1
|
Massey H, Tennant S, Dean J, The DDD study. PACS2, PACS1, and VACTERL: A Clinical Overlap. Mol Syndromol 2025; 16:29-32. [PMID: 39911171 PMCID: PMC11793877 DOI: 10.1159/000539473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/22/2024] [Indexed: 02/07/2025] Open
Abstract
Introduction Whole-exome sequencing has led to the discovery of new genes involved in developmental delay. Two of these are the evolutionary linked proteins phosphofurin acidic cluster sorting protein 1 (PACS1) and phosphofurin acidic cluster sorting protein 2 (PACS2), which function as metabolic switches. We present a case of a patient with the previously described PACS2 c.624G>A; p.Glu209Lys variant, with distinct clinical features, suggesting an overlap between the two conditions. Case Presentation The patient presented with infantile epilepsy, developmental delay, and cerebellar hypoplasia previously described with PACS2. However, he also had novel features not noted in the literature before; this included anal atresia, tetralogy of Fallot, and vertebral abnormalities. This constellation of features had given him a label of VACTERL. Conclusion Cardiac abnormalities are more commonly seen in PACS1 variants, and this case strengthens the phenotypic similarities between the two conditions. We also explore the genetic mechanisms causing the cardiac and anal anomalies seen in our patient and suggest the PACS2 disease spectrum should be expanded.
Collapse
Affiliation(s)
- Hannah Massey
- Department of Clinical Genetics, Western General Hospital, Edinburgh, UK
| | - Stephen Tennant
- Department of Clinical Genetics, Aberdeen Royal Infirmary, Aberdeen, UK
| | - John Dean
- Department of Clinical Genetics, Aberdeen Royal Infirmary, Aberdeen, UK
| | - The DDD study
- Department of Clinical Genetics, Western General Hospital, Edinburgh, UK
- Department of Clinical Genetics, Aberdeen Royal Infirmary, Aberdeen, UK
| |
Collapse
|
2
|
Frappaolo A, Zaccagnini G, Riparbelli MG, Colotti G, Callaini G, Giansanti MG. PACS deficiency disrupts Golgi architecture and causes cytokinesis failures and seizure-like phenotype in Drosophila melanogaster. Open Biol 2025; 15:240267. [PMID: 39999877 PMCID: PMC11858789 DOI: 10.1098/rsob.240267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/10/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The PACS (phosphofurin acidic cluster sorting protein) proteins are membrane trafficking regulators, required for maintaining cellular homeostasis and preventing disease states. Mutations in human PACS1 and PACS2 cause human neurodevelopmental disorders, characterized by epileptic seizures and neurodevelopmental delay. In vertebrates, functional analysis of PACS proteins is complicated by the presence of two paralogues which can compensate for the loss of each other. Here, we characterize the unique fly homologue of human PACS proteins. We demonstrate that Drosophila PACS (dPACS) is required for cell division in dividing spermatocytes and neuroblasts. In primary spermatocytes, dPACS colocalizes with GOLPH3 at the Golgi stacks and is essential for maintaining Golgi architecture. In dividing cells, dPACS is necessary for central spindle stability and contractile ring constriction. dPACS and GOLPH3 proteins form a complex and are mutually dependent for localization to the cleavage site. We propose that dPACS, by associating with GOLPH3, mediates the flow of vesicle trafficking that supports furrow ingression during cytokinesis. Furthermore, loss of dPACS leads to defects in tubulin acetylation and severe bang sensitivity, a phenotype associated with seizures in flies. Together our findings suggest that a Drosophila PACS disease model may contribute to understanding the molecular mechanisms underpinning human PACS syndromes.
Collapse
Affiliation(s)
- Anna Frappaolo
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Gianluca Zaccagnini
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | | | - Gianni Colotti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche ‘A. Rossi-Fanelli’, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| | - Giuliano Callaini
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Maria Grazia Giansanti
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Biologia e Biotecnologie, Università Sapienza di Roma, Piazzale A. Moro 5, 00185, Roma, Italy
| |
Collapse
|
3
|
Biterge Sut B. Functional Evaluation of Neural Tube Defect-Related Missense Mutations Using In Silico Methods. Birth Defects Res 2025; 117:e2453. [PMID: 39950581 DOI: 10.1002/bdr2.2453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 02/02/2025] [Indexed: 05/09/2025]
Abstract
BACKGROUND Neural tube formation is one of the most important developmental events as it gives rise to the key organs comprising the central nervous system. Failure in the proper closure of the neural tube results in congenital abnormalities, namely neural tube defects (NTDs). Previous studies have identified several single nucleotide variations that are considered risk factors and established a genetic background for the increased incidence of NTDs and factors. This study aims to provide a comprehensive functional analysis of NTD-related missense mutations in terms of their potential effects on pathogenicity, protein stability, and structure using predictive in silico analysis tools. METHODS Single nucleotide variations associated with NTD risk were identified by a systematic review of previous studies on Pubmed and ClinVar. Protein stability and pathogenicity scores were predicted using MUpro and PloyPhen2, respectively. Structural alterations were determined via the HOPE server. Predicted expression profiles in the brain were retrieved from the Human Protein Atlas. RESULTS Our analysis identified 43 NTD-related missense mutations in MTHFR, MTRR, PARD3, PACS1, MED12, VANGL1, VANGL2, FZD6, CELSR1, FUZ, DVL2, and LRP6 genes. We found that all of these genes are predicted to be expressed in different regions of the brain. We showed that single nucleotide variations resulted in decreased protein stability, and the majority of them were found to be damaging. We also report that the amino acid changes introduced by these mutations caused differences in size, charge, and hydrophobicity, which potentially resulted in structural alterations within the protein and affected their contacts with other proteins and ligands. CONCLUSIONS In conclusion, this study provides a comprehensive analysis of NTD-related missense mutations regarding their potential damaging effects, which might contribute to the pathogenesis of NTDs.
Collapse
Affiliation(s)
- Burcu Biterge Sut
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
4
|
Zbikowski A, Kowalczyk T, Kasparek P, Prohazka J, Sedlacek R, Ciborowski M, Cysewski D, Łukasiewicz K. Understanding PACS2 syndrome's pathomechanism by studying E209K and E211K mutations. Mamm Genome 2024:10.1007/s00335-024-10098-5. [PMID: 39738582 DOI: 10.1007/s00335-024-10098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS2) plays a vital role in maintaining cellular homeostasis by regulating protein trafficking between cellular membranes. This function impacts crucial processes like apoptosis, mitochondria-endoplasmic reticulum interaction, and subsequently Ca2+ flux, lipid biosynthesis, and autophagy. Missense mutations, particularly E209K and E211K, are linked to developmental and epileptic encephalopathy-66 (DEE66), known as PACS2 syndrome. Individuals with this syndrome exhibit neurodevelopmental delay, seizures, facial dysmorphism, hypotonia, and delayed motor skills.Understanding the impact of these missense mutations on molecular processes is crucial. Studies suggest that E209K mutation decreases phosphorylation, increases the survival time of protein, and modifies protein-protein interaction, consequently leading to disruption of calcium flux and lower resistance to apoptosis induction. Unfortunately, to date, only a limited number of research groups have investigated the effects of mutations in the PACS2 gene. Current research on PACS2 syndrome is hampered by the lack of suitable models. While in vitro models using transfected cell lines offer insights, they cannot fully capture the disease's complexity.To address this, utilizing cells from individuals with PACS2 syndrome, specifically induced pluripotent stem cells (iPSCs), holds promise for understanding phenotypic diversity and developing personalized therapies. However, iPSC models may not fully capture tissue-specific effects of the E209K/E211K mutation. In vivo studies using animal models, particularly mice, could overcome these limitations.This review summarizes current knowledge about PACS2 structure and functions, explores the cellular consequences of E209K and E211K mutations, and highlights the potential of iPSC and mouse models in advancing our understanding of PACS2 syndrome.
Collapse
Affiliation(s)
- Arkadiusz Zbikowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Kowalczyk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Petr Kasparek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jan Prohazka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Radislav Sedlacek
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Michał Ciborowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Dominik Cysewski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| | - Kacper Łukasiewicz
- Experimental Medicine Centre, Medical University of Bialystok, Bialystok, Poland.
- Department of Psychiatry, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
5
|
Xiang H, Lyu Q, Chen S, Ouyang J, Xiao D, Liu Q, Long H, Zheng X, Yang X, Lu H. PACS2/CPT1A/DHODH signaling promotes cardiomyocyte ferroptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:432. [PMID: 39633391 PMCID: PMC11619700 DOI: 10.1186/s12933-024-02514-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES The pathophysiology of diabetic cardiomyopathy (DCM) is a phenomenon of great interest, but its clinical problems have not yet been effectively addressed. Recently, the mechanism of ferroptosis in the pathophysiology of various diseases, including DCM, has attracted widespread attention. Here, we explored the role of PACS2 in ferroptosis in DCM through its downregulation of PACS2 expression. METHODS AND RESULTS Cardiomyocytes were treated with high glucose and palmitic acid (HGPA), and the detection of cardiomyocyte iron ions, lipid peroxides, and reactive oxygen species (ROS) revealed clear ferroptosis during these treatments. Silencing PACS2 downregulated CPT1A expression and upregulated DHODH expression significantly, reversing HGPA-induced ferroptosis. Further silencing of PACS2 with a CPT1A agonist exacerbated cardiomyocyte ferroptosis while promoting mitochondrial damage in cardiomyocytes. Using a mouse model of type 2 diabetes induced by streptozotocin (STZ) and a high-fat diet (HFD), we found that PACS2 deletion reversed these treatment-induced increases in cellular iron ions, impaired cardiac function, mitochondrial damage and ferroptosis in cardiac muscle tissues. CONCLUSIONS The PACS2/CPT1A/DHODH signalling pathway may be involved in ferroptosis in DCM by regulating cardiomyocyte mitochondrial function.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/genetics
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Signal Transduction
- Carnitine O-Palmitoyltransferase/metabolism
- Carnitine O-Palmitoyltransferase/genetics
- Mice, Inbred C57BL
- Diabetes Mellitus, Experimental/enzymology
- Male
- Mice, Knockout
- Mitochondria, Heart/pathology
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/drug effects
- Reactive Oxygen Species/metabolism
- Palmitic Acid/pharmacology
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Diet, High-Fat
Collapse
Affiliation(s)
- Hong Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Lyu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, China
| | - Jie Ouyang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Quanjun Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - HaiJiao Long
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinru Zheng
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.
| | - Hongwei Lu
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Gautam A, Lalande A, Ritter M, Freitas N, Lerolle S, Canus L, Amirache F, Lotteau V, Legros V, Cosset FL, Mathieu C, Boson B. The PACS-2 protein and trafficking motifs in CCHFV Gn and Gc cytoplasmic domains govern CCHFV assembly. Emerg Microbes Infect 2024; 13:2348508. [PMID: 38661085 PMCID: PMC11159592 DOI: 10.1080/22221751.2024.2348508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
The Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne bunyavirus that causes high mortality in humans. This enveloped virus harbors two surface glycoproteins (GP), Gn and Gc, that are released by processing of a glycoprotein precursor complex whose maturation takes place in the ER and is completed through the secretion pathway. Here, we characterized the trafficking network exploited by CCHFV GPs during viral assembly, envelopment, and/or egress. We identified membrane trafficking motifs in the cytoplasmic domains (CD) of CCHFV GPs and addressed how they impact these late stages of the viral life cycle using infection and biochemical assays, and confocal microscopy in virus-producing cells. We found that several of the identified CD motifs modulate GP transport through the retrograde trafficking network, impacting envelopment and secretion of infectious particles. Finally, we identified PACS-2 as a crucial host factor contributing to CCHFV GPs trafficking required for assembly and release of viral particles.
Collapse
Affiliation(s)
- Anupriya Gautam
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Alexandre Lalande
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Maureen Ritter
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Natalia Freitas
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Solène Lerolle
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Lola Canus
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Fouzia Amirache
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Vincent Legros
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Campus vétérinaire de Lyon, VetAgro Sup, Université de Lyon, Marcy-l’Etoile, France
| | - François-Loïc Cosset
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Cyrille Mathieu
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Bertrand Boson
- CIRI – Centre International de Recherche en Infectiologie, Univ. Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
7
|
Byrd DT, Han ZC, Piggott CA, Jin Y. PACS-1 variant protein is aberrantly localized in Caenorhabditis elegans model of PACS1/PACS2 syndromes. Genetics 2024; 228:iyae118. [PMID: 39031646 PMCID: PMC11457933 DOI: 10.1093/genetics/iyae118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024] Open
Abstract
PACS (phosphofurin acidic cluster sorting) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the functional effects of syndromic variants at the cellular level remain unknown. Here, we report the expression pattern of Caenorhabditis elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 colocalize to somatic cytoplasm of many types of cells and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.
Collapse
Affiliation(s)
- Dana T Byrd
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ziyuan Christina Han
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher A Piggott
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Trothen S, Teplitsky JE, Armstong RE, Zang RX, Lurie A, Mumby MJ, Edgar CR, Grol MW, Dikeakos JD. PACS-1 Interacts with TRPC3 and ESyt1 to Mediate Protein Trafficking while Promoting SOCE and Cooperatively Regulating Hormone Secretion. ACS OMEGA 2024; 9:35014-35027. [PMID: 39157130 PMCID: PMC11325417 DOI: 10.1021/acsomega.4c04998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/20/2024]
Abstract
Corticotropic cells of the anterior pituitary gland release adrenocorticotropic hormone (ACTH) in a regulated manner to promote the production of cortisol and androgens. The process of ACTH secretion is partly mediated by the phosphofurin acidic cluster sorting protein 1 (PACS-1); however, the underlying mechanisms behind this regulation remain unclear. Herein, we demonstrated PACS-1 interactions with the short transient receptor potential channel 3 (TRPC3) calcium transporter and the extended synaptotagmin-1 (ESyt1) endoplasmic reticulum-plasma membrane tethering protein. Importantly, PACS-1 promoted interactions between TRPC3 and ESyt1 and regulated their plasma membrane localization. Lastly, we demonstrated that PACS-1 is required for a proper store-operated calcium entry (SOCE) response and that ESyt1 regulates ACTH secretion through an unknown mechanism regulated by PACS-1. Overall, our study provides new insights into the physiological role PACS-1 plays in modulating intracellular calcium levels and regulating ACTH secretion in corticotropic cells.
Collapse
Affiliation(s)
- Steven
M. Trothen
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jack E. Teplitsky
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ryan E. Armstong
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Rong Xuan Zang
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Antony Lurie
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Mitchell J. Mumby
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Cassandra R. Edgar
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Matthew W. Grol
- Department
of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jimmy D. Dikeakos
- Department
of Microbiology and Immunology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
9
|
Degli Esposti M. Did mitophagy follow the origin of mitochondria? Autophagy 2024; 20:985-993. [PMID: 38361280 PMCID: PMC11135861 DOI: 10.1080/15548627.2024.2307215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/30/2023] [Accepted: 01/13/2024] [Indexed: 02/17/2024] Open
Abstract
Mitophagy is the process of selective autophagy that removes superfluous and dysfunctional mitochondria. Mitophagy was first characterized in mammalian cells and is now recognized to follow several pathways including basal forms in specific organs. Mitophagy pathways are regulated by multiple, often interconnected factors. The present review aims to streamline this complexity and evaluate common elements that may define the evolutionary origin of mitophagy. Key issues surrounding mitophagy signaling at the mitochondrial surface may fundamentally derive from mitochondrial membrane dynamics. Elements of such membrane dynamics likely originated during the endosymbiosis of the alphaproteobacterial ancestor of our mitochondria but underwent an evolutionary leap forward in basal metazoa that determined the currently known variations in mitophagy signaling.Abbreviations: AGPAT, 1-acylglycerol-3-phosphate O-acyltransferase; ATG, autophagy related; BCL2L13, BCL2 like 13; BNIP3, BCL2 interacting protein 3; BNIP3L, BCL2 interacting protein 3 like; CALCOCO, calcium binding and coiled-coil domain; CL, cardiolipin; ER, endoplasmic reticulum; ERMES, ER-mitochondria encounter structure; FBXL4, F-box and leucine rich repeat protein 4; FUNDC1, FUN14 domain containing 1; GABARAPL1, GABA type A receptor associated protein like 1; HIF, hypoxia inducible factor; IMM, inner mitochondrial membrane; LBPA/BMP, lysobisphosphatidic acid; LIR, LC3-interacting region; LPA, lysophosphatidic acid; MAM, mitochondria-associated membranes; MAP1LC3/LC3, microtubule associated protein 1 light chain 3; MCL, monolysocardiolipin; ML, maximum likelihood; NBR1, NBR1 autophagy cargo receptor; OMM, outer mitochondrial membrane; PA, phosphatidic acid; PACS2, phosphofurin acidic cluster sorting protein 2; PC/PLC, phosphatidylcholine; PE, phosphatidylethanolamine; PHB2, prohibitin 2; PINK1, PTEN induced kinase 1; PtdIns, phosphatidylinositol; SAR, Stramenopiles, Apicomplexa and Rhizaria; TAX1BP1, Tax1 binding protein 1; ULK1, unc-51 like autophagy activating kinase 1; VDAC/porin, voltage dependent anion channel.
Collapse
Affiliation(s)
- Mauro Degli Esposti
- Center for Genomic Sciences, UNAM Campus de Morelos, Cuernavaca, Morelos, Mexico
| |
Collapse
|
10
|
Byrd DT, Han ZC, Piggott CA, Jin Y. PACS-1 variant protein is aberrantly localized in C. elegans model of PACS1/PACS2 syndromes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590644. [PMID: 38712144 PMCID: PMC11071410 DOI: 10.1101/2024.04.22.590644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PACS (Phosphofurin Acidic Cluster Sorting Protein) proteins are known for their roles in sorting cargo proteins to organelles and can physically interact with WD40 repeat-containing protein WDR37. PACS1, PACS2, and WDR37 variants are associated with multisystemic syndromes and neurodevelopmental disorders characterized by intellectual disability, seizures, developmental delays, craniofacial abnormalities, and autism spectrum disorder. However, the effects of syndromic variants on function in vivo remains unknown. Here, we report the expression pattern of C. elegans orthologs of PACS and WDR37 and their interaction. We show that cePACS-1 and ceWDR-37 co-localize to somatic cytoplasm of many types of cells, and are mutually required for expression, supporting a conclusion that the intermolecular dependence of PACS1/PACS2/PACS-1 and WDR37/WDR-37 is evolutionarily conserved. We further show that editing in PACS1 and PACS2 variants in cePACS-1 changes protein localization in multiple cell types, including neurons. Moreover, expression of human PACS1 can functionally complement C. elegans PACS-1 in neurons, demonstrating conserved functions of the PACS-WDR37 axis in an invertebrate model system. Our findings reveal effects of human variants and suggest potential strategies to identify regulatory network components that may contribute to understanding molecular underpinnings of PACS/WDR37 syndromes.
Collapse
Affiliation(s)
- Dana T. Byrd
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| | - Ziyuan Christina Han
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| | - Christopher A. Piggott
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| | - Yishi Jin
- Department of Neurobiology, School of Biological Sciences, University of California San Diego, CA 92093
| |
Collapse
|
11
|
Stoian A, Bajko Z, Bălașa R, Andone S, Stoian M, Ormenișan I, Muntean C, Bănescu C. Characteristics of Developmental and Epileptic Encephalopathy Associated with PACS2 p.Glu209Lys Pathogenic Variant-Our Experience and Systematic Review of the Literature. Biomolecules 2024; 14:270. [PMID: 38540691 PMCID: PMC10968252 DOI: 10.3390/biom14030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Developmental and epileptic encephalopathies (DEE) encompass a group of rare diseases with hereditary and genetic causes as well as acquired causes such as brain injuries or metabolic abnormalities. The phosphofurin acidic cluster sorting protein 2 (PACS2) is a multifunctional protein with nuclear gene expression. The first cases of the recurrent c.625G>A pathogenic variant of PACS2 gene were reported in 2018 by Olson et al. Since then, several case reports and case series have been published. METHODS We performed a systematic review of the PUBMED and SCOPUS databases using Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Our search parameters included DEE66 with a pathogenic PACS2 gene p.Glu209Lys mutation published cases to which we added our own clinical experience regarding this pathology. RESULTS A total of 11 articles and 29 patients were included in this review, to which we added our own experience for a total of 30 patients. There was not a significant difference between sexes regarding the incidence of this pathology (M/F: 16/14). The most common neurological and psychiatric symptoms presented by the patients were: early onset epileptic seizures, delayed global development (including motor and speech delays), behavioral disturbances, limited intellectual capacity, nystagmus, hypotonia, and a wide-based gait. Facial dysmorphism and other organs' involvement were also frequently reported. Brain MRIs evidenced anomalies of the posterior cerebellar fossa, foliar distortion of the cerebellum, vermis hypoplasia, white matter reduction, and lateral ventricles enlargement. Genetic testing is more frequent in children. Only 4 cases have been reported in adults to date. CONCLUSIONS It is important to maintain a high suspicion of new pathogenic gene variants in adult patients presenting with a characteristic clinical picture correlated with radiologic changes. The neurologist must gradually recognize the distinct evolving phenotype of DEE66 in adult patients, and genetic testing must become a scenario with which the neurologist attending adult patients should be familiar. Accurate diagnosis is required for adequate treatment, genetic counseling, and an improved long-term prognosis.
Collapse
Affiliation(s)
- Adina Stoian
- Department of Pathophysiology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Zoltan Bajko
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Rodica Bălașa
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Sebastian Andone
- Department of Neurology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania; (R.B.); (S.A.)
| | - Mircea Stoian
- Department of Anesthesia and Intensive Care, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania;
| | - Ioana Ormenișan
- 1st Neurology Clinic, Mures County Emergency Hospital, 540142 Targu Mures, Romania;
| | - Carmen Muntean
- Department of Pediatrics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Claudia Bănescu
- Department of Genetics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| |
Collapse
|
12
|
Razim A, Pacyga-Prus K, Kazana-Płuszka W, Zabłocka A, Macała J, Ciepłucha H, Gamian A, Górska S. Differential patterns of antibody response against SARS-CoV-2 nucleocapsid epitopes detected in sera from patients in the acute phase of COVID-19, convalescents, and pre-pandemic individuals. Pathog Dis 2024; 82:ftae025. [PMID: 39354682 PMCID: PMC11556334 DOI: 10.1093/femspd/ftae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 10/03/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already infected more than 0.7 billion people and caused over 7 million deaths worldwide. At the same time, our knowledge about this virus is still incipient. In some cases, there is pre-pandemic immunity; however, its source is unknown. The analysis of patients' humoral responses might shed light on this puzzle. In this paper, we evaluated the antibody recognition of nucleocapsid protein, one of the structural proteins of SARS-CoV-2. For this purpose, we used pre-pandemic acute COVID-19 and convalescent patients' sera to identify and map nucleocapsid protein epitopes. We identified a common epitope KKSAAEASKKPRQKRTATKA recognized by sera antibodies from all three groups. Some motifs of this sequence are widespread among various coronaviruses, plants or human proteins indicating that there might be more sources of nucleocapsid-reactive antibodies than previous infections with seasonal coronavirus. The two sequences MSDNGPQNQRNAPRITFGGP and KADETQALPQRQKKQQTVTL were detected as specific for sera from patients in the acute phase of infection and convalescents making them suitable for future development of vaccines against SARS-CoV-2. Knowledge of the humoral response to SARS-CoV-2 infection is essential for the design of appropriate diagnostic tools and vaccine antigens.
Collapse
Affiliation(s)
- Agnieszka Razim
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Katarzyna Pacyga-Prus
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Wioletta Kazana-Płuszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Agnieszka Zabłocka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Józefa Macała
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Hubert Ciepłucha
- Department of Infectious Diseases, Liver Diseases and Acquired Immune Deficiencies, Wroclaw Medical University, Wybrzeże L. Pasteura 1, 50-367 Wrocław, Poland
| | - Andrzej Gamian
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| | - Sabina Górska
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114 Wrocław, Poland
| |
Collapse
|
13
|
Rylaarsdam L, Rakotomamonjy J, Pope E, Guemez-Gamboa A. iPSC-derived models of PACS1 syndrome reveal transcriptional and functional deficits in neuron activity. Nat Commun 2024; 15:827. [PMID: 38280846 PMCID: PMC10821916 DOI: 10.1038/s41467-024-44989-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 01/11/2024] [Indexed: 01/29/2024] Open
Abstract
PACS1 syndrome is a neurodevelopmental disorder characterized by intellectual disability and distinct craniofacial abnormalities resulting from a de novo p.R203W variant in phosphofurin acidic cluster sorting protein 1 (PACS1). PACS1 is known to have functions in the endosomal pathway and nucleus, but how the p.R203W variant affects developing neurons is not fully understood. Here we differentiated stem cells towards neuronal models including cortical organoids to investigate the impact of the PACS1 syndrome-causing variant on neurodevelopment. While few deleterious effects were detected in PACS1(+/R203W) neural precursors, mature PACS1(+/R203W) glutamatergic neurons exhibited impaired expression of genes involved in synaptic signaling processes. Subsequent characterization of neural activity using calcium imaging and multielectrode arrays revealed the p.R203W PACS1 variant leads to a prolonged neuronal network burst duration mediated by an increased interspike interval. These findings demonstrate the impact of the PACS1 p.R203W variant on developing human neural tissue and uncover putative electrophysiological underpinnings of disease.
Collapse
Affiliation(s)
- Lauren Rylaarsdam
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer Rakotomamonjy
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eleanor Pope
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alicia Guemez-Gamboa
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Makio T, Simmen T. Not So Rare: Diseases Based on Mutant Proteins Controlling Endoplasmic Reticulum-Mitochondria Contact (MERC) Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241261228. [PMID: 39070058 PMCID: PMC11273598 DOI: 10.1177/25152564241261228] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs), also called endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS), are the membrane domains, where these two organelles exchange lipids, Ca2+ ions, and reactive oxygen species. This crosstalk is a major determinant of cell metabolism, since it allows the ER to control mitochondrial oxidative phosphorylation and the Krebs cycle, while conversely, it allows the mitochondria to provide sufficient ATP to control ER proteostasis. MERC metabolic signaling is under the control of tethers and a multitude of regulatory proteins. Many of these proteins have recently been discovered to give rise to rare diseases if their genes are mutated. Surprisingly, these diseases share important hallmarks and cause neurological defects, sometimes paired with, or replaced by skeletal muscle deficiency. Typical symptoms include developmental delay, intellectual disability, facial dysmorphism and ophthalmologic defects. Seizures, epilepsy, deafness, ataxia, or peripheral neuropathy can also occur upon mutation of a MERC protein. Given that most MERC tethers and regulatory proteins have secondary functions, some MERC protein-based diseases do not fit into this categorization. Typically, however, the proteins affected in those diseases have dominant functions unrelated to their roles in MERCs tethering or their regulation. We are discussing avenues to pharmacologically target genetic diseases leading to MERC defects, based on our novel insight that MERC defects lead to common characteristics in rare diseases. These shared characteristics of MERCs disorders raise the hope that they may allow for similar treatment options.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Villar-Pazos S, Thomas L, Yang Y, Chen K, Lyles JB, Deitch BJ, Ochaba J, Ling K, Powers B, Gingras S, Kordasiewicz HB, Grubisha MJ, Huang YH, Thomas G. Neural deficits in a mouse model of PACS1 syndrome are corrected with PACS1- or HDAC6-targeting therapy. Nat Commun 2023; 14:6547. [PMID: 37848409 PMCID: PMC10582149 DOI: 10.1038/s41467-023-42176-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
PACS1 syndrome is a neurodevelopmental disorder (NDD) caused by a recurrent de novo missense mutation in PACS1 (p.Arg203Trp (PACS1R203W)). The mechanism by which PACS1R203W causes PACS1 syndrome is unknown, and no curative treatment is available. Here, we use patient cells and PACS1 syndrome mice to show that PACS1 (or PACS-1) is an HDAC6 effector and that the R203W substitution increases the PACS1/HDAC6 interaction, aberrantly potentiating deacetylase activity. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi ribbon in hippocampal neurons and patient-derived neural progenitor cells (NPCs) to fragment and overpopulate dendrites, increasing their arborization. The dendrites, however, are beset with varicosities, diminished spine density, and fewer functional synapses, characteristic of NDDs. Treatment of PACS1 syndrome mice or patient NPCs with PACS1- or HDAC6-targeting antisense oligonucleotides, or HDAC6 inhibitors, restores neuronal structure and synaptic transmission in prefrontal cortex, suggesting that targeting PACS1R203W/HDAC6 may be an effective therapy for PACS1 syndrome.
Collapse
Affiliation(s)
- Sabrina Villar-Pazos
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Yunhan Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Kun Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jenea B Lyles
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Bradley J Deitch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | | | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | - Melanie J Grubisha
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
16
|
Li X, Xu L. Exploring prognostic markers for patients with acute myeloid leukemia based on cuproptosis related genes. Transl Cancer Res 2023; 12:2008-2022. [PMID: 37701119 PMCID: PMC10493802 DOI: 10.21037/tcr-23-85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/21/2023] [Indexed: 09/14/2023]
Abstract
Background Acute myeloid leukemia (AML), a common form of acute leukemia, is due to tumor changes and clonal proliferation caused by genetic variants. Cuproptosis is a novel form of regulated cell death. This study aimed to explore the role of cuproptosis-related genes (CRGs) in AML. Methods Initially, differentially expressed genes (DEGs) between AML samples and normal samples were obtained by differential analysis, which were further intersected with the cuproptosis score-related genes (CSRGs) acquired by weighted gene co-expression network analysis (WGCNA) to obtain cuproptosis score-related differentially expressed genes (CS-DEGs). Then, a risk model was constructed by Cox analysis and least absolute shrinkage and selection operator (LASSO) analysis. Finally, immune infiltration analysis was performed and the functions and pathways of model genes were explored by single sample gene set enrichment analysis (ssGSEA). Results Thirty-two CS-DEGs were obtained by overlapping 11,160 DEGs and 132 CSRGs. These 32 CS-DEGs were mainly enriched to cytoplasmic microtubule organization, RNA methylation, mTOR signaling pathway, and notch signaling pathway. Two model genes, PACS2 and NDUFV1, were finally screened for the construction of the risk model. In addition, PACS2 and NDUFV1 were significantly positively correlated with activated B cells, CD56dim natural killer (NK) cells, and negatively correlated with effector memory CD4 T cells and activated CD4 T cells. PACS2 gene was significantly enriched to inositol phosphate metabolism, histone modification, etc. NDUFV1 was mainly enriched to ncRNA metabolic process, 2-oxocarboxylic acid metabolism, and other pathways. Conclusions A cuproptosis-related risk model consisting of PACS2 and NDUFV1 was built, which provided a new direction for the diagnosis and treatment of AML.
Collapse
Affiliation(s)
- Xinyue Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, China
- Department of Hematology, 2nd Hospital of Shanxi Medical University, Taiyuan, China
| | - Lianrong Xu
- Department of Hematology, 2nd Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
17
|
Thi My Nhung T, Phuoc Long N, Diem Nghi T, Suh Y, Hoang Anh N, Jung CW, Minh Triet H, Jung M, Woo Y, Yoo J, Noh S, Kim SJ, Lee SB, Park S, Thomas G, Simmen T, Mun J, Rhee HW, Kwon SW, Park SK. Genome-wide kinase-MAM interactome screening reveals the role of CK2A1 in MAM Ca 2+ dynamics linked to DEE66. Proc Natl Acad Sci U S A 2023; 120:e2303402120. [PMID: 37523531 PMCID: PMC10410754 DOI: 10.1073/pnas.2303402120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/15/2023] [Indexed: 08/02/2023] Open
Abstract
The endoplasmic reticulum (ER) and mitochondria form a unique subcellular compartment called mitochondria-associated ER membranes (MAMs). Disruption of MAMs impairs Ca2+ homeostasis, triggering pleiotropic effects in the neuronal system. Genome-wide kinase-MAM interactome screening identifies casein kinase 2 alpha 1 (CK2A1) as a regulator of composition and Ca2+ transport of MAMs. CK2A1-mediated phosphorylation of PACS2 at Ser207/208/213 facilitates MAM localization of the CK2A1-PACS2-PKD2 complex, regulating PKD2-dependent mitochondrial Ca2+ influx. We further reveal that mutations of PACS2 (E209K and E211K) associated with developmental and epileptic encephalopathy-66 (DEE66) impair MAM integrity through the disturbance of PACS2 phosphorylation at Ser207/208/213. This, in turn, causes the reduction of mitochondrial Ca2+ uptake and the dramatic increase of the cytosolic Ca2+ level, thereby, inducing neurotransmitter release at the axon boutons of glutamatergic neurons. In conclusion, our findings suggest a molecular mechanism that MAM alterations induced by pathological PACS2 mutations modulate Ca2+-dependent neurotransmitter release.
Collapse
Affiliation(s)
- Truong Thi My Nhung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan47392, Republic of Korea
| | - Tran Diem Nghi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Hong Minh Triet
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Minkyo Jung
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Jinyeong Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Sujin Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Soo Jeong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| | - Seongoh Park
- School of Mathematics, Statistics and Data Science, Sungshin Women’s University, Seoul02844, Republic of Korea
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PA15219
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, ABT6G 2H7, Canada
| | - Jiyoung Mun
- Neural Circuit Research Group, Korea Brain Research Institute, Daegu41062, Republic of Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul08826, Korea
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul08826, Republic of Korea
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang37673, Republic of Korea
| |
Collapse
|
18
|
Moller-Hansen A, Hejla D, Lee HK, Lyles JB, Yang Y, Chen K, Li WL, Thomas G, Boerkoel CF. Do PACS1 variants impeding adaptor protein binding predispose to syndromic intellectual disability? Am J Med Genet A 2023; 191:2181-2187. [PMID: 37141437 PMCID: PMC10524240 DOI: 10.1002/ajmg.a.63232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
To date, PACS1-neurodevelopmental disorder (PACS1-NDD) has been associated with recurrent variation of Arg203 and is considered diagnostic of PACS1-NDD, an autosomal dominant syndromic intellectual disability disorder. Although incompletely defined, the proposed disease mechanism for this variant is altered PACS1 affinity for its client proteins. Given this proposed mechanism, we hypothesized that PACS1 variants that interfere with binding of adaptor proteins might also give rise to syndromic intellectual disability. Herein, we report a proposita and her mother with phenotypic features overlapping PACS1-NDD and a novel PACS1 variant (NM_018026.3:c.[755C > T];[=], p.(Ser252Phe)) that impedes binding of the adaptor protein GGA3 (Golgi-associated, gamma-adaptin ear-containing, ARF-binding protein 3). We hypothesize that attenuating PACS1 binding of GGA3 also gives rise to a disorder with features overlapping those of PACS1-NDD. This observation better delineates the mechanism by which PACS1 variation predisposes to syndromic intellectual disability.
Collapse
Affiliation(s)
- Ashley Moller-Hansen
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Duha Hejla
- Department of Pediatrics, University of British Columbia and Children's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Hyun Kyung Lee
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| | - Jenea Barbara Lyles
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yunhan Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Kun Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cornelius F Boerkoel
- Department of Medical Genetics and Provincial Medical Genetics Program, University of British Columbia and Women's Hospital of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
19
|
Villar-Pazos S, Thomas L, Yang Y, Chen K, Lyles JB, Deitch BJ, Ochaba J, Ling K, Powers B, Gingras S, Kordasiewicz HB, Grubisha MJ, Huang YH, Thomas G. RNA-targeted therapy corrects neuronal deficits in PACS1 syndrome mice. RESEARCH SQUARE 2023:rs.3.rs-2440581. [PMID: 36747781 PMCID: PMC9901029 DOI: 10.21203/rs.3.rs-2440581/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurodevelopmental disorders (NDDs) are frequently associated with dendritic abnormalities in pyramidal neurons that affect arbor complexity, spine density, and synaptic communication 1,2. The underlying genetic causes are often complex, obscuring the molecular pathways that drive these disorders 3. Next-generation sequencing has identified recurrent de novo missense mutations in a handful of genes associated with NDDs, offering a unique opportunity to decipher the molecular pathways 4. One such gene is PACS1, which encodes the multi-functional trafficking protein PACS1 (or PACS-1); a single recurrent de novo missense mutation, c607C>T (PACS1R203W), causes developmental delay and intellectual disability (ID) 5,6. The processes by which PACS1R203W causes PACS1 syndrome are unknown, and there is no curative treatment. We show that PACS1R203W increases the interaction between PACS1 and the α-tubulin deacetylase HDAC6, elevating enzyme activity and appropriating control of its posttranscriptional regulation. Consequently, PACS1R203W reduces acetylation of α-tubulin and cortactin, causing the Golgi to fragment and enter developing neurites, leading to increased dendrite arborization. The dendrites, however, are beset with diminished spine density and fewer functional synapses, characteristic of ID pathology. Treatment of PACS1 syndrome mice with PACS1- or HDAC6-targeting antisense oligonucleotides restores neuronal structure and synaptic transmission, suggesting PACS1R203W/HDAC6 may be targeted for treating PACS1 syndrome neuropathology.
Collapse
Affiliation(s)
- Sabrina Villar-Pazos
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yunhan Yang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Kun Chen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Jenea B. Lyles
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Bradley J. Deitch
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | | | - Karen Ling
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | | | - Sebastien Gingras
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | | | - Melanie J. Grubisha
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanhua H. Huang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| |
Collapse
|
20
|
Zang RX, Mumby MJ, Dikeakos JD. The Phosphofurin Acidic Cluster Sorting Protein 2 (PACS-2) E209K Mutation Responsible for PACS-2 Syndrome Increases Susceptibility to Apoptosis. ACS OMEGA 2022; 7:34378-34388. [PMID: 36188273 PMCID: PMC9520720 DOI: 10.1021/acsomega.2c04014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Phosphofurin acidic cluster sorting protein 2 (PACS-2) is a multifunctional cytosolic membrane trafficking protein with distinct roles in maintaining cellular homeostasis. Recent clinical reports have described 28 individuals possessing a de novo PACS-2 E209K mutation that present with epileptic seizures and cerebellar dysgenesis. As the PACS-2 E209K missense mutation has become a marker for neurodevelopmental disorders, we sought to characterize its biochemical properties. Accordingly, we observed that the PACS-2 E209K protein exhibited a slower turnover rate relative to PACS-2 wild type (WT) upon cycloheximide treatment in 293T cells. The longer half-life of PACS-2 E209K suggests a disruption in its proteostasis, with the potential for altered protein-protein interactions. Indeed, a regulatory protein in neurodevelopment known as 14-3-3ε was identified as having an increased association with PACS-2 E209K. Subsequently, when comparing the effect of PACS-2 WT and E209K expression on the staurosporine-induced apoptosis response, we found that PACS-2 E209K increased susceptibility to staurosporine-induced apoptosis in HCT 116 cells. Overall, our findings suggest PACS-2 E209K alters PACS-2 proteostasis and favors complex formation with 14-3-3ε, leading to increased cell death in the presence of environmental stressors.
Collapse
|
21
|
Molecular Basis of the Schuurs-Hoeijmakers Syndrome: What We Know about the Gene and the PACS-1 Protein and Novel Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms23179649. [PMID: 36077045 PMCID: PMC9456036 DOI: 10.3390/ijms23179649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The Schuurs−Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopment Disorder (PACS1-NDD) is a rare autosomal dominant disease caused by mutations in the PACS1 gene. To date, only 87 patients have been reported and, surprisingly, most of them carry the same variant (c.607C>T; p.R203W). The most relevant clinical features of the syndrome include neurodevelopment delay, seizures or a recognizable facial phenotype. Moreover, some of these characteristics overlap with other syndromes, such as the PACS2 or Wdr37 syndromes. The encoded protein phosphofurin acid cluster sorting 1 (PACS-1) is able to bind to different client proteins and direct them to their subcellular final locations. Therefore, although its main function is protein trafficking, it could perform other roles related to its client proteins. In patients with PACS1-NDD, a gain-of-function or a dominant negative mechanism for the mutated protein has been suggested. This, together with the fact that most of the patients carry the same genetic variant, makes it a good candidate for novel therapeutic approaches directed to decreasing the toxic effect of the mutated protein. Some of these strategies include the use of antisense oligonucleotides (ASOs) or targeting of its client proteins.
Collapse
|
22
|
Shu Z, Chen S, Xiang H, Wu R, Wang X, Ouyang J, Zhang J, Liu H, Chen AF, Lu H. AKT/PACS2 Participates in Renal Vascular Hyperpermeability by Regulating Endothelial Fatty Acid Oxidation in Diabetic Mice. Front Pharmacol 2022; 13:876937. [PMID: 35865947 PMCID: PMC9294407 DOI: 10.3389/fphar.2022.876937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes is a chronic metabolic disorder that can cause many microvascular and macrovascular complications, including diabetic nephropathy. Endothelial cells exhibit phenotypic and metabolic diversity and are affected by metabolic disorders. Whether changes in endothelial cell metabolism affect vascular endothelial function in diabetic nephropathy remains unclear. In diabetic mice, increased renal microvascular permeability and fibrosis, as well as increased MAMs and PACS2 in renal endothelial cells, were observed. Mice lacking PACS2 improved vascular leakage and glomerulosclerosis under high fat diet. In vitro, PACS2 expression, VE-cadherin internalization, fibronectin production, and Smad-2 phosphorylation increased in HUVECs treated with high glucose and palmitic acid (HGHF). Pharmacological inhibition of AKT significantly reduced HGHF-induced upregulation of PACS2 and p-Smad2 expression. Blocking fatty acid β-oxidation (FAO) ameliorated the impaired barrier function mediated by HGHF. Further studies observed that HGHF induced decreased FAO, CPT1α expression, ATP production, and NADPH/NADP+ ratio in endothelial cells. However, these changes in fatty acid metabolism were rescued by silencing PACS2. In conclusion, PACS2 participates in renal vascular hyperpermeability and glomerulosclerosis by regulating the FAO of diabetic mice. Targeting PACS2 is potential new strategy for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Zhihao Shu
- Health Management Center, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences, Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medicine, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ruoru Wu
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xuewen Wang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jie Ouyang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Zhang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Huiqin Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Alex F. Chen
- Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hongwei Lu
- Health Management Center, Third Xiangya Hospital of Central South University, Changsha, China
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Hongwei Lu,
| |
Collapse
|
23
|
Saneto RP, Perez FA. Mitochondria-Associated Membrane Scaffolding with Endoplasmic Reticulum: A Dynamic Pathway of Developmental Disease. Front Mol Biosci 2022; 9:908721. [PMID: 35775081 PMCID: PMC9237565 DOI: 10.3389/fmolb.2022.908721] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Communication between intracellular organelles is essential for overall cellular function. How this communication occurs and under what circumstances alterations transpire are only the beginning to be elucidated. The pathways of calcium homeostasis, lipid transfer, mitochondrial dynamics, and mitophagy/apoptosis have been linked to the endoplasmic reticulum and tethering sites on the outer and/or inner mitochondrial membrane called mitochondria-associated endoplasmic reticulum membranes (MAM). Sensitive visualization by high-powered microscopy coupled with the advent of massive parallel sequencing has elaborated the structure, while patient’s diseases have uncovered the physiological function of these networks. Using specific patient examples from our pediatric mitochondrial center, we expand how specific genetic pathological variants in certain MAM structures induce disease. Genetic variants in MICU1, PASC-2, CYP2U1, SERAC1, and TANGO2 can induce early development abnormalities in the areas of cognition, motor, and central nervous system structures across multiple MAM pathways and implicate mitochondrial dysregulation.
Collapse
Affiliation(s)
- Russell P. Saneto
- Division of Pediatric Neurology, Department of Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA, United States
- Neuroscience Institute, Center for Integrated Brain Research, Seattle Children’s Hospital, Seattle, WA, United States
- *Correspondence: Russell P. Saneto,
| | - Francisco A. Perez
- Department of Radiology, Seattle Children’s Hospital/University of Washington, Seattle, WA, United States
| |
Collapse
|
24
|
Knoell J, Chillappagari S, Knudsen L, Korfei M, Dartsch R, Jonigk D, Kuehnel MP, Hoetzenecker K, Guenther A, Mahavadi P. PACS2-TRPV1 axis is required for ER-mitochondrial tethering during ER stress and lung fibrosis. Cell Mol Life Sci 2022; 79:151. [PMID: 35212819 PMCID: PMC8881280 DOI: 10.1007/s00018-022-04189-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 01/16/2023]
Abstract
Endoplasmic reticulum (ER) and mitochondria (mito) play a vital role in alveolar type II cell (AEC2) homeostasis and are both stressed in patients with idiopathic pulmonary fibrosis (IPF). Up to now, no data are available with regard to ER–mito cross talk and tethering under conditions of IPF. We here demonstrate that ER–mitochondrial tethering is reduced upon experimental ER stress in vitro and in the IPF AECII ex vivo, and this is—at least in part—due to decreased phosphofurin acidic cluster sorting protein 2 (PACS-2, also called PACS2) protein levels. PACS2 levels are influenced by its interaction with the transient receptor potential cation channel subfamily V member 1 (TRPV1) and can be experimentally modified by the TRPV1-modulating drug capsaicin (CPS). Employing alveolar epithelial cells with overexpression of the terminal ER stress signaling factor Chop or the IPF-associated surfactant protein C mutation (SPCΔexon4) in vitro, we observed a restoration of PACS2 levels upon treatment with CPS. Similarly, treatment of precision cut lung slices from IPF patients with CPS ex vivo forwarded similar effects. Importantly, in all models such kind of intervention also greatly reduced the extent of alveolar epithelial apoptosis. We therefore conclude that therapeutic targeting of the PACS2–TRPV1 axis represents an interesting novel, epithelial-protective approach in IPF.
Collapse
Affiliation(s)
- Jessica Knoell
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Shashi Chillappagari
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,Department of Biochemistry, Faculty of Medicine, JLU, Giessen, Germany
| | - Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Martina Korfei
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Ruth Dartsch
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Danny Jonigk
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Mark P Kuehnel
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover, Germany
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Vienna General Hospital, Vienna, Austria.,European IPF/ILD Registry and Biobank, Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.,European IPF/ILD Registry and Biobank, Giessen, Germany.,Member of the Cardio-Pulmonary Institute (CPI), JLU, Giessen, Germany.,Lung Clinic, Agaplesion Evangelisches Krankenhaus Mittelhessen, Giessen, Germany
| | - Poornima Mahavadi
- Department of Internal Medicine, Justus-Liebig University (JLU), Gaffkystraße 11, 35392, Giessen, Germany. .,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany.
| |
Collapse
|
25
|
Trothen SM, Zang RX, Lurie A, Dikeakos JD. PACS-1 contains distinct motifs for nuclear-cytoplasmic transport and interacts with the RNA-binding protein PTBP1 in the nucleus and cytosol. FEBS Lett 2022; 596:232-248. [PMID: 34822171 DOI: 10.1002/1873-3468.14243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/10/2022]
Abstract
Phosphofurin acidic cluster sorting protein 1 (PACS-1) is canonically a cytosolic trafficking protein, yet recent reports have described nuclear roles for PACS-1. Herein, we sought to define the nuclear transport mechanism of PACS-1. We demonstrate that PACS-1 nucleocytoplasmic trafficking is dependent on its interaction with the nuclear transport receptors importin alpha 5 and exportin 1. PACS-1 nuclear entry and exit are defined by a nuclear localization signal (NLS, residues 311-318) and nuclear export signal (NES3, residues 366-375). Mutation of the PACS-1 NLS and NES3 altered the localization of a complex formed between PACS-1 and an RNA-binding protein, polypyrimidine tract-binding protein 1. Overall, we identify the nuclear localization mechanism of PACS-1 and highlight a potential role for PACS-1 in RNA-binding protein trafficking.
Collapse
Affiliation(s)
- Steven M Trothen
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Rong Xuan Zang
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Antony Lurie
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
26
|
Gao Y, Pang H, Chen B, Wu C, Wang Y, Hou L, Wang S, Sun D, Zheng X. Genome-wide analysis of DNA methylation and risk of cardiovascular disease in a Chinese population. BMC Cardiovasc Disord 2021; 21:240. [PMID: 33980183 PMCID: PMC8117656 DOI: 10.1186/s12872-021-02001-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
Background Systemic studies of association of genome-wide DNA methylated sites with cardiovascular disease (CVD) in prospective cohorts are lacking. Our aim was to identify DNA methylation sites associated with the risk of CVD and further investigate their potential predictive value in CVD development for high-risk subjects. Methods We performed an epigenome-wide association study (EWAS) to identify CpGs related to CVD development in a Chinese population.We adopted a nested case–control design based on data from China PEACE Million Persons Project. A total of 83 cases who developed CVD events during follow-up and 83 controls who were matched with cases by age, sex, BMI, ethnicity, medications treatment and behavior risk factors were included in the discovery stage. Genome-wide DNA methylation from whole blood was detected using Infinium Human Methylation EPIC Beadchip (850 K). For significant CpGs [FDR(false discovery rate) < 0.005], we further validated in an independent cohort including 38 cases and 38 controls. Results In discovery set, we identified 8 significant CpGs (FDR < 0.005) associated with the risk of CVD after adjustment for cell components, demographic and cardiac risk factors and the first 5 principal components. Two of these identified CpGs (cg06901278 and cg09306458 in UACA) were replicated in another independent set (p < 0.05). Enrichment analysis in 787 individual genes from 1036 CpGs in discovery set revealed a significant enrichment for anatomical structure homeostasis as well as regulation of vesicle-mediated transport. Receiver operating characteristic (ROC) analysis showed that the model combined 8 CVD-related CpGs with baseline characteristics showed much better predictive effect for CVD occurrence compared with the model with baseline characteristics only [AUC (area under the curve) = 0.967, 95% CI (0.942 − 0.991); AUC = 0.621, 95% CI (0.536 − 0.706); p = 9.716E-15]. Conclusions Our study identified the novel CpGs associated with CVD development and revealed their additional predictive power in the risk of CVD for high-risk subjects. Supplementary information The online version contains supplementary material available at 10.1186/s12872-021-02001-w.
Collapse
Affiliation(s)
- Yan Gao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Huifang Pang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Bowang Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - ChaoQun Wu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Yanping Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Libo Hou
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Siming Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, People's Republic of China
| | - Xin Zheng
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases, 167 Beilishi Road, Beijing, 100037, People's Republic of China.
| |
Collapse
|
27
|
Nair-Gill E, Bonora M, Zhong X, Liu A, Miranda A, Stewart N, Ludwig S, Russell J, Gallagher T, Pinton P, Beutler B. Calcium flux control by Pacs1-Wdr37 promotes lymphocyte quiescence and lymphoproliferative diseases. EMBO J 2021; 40:e104888. [PMID: 33630350 DOI: 10.15252/embj.2020104888] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Endoplasmic reticulum (ER) calcium (Ca2+ ) stores are critical to proteostasis, intracellular signaling, and cellular bioenergetics. Through forward genetic screening in mice, we identified two members of a new complex, Pacs1 and Wdr37, which are required for normal ER Ca2+ handling in lymphocytes. Deletion of Pacs1 or Wdr37 caused peripheral lymphopenia that was linked to blunted Ca2+ release from the ER after antigen receptor stimulation. Pacs1-deficient cells showed diminished inositol triphosphate receptor expression together with increased ER and oxidative stress. Mature Pacs1-/- B cells proliferated and died in vivo under lymphocyte replete conditions, indicating spontaneous loss of cellular quiescence. Disruption of Pacs1-Wdr37 did not diminish adaptive immune responses, but potently suppressed lymphoproliferative disease models by forcing loss of quiescence. Thus, Pacs1-Wdr37 plays a critical role in stabilizing lymphocyte populations through ER Ca2+ handling and presents a new target for lymphoproliferative disease therapy.
Collapse
Affiliation(s)
- Evan Nair-Gill
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Rheumatic Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Massimo Bonora
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amber Miranda
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nathan Stewart
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas Gallagher
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
28
|
Siebert JC, Stanislawski MA, Zaman A, Ostendorf DM, Konigsberg IR, Jambal P, Ir D, Bing K, Wayland L, Scorsone JJ, Lozupone CA, Görg C, Frank DN, Bessesen D, MacLean PS, Melanson EL, Catenacci VA, Borengasser SJ. Multiomic Predictors of Short-Term Weight Loss and Clinical Outcomes During a Behavioral-Based Weight Loss Intervention. Obesity (Silver Spring) 2021; 29:859-869. [PMID: 33811477 PMCID: PMC8085074 DOI: 10.1002/oby.23127] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/15/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Identifying predictors of weight loss and clinical outcomes may increase understanding of individual variability in weight loss response. We hypothesized that baseline multiomic features, including DNA methylation (DNAme), metabolomics, and gut microbiome, would be predictive of short-term changes in body weight and other clinical outcomes within a comprehensive weight loss intervention. METHODS Healthy adults with overweight or obesity (n = 62, age 18-55 years, BMI 27-45 kg/m2 , 75.8% female) participated in a 1-year behavioral weight loss intervention. To identify baseline omic predictors of changes in clinical outcomes at 3 and 6 months, whole-blood DNAme, plasma metabolites, and gut microbial genera were analyzed. RESULTS A network of multiomic relationships informed predictive models for 10 clinical outcomes (body weight, waist circumference, fat mass, hemoglobin A1c , homeostatic model assessment of insulin resistance, total cholesterol, triglycerides, C-reactive protein, leptin, and ghrelin) that changed significantly (P < 0.05). For eight of these, adjusted R2 ranged from 0.34 to 0.78. Our models identified specific DNAme sites, gut microbes, and metabolites that were predictive of variability in weight loss, waist circumference, and circulating triglycerides and that are biologically relevant to obesity and metabolic pathways. CONCLUSIONS These data support the feasibility of using baseline multiomic features to provide insight for precision nutrition-based weight loss interventions.
Collapse
Affiliation(s)
- Janet C. Siebert
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Adnin Zaman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Danielle M. Ostendorf
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Iain R. Konigsberg
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Purevsuren Jambal
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Diana Ir
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen Bing
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Liza Wayland
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jared J. Scorsone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Catherine A. Lozupone
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Carsten Görg
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO, USA
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Bessesen
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul S. MacLean
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Edward L. Melanson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Eastern Colorado Veterans Affairs Geriatric Research, Education, and Clinical Center, Denver, CO, USA
| | - Victoria A. Catenacci
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Sarah J. Borengasser
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
29
|
Mizuno T, Miyata R, Hojo A, Tamura Y, Nakashima M, Mizuguchi T, Matsumoto N, Kato M. Clinical variations of epileptic syndrome associated with PACS2 variant. Brain Dev 2021; 43:343-347. [PMID: 33243487 DOI: 10.1016/j.braindev.2020.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Recent studies have suggested that two PACS2 pathogenic variants, c.625G > A (p.Glu209Lys) and c.631G > A (p.Glu211Lys), have been causally linked to the characteristic developmental and epileptic encephalopathy, including autistic behaviors, hypotonia, cerebellar dysgenesis and facial dysmorphism. Their seizures appear most difficult to control in neonatal and infant period, but improve after the first year of life. We herein report three patients with the same PACS2 variant, c.625G > A (p.Glu209Lys), showing different characteristics from previous reports. CASE REPORT Case 1, a 2-year-old girl, developed frequent tonic convulsions 2 weeks after birth. Brain magnetic resonance imaging showed a decrease in posterior periventricular white matter volume, an enlargement of the inferior horn of lateral ventricles and old subependymal hemorrhage. Epilepsy is now controlled with antiepileptic drugs. Case 2, a 12-year-old girl, developed generalized tonic convulsions 3 days after birth. Although epilepsy had been controlled since the age of 4, she developed Lennox-Gastaut syndrome at 9 years old. Case 3, a 3-year-old girl, developed tonic convulsions 3 days after birth. She now exhibits normal psychomotor development, and epilepsy is controlled without medicine. CONCLUSION PACS2-related epileptic syndrome presents variable phenotypes than previously reported. We think that our findings expand the clinical spectrum of this disease, and provide important information about the differential diagnosis of neonatal-onset epileptic syndrome.
Collapse
Affiliation(s)
- Tomoko Mizuno
- Department of Pediatrics, Tokyo Medical and Dental University, Japan.
| | - Rie Miyata
- Department of Pediatrics, Tokyo-Kita Medical Center, Japan
| | - Akira Hojo
- Department of Pediatrics, Showa University School of Medicine, Japan
| | - Yumie Tamura
- Department of Pediatrics, Tokyo Medical and Dental University, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan; Department of Biochemistry, Hamamatsu University School of Medicine, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Japan
| |
Collapse
|
30
|
Vaisfeld A, Spartano S, Gobbi G, Vezzani A, Neri G. Chromosome 14 deletions, rings, and epilepsy genes: A riddle wrapped in a mystery inside an enigma. Epilepsia 2020; 62:25-40. [PMID: 33205446 DOI: 10.1111/epi.16754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
The ring 14 syndrome is a rare condition caused by the rearrangement of one chromosome 14 into a ring-like structure. The formation of the ring requires two breakpoints and loss of material from the short and long arms of the chromosome. Like many other chromosome syndromes, it is characterized by multiple congenital anomalies and developmental delays. Typical of the condition are retinal anomalies and drug-resistant epilepsy. These latter manifestations are not found in individuals who are carriers of comparable 14q deletions without formation of a ring (linear deletions). To find an explanation for this apparent discrepancy and gain insight into the mechanisms leading to seizures, we reviewed and compared literature cases of both ring and linear deletion syndrome with respect to both their clinical manifestations and the role and function of potentially epileptogenic genes. Knowledge of the epilepsy-related genes in chromosome 14 is an important premise for the search of new and effective drugs to combat seizures. Current clinical and molecular evidence is not sufficient to explain the known discrepancies between ring and linear deletions.
Collapse
Affiliation(s)
- Alessandro Vaisfeld
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Serena Spartano
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| | - Giuseppe Gobbi
- Residential Center for Rehabilitation Luce Sul Mare, Rimini, Italy
| | - Annamaria Vezzani
- Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Giovanni Neri
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy.,J.C. Self Research Institute, Greenwood Genetic Center, Greenwood, SC, USA
| |
Collapse
|
31
|
Li C, Li L, Yang M, Zeng L, Sun L. PACS-2: A key regulator of mitochondria-associated membranes (MAMs). Pharmacol Res 2020; 160:105080. [DOI: 10.1016/j.phrs.2020.105080] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
|
32
|
Ding Y, Feng G, Yang M. Prognostic role of alternative splicing events in head and neck squamous cell carcinoma. Cancer Cell Int 2020; 20:168. [PMID: 32467664 PMCID: PMC7227031 DOI: 10.1186/s12935-020-01249-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant alternative splicing (AS) is implicated in biological processes of cancer. This study aims to reveal prognostic AS events and signatures that may serve as prognostic predictors for head and neck squamous cell carcinoma (HNSCC). Methods Prognostic AS events in HNSCC were identified by univariate COX analysis. Prognostic signatures comprising prognostic AS events were constructed for prognosis prediction in patients with HNSCC. The correlation between the percent spliced in (PSI) values of AS events and the expression of splicing factors (SFs) was analyzed by Pearson correlation analysis. Gene functional annotation analysis was performed to reveal pathways in which prognostic AS is enriched. Results A total of 27,611 AS events in 15,873 genes were observed, and there were 3433 AS events in 2624 genes significantly associated with overall survival (OS) for HNSCC. Moreover, we found that AS prognostic signatures could accurately predict HNSCC prognosis. SF-AS regulatory networks were constructed according to the correlation between PSI values of AS events and the expression levels of SFs. Conclusions Our study identified prognostic AS events and signatures. Furthermore, it established SF-AS networks in HNSCC that were valuable in predicting the prognosis of patients with HNSCC and elucidating the regulatory mechanisms underlying AS in HNSCC.
Collapse
Affiliation(s)
- Yanni Ding
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| | - Guang Feng
- 2The Third Department of Burns and Plastic Surgery and Center of Wound Repair, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Min Yang
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| |
Collapse
|
33
|
Intrinsically disordered proteins of viruses: Involvement in the mechanism of cell regulation and pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 174:1-78. [PMID: 32828463 PMCID: PMC7129803 DOI: 10.1016/bs.pmbts.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intrinsically disordered proteins (IDPs) possess the property of inherent flexibility and can be distinguished from other proteins in terms of lack of any fixed structure. Such dynamic behavior of IDPs earned the name "Dancing Proteins." The exploration of these dancing proteins in viruses has just started and crucial details such as correlation of rapid evolution, high rate of mutation and accumulation of disordered contents in viral proteome at least understood partially. In order to gain a complete understanding of this correlation, there is a need to decipher the complexity of viral mediated cell hijacking and pathogenesis in the host organism. Further there is necessity to identify the specific patterns within viral and host IDPs such as aggregation; Molecular recognition features (MoRFs) and their association to virulence, host range and rate of evolution of viruses in order to tackle the viral-mediated diseases. The current book chapter summarizes the aforementioned details and suggests the novel opportunities for further research of IDPs senses in viruses.
Collapse
|
34
|
Mani C, Tripathi K, Luan S, Clark DW, Andrews JF, Vindigni A, Thomas G, Palle K. The multifunctional protein PACS-1 is required for HDAC2- and HDAC3-dependent chromatin maturation and genomic stability. Oncogene 2020; 39:2583-2596. [PMID: 31988453 PMCID: PMC7085454 DOI: 10.1038/s41388-020-1167-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
Abstract
Phosphofurin acidic cluster sorting protein-1 (PACS-1) is a multifunctional membrane traffic regulator that plays important roles in organ homeostasis and disease. In this study, we elucidate a novel nuclear function for PACS-1 in maintaining chromosomal integrity. PACS-1 progressively accumulates in the nucleus during cell cycle progression, where it interacts with class I histone deacetylases 2 and 3 (HDAC2 and HDAC3) to regulate chromatin dynamics by maintaining the acetylation status of histones. PACS-1 knockdown results in the proteasome-mediated degradation of HDAC2 and HDAC3, compromised chromatin maturation, as indicated by elevated levels of histones H3K9 and H4K16 acetylation, and, consequently, increased replication stress-induced DNA damage and genomic instability.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Kaushlendra Tripathi
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Shan Luan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15239, USA.,University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - David W Clark
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Joel F Andrews
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA
| | - Alessandro Vindigni
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.,University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15239, USA.,University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA. .,Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, AL, 36604, USA. .,Department of Surgery, Texas Tech University Health Sciences Centre, Lubbock, TX, 79430, USA.
| |
Collapse
|
35
|
Abstract
Using neXtProt release 2019-01-11, we manually curated a list of 1837 functionally uncharacterized human proteins. Using OrthoList 2, we found that 270 of them have homologues in Caenorhabditis elegans, including 60 with a one-to-one orthology relationship. According to annotations extracted from WormBase, the vast majority of these 60 worm genes have RNAi experimental data or mutant alleles, but manual inspection shows that only 15% have phenotypes that could be interpreted in terms of a specific function. One third of the worm orthologs have protein-protein interaction data, and two of these interactions are conserved in humans. The combination of phenotypic, protein-protein interaction, and gene expression data provides functional hypotheses for 8 uncharacterized human proteins. Experimental validation in human or orthologs is necessary before they can be considered for annotation.
Collapse
Affiliation(s)
- Paula Duek
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| | - Lydie Lane
- CALIPHO Group , SIB-Swiss Institute of Bioinformatics, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland.,Department of Microbiology and Molecular Medicine, Faculty of Medicine , University of Geneva, CMU , Michel-Servet 1 , 1211 Geneva 4 , Switzerland
| |
Collapse
|
36
|
|
37
|
Moulis M, Grousset E, Faccini J, Richetin K, Thomas G, Vindis C. The Multifunctional Sorting Protein PACS-2 Controls Mitophagosome Formation in Human Vascular Smooth Muscle Cells through Mitochondria-ER Contact Sites. Cells 2019; 8:cells8060638. [PMID: 31242668 PMCID: PMC6627983 DOI: 10.3390/cells8060638] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/20/2019] [Accepted: 06/22/2019] [Indexed: 12/19/2022] Open
Abstract
Mitochondria-associated ER membranes (MAMs) are crucial for lipid transport and synthesis, calcium exchange, and mitochondrial functions, and they also act as signaling platforms. These contact sites also play a critical role in the decision between autophagy and apoptosis with far reaching implications for cell fate. Vascular smooth muscle cell (VSMC) apoptosis accelerates atherogenesis and the progression of advanced lesions, leading to atherosclerotic plaque vulnerability and medial degeneration. Though the successful autophagy of damaged mitochondria promotes VSMC survival against pro-apoptotic atherogenic stressors, it is unknown whether MAMs are involved in VSMC mitophagy processes. Here, we investigated the role of the multifunctional MAM protein phosphofurin acidic cluster sorting protein 2 (PACS-2) in regulating VSMC survival following a challenge by atherogenic lipids. Using high-resolution confocal microscopy and proximity ligation assays, we found an increase in MAM contacts as in PACS-2-associated MAMs upon stimulation with atherogenic lipids. Correspondingly, the disruption of MAM contacts by PACS-2 knockdown impaired mitophagosome formation and mitophagy, thus potentiating VSMC apoptosis. In conclusion, our data shed new light on the significance of the MAM modulatory protein PACS-2 in vascular cell physiopathology and suggest MAMs may be a new target to modulate VSMC fate and favor atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Manon Moulis
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases/I2MC, F-31342 Toulouse, France.
- University of Toulouse III, F-31342 Toulouse, France.
| | - Elisa Grousset
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases/I2MC, F-31342 Toulouse, France.
- University of Toulouse III, F-31342 Toulouse, France.
| | - Julien Faccini
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases/I2MC, F-31342 Toulouse, France.
- University of Toulouse III, F-31342 Toulouse, France.
| | - Kevin Richetin
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, 1005 Lausanne, Switzerland.
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Cecile Vindis
- INSERM, UMR 1048, Institute of Metabolic and Cardiovascular Diseases/I2MC, F-31342 Toulouse, France.
- University of Toulouse III, F-31342 Toulouse, France.
| |
Collapse
|
38
|
Dentici ML, Barresi S, Niceta M, Ciolfi A, Trivisano M, Bartuli A, Digilio MC, Specchio N, Dallapiccola B, Tartaglia M. Expanding the clinical spectrum associated withPACS2mutations. Clin Genet 2019; 95:525-531. [DOI: 10.1111/cge.13516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 01/09/2023]
Affiliation(s)
- Maria L. Dentici
- Medical Genetics, Academic Department of Pediatrics; Ospedale Pediatrico Bambino Gesù; Rome Italy
| | - Sabina Barresi
- Genetics and Rare Diseases Research Division; Ospedale Pediatrico Bambino Gesù; Rome Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division; Ospedale Pediatrico Bambino Gesù; Rome Italy
| | - Andrea Ciolfi
- Genetics and Rare Diseases Research Division; Ospedale Pediatrico Bambino Gesù; Rome Italy
| | - Marina Trivisano
- Rare and Complex Epilepsy Unit, Department of Neuroscience and Neurorehabilitation; Ospedale Pediatrico Bambino Gesù; Rome Italy
| | - Andrea Bartuli
- Rare Disease and Medical Genetics, Academic Department of Pediatrics; Ospedale Pediatrico Bambino Gesù; Rome Italy
| | - Maria C. Digilio
- Medical Genetics, Academic Department of Pediatrics; Ospedale Pediatrico Bambino Gesù; Rome Italy
| | - Nicola Specchio
- Rare and Complex Epilepsy Unit, Department of Neuroscience and Neurorehabilitation; Ospedale Pediatrico Bambino Gesù; Rome Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division; Ospedale Pediatrico Bambino Gesù; Rome Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division; Ospedale Pediatrico Bambino Gesù; Rome Italy
| |
Collapse
|
39
|
Krzysiak TC, Thomas L, Choi YJ, Auclair S, Qian Y, Luan S, Krasnow SM, Thomas LL, Koharudin LMI, Benos PV, Marks DL, Gronenborn AM, Thomas G. An Insulin-Responsive Sensor in the SIRT1 Disordered Region Binds DBC1 and PACS-2 to Control Enzyme Activity. Mol Cell 2018; 72:985-998.e7. [PMID: 30415949 PMCID: PMC6309500 DOI: 10.1016/j.molcel.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/13/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Current models of SIRT1 enzymatic regulation primarily consider the effects of fluctuating levels of its co-substrate NAD+, which binds to the stably folded catalytic domain. By contrast, the roles of the sizeable disordered N- and C-terminal regions of SIRT1 are largely unexplored. Here we identify an insulin-responsive sensor in the SIRT1 N-terminal region (NTR), comprising an acidic cluster (AC) and a 3-helix bundle (3HB), controlling deacetylase activity. The allosteric assistor DBC1 removes a distal N-terminal shield from the 3-helix bundle, permitting PACS-2 to engage the acidic cluster and the transiently exposed helix 3 of the 3-helix bundle, disrupting its structure and inhibiting catalysis. The SIRT1 activator (STAC) SRT1720 binds and stabilizes the 3-helix bundle, protecting SIRT1 from inhibition by PACS-2. Identification of the SIRT1 insulin-responsive sensor and its engagement by the DBC1 and PACS-2 regulatory hub provides important insight into the roles of disordered regions in enzyme regulation and the mode by which STACs promote metabolic fitness.
Collapse
Affiliation(s)
- Troy C Krzysiak
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Laurel Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - You-Jin Choi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Sylvain Auclair
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Yiqi Qian
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Shan Luan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Stephanie M Krasnow
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Laura L Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Leonardus M I Koharudin
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Daniel L Marks
- Department of Pediatrics, Oregon Health and Science University, Portland, OR 97239, USA
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA; Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
40
|
Zhang K, Zhou Q, Guo Y, Chen L, Li L. Mitochondria-associated endoplasmic reticulum membranes (MAMs) involve in the regulation of mitochondrial dysfunction and heart failure. Acta Biochim Biophys Sin (Shanghai) 2018; 50:618-619. [PMID: 29684109 DOI: 10.1093/abbs/gmy044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/17/2022] Open
Affiliation(s)
- Kai Zhang
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Qionglin Zhou
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Yu Guo
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Linxi Chen
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Lanfang Li
- Learning Key Laboratory for Pharmacoproteomics, Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| |
Collapse
|
41
|
A Recurrent De Novo PACS2 Heterozygous Missense Variant Causes Neonatal-Onset Developmental Epileptic Encephalopathy, Facial Dysmorphism, and Cerebellar Dysgenesis. Am J Hum Genet 2018; 102:995-1007. [PMID: 29656858 DOI: 10.1016/j.ajhg.2018.03.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/27/2018] [Indexed: 11/24/2022] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) represent a large clinical and genetic heterogeneous group of neurodevelopmental diseases. The identification of pathogenic genetic variants in DEEs remains crucial for deciphering this complex group and for accurately caring for affected individuals (clinical diagnosis, genetic counseling, impacting medical, precision therapy, clinical trials, etc.). Whole-exome sequencing and intensive data sharing identified a recurrent de novo PACS2 heterozygous missense variant in 14 unrelated individuals. Their phenotype was characterized by epilepsy, global developmental delay with or without autism, common cerebellar dysgenesis, and facial dysmorphism. Mixed focal and generalized epilepsy occurred in the neonatal period, controlled with difficulty in the first year, but many improved in early childhood. PACS2 is an important PACS1 paralog and encodes a multifunctional sorting protein involved in nuclear gene expression and pathway traffic regulation. Both proteins harbor cargo(furin)-binding regions (FBRs) that bind cargo proteins, sorting adaptors, and cellular kinase. Compared to the defined PACS1 recurrent variant series, individuals with PACS2 variant have more consistently neonatal/early-infantile-onset epilepsy that can be challenging to control. Cerebellar abnormalities may be similar but PACS2 individuals exhibit a pattern of clear dysgenesis ranging from mild to severe. Functional studies demonstrated that the PACS2 recurrent variant reduces the ability of the predicted autoregulatory domain to modulate the interaction between the PACS2 FBR and client proteins, which may disturb cellular function. These findings support the causality of this recurrent de novo PACS2 heterozygous missense in DEEs with facial dysmorphim and cerebellar dysgenesis.
Collapse
|
42
|
Dombernowsky SL, Schwarz J, Samsøe-Petersen J, Albrechtsen R, Jensen KB, Thomas G, Kveiborg M. Loss of PACS-2 delays regeneration in DSS-induced colitis but does not affect the ApcMin model of colorectal cancer. Oncotarget 2017; 8:108303-108315. [PMID: 29312533 PMCID: PMC5752446 DOI: 10.18632/oncotarget.22661] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/28/2017] [Indexed: 01/25/2023] Open
Abstract
PACS-2 is a multifunctional sorting protein that mediates cell homeostasis. We recently identified PACS-2 in a functional genome-wide siRNA screen for novel regulators of the metalloproteinase ADAM17, the main sheddase for ligands of the ErbB receptor family. Of note, we showed that Pacs2-/- mice have significantly reduced EGFR activity and proliferative index in the intestinal epithelium. As EGFR signaling is highly mitogenic for intestinal epithelial stem cells, and plays essential roles in intestinal epithelial regeneration and tumor development, we have now examined the role of PACS-2 in these processes. Specifically, we analyzed the role of Pacs2-deficiency in a DSS-induced colitis model as well as in the genetic ApcMin colon cancer model. We now report that loss of PACS-2 delays tissue regeneration after colonic injury with little effect on key inflammatory parameters. We did however not observe any apparent effects on tumor formation driven by excessive proliferative signaling downstream from APC-deficiency. Our findings reveal that the role of PACS-2 in regulating ADAM17-mediated shedding is not an obligate requirement for the epithelium to respond to the strong inflammatory or tumorigenic inducers in the models assessed here.
Collapse
Affiliation(s)
- Sarah L Dombernowsky
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette Schwarz
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Samsøe-Petersen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Reidar Albrechtsen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Kim B Jensen
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen, Denmark
| | - Gary Thomas
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marie Kveiborg
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Gutiérrez T, Simmen T. Endoplasmic reticulum chaperones tweak the mitochondrial calcium rheostat to control metabolism and cell death. Cell Calcium 2017; 70:64-75. [PMID: 28619231 DOI: 10.1016/j.ceca.2017.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/24/2017] [Accepted: 05/24/2017] [Indexed: 12/16/2022]
Abstract
The folding of secretory proteins is a well-understood mechanism, based on decades of research on endoplasmic reticulum (ER) chaperones. These chaperones interact with newly imported polypeptides close to the ER translocon. Classic examples for these proteins include the immunoglobulin binding protein (BiP/GRP78), and the lectins calnexin and calreticulin. Although not considered chaperones per se, the ER oxidoreductases of the protein disulfide isomerase (PDI) family complete the folding job by catalyzing the formation of disulfide bonds through cysteine oxidation. Research from the past decade has demonstrated that ER chaperones are multifunctional proteins. The regulation of ER-mitochondria Ca2+ crosstalk is one of their additional functions, as shown for calnexin, BiP/GRP78 or the oxidoreductases Ero1α and TMX1. This function depends on interactions of this group of proteins with the ER Ca2+ handling machinery. This novel function makes perfect sense for two reasons: i. It allows ER chaperones to control mitochondrial apoptosis instantly without a lengthy bypass involving the upregulation of pro-apoptotic transcription factors via the unfolded protein response (UPR); and ii. It allows the ER protein folding machinery to fine-tune ATP import via controlling the speed of mitochondrial oxidative phosphorylation. Therefore, the role of ER chaperones in regulating ER-mitochondria Ca2+ flux identifies the progression of secretory protein folding as a central regulator of cell survival and death, at least in cell types that secrete large amount of proteins. In other cell types, ER protein folding might serve as a sentinel mechanism that monitors cellular well-being to control cell metabolism and apoptosis. The selenoprotein SEPN1 is a classic example for such a role. Through the control of ER-mitochondria Ca2+-flux, ER chaperones and folding assistants guide cellular apoptosis and mitochondrial metabolism.
Collapse
Affiliation(s)
- Tomas Gutiérrez
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, T6G2H7, Canada,.
| |
Collapse
|
44
|
Herrera-Cruz MS, Simmen T. Cancer: Untethering Mitochondria from the Endoplasmic Reticulum? Front Oncol 2017; 7:105. [PMID: 28603693 PMCID: PMC5445141 DOI: 10.3389/fonc.2017.00105] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/05/2017] [Indexed: 01/18/2023] Open
Abstract
Following the discovery of the mitochondria-associated membrane (MAM) as a hub for lipid metabolism in 1990 and its description as one of the first examples for membrane contact sites at the turn of the century, the past decade has seen the emergence of this structure as a potential regulator of cancer growth and metabolism. The mechanistic basis for this hypothesis is that the MAM accommodates flux of Ca2+ from the endoplasmic reticulum (ER) to mitochondria. This flux then determines mitochondrial ATP production, known to be low in many tumors as part of the Warburg effect. However, low mitochondrial Ca2+ flux also reduces the propensity of tumor cells to undergo apoptosis, another cancer hallmark. Numerous regulators of this flux have been recently identified as MAM proteins. Not surprisingly, many fall into the groups of tumor suppressors and oncogenes. Given the important role that the MAM could play in cancer, it is expected that proteins mediating its formation are particularly implicated in tumorigenesis. Examples for such proteins are mitofusin-2 and phosphofurin acidic cluster sorting protein 2 that likely act as tumor suppressors. This review discusses how these proteins that mediate or regulate ER–mitochondria tethering are (or are not) promoting or inhibiting tumorigenesis. The emerging picture of MAMs in cancer seems to indicate that in addition to the downregulation of mitochondrial Ca2+ import, MAM defects are but one way how cancer cells control mitochondria metabolism and apoptosis.
Collapse
Affiliation(s)
- Maria Sol Herrera-Cruz
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Thomas Simmen
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|