1
|
Maurice MM, Angers S. Mechanistic insights into Wnt-β-catenin pathway activation and signal transduction. Nat Rev Mol Cell Biol 2025; 26:371-388. [PMID: 39856369 DOI: 10.1038/s41580-024-00823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2024] [Indexed: 01/27/2025]
Abstract
In multicellular organisms, Wnt proteins govern stem and progenitor cell renewal and differentiation to regulate embryonic development, adult tissue homeostasis and tissue regeneration. Defects in canonical Wnt signalling, which is transduced intracellularly by β-catenin, have been associated with developmental disorders, degenerative diseases and cancers. Although a simple model describing Wnt-β-catenin signalling is widely used to introduce this pathway and has largely remained unchanged over the past 30 years, in this Review we discuss recent studies that have provided important new insights into the mechanisms of Wnt production, receptor activation and intracellular signalling that advance our understanding of the molecular mechanisms that underlie this important cell-cell communication system. In addition, we review the recent development of molecules capable of activating the Wnt-β-catenin pathway with selectivity in vitro and in vivo that is enabling new lines of study to pave the way for the development of Wnt therapies for the treatment of human diseases.
Collapse
Affiliation(s)
- Madelon M Maurice
- Center for Molecular Medicine, University Medical Center, Utrecht, Netherlands.
- Oncode Institute, Utrecht, Netherlands.
| | - Stephane Angers
- Donnelly Centre for Cellular and Biomolecular Research and Department of Biochemistry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Gao Y, Feng J, Zhang Y, Yi M, Zhang L, Yan Y, Zhu AJ, Liu M. Ehbp1 orchestrates orderly sorting of Wnt/Wingless to the basolateral and apical cell membranes. EMBO Rep 2024; 25:5053-5079. [PMID: 39402333 PMCID: PMC11549480 DOI: 10.1038/s44319-024-00289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Wingless (Wg)/Wnt signaling plays a critical role in both development and adult tissue homeostasis. In the Drosophila larval wing disc epithelium, the orderly delivery of Wg/Wnt to the apical and basal cell surfaces is essential for wing development. Here, we identified Ehbp1 as the switch that dictates the direction of Wg/Wnt polarized intracellular transport: the Adaptor Protein complex 1 (AP-1) delivers Wg/Wnt to the basolateral cell surface, and its sequestration by Ehbp1 redirects Wg/Wnt for apical delivery. Genetic analyses showed that Ehbp1 specifically regulates the polarized distribution of Wg/Wnt, a process that depends on the dedicated Wg/Wnt cargo receptor Wntless. Mechanistically, Ehbp1 competes with Wntless for AP-1 binding, thereby preventing the unregulated basolateral Wg/Wnt transport. Reducing Ehbp1 expression, or removing the coiled-coil motifs within its bMERB domain, leads to basolateral Wg/Wnt accumulation. Importantly, the regulation of polarized Wnt delivery by EHBP1 is conserved in vertebrates. The generality of this switch mechanism for regulating intracellular transport remains to be determined in future studies.
Collapse
Affiliation(s)
- Yuan Gao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jing Feng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yansong Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China
| | - Mengyuan Yi
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Lebing Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan Yan
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, 610213, China.
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Yu C, Wang C, Zhou W, Zhang A, Jia Z, Zheng B, Ding G. Compound heterozygous variants in WLS gene causes Zaki syndrome. Clin Genet 2023. [PMID: 37005218 DOI: 10.1111/cge.14334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 04/04/2023]
Abstract
Biallelic Wnt ligand secretion mediator (WLS gene) variants are associated with Zaki syndrome (OMIM: #619648). Here, we report the first case with Zaki syndrome in the Chinese population. Whole-exome gene sequencing (WES) identified compound heterozygous variants in the WLS gene (c.1427A > G; p.Tyr476Cys and c.415C > T, p.Arg139Cys; NM_001002292) in a 16-year-old boy presenting with facial dysmorphism, astigmatism, renal agenesis, and cryptorchidism. In vitro functional characterization showed that the two variants led to decreased WLS production and secretion of WNT3A, eventually affecting the WNT signal. We also found that the decreased mutant WLS expression can be rescued by 4-Phenylbutyric acid (4-PBA).
Collapse
Affiliation(s)
- Cuicui Yu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Chunli Wang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Wei Zhou
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| | - Guixia Ding
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, 210008, China
| |
Collapse
|
4
|
Gross JC. Extracellular WNTs: Trafficking, Exosomes, and Ligand-Receptor Interaction. Handb Exp Pharmacol 2021; 269:29-43. [PMID: 34505202 DOI: 10.1007/164_2021_531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
WNT signaling is a key developmental pathway in tissue organization. A recent focus of research is the secretion of WNT proteins from source cells. Research over the past decade on how WNTs are produced and released into the extracellular space has unravelled very specific control mechanisms in the early secretory pathway, specialized trafficking routes, and redundant forms of packaging for delivery to target cells. In this review I discuss the findings that WNT proteins have been found on extracellular vesicles (EVs) such as exosomes and possible functional implications. There is an ongoing debate in the WNT signaling field whether EV are relevant in vivo and can fulfill specific functions, also fueled by the general preconception of EV secretion as cellular garbage disposal. As part of the EV research community, I want to give an overview of what we know and don't know about WNT secretion on EVs and offer a more unifying model that can explain current discrepancies in observations regarding WNT secretion.
Collapse
Affiliation(s)
- Julia Christina Gross
- Developmental Biochemistry, University Medical Center Goettingen, Goettingen, Germany. .,Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany. .,Health and Medical University Potsdam, Potsdam, Germany.
| |
Collapse
|
5
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
6
|
Davis TR, Pierce MR, Novak SX, Hougland JL. Ghrelin octanoylation by ghrelin O-acyltransferase: protein acylation impacting metabolic and neuroendocrine signalling. Open Biol 2021; 11:210080. [PMID: 34315274 PMCID: PMC8316800 DOI: 10.1098/rsob.210080] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The acylated peptide hormone ghrelin impacts a wide range of physiological processes but is most well known for controlling hunger and metabolic regulation. Ghrelin requires a unique posttranslational modification, serine octanoylation, to bind and activate signalling through its cognate GHS-R1a receptor. Ghrelin acylation is catalysed by ghrelin O-acyltransferase (GOAT), a member of the membrane-bound O-acyltransferase (MBOAT) enzyme family. The ghrelin/GOAT/GHS-R1a system is defined by multiple unique aspects within both protein biochemistry and endocrinology. Ghrelin serves as the only substrate for GOAT within the human proteome and, among the multiple hormones involved in energy homeostasis and metabolism such as insulin and leptin, acts as the only known hormone in circulation that directly stimulates appetite and hunger signalling. Advances in GOAT enzymology, structural modelling and inhibitor development have revolutionized our understanding of this enzyme and offered new tools for investigating ghrelin signalling at the molecular and organismal levels. In this review, we briefly summarize the current state of knowledge regarding ghrelin signalling and ghrelin/GOAT enzymology, discuss the GOAT structural model in the context of recently reported MBOAT enzyme superfamily member structures, and highlight the growing complement of GOAT inhibitors that offer options for both ghrelin signalling studies and therapeutic applications.
Collapse
Affiliation(s)
- Tasha R Davis
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Mariah R Pierce
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - Sadie X Novak
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA
| | - James L Hougland
- Department of Chemistry, Syracuse University, Syracuse, NY 13244 USA.,BioInspired Syracuse, Syracuse University, Syracuse, NY 13244 USA
| |
Collapse
|
7
|
Zhong Q, Zhao Y, Ye F, Xiao Z, Huang G, Xu M, Zhang Y, Zhan X, Sun K, Wang Z, Cheng S, Feng S, Zhao X, Zhang J, Lu P, Xu W, Zhou Q, Ma D. Cryo-EM structure of human Wntless in complex with Wnt3a. Nat Commun 2021; 12:4541. [PMID: 34315898 PMCID: PMC8316347 DOI: 10.1038/s41467-021-24731-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Wntless (WLS), an evolutionarily conserved multi-pass transmembrane protein, is essential for secretion of Wnt proteins. Wnt-triggered signaling pathways control many crucial life events, whereas aberrant Wnt signaling is tightly associated with many human diseases including cancers. Here, we report the cryo-EM structure of human WLS in complex with Wnt3a, the most widely studied Wnt, at 2.2 Å resolution. The transmembrane domain of WLS bears a GPCR fold, with a conserved core cavity and a lateral opening. Wnt3a interacts with WLS at multiple interfaces, with the lipid moiety on Wnt3a traversing a hydrophobic tunnel of WLS transmembrane domain and inserting into membrane. A β-hairpin of Wnt3a containing the conserved palmitoleoylation site interacts with WLS extensively, which is crucial for WLS-mediated Wnt secretion. The flexibility of the Wnt3a loop/hairpin regions involved in the multiple binding sites indicates induced fit might happen when Wnts are bound to different binding partners. Our findings provide important insights into the molecular mechanism of Wnt palmitoleoylation, secretion and signaling.
Collapse
Affiliation(s)
- Qing Zhong
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yanyu Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Fangfei Ye
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zaiyu Xiao
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Meng Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yuanyuan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Xiechao Zhan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Ke Sun
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Zhizhi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shanshan Cheng
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shan Feng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang, China
| | - Xiuxiu Zhao
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Mass Spectrometry Core Facility, The Biomedical Research Core Facility, Center for Research Equipment and Facilities, Westlake University, Hangzhou, Zhejiang, China
| | - Jizhong Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Wenqing Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Dan Ma
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Stypulkowski E, Feng Q, Joseph I, Farrell V, Flores J, Yu S, Sakamori R, Sun J, Bandyopadhyay S, Das S, Dobrowolski R, Bonder EM, Chen MH, Gao N. Rab8 attenuates Wnt signaling and is required for mesenchymal differentiation into adipocytes. J Biol Chem 2021; 296:100488. [PMID: 33662399 PMCID: PMC8042397 DOI: 10.1016/j.jbc.2021.100488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/18/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022] Open
Abstract
Differentiation of mesenchymal stem cells into adipocyte requires coordination of external stimuli and depends upon the functionality of the primary cilium. The Rab8 small GTPases are regulators of intracellular transport of membrane-bound structural and signaling cargo. However, the physiological contribution of the intrinsic trafficking network controlled by Rab8 to mesenchymal tissue differentiation has not been fully defined in vivo and in primary tissue cultures. Here, we show that mouse embryonic fibroblasts (MEFs) lacking Rab8 have severely impaired adipocyte differentiation in vivo and ex vivo. Immunofluorescent localization and biochemical analyses of Rab8a-deficient, Rab8b-deficient, and Rab8a and Rab8b double-deficient MEFs revealed that Rab8 controls the Lrp6 vesicular compartment, clearance of basal signalosome, traffic of frizzled two receptor, and thereby a proper attenuation of Wnt signaling in differentiating MEFs. Upon induction of adipogenesis program, Rab8a- and Rab8b-deficient MEFs exhibited severely defective lipid-droplet formation and abnormal cilia morphology, despite overall intact cilia growth and ciliary cargo transport. Our results suggest that intracellular Rab8 traffic regulates induction of adipogenesis via proper positioning of Wnt receptors for signaling control in mesenchymal cells.
Collapse
Affiliation(s)
- Ewa Stypulkowski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ivor Joseph
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Victoria Farrell
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Juan Flores
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Shiyan Yu
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Ryotaro Sakamori
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Jiaxin Sun
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | | | - Soumyashree Das
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Edward M Bonder
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA
| | - Miao-Hsueh Chen
- Department of Pediatrics, Baylor College of Medicine, Children's Nutrition Research Center, Houston, Texas, USA.
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA.
| |
Collapse
|
9
|
Bisnett BJ, Condon BM, Lamb CH, Georgiou GR, Boyce M. Export Control: Post-transcriptional Regulation of the COPII Trafficking Pathway. Front Cell Dev Biol 2021; 8:618652. [PMID: 33511128 PMCID: PMC7835409 DOI: 10.3389/fcell.2020.618652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
The coat protein complex II (COPII) mediates forward trafficking of protein and lipid cargoes from the endoplasmic reticulum. COPII is an ancient and essential pathway in all eukaryotes and COPII dysfunction underlies a range of human diseases. Despite this broad significance, major aspects of COPII trafficking remain incompletely understood. For example, while the biochemical features of COPII vesicle formation are relatively well characterized, much less is known about how the COPII system dynamically adjusts its activity to changing physiologic cues or stresses. Recently, post-transcriptional mechanisms have emerged as a major mode of COPII regulation. Here, we review the current literature on how post-transcriptional events, and especially post-translational modifications, govern the COPII pathway.
Collapse
Affiliation(s)
- Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Caitlin H Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - George R Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
10
|
Li B, Niswander LA. TMEM132A, a Novel Wnt Signaling Pathway Regulator Through Wntless (WLS) Interaction. Front Cell Dev Biol 2020; 8:599890. [PMID: 33324648 PMCID: PMC7726220 DOI: 10.3389/fcell.2020.599890] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/04/2020] [Indexed: 11/24/2022] Open
Abstract
Wnt signaling pathway plays indispensable roles in embryonic development and adult tissue homeostasis. However, the regulatory mechanisms involved in Wnt ligand trafficking within and secretion from the signal sending cells is still relatively uncharacterized. Here, we discover a novel regulator of Wnt signaling pathway called transmembrane protein 132A (TMEM132A). Our evidence shows a physical and functional interaction of TMEM132A with the Wnt ligand transporting protein Wntless (WLS). We show that TMEM132A stabilizes Wnt ligand, enhances WLS–Wnt ligand interaction, and activates the Wnt signaling pathway. Our results shed new light on the cellular mechanism underlying the fundamental aspect of WNT secretion from Wnt signal sending cells.
Collapse
Affiliation(s)
- Binbin Li
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
11
|
Brown HM, Murray SA, Northrup H, Au KS, Niswander LA. Snx3 is important for mammalian neural tube closure via its role in canonical and non-canonical WNT signaling. Development 2020; 147:147/22/dev192518. [PMID: 33214242 DOI: 10.1242/dev.192518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/09/2020] [Indexed: 12/26/2022]
Abstract
Disruptions in neural tube (NT) closure result in neural tube defects (NTDs). To understand the molecular processes required for mammalian NT closure, we investigated the role of Snx3, a sorting nexin gene. Snx3-/- mutant mouse embryos display a fully-penetrant cranial NTD. In vivo, we observed decreased canonical WNT target gene expression in the cranial neural epithelium of the Snx3-/- embryos and a defect in convergent extension of the neural epithelium. Snx3-/- cells show decreased WNT secretion, and live cell imaging reveals aberrant recycling of the WNT ligand-binding protein WLS and mis-trafficking to the lysosome for degradation. The importance of SNX3 in WNT signaling regulation is demonstrated by rescue of NT closure in Snx3-/- embryos with a WNT agonist. The potential for SNX3 to function in human neurulation is revealed by a point mutation identified in an NTD-affected individual that results in functionally impaired SNX3 that does not colocalize with WLS and the degradation of WLS in the lysosome. These data indicate that Snx3 is crucial for NT closure via its role in recycling WLS in order to control levels of WNT signaling.
Collapse
Affiliation(s)
- Heather Mary Brown
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | | | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
12
|
Murakami-Sekimata A, Sekimata M, Sato N, Hayasaka Y, Nakano A. Deletion of PIN4 Suppresses the Protein Transport Defects Caused by sec12-4 Mutation in Saccharomyces cerevisiae. Microb Physiol 2020; 30:25-35. [PMID: 32958726 DOI: 10.1159/000509633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/24/2020] [Indexed: 11/19/2022]
Abstract
Newly synthesized secretory proteins are released into the lumen of the endoplasmic reticulum (ER). The secretory proteins are surrounded by coat protein complex II (COPII) vesicles, and transported from the ER and reach their destinations through the Golgi apparatus. Sec12p is a guanine nucleotide exchange factor for Sar1p, which initiates COPII vesicle budding from the ER. The activation of Sar1p by Sec12p and the subsequent COPII coat assembly have been well characterized, but the events that take place upstream of Sec12p remain unclear. In this study, we isolated the novel extragenic suppressor of sec12-4, PIN4/MDT1, a cell cycle checkpoint target. A yeast two-hybrid screening was used to identify Pin4/Mdt1p as a binding partner of the casein kinase I isoform Hrr25p, which we have previously identified as a modulator of Sec12p function. Deletion of PIN4 suppressed both defects of temperature-sensitive growth and the partial protein transport observed in sec12-4 mutants. The results of this study suggest that Pin4p provides novel aspects of Sec12p modulations.
Collapse
Affiliation(s)
- Akiko Murakami-Sekimata
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan,
| | - Masayuki Sekimata
- Radioisotope Research Center, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Natsumi Sato
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Yuto Hayasaka
- Division of Theoretical Nursing and Genetics, Graduate School of Medical Science, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, Extreme Photonics Research Group, RIKEN Center for Advanced Photonics, Wako, Japan
| |
Collapse
|
13
|
Bagchi DP, Li Z, Corsa CA, Hardij J, Mori H, Learman BS, Lewis KT, Schill RL, Romanelli SM, MacDougald OA. Wntless regulates lipogenic gene expression in adipocytes and protects against diet-induced metabolic dysfunction. Mol Metab 2020; 39:100992. [PMID: 32325263 PMCID: PMC7264081 DOI: 10.1016/j.molmet.2020.100992] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Obesity is a key risk factor for many secondary chronic illnesses, including type 2 diabetes and cardiovascular disease. Canonical Wnt/β-catenin signaling is established as an important endogenous inhibitor of adipogenesis. This pathway is operative in mature adipocytes; however, its roles in this context remain unclear due to complexities of Wnt signaling and differences in experimental models. In this study, we used novel cultured cell and mouse models to investigate functional roles of Wnts secreted from adipocytes. METHODS We generated adipocyte-specific Wntless (Wls) knockout mice and cultured cell models to investigate molecular and metabolic consequences of disrupting Wnt secretion from mature adipocytes. To characterize Wls-deficient cultured adipocytes, we evaluated the expression of Wnt target and lipogenic genes and the downstream functional effects on carbohydrate and lipid metabolism. We also investigated the impact of adipocyte-specific Wls deletion on adipose tissues and global glucose metabolism in mice fed normal chow or high-fat diets. RESULTS Many aspects of the Wnt signaling apparatus are expressed and operative in mature adipocytes, including the Wnt chaperone Wntless. Deletion of Wntless in cultured adipocytes results in the inhibition of de novo lipogenesis and lipid monounsaturation, likely through repression of Srebf1 (SREBP1c) and Mlxipl (ChREBP) and impaired cleavage of immature SREBP1c into its active form. Adipocyte-specific Wls knockout mice (Wls-/-) have lipogenic gene expression in adipose tissues and isolated adipocytes similar to that of controls when fed a normal chow diet. However, closer investigation reveals that a subset of Wnts and downstream signaling targets are upregulated within stromal-vascular cells of Wls-/- mice, suggesting that adipose tissues defend loss of Wnt secretion from adipocytes. Interestingly, this compensation is lost with long-term high-fat diet challenges. Thus, after six months of a high-fat diet, Wls-/- mice are characterized by decreased adipocyte lipogenic gene expression, reduced visceral adiposity, and improved glucose homeostasis. CONCLUSIONS Taken together, these studies demonstrate that adipocyte-derived Wnts regulate de novo lipogenesis and lipid desaturation and coordinate the expression of lipogenic genes in adipose tissues. In addition, we report that Wnt signaling within adipose tissues is defended, such that a loss of Wnt secretion from adipocytes is sensed and compensated for by neighboring stromal-vascular cells. With chronic overnutrition, this compensatory mechanism is lost, revealing that Wls-/- mice are resistant to diet-induced obesity, adipocyte hypertrophy, and metabolic dysfunction.
Collapse
Affiliation(s)
- Devika P Bagchi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ziru Li
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Callie A Corsa
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Julie Hardij
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Hiroyuki Mori
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Brian S Learman
- Department of Microbiology and Immunology, University of Buffalo, Buffalo, NY, USA.
| | - Kenneth T Lewis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Rebecca L Schill
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Steven M Romanelli
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ormond A MacDougald
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Sun J, Patel CB, Jang T, Merchant M, Chen C, Kazerounian S, Diers AR, Kiebish MA, Vishnudas VK, Gesta S, Sarangarajan R, Narain NR, Nagpal S, Recht L. High levels of ubidecarenone (oxidized CoQ 10) delivered using a drug-lipid conjugate nanodispersion (BPM31510) differentially affect redox status and growth in malignant glioma versus non-tumor cells. Sci Rep 2020; 10:13899. [PMID: 32807842 PMCID: PMC7431533 DOI: 10.1038/s41598-020-70969-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic reprogramming in cancer cells, vs. non-cancer cells, elevates levels of reactive oxygen species (ROS) leading to higher oxidative stress. The elevated ROS levels suggest a vulnerability to excess prooxidant loads leading to selective cell death, a therapeutically exploitable difference. Co-enzyme Q10 (CoQ10) an endogenous mitochondrial resident molecule, plays an important role in mitochondrial redox homeostasis, membrane integrity, and energy production. BPM31510 is a lipid-drug conjugate nanodispersion specifically formulated for delivery of supraphysiological concentrations of ubidecarenone (oxidized CoQ10) to the cell and mitochondria, in both in vitro and in vivo model systems. In this study, we sought to investigate the therapeutic potential of ubidecarenone in the highly treatment-refractory glioblastoma. Rodent (C6) and human (U251) glioma cell lines, and non-tumor human astrocytes (HA) and rodent NIH3T3 fibroblast cell lines were utilized for experiments. Tumor cell lines exhibited a marked increase in sensitivity to ubidecarenone vs. non-tumor cell lines. Further, elevated mitochondrial superoxide production was noted in tumor cells vs. non-tumor cells hours before any changes in proliferation or the cell cycle could be detected. In vitro co-culture experiments show ubidecarenone differentially affecting tumor cells vs. non-tumor cells, resulting in an equilibrated culture. In vivo activity in a highly aggressive orthotopic C6 glioma model demonstrated a greater than 25% long-term survival rate. Based on these findings we conclude that high levels of ubidecarenone delivered using BPM31510 provide an effective therapeutic modality targeting cancer-specific modulation of redox mechanisms for anti-cancer effects.
Collapse
Affiliation(s)
- Jiaxin Sun
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA.
| | - Chirag B Patel
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA.,Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Taichang Jang
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Milton Merchant
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Chen Chen
- Department of Otolaryngology, Stanford University, Palo Alto, CA, 94305, USA
| | | | | | | | | | | | | | | | - Seema Nagpal
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA
| | - Lawrence Recht
- Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA.
| |
Collapse
|
15
|
Urai Y, Yamawaki M, Watanabe N, Seki Y, Morimoto T, Tago K, Homma K, Sakagami H, Miyamoto Y, Yamauchi J. Pull down assay for GTP-bound form of Sar1a reveals its activation during morphological differentiation. Biochem Biophys Res Commun 2018; 503:2047-2053. [PMID: 30078678 DOI: 10.1016/j.bbrc.2018.07.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
The intracellular molecular transport system is a basic and general cellular mechanism that is regulated by an array of signaling molecules. Sar1 small GTPases are molecules that play a key role in controlling vehicle transport between the endoplasmic reticulum (ER) and Golgi bodies. Like other small GTPases, the activities of Sar1a depend on their guanine-nucleotide-binding states, which are regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Despite the well-known function of mammalian Sar1 in the intracellular transport system, little is known about when and how Sar1 is activated during cell morphological changes. Here we show that the C-terminal, but not the N-terminal, regions of Sec23A and Sec23B, the effector proteins of Sar1a, specifically bind to the active, GTP-bound form of Sar1a. An affinity precipitation (pull-down) assay using a recombinant C-terminal region of Sec23B reveals that Sar1a is activated following differentiation in neuronal cell lines. In neuronal N1E-115 cells, GTP-bound Sar1a is increased when cells elongate neuronal processes. Similar results are observed in morphological differentiation in oligodendroglial FBD-102b cells. Additionally, prolactin regulatory element binding (PREB), the GEF for Sar1 (Sar1 activator), increases the binding ability to the nucleotide-free form of Sar1a when morphological differentiation occurs. Nucleotide-free small GTPases preferentially interact with the cognate, active GEFs. These results provide evidence that using previously unreported pull down assays reveals that Sar1 and PREB are upregulated following the induction of morphological differentiation, suggesting the potential role of signaling through Sar1a during morphological differentiation.
Collapse
Affiliation(s)
- Yuri Urai
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Minami Yamawaki
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Natsumi Watanabe
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yoich Seki
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Takako Morimoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kenji Tago
- Division of Structural Biochemistry, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi, Gunma, 371-0816, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, 252-0734, Japan
| | - Yuki Miyamoto
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan; Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, 157-8535, Japan.
| |
Collapse
|
16
|
Aridor M. COPII gets in shape: Lessons derived from morphological aspects of early secretion. Traffic 2018; 19:823-839. [DOI: 10.1111/tra.12603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/26/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Meir Aridor
- Department of Cell Biology; University of Pittsburgh School of Medicine; Pittsburgh Pennsylvania
| |
Collapse
|
17
|
Zhang X, Ren J, Wang J, Li S, Zou Q, Gao N. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property. J Cell Physiol 2018; 233:5908-5919. [PMID: 29243828 DOI: 10.1002/jcp.26400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa
| | - Jingren Wang
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Shixie Li
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| |
Collapse
|
18
|
Zhou C, Sun Y, Guo S, Chen X, Bao G, Wang J. Wls Expression Correlates with Tumor Differentiation and TNM Stage in Hepatocellular Carcinoma. Dig Dis Sci 2018; 63:166-172. [PMID: 29127606 DOI: 10.1007/s10620-017-4823-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is an aggressive cancer with a poor prognosis. Effective biomarkers are necessary to predict the clinical course and outcome of patients with HCC. Wntless (Wls) is a key modulator of Wnt protein secretion and is overexpressed in various human cancers. However, the mechanism and alteration of Wls expression in HCC have not been clarified. AIMS The aim of this study was to evaluate expression level of Wls in HCC and its clinical significance. METHODS The levels of Wls expression were investigated in 84 HCC tissues using immunohistochemistry. RESULTS Wls was negatively expressed in normal liver tissue and was negatively or weakly (score 0) expressed in liver cirrhosis. Twenty-eight out of 84 samples (33.3%) were negative or weakly (score 0) expressed Wls, 38 out of 84 (45.2%) moderately (1+) expressed Wls, and 18 out of 84 (21.4%) strongly (2+) expressed Wls. Wls expression was positively associated with tumor size (P = 0.005, r = 0.302), tumor TNM stage (P = 0.017, r = 0.261), AFP (P = 0.051), and HBV infection (P = 0.009, r = 0.283), and was negatively associated with differentiation (P < 0.001, r = - 0.552). No significant relationship between Wls expression and liver cirrhosis, ALT, GGT, age, sex, or tumor focality was found. CONCLUSIONS Our data showed that Wls was differentially expressed in HCC. Statistical analysis results suggest that Wls expression might increase as HCC progresses.
Collapse
Affiliation(s)
- Chao Zhou
- Department of Infection, Danyang People's Hospital of Jiangsu Province, No.2 Xinmin Xi Lu, Dan Yang, Jiangsu, China
| | - Yuejun Sun
- Department of Pathology, Affiliated Jiangyin Hospital of Southeast University Medical College, Jiangyin, 214400, Jiangsu, China
| | - Shuwei Guo
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, No.305 Zhong Shan Dong Lu, Nanjing, 210008, Jiangsu, China
| | - Xiao Chen
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, No.305 Zhong Shan Dong Lu, Nanjing, 210008, Jiangsu, China
| | - Genchong Bao
- Department of Infection, Danyang People's Hospital of Jiangsu Province, No.2 Xinmin Xi Lu, Dan Yang, Jiangsu, China.
| | - Jiandong Wang
- Department of Pathology, Jinling Hospital, Nanjing University School of Medicine, No.305 Zhong Shan Dong Lu, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|