1
|
Marada A, Walter C, Suhm T, Shankar S, Nandy A, Brummer T, Dhaouadi I, Vögtle FN, Meisinger C. DYRK1A signalling synchronizes the mitochondrial import pathways for metabolic rewiring. Nat Commun 2024; 15:5265. [PMID: 38902238 PMCID: PMC11189921 DOI: 10.1038/s41467-024-49611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondria require an extensive proteome to maintain a variety of metabolic reactions, and changes in cellular demand depend on rapid adaptation of the mitochondrial protein composition. The TOM complex, the organellar entry gate for mitochondrial precursors in the outer membrane, is a target for cytosolic kinases to modulate protein influx. DYRK1A phosphorylation of the carrier import receptor TOM70 at Ser91 enables its efficient docking and thus transfer of precursor proteins to the TOM complex. Here, we probe TOM70 phosphorylation in molecular detail and find that TOM70 is not a CK2 target nor import receptor for MIC19 as previously suggested. Instead, we identify TOM20 as a MIC19 import receptor and show off-target inhibition of the DYRK1A-TOM70 axis with the clinically used CK2 inhibitor CX4945 which activates TOM20-dependent import pathways. Taken together, modulation of DYRK1A signalling adapts the central mitochondrial protein entry gate via synchronization of TOM70- and TOM20-dependent import pathways for metabolic rewiring. Thus, DYRK1A emerges as a cytosolic surveillance kinase to regulate and fine-tune mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tamara Suhm
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sahana Shankar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Dhaouadi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Dong J, Chen L, Ye F, Tang J, Liu B, Lin J, Zhou PH, Lu B, Wu M, Lu JH, He JJ, Engelender S, Meng Q, Song Z, He H. Mic19 depletion impairs endoplasmic reticulum-mitochondrial contacts and mitochondrial lipid metabolism and triggers liver disease. Nat Commun 2024; 15:168. [PMID: 38168065 PMCID: PMC10762189 DOI: 10.1038/s41467-023-44057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Endoplasmic reticulum (ER)-mitochondria contacts are critical for the regulation of lipid transport, synthesis, and metabolism. However, the molecular mechanism and physiological function of endoplasmic reticulum-mitochondrial contacts remain unclear. Here, we show that Mic19, a key subunit of MICOS (mitochondrial contact site and cristae organizing system) complex, regulates ER-mitochondria contacts by the EMC2-SLC25A46-Mic19 axis. Mic19 liver specific knockout (LKO) leads to the reduction of ER-mitochondrial contacts, mitochondrial lipid metabolism disorder, disorganization of mitochondrial cristae and mitochondrial unfolded protein stress response in mouse hepatocytes, impairing liver mitochondrial fatty acid β-oxidation and lipid metabolism, which may spontaneously trigger nonalcoholic steatohepatitis (NASH) and liver fibrosis in mice. Whereas, the re-expression of Mic19 in Mic19 LKO hepatocytes blocks the development of liver disease in mice. In addition, Mic19 overexpression suppresses MCD-induced fatty liver disease. Thus, our findings uncover the EMC2-SLC25A46-Mic19 axis as a pathway regulating ER-mitochondria contacts, and reveal that impairment of ER-mitochondria contacts may be a mechanism associated with the development of NASH and liver fibrosis.
Collapse
Affiliation(s)
- Jun Dong
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Li Chen
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fei Ye
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Junhui Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bing Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jiacheng Lin
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Pang-Hu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Bin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Min Wu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Jia-Hong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jing-Jing He
- Department of Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, Anhui, China
| | - Simone Engelender
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Qingtao Meng
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Zhiyin Song
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - He He
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Frontier Science Center for Immunology and Metabolism, Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- Department of pathology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Xiong W, Ge H, Shen C, Li C, Zhang X, Tang L, Shen Y, Lu S, Zhang H, Wang Z. PRSS37 deficiency leads to impaired energy metabolism in testis and sperm revealed by DIA-based quantitative proteomic analysis. Reprod Sci 2023; 30:145-168. [PMID: 35471551 DOI: 10.1007/s43032-022-00918-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/12/2022] [Indexed: 01/11/2023]
Abstract
Our previous studies have reported that a putative trypsin-like serine protease, PRSS37, is exclusively expressed in testicular germ cells during late spermatogenesis and essential for sperm migration from the uterus into the oviduct and sperm-egg recognition via mediating the interaction between PDILT and ADAM3. In the present study, the global proteome profiles of wild-type (wt) and Prss37-/- mice in testis and sperm were compared employing data independent acquisition (DIA) technology. Overall, 2506 and 459 differentially expressed proteins (DEPs) were identified in Prss37-null testis and sperm, respectively, when compared to control groups. Bioinformatic analyses revealed that most of DEPs were related to energy metabolism. Of note, the DEPs associated with pathways for the catabolism such as glucose via glycolysis, fatty acids via β-oxidation, and amino acids via oxidative deamination were significantly down-regulated. Meanwhile, the DEPs involved in the tricarboxylic acid cycle (TCA cycle) and oxidative phosphorylation (OXPHOS) were remarkably decreased. The DIA data were further confirmed by a markedly reduction of intermediate metabolites (citrate and fumarate) in TCA cycle and terminal metabolite (ATP) in OXPHOS system after disruption of PRSS37. These outcomes not only provide a more comprehensive understanding of the male fertility of energy metabolism modulated by PRSS37 but also furnish a dynamic proteomic resource for further reproductive biology studies.
Collapse
Affiliation(s)
- Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaohong Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
4
|
Wang Z, Budhu AS, Shen Y, Wong LL, Hernandez BY, Tiirikainen M, Ma X, Irwin ML, Lu L, Zhao H, Lim JK, Taddei T, Mishra L, Pawlish K, Stroup A, Brown R, Nguyen MH, Koshiol J, Hernandez MO, Forgues M, Yang H, Lee M, Huang Y, Iwasaki M, Goto A, Suzuki S, Matsuda K, Tanikawa C, Kamatani Y, Mann D, Guarnera M, Shetty K, Thomas CE, Yuan J, Khor CC, Koh W, Risch H, Wang XW, Yu H. Genetic susceptibility to hepatocellular carcinoma in chromosome 22q13.31, findings of a genome-wide association study. JGH Open 2021; 5:1363-1372. [PMID: 34950780 PMCID: PMC8674550 DOI: 10.1002/jgh3.12682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIM Chronic hepatitis C virus (HCV) infection, long-term alcohol use, cigarette smoking, and obesity are the major risk factors for hepatocellular carcinoma (HCC) in the United States, but the disease risk varies substantially among individuals with these factors, suggesting host susceptibility to and gene-environment interactions in HCC. To address genetic susceptibility to HCC, we conducted a genome-wide association study (GWAS). METHODS Two case-control studies on HCC were conducted in the United States. DNA samples were genotyped using the Illumian microarray chip with over 710 000 single nucleotide polymorphisms (SNPs). We compared these SNPs between 705 HCC cases and 1455 population controls for their associations with HCC and verified our findings in additional studies. RESULTS In this GWAS, we found that two SNPs were associated with HCC at P < 5E-8 and six SNPs at P < 5E-6 after adjusting for age, sex, and the top three principal components (PCs). Five of the SNPs in chromosome 22q13.31, three in PNPLA3 (rs2281135, rs2896019, and rs4823173) and two in SAMM50 (rs3761472, rs3827385), were replicated in a small US case-control study and a cohort study in Singapore. The associations remained significant after adjusting for body mass index and HCV infection. Meta-analysis of multiple datasets indicated that these SNPs were significantly associated with HCC. CONCLUSIONS SNPs in PNPLA3 and SAMM50 are known risk loci for nonalcoholic fatty liver disease (NAFLD) and are suspected to be associated with HCC. Our GWAS demonstrated the associations of these SNPs with HCC in a US population. Biological mechanisms underlying the relationship remain to be elucidated.
Collapse
Affiliation(s)
- Zhanwei Wang
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | - Anuradha S Budhu
- Laboratory of Human Carcinogenesis, Liver Cancer Program, Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Yi Shen
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| | | | | | | | - Xiaomei Ma
- Yale School of Public HealthNew HavenConnecticutUSA
| | | | - Lingeng Lu
- Yale School of Public HealthNew HavenConnecticutUSA
| | - Hongyu Zhao
- Yale School of Public HealthNew HavenConnecticutUSA
| | | | | | - Lopa Mishra
- Center for Translational Medicine, Department of SurgeryThe George Washington UniversityWashingtonDistrict of ColumbiaUSA
| | - Karen Pawlish
- New Jersey State Cancer Registry, New Jersey Department of HealthTrentonNew JerseyUSA
| | - Antoinette Stroup
- Rutgers Cancer Institute, and Rutgers School of Public HealthNew BrunswickNew JerseyUSA
| | - Robert Brown
- Weill Cornell Medical College, and College of Physicians and Surgeons, Columbia UniversityNew YorkNew YorkUSA
| | - Mindie H Nguyen
- Division of Gastroenterology and HepatologyStanford University Medical CenterPalo AltoCaliforniaUSA
| | - Jill Koshiol
- Division of Cancer Epidemiology and GeneticsNational Cancer InstituteBethesdaMarylandUSA
| | - Maria O Hernandez
- Laboratory of Human CarcinogenesisCenter for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| | - Marshonna Forgues
- Laboratory of Human CarcinogenesisCenter for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| | - Hwai‐I Yang
- Genomics Research Center, Academia SinicaTaipeiTaiwan
- Institute of Clinical Medicine, National Yang Ming UniversityTaipeiTaiwan
| | - Mei‐Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming UniversityTaipeiTaiwan
| | - Yu‐Han Huang
- Institute of Clinical Medicine, National Yang Ming UniversityTaipeiTaiwan
| | - Motoki Iwasaki
- Division of EpidemiologyCenter for Public Health Sciences, National Cancer CenterTokyoJapan
| | - Atsushi Goto
- Division of EpidemiologyCenter for Public Health Sciences, National Cancer CenterTokyoJapan
| | - Shiori Suzuki
- Division of EpidemiologyCenter for Public Health Sciences, National Cancer CenterTokyoJapan
| | - Koichi Matsuda
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of TokyoTokyoJapan
| | - Chizu Tanikawa
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of TokyoTokyoJapan
| | - Yoichiro Kamatani
- Graduate School of Frontier Sciences, and Institute of Medical Science, University of TokyoTokyoJapan
| | - Dean Mann
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Maria Guarnera
- Department of PathologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Kirti Shetty
- Department of Gastroenterology and HepatologyUniversity of Maryland School of MedicineBaltimoreMarylandUSA
| | - Claire E Thomas
- Division of Cancer Control and Population SciencesUniversity of Pittsburgh Medical Center (UPMC) Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Department of EpidemiologyGraduate School of Public Health, University of PittsburghPittsburghPennsylvaniaUSA
| | - Jian‐Min Yuan
- Division of Cancer Control and Population SciencesUniversity of Pittsburgh Medical Center (UPMC) Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Department of EpidemiologyGraduate School of Public Health, University of PittsburghPittsburghPennsylvaniaUSA
| | - Chiea Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and ResearchSingaporeSingapore
- Singapore Eye Research InstituteSingaporeSingapore
| | - Woon‐Puay Koh
- Health Systems and Services Research, Duke‐NUS Medical School SingaporeSingaporeSingapore
- Saw Swee Hock School of Public Health, National University of SingaporeSingaporeSingapore
| | - Harvey Risch
- Yale School of Public HealthNew HavenConnecticutUSA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Liver Cancer Program, Center for Cancer ResearchNational Cancer InstituteBethesdaMarylandUSA
| | - Herbert Yu
- University of Hawaii Cancer CenterHonoluluHawaiiUSA
| |
Collapse
|
5
|
Ramachandra R, Mackey MR, Hu J, Peltier ST, Xuong N, Ellisman MH, Adams SR. Elemental mapping of labelled biological specimens at intermediate energy loss in an energy-filtered TEM acquired using a direct detection device. J Microsc 2021; 283:127-144. [PMID: 33844293 PMCID: PMC8316382 DOI: 10.1111/jmi.13014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/11/2021] [Accepted: 04/04/2021] [Indexed: 12/30/2022]
Abstract
The technique of colour EM that was recently developed enabled localisation of specific macromolecules/proteins of interest by the targeted deposition of diaminobenzidine (DAB) conjugated to lanthanide chelates. By acquiring lanthanide elemental maps by energy-filtered transmission electron microscopy (EFTEM) and overlaying them in pseudo-colour over the conventional greyscale TEM image, a colour EM image is generated. This provides a powerful tool for visualising subcellular component/s, by the ability to clearly distinguish them from the general staining of the endogenous cellular material. Previously, the lanthanide elemental maps were acquired at the high-loss M4,5 edge (excitation of 3d electrons), where the characteristic signal is extremely low and required considerably long exposures. In this paper, we explore the possibility of acquiring the elemental maps of lanthanides at their N4,5 edge (excitation of 4d electrons), which occurring at a much lower energy-loss regime, thereby contains significantly greater total characteristic signal owing to the higher inelastic scattering cross-sections at the N4,5 edge. Acquiring EFTEM lanthanide elemental maps at the N4,5 edge instead of the M4,5 edge, provides ∼4× increase in signal-to-noise and ∼2× increase in resolution. However, the interpretation of the lanthanide maps acquired at the N4,5 edge by the traditional 3-window method, is complicated due to the broad shape of the edge profile and the lower signal-above-background ratio. Most of these problems can be circumvented by the acquisition of elemental maps with the more sophisticated technique of EFTEM Spectrum Imaging (EFTEM SI). Here, we also report the chemical synthesis of novel second-generation DAB lanthanide metal chelate conjugates that contain 2 lanthanide ions per DAB molecule in comparison with 0.5 lanthanide ion per DAB in the first generation. Thereby, fourfold more Ln3+ per oxidised DAB would be deposited providing significant amplification of signal. This paper applies the colour EM technique at the intermediate-loss energy-loss regime to three different cellular targets, namely using mitochondrial matrix-directed APEX2, histone H2B-Nucleosome and EdU-DNA. All the examples shown in the paper are single colour EM images only.
Collapse
Affiliation(s)
- Ranjan Ramachandra
- Department of NeurosciencesUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Center for Research in Biological Systems, National Center for Microscopy and, Imaging ResearchUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Mason R. Mackey
- Department of NeurosciencesUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Center for Research in Biological Systems, National Center for Microscopy and, Imaging ResearchUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Junru Hu
- Department of NeurosciencesUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Center for Research in Biological Systems, National Center for Microscopy and, Imaging ResearchUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Steven T. Peltier
- Department of NeurosciencesUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Center for Research in Biological Systems, National Center for Microscopy and, Imaging ResearchUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Nguyen‐Huu Xuong
- Center for Research in Biological Systems, National Center for Microscopy and, Imaging ResearchUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Mark H. Ellisman
- Department of NeurosciencesUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
- Center for Research in Biological Systems, National Center for Microscopy and, Imaging ResearchUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| | - Stephen R. Adams
- Department of PharmacologyUniversity of CaliforniaSan DiegoLa JollaCaliforniaUSA
| |
Collapse
|
6
|
Wang LJ, Hsu T, Lin HL, Fu CY. Drosophila MICOS knockdown impairs mitochondrial structure and function and promotes mitophagy in muscle tissue. Biol Open 2020; 9:bio054262. [PMID: 33268479 PMCID: PMC7725604 DOI: 10.1242/bio.054262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/10/2020] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial contact site and cristae organizing system (MICOS) is a multi-protein interaction hub that helps define mitochondrial ultrastructure. While the functional importance of MICOS is mostly characterized in yeast and mammalian cells in culture, the contributions of MICOS to tissue homeostasis in vivo remain further elucidation. In this study, we examined how knocking down expression of Drosophila MICOS genes affects mitochondrial function and muscle tissue homeostasis. We found that CG5903/MIC26-MIC27 colocalizes and functions with Mitofilin/MIC60 and QIL1/MIC13 as a Drosophila MICOS component; knocking down expression of any of these three genes predictably altered mitochondrial morphology, causing loss of cristae junctions, and disruption of cristae packing. Furthermore, the knockdown flies exhibited low mitochondrial membrane potential, fusion/fission imbalances, increased mitophagy, and limited cell death. Reductions in climbing ability indicated deficits in muscle function. Knocking down MICOS genes also caused reduced mtDNA content and fragmented mitochondrial nucleoid structure in Drosophila Together, our data demonstrate an essential role of Drosophila MICOS in maintaining proper homeostasis of mitochondrial structure and function to promote the function of muscle tissue.
Collapse
Affiliation(s)
- Li-Jie Wang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Tian Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiang-Ling Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| | - Chi-Yu Fu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
7
|
Perkins G, Lee JH, Park S, Kang M, Perez-Flores MC, Ju S, Phillips G, Lysakowski A, Gratton MA, Yamoah EN. Altered Outer Hair Cell Mitochondrial and Subsurface Cisternae Connectomics Are Candidate Mechanisms for Hearing Loss in Mice. J Neurosci 2020; 40:8556-8572. [PMID: 33020216 PMCID: PMC7605424 DOI: 10.1523/jneurosci.2901-19.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/21/2022] Open
Abstract
Organelle crosstalk is vital for cellular functions. The propinquity of mitochondria, ER, and plasma membrane promote regulation of multiple functions, which include intracellular Ca2+ flux, and cellular biogenesis. Although the purposes of apposing mitochondria and ER have been described, an understanding of altered organelle connectomics related to disease states is emerging. Since inner ear outer hair cell (OHC) degeneration is a common trait of age-related hearing loss, the objective of this study was to investigate whether the structural and functional coupling of mitochondria with subsurface cisternae (SSC) was affected by aging. We applied functional and structural probes to equal numbers of male and female mice with a hearing phenotype akin to human aging. We discovered the polarization of cristae and crista junctions in mitochondria tethered to the SSC in OHCs. Aging was associated with SSC stress and decoupling of mitochondria with the SSC, mitochondrial fission/fusion imbalance, a remarkable reduction in mitochondrial and cytoplasmic Ca2+ levels, reduced K+-induced Ca2+ uptake, and marked plasticity of cristae membranes. A model of structure-based ATP production predicts profound energy stress in older OHCs. This report provides data suggesting that altered membrane organelle connectomics may result in progressive hearing loss.
Collapse
Affiliation(s)
- Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | | | | | | | | | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, La Jolla, California 92093
| | - Grady Phillips
- Washington University School of Medicine, St. Louis, Missouri 63110
| | - Anna Lysakowski
- Departments of Anatomy and Cell Biology and Otolaryngology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | |
Collapse
|
8
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Tang WZ, Cui ZJ. Permanent Photodynamic Activation of the Cholecystokinin 2 Receptor. Biomolecules 2020; 10:236. [PMID: 32033232 PMCID: PMC7072308 DOI: 10.3390/biom10020236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023] Open
Abstract
The cholecystokinin 2 receptor (CCK2R) is expressed in the central nervous system and peripheral tissues, playing an important role in higher nervous and gastrointestinal functions, pain sensation, and cancer growth. CCK2R is reversibly activated by cholecystokinin or gastrin, but whether it can be activated permanently is not known. In this work, we found that CCK2R expressed ectopically in CHO-K1 cells was permanently activated in the dark by sulfonated aluminum phthalocyanine (SALPC / AlPcS4, 10-1,000 nM), as monitored by Fura-2 fluorescent calcium imaging. Permanent CCK2R activation was also observed with AlPcS2, but not PcS4. CCK2R previously exposed to SALPC (3 and 10 nM) was sensitized by subsequent light irradiation (> 580 nm, 31.5 mW·cm-2). After the genetically encoded protein photosensitizer mini singlet oxygen generator (miniSOG) was fused to the N-terminus of CCK2R and expressed in CHO-K1 cells, light irradiation (450 nm, 85 mW·cm-2) activated in-frame CCK2R (miniSOG-CCK2R), permanently triggering persistent calcium oscillations blocked by the CCK2R antagonist YM 022 (30 nM). From these data, it is concluded that SALPC is a long-lasting CCK2R agonist in the dark, and CCK2R is photogenetically activated permanently with miniSOG as photosensitizer. These properties of SALPC and CCK2R could be used to study CCK2R physiology and possibly for pain and cancer therapies.
Collapse
Affiliation(s)
| | - Zong Jie Cui
- Institute of Cell Biology, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
10
|
Abstract
Significance: In addition to their classical role in cellular ATP production, mitochondria are of key relevance in various (patho)physiological mechanisms including second messenger signaling, neuro-transduction, immune responses and death induction. Recent Advances: Within cells, mitochondria are motile and display temporal changes in internal and external structure ("mitochondrial dynamics"). During the last decade, substantial empirical and in silico evidence was presented demonstrating that mitochondrial dynamics impacts on mitochondrial function and vice versa. Critical Issues: However, a comprehensive and quantitative understanding of the bidirectional links between mitochondrial external shape, internal structure and function ("morphofunction") is still lacking. The latter particularly hampers our understanding of the functional properties and behavior of individual mitochondrial within single living cells. Future Directions: In this review we discuss the concept of mitochondrial morphofunction in mammalian cells, primarily using experimental evidence obtained within the last decade. The topic is introduced by briefly presenting the central role of mitochondria in cell physiology and the importance of the mitochondrial electron transport chain (ETC) therein. Next, we summarize in detail how mitochondrial (ultra)structure is controlled and discuss empirical evidence regarding the equivalence of mitochondrial (ultra)structure and function. Finally, we provide a brief summary of how mitochondrial morphofunction can be quantified at the level of single cells and mitochondria, how mitochondrial ultrastructure/volume impacts on mitochondrial bioreactions and intramitochondrial protein diffusion, and how mitochondrial morphofunction can be targeted by small molecules.
Collapse
Affiliation(s)
- Elianne P. Bulthuis
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Merel J.W. Adjobo-Hermans
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Peter H.G.M. Willems
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Werner J.H. Koopman
- Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Address correspondence to: Dr. Werner J.H. Koopman, Department of Biochemistry (286), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, P.O. Box 9101, Nijmegen NL-6500 HB, The Netherlands
| |
Collapse
|
11
|
Sam50-Mic19-Mic60 axis determines mitochondrial cristae architecture by mediating mitochondrial outer and inner membrane contact. Cell Death Differ 2019; 27:146-160. [PMID: 31097788 DOI: 10.1038/s41418-019-0345-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial cristae are critical for efficient oxidative phosphorylation, however, how cristae architecture is precisely organized remains largely unknown. Here, we discovered that Mic19, a core component of MICOS (mitochondrial contact site and cristae organizing system) complex, can be cleaved at N-terminal by mitochondrial protease OMA1 under certain physiological stresses. Mic19 directly interacts with mitochondrial outer-membrane protein Sam50 (the key subunit of SAM complex) and inner-membrane protein Mic60 (the key component of MICOS complex) to form Sam50-Mic19-Mic60 axis, which dominantly connects SAM and MICOS complexes to assemble MIB (mitochondrial intermembrane space bridging) supercomplex for mediating mitochondrial outer- and inner-membrane contact. OMA1-mediated Mic19 cleavage causes Sam50-Mic19-Mic60 axis disruption, which separates SAM and MICOS and leads to MIB disassembly. Disrupted Sam50-Mic19-Mic60 axis, even in the presence of SAM and MICOS complexes, causes the abnormal mitochondrial morphology, loss of mitochondrial cristae junctions, abnormal cristae distribution and reduced ATP production. Importantly, Sam50 displays punctate distribution at mitochondrial outer membrane, and acts as an anchoring point to guide the formation of mitochondrial cristae junctions. Therefore, we propose that Sam50-Mic19-Mic60 axis-mediated SAM-MICOS complexes integration determines mitochondrial cristae architecture.
Collapse
|
12
|
Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: Distribution, Mutations, and Elimination. Cells 2019; 8:E379. [PMID: 31027297 PMCID: PMC6523345 DOI: 10.3390/cells8040379] [Citation(s) in RCA: 177] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrion harbors its own DNA (mtDNA), which encodes many critical proteins for the assembly and activity of mitochondrial respiratory complexes. mtDNA is packed by many proteins to form a nucleoid that uniformly distributes within the mitochondrial matrix, which is essential for mitochondrial functions. Defects or mutations of mtDNA result in a range of diseases. Damaged mtDNA could be eliminated by mitophagy, and all paternal mtDNA are degraded by endonuclease G or mitophagy during fertilization. In this review, we describe the role and mechanism of mtDNA distribution and elimination. In particular, we focus on the regulation of paternal mtDNA elimination in the process of fertilization.
Collapse
Affiliation(s)
- Chaojun Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaoying Duanmu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Ling Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Bing Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
13
|
Calzada E, Avery E, Sam PN, Modak A, Wang C, McCaffery JM, Han X, Alder NN, Claypool SM. Phosphatidylethanolamine made in the inner mitochondrial membrane is essential for yeast cytochrome bc 1 complex function. Nat Commun 2019; 10:1432. [PMID: 30926815 PMCID: PMC6441012 DOI: 10.1038/s41467-019-09425-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Of the four separate PE biosynthetic pathways in eukaryotes, one occurs in the mitochondrial inner membrane (IM) and is executed by phosphatidylserine decarboxylase (Psd1). Deletion of Psd1 is lethal in mice and compromises mitochondrial function. We hypothesize that this reflects inefficient import of non-mitochondrial PE into the IM. Here, we test this by re-wiring PE metabolism in yeast by re-directing Psd1 to the outer mitochondrial membrane or the endomembrane system and show that PE can cross the IMS in both directions. Nonetheless, PE synthesis in the IM is critical for cytochrome bc1 complex (III) function and mutations predicted to disrupt a conserved PE-binding site in the complex III subunit, Qcr7, impair complex III activity similar to PSD1 deletion. Collectively, these data challenge the current dogma of PE trafficking and demonstrate that PE made in the IM by Psd1 support the intrinsic functionality of complex III.
Collapse
Affiliation(s)
- Elizabeth Calzada
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erica Avery
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pingdewinde N Sam
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Arnab Modak
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Chunyan Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - J Michael McCaffery
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Ueda E, Tamura Y, Sakaue H, Kawano S, Kakuta C, Matsumoto S, Endo T. Myristoyl group-aided protein import into the mitochondrial intermembrane space. Sci Rep 2019; 9:1185. [PMID: 30718713 PMCID: PMC6362269 DOI: 10.1038/s41598-018-38016-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
The MICOS complex mediates formation of the crista junctions in mitochondria. Here we analyzed the mitochondrial import pathways for the six yeast MICOS subunits as a step toward understanding of the assembly mechanisms of the MICOS complex. Mic10, Mic12, Mic26, Mic27, and Mic60 used the presequence pathway to reach the intermembrane space (IMS). In contrast, Mic19 took the TIM40/MIA pathway, through its CHCH domain, to reach the IMS. Unlike canonical TIM40/MIA substrates, presence of the N-terminal unfolded DUF domain impaired the import efficiency of Mic19, yet N-terminal myristoylation of Mic19 circumvented this effect. The myristoyl group of Mic19 binds to Tom20 of the TOM complex as well as the outer membrane, which may lead to "entropy pushing" of the DUF domain followed by the CHCH domain of Mic19 into the import channel, thereby achieving efficient import.
Collapse
Affiliation(s)
- Eri Ueda
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, 1-1 machikaneyama-cho, Toyonaka, 560-0043, Osaka, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, 990-8560, Japan
| | - Haruka Sakaue
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Chika Kakuta
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Shunsuke Matsumoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
- Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
15
|
Mick DU. Establishing Cell Culture-Based Experimental Setups for Proximity Labeling Using Ascorbate Peroxidase (APEX). Methods Mol Biol 2019; 2008:29-39. [PMID: 31124086 DOI: 10.1007/978-1-4939-9537-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proximity labeling by ascorbate peroxidase (APEX) requires appropriate experimental setups that generate sufficient signal over background as a prerequisite for downstream analyses by mass spectrometry. Cell culture-based systems are easily accessible, yet, for proximity labeling of small structures must be carefully optimized in order to give satisfying results. How to establish and characterize APEX cell lines will be the topic of this chapter.
Collapse
Affiliation(s)
- David U Mick
- Center for Human and Molecular Biology (ZHMB), Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, 66421, Homburg, Germany.
| |
Collapse
|
16
|
LaBrant E, Barnes AC, Roston RL. Lipid transport required to make lipids of photosynthetic membranes. PHOTOSYNTHESIS RESEARCH 2018; 138:345-360. [PMID: 29961189 DOI: 10.1007/s11120-018-0545-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 06/20/2018] [Indexed: 05/21/2023]
Abstract
Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.
Collapse
Affiliation(s)
- Evan LaBrant
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Allison C Barnes
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA
| | - Rebecca L Roston
- Department of Biochemistry, University of Nebraska-Lincoln, 1901 Vine St, Lincoln, NE, 68588, USA.
| |
Collapse
|
17
|
Trewin AJ, Berry BJ, Wei AY, Bahr LL, Foster TH, Wojtovich AP. Light-induced oxidant production by fluorescent proteins. Free Radic Biol Med 2018; 128:157-164. [PMID: 29425690 PMCID: PMC6078816 DOI: 10.1016/j.freeradbiomed.2018.02.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/22/2018] [Accepted: 02/02/2018] [Indexed: 10/18/2022]
Abstract
Oxidants play an important role in the cell and are involved in many redox processes. Oxidant concentrations are maintained through coordinated production and removal systems. The dysregulation of oxidant homeostasis is a hallmark of many disease pathologies. The local oxidant microdomain is crucial for the initiation of many redox signaling events; however, methods to control oxidant product are limited. Some fluorescent proteins, including GFP, TagRFP, KillerRed, miniSOG, and their derivatives, generate oxidants in response to light. These genetically-encoded photosensitizers produce singlet oxygen and superoxide upon illumination and offer spatial and temporal control over oxidant production. In this review, we will examine the photosensitization properties of fluorescent proteins and their application to redox biology. Emerging concepts of selective oxidant species production via photosensitization and the impact of light on biological systems are discussed.
Collapse
Affiliation(s)
- Adam J Trewin
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Brandon J Berry
- University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester 14642, United States
| | - Alicia Y Wei
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Laura L Bahr
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States
| | - Thomas H Foster
- University of Rochester Medical Center, Department of Imaging Sciences, Rochester 14642, United States
| | - Andrew P Wojtovich
- University of Rochester Medical Center, Department of Anesthesiology and Perioperative Medicine, Rochester 14642, United States; University of Rochester Medical Center, Department of Pharmacology and Physiology, Rochester 14642, United States.
| |
Collapse
|
18
|
Utsumi T, Matsuzaki K, Kiwado A, Tanikawa A, Kikkawa Y, Hosokawa T, Otsuka A, Iuchi Y, Kobuchi H, Moriya K. Identification and characterization of protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25. PLoS One 2018; 13:e0206355. [PMID: 30427857 PMCID: PMC6235283 DOI: 10.1371/journal.pone.0206355] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022] Open
Abstract
Previously, we showed that SAMM50, a mitochondrial outer membrane protein, is N-myristoylated, and this lipid modification is required for the proper targeting of SAMM50 to mitochondria. In this study, we characterized protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25, three of which are components of the mitochondrial intermembrane space bridging (MIB) complex, which plays a critical role in the structure and function of mitochondria. In vitro and in vivo metabolic labeling experiments revealed that all four of these proteins were N-myristoylated. Analysis of intracellular localization of wild-type and non-myristoylated G2A mutants of these proteins by immunofluorescence microscopic analysis and subcellular fractionation analysis indicated that protein N-myristoylation plays a critical role in mitochondrial targeting and membrane binding of two MIB components, SAMM50 and MIC19, but not those of TOMM40 and MIC25. Immunoprecipitation experiments using specific antibodies revealed that MIC19, but not MIC25, was a major N-myristoylated binding partner of SAMM50. Immunoprecipitation experiments using a stable transformant of MIC19 confirmed that protein N-myristoylation of MIC19 is required for the interaction between MIC19 and SAMM50, as reported previously. Thus, protein N-myristoylation occurring on two mitochondrial MIB components, SAMM50 and MIC19, plays a critical role in the mitochondrial targeting and protein-protein interaction between these two MIB components.
Collapse
Affiliation(s)
- Toshihiko Utsumi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Kanako Matsuzaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Aya Kiwado
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Ayane Tanikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Kikkawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Takuro Hosokawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Aoi Otsuka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshihito Iuchi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hirotsugu Kobuchi
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koko Moriya
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
19
|
Hatani T, Funakoshi S, Deerinck TJ, Bushong EA, Kimura T, Takeshima H, Ellisman MH, Hoshijima M, Yoshida Y. Nano-structural analysis of engrafted human induced pluripotent stem cell-derived cardiomyocytes in mouse hearts using a genetic-probe APEX2. Biochem Biophys Res Commun 2018; 505:1251-1256. [PMID: 30333092 DOI: 10.1016/j.bbrc.2018.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 10/04/2018] [Indexed: 01/14/2023]
Abstract
Many studies have shown the feasibility of in vivo cardiac transplantation of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) in animal experiments. However, nano-structural confirmation of the successful incorporation of the engrafted iPSC-CMs including electron microscopy (EM) has not been accomplished, partly because identification of graft cells in EM has proven to be difficult. Using APEX2, an engineered ascorbate peroxidase imaging tag, we successfully localized and analyzed the fine structure of sarcomeres and the excitation contraction machinery of iPSC-CMs 6 months after their engraftment in infarcted mouse hearts. APEX2 made iPSC-CMs visible in multiple imaging modalities including light microscopy, X-ray microscopic tomography, transmission EM, and scanning EM. EM tomography allowed assessment of the differentiation state of APEX2-positive iPSC-CMs and analysis of the fine structure of the sarcomeres including T-tubules and dyads.
Collapse
Affiliation(s)
- Takeshi Hatani
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan; Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Shunsuke Funakoshi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Thomas J Deerinck
- Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA, 92093, USA; National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Eric A Bushong
- Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA, 92093, USA; National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Mark H Ellisman
- Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA, 92093, USA; National Center for Microscopy and Imaging Research, University of California at San Diego, La Jolla, CA, 92093, USA; Departments of Neurosciences and Bioengineering, University of California at San Diego, La Jolla, CA, 92093, USA
| | - Masahiko Hoshijima
- Center for Research in Biological Systems, University of California at San Diego, La Jolla, CA, 92093, USA; Department of Medicine, University of California at San Diego, La Jolla, CA, 92093, USA.
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
20
|
Feng Y, Madungwe NB, Bopassa JC. Mitochondrial inner membrane protein, Mic60/mitofilin in mammalian organ protection. J Cell Physiol 2018; 234:3383-3393. [PMID: 30259514 DOI: 10.1002/jcp.27314] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The identification of the mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane shed light on the intricate components necessary for mitochondria to form their signature cristae in which many protein complexes including the electron transport chain are localized. Mic60/mitofilin has been described as the core component for the assembly and maintenance of MICOS, thus controlling cristae morphology, protein transport, mitochondrial DNA transcription, as well as connecting the inner and outer mitochondrial membranes. Although Mic60 homologs are present in many species, mammalian Mic60 is only recently gaining attention as a critical player in several organ systems and diseases with mitochondrial-defect origins. In this review, we summarize what is currently known about the ever-expanding role of Mic60 in mammals, and highlight some new studies pushing the field of mitochondrial cristae organization towards potentially new and exciting therapies targeting this protein.
Collapse
Affiliation(s)
- Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas.,Department of Biomedical Engineering, University of Texas at San Antonio, Texas
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio, Texas
| |
Collapse
|