrison MA, Zachary IC, Ponnambalam S. Receptor Tyrosine Kinase Ubiquitination and De-Ubiquitination in Signal Transduction and Receptor Trafficking. Cells 2018; 7:E22. [PMID: 29543760 PMCID: PMC5870354 DOI: 10.3390/cells7030022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/13/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are membrane-based sensors that enable rapid communication between cells and their environment. Evidence is now emerging that interdependent regulatory mechanisms, such as membrane trafficking, ubiquitination, proteolysis and gene expression, have substantial effects on RTK signal transduction and cellular responses. Different RTKs exhibit both basal and ligand-stimulated ubiquitination, linked to trafficking through different intracellular compartments including the secretory pathway, plasma membrane, endosomes and lysosomes. The ubiquitin ligase superfamily comprising the E1, E2 and E3 enzymes are increasingly implicated in this post-translational modification by adding mono- and polyubiquitin tags to RTKs. Conversely, removal of these ubiquitin tags by proteases called de-ubiquitinases (DUBs) enables RTK recycling for another round of ligand sensing and signal transduction. The endocytosis of basal and activated RTKs from the plasma membrane is closely linked to controlled proteolysis after trafficking and delivery to late endosomes and lysosomes. Proteolytic RTK fragments can also have the capacity to move to compartments such as the nucleus and regulate gene expression. Such mechanistic diversity now provides new opportunities for modulating RTK-regulated cellular responses in health and disease states.
Collapse
Affiliation(s)
- William R Critchley
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Caroline Pellet-Many
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Benjamin Ringham-Terry
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | | | - Ian C Zachary
- Centre for Cardiovascular Biology & Medicine, Rayne Building, University College London, London WC1E 6PT, UK.
| | - Sreenivasan Ponnambalam
- Endothelial Cell Biology Unit, School of Molecular & Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
38
|
Banach-Orłowska M, Jastrzębski K, Cendrowski J, Maksymowicz M, Wojciechowska K, Korostyński M, Moreau D, Gruenberg J, Miaczynska M. The topology of lymphotoxin β receptor accumulated upon endolysosomal dysfunction dictates the NF-κB signaling outcome. J Cell Sci 2018; 131:jcs.218883. [DOI: 10.1242/jcs.218883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022] Open
Abstract
Cytokine receptors, such as tumor necrosis factor receptor I (TNFRI) and lymphotoxin β receptor (LTβR), activate inflammatory NF-κB signaling upon stimulation. We previously demonstrated that depletion of ESCRT components leads to endosomal accumulation of TNFRI and LTβR, and their ligand-independent signaling to NF-κB. Here, we studied if other perturbations of the endolysosomal system could trigger intracellular accumulation and signaling of ligand-free LTβR. While depletion of CORVET had no effect, knockdown of HOPS or Rab7, or pharmacological inhibition of lysosomal degradation, caused endosomal accumulation of LTβR and its increased interactions with TRAF2/TRAF3 signaling adaptors. However, the NF-κB pathway was not activated under these conditions. We found that knockdown of HOPS or Rab7 led to LTβR sequestration in intraluminal vesicles of endosomes, thus precluding NF-κB signaling. This was in contrast to LTβR localization on the outer endosomal membrane after ESCRT depletion that was permissive for signaling. We propose that the inflammatory response induced by intracellular accumulation of endocytosed cytokine receptors critically depends on the precise receptor topology within endosomal compartments.
Collapse
Affiliation(s)
- Magdalena Banach-Orłowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Kamil Jastrzębski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Jarosław Cendrowski
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Małgorzata Maksymowicz
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Karolina Wojciechowska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology Polish Academy of Sciences, 31-343, Krakow, Poland
| | - Dimitri Moreau
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211, Geneva, Switzerland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, 02-109, Warsaw, Poland
| |
Collapse
|