1
|
Zhang C, Liang D, Ercan-Sencicek AG, Bulut AS, Cortes J, Cheng IQ, Henegariu O, Nishimura S, Wang X, Peksen AB, Takeo Y, Caglar C, Lam TT, Koroglu MN, Narayanan A, Lopez-Giraldez F, Miyagishima DF, Mishra-Gorur K, Barak T, Yasuno K, Erson-Omay EZ, Yalcinkaya C, Wang G, Mane S, Kaymakcalan H, Guzel A, Caglayan AO, Tuysuz B, Sestan N, Gunel M, Louvi A, Bilguvar K. Dysregulation of mTOR signalling is a converging mechanism in lissencephaly. Nature 2025; 638:172-181. [PMID: 39743596 PMCID: PMC11798849 DOI: 10.1038/s41586-024-08341-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Cerebral cortex development in humans is a highly complex and orchestrated process that is under tight genetic regulation. Rare mutations that alter gene expression or function can disrupt the structure of the cerebral cortex, resulting in a range of neurological conditions1. Lissencephaly ('smooth brain') spectrum disorders comprise a group of rare, genetically heterogeneous congenital brain malformations commonly associated with epilepsy and intellectual disability2. However, the molecular mechanisms underlying disease pathogenesis remain unknown. Here we establish hypoactivity of the mTOR pathway as a clinically relevant molecular mechanism in lissencephaly spectrum disorders. We characterized two types of cerebral organoid derived from individuals with genetically distinct lissencephalies with a recessive mutation in p53-induced death domain protein 1 (PIDD1) or a heterozygous chromosome 17p13.3 microdeletion leading to Miller-Dieker lissencephaly syndrome (MDLS). PIDD1-mutant organoids and MDLS organoids recapitulated the thickened cortex typical of human lissencephaly and demonstrated dysregulation of protein translation, metabolism and the mTOR pathway. A brain-selective activator of mTOR complex 1 prevented and reversed cellular and molecular defects in the lissencephaly organoids. Our findings show that a converging molecular mechanism contributes to two genetically distinct lissencephaly spectrum disorders.
Collapse
Affiliation(s)
- Ce Zhang
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
| | - Dan Liang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Bexorg, Inc., New Haven, CT, USA
| | - A Gulhan Ercan-Sencicek
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Aybike S Bulut
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genome Sciences, Health Sciences Institute, Acibadem University, Istanbul, Turkey
| | - Joelly Cortes
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Iris Q Cheng
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Xinyuan Wang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Buket Peksen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Yutaka Takeo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Caner Caglar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Istanbul, Turkey
| | - TuKiet T Lam
- Keck MS and Proteomics Resource, Yale School of Medicine, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Merve Nur Koroglu
- Department of Biostatistics and Bioinformatics, Health Sciences Institute, Acibadem University, Istanbul, Turkey
| | - Anand Narayanan
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Danielle F Miyagishima
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - Katsuhito Yasuno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Cengiz Yalcinkaya
- Department of Neurology, Cerrahpasa Medical School, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
- Keck Microarray Shared Resource, Yale School of Medicine, New Haven, CT, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Hande Kaymakcalan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Translational Medicine, Health Sciences Institute, Acibadem University, Istanbul, Turkey
| | - Aslan Guzel
- Department of Neurosurgery, Faculty of Medicine, Bahcesehir University, Istanbul, Turkey
- Department of Neurosurgery, Medical Point Hospital, Gaziantep, Turkey
| | - A Okay Caglayan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
- Department of Molecular Medicine, Institute of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Beyhan Tuysuz
- Department of Pediatric Genetics, Cerrahpasa Medical School, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
| | - Angeliki Louvi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
| | - Kaya Bilguvar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Yale Program on Neurogenetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Genome Sciences, Health Sciences Institute, Acibadem University, Istanbul, Turkey.
- Department of Biostatistics and Bioinformatics, Health Sciences Institute, Acibadem University, Istanbul, Turkey.
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA.
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Department of Translational Medicine, Health Sciences Institute, Acibadem University, Istanbul, Turkey.
- Department of Medical Genetics, School of Medicine, Acibadem University, Istanbul, Turkey.
- Rare Diseases and Orphan Drugs Application and Research Center-ACURARE, Acibadem University, Istanbul, Turkey.
| |
Collapse
|
2
|
Shah RB, Li Y, Yu H, Kini E, Sidi S. Stepwise phosphorylation and SUMOylation of PIDD1 drive PIDDosome assembly in response to DNA repair failure. Nat Commun 2024; 15:9195. [PMID: 39448602 PMCID: PMC11502896 DOI: 10.1038/s41467-024-53412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
SUMOylation regulates numerous cellular stress responses, yet targets in the apoptotic machinery remain elusive. We show that a single, DNA damage-induced monoSUMOylation event controls PIDDosome (PIDD1/RAIDD/caspase-2) formation and apoptotic death in response to unresolved DNA interstrand crosslinks (ICLs). SUMO-1 conjugation occurs on conserved K879 in the PIDD1 death domain (DD); is catalyzed by PIAS1 and countered by SENP3; and is triggered by ATR phosphorylation of neighboring T788 in the PIDD1 DD, which enables PIAS1 docking. Phospho/SUMO-PIDD1 proteins are captured by nucleolar RAIDD monomers via a SUMO-interacting motif (SIM) in the RAIDD DD, thus compartmentalizing nascent PIDDosomes for caspase-2 recruitment. Denying SUMOylation or the SUMO-SIM interaction spares the onset of PIDDosome assembly but blocks its completion, thus eliminating the apoptotic response to ICL repair failure. Conversely, removal of SENP3 forces apoptosis, even in cells with tolerable ICL levels. SUMO-mediated PIDDosome control is also seen in response to DNA breaks but not supernumerary centrosomes. These results illuminate PIDDosome formation in space and time and identify a direct role for SUMOylation in the assembly of a major pro-apoptotic device.
Collapse
Affiliation(s)
- Richa B Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Honglin Yu
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ela Kini
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Xu R, Jiang Z, Meng X, Xing L, Aladan W, Chi B, Dang T, Chai J. Cellular communication network 1 promotes CASP2 mRNA expression but suppresses its protein translation in esophageal adenocarcinoma. J Cell Commun Signal 2024; 18:e12046. [PMID: 39524140 PMCID: PMC11544643 DOI: 10.1002/ccs3.12046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 07/02/2024] [Indexed: 11/16/2024] Open
Abstract
Induction of apoptosis in tumor cells is one of the best ways to cure cancer. While most apoptosis requires a chain of caspase activation, CASP2 can do this all by itself. The matricellular protein cellular communication network 1 (CCN1) is known for supporting some cancer growth but suppressing others. Esophageal adenocarcinoma (EAC) belongs to the latter. CCN1 is capable of inducing TRAIL-mediated apoptosis in EAC cells. This study found that CCN1 upregulated CASP2 transcription but not its translation in EAC cells because, on one hand, CCN1 downregulated p16 and p21, which increased RB1 phosphorylation allowing E2F1 to transcribe more CASP2 mRNA, on the other hand, CCN1 also upregulated HuR, which is bound to CASP2 mRNA species and blocked its protein translation. As a result, CASP2 contributed nothing to CCN1-induced EAC cell apoptosis. On the contrary, CCN1 promoted CASP3, not only in its transcription but also in its translation and activation, which established the basis for CCN1-induced EAC cell apoptosis.
Collapse
Affiliation(s)
- Ruize Xu
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Zhenyu Jiang
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Xianmei Meng
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Lingling Xing
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Wula Aladan
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Baoxing Chi
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Tong Dang
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive DiseasesInner Mongolia Engineering Research Center for Prevention and Treatment of Digestive DiseasesThe Second Affiliated Hospital of Baotou Medical CollegeInner Mongolia University of Science and TechnologyBaotouChina
| |
Collapse
|
4
|
Amason ME, Li L, Harvest CK, Lacey CA, Miao EA. Validation of the Intermolecular Disulfide Bond in Caspase-2. BIOLOGY 2024; 13:49. [PMID: 38248479 PMCID: PMC10813798 DOI: 10.3390/biology13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Caspases are a family of proteins involved in cell death. Although several caspase members have been well characterized, caspase-2 remains enigmatic. Caspase-2 has been implicated in several phenotypes, but there has been no consensus in the field about its upstream activating signals or its downstream protein targets. In addition, the unique ability of caspase-2 to form a disulfide-bonded dimer has not been studied in depth. Herein, we investigate the disulfide bond in the context of inducible dimerization, showing that disulfide bond formation is dimerization dependent. We also explore and review several stimuli published in the caspase-2 field, test ferroptosis-inducing stimuli, and study in vivo infection models. We hypothesize that the disulfide bond will ultimately prove to be essential for the evolved function of caspase-2. Proving this will require the discovery of cell death phenotypes where caspase-2 is definitively essential.
Collapse
Affiliation(s)
- Megan E. Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lupeng Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carissa K. Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn A. Lacey
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
5
|
Xu S, Zhong F, jiang J, Yao F, Li M, Tang M, Cheng Y, Yang Y, Wen W, Zhang X, Huang B, Wang X. High Expression of SRSF10 Promotes Colorectal Cancer Progression by Aberrant Alternative Splicing of RFC5. Technol Cancer Res Treat 2024; 23:15330338241271906. [PMID: 39110418 PMCID: PMC11307364 DOI: 10.1177/15330338241271906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) remains a global health concern with persistently high incidence and mortality rates. However, the specific pathogenesis of CRC remains poorly understood. This study aims to investigate the role and pathogenesis of serine and arginine rich splicing factor 10 (SRSF10) in colorectal cancer. METHODS Bioinformatics analysis was employed to predict SRSF10 gene expression in CRC patients. Functional experiments involving SRSF10 knockdown and overexpression were conducted using CCK8, transwell, scratch assay, and flow cytometry. Additionally, the PRIdictor website was utilized to predict the SRSF10 interaction site with RFC5. The identification of different transcripts of SRSF10-acting RFC5 pre-mRNA was achieved through agarose gel electrophoresis. RESULT The knockdown of SRSF10 inhibited the proliferation and migration ability of CRC cells, while promoting apoptosis and altering the DNA replication of CRC cells. Conversely, when SRSF10 was highly expressed, it enhanced the proliferation and migration ability of CRC cells and caused changes in the cell cycle of colorectal cancer cells. This study revealed a change in the replicating factor C subunit 5 (RFC5) gene in colorectal cancer cells following SRSF10 knockdown. Furthermore, it was confirmed that SRSF10 increased RFC5 exon2-AS1(S) transcription variants, thereby promoting the development of colorectal cancer through AS1 exclusion to exon 2 of RFC5. CONCLUSION In summary, this study demonstrates that SRSF10 promotes the progression of colorectal cancer by generating an aberrantly spliced exclusion isoform of AS1 within RFC5 exon 2. These findings suggest that SRSF10 could serve as a crucial target for the clinical diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Shuai Xu
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fangmin Zhong
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junyao jiang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fangyi Yao
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Meiyong Li
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengxin Tang
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ying Cheng
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulin Yang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang 330006, Jiangxi, China
| | - Wen Wen
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang 330006, Jiangxi, China
| | - Xueru Zhang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang 330006, Jiangxi, China
| | - Bo Huang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang 330006, Jiangxi, China
| | - Xiaozhong Wang
- Department of Clinical Laboratory, Jiangxi Province Key Laboratory of Laboratory Medicine, Nanchang, China
- The Second Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang 330006, Jiangxi, China
| |
Collapse
|
6
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu H, Stanley Z, Rahman M, Shao Z, Silva JM, Zha S, Sidi S. A noncanonical IRAK4-IRAK1 pathway counters DNA damage-induced apoptosis independently of TLR/IL-1R signaling. Sci Signal 2023; 16:eadh3449. [PMID: 38113335 PMCID: PMC11111193 DOI: 10.1126/scisignal.adh3449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptors (TLRs) and IL-1R in innate immunity. Here, we found that IRAK4 and IRAK1 together inhibited DNA damage-induced cell death independently of TLR or IL-1R signaling. In human cancer cells, IRAK4 was activated downstream of ATR kinase in response to double-strand breaks (DSBs) induced by ionizing radiation (IR). Activated IRAK4 then formed a complex with and activated IRAK1. The formation of this complex required the E3 ubiquitin ligase Pellino1, acting structurally but not catalytically, and the activation of IRAK1 occurred independently of extracellular signaling, intracellular TLRs, and the TLR/IL-1R signaling adaptor MyD88. Activated IRAK1 translocated to the nucleus in a Pellino2-dependent manner. In the nucleus, IRAK1 bound to the PIDD1 subunit of the proapoptotic PIDDosome and interfered with platform assembly, thus supporting cell survival. This noncanonical IRAK signaling pathway was also activated in response to other DSB-inducing agents. The loss of IRAK4, of IRAK4 kinase activity, of either Pellino protein, or of the nuclear localization sequence in IRAK1 sensitized p53-mutant zebrafish to radiation. Thus, the findings may lead to strategies for overcoming tumor resistance to conventional cancer treatments.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richa B. Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samanta Sarti
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alicia L. Belcher
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brian J. Lee
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andrej Gorbatenko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Current address: Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands
| | - Francesca Nemati
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Honglin Yu
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zoe Stanley
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahbuba Rahman
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zhengping Shao
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jose M. Silva
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shan Zha
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Division of Pediatric Oncology, Hematology and Stem Cell Transplantation, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Cell, Developmental and Regenerative Biology, The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Garcia‐Carpio I, Braun VZ, Weiler ES, Leone M, Niñerola S, Barco A, Fava LL, Villunger A. Extra centrosomes induce PIDD1-mediated inflammation and immunosurveillance. EMBO J 2023; 42:e113510. [PMID: 37530438 PMCID: PMC10577638 DOI: 10.15252/embj.2023113510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/01/2023] [Accepted: 07/18/2023] [Indexed: 08/03/2023] Open
Abstract
Unscheduled increases in ploidy underlie defects in tissue function, premature aging, and malignancy. A concomitant event to polyploidization is the amplification of centrosomes, the main microtubule organization centers in animal cells. Supernumerary centrosomes are frequent in tumors, correlating with higher aggressiveness and poor prognosis. However, extra centrosomes initially also exert an onco-protective effect by activating p53-induced cell cycle arrest. If additional signaling events initiated by centrosomes help prevent pathology is unknown. Here, we report that extra centrosomes, arising during unscheduled polyploidization or aberrant centriole biogenesis, induce activation of NF-κB signaling and sterile inflammation. This signaling requires the NEMO-PIDDosome, a multi-protein complex composed of PIDD1, RIPK1, and NEMO/IKKγ. Remarkably, the presence of supernumerary centrosomes suffices to induce a paracrine chemokine and cytokine profile, able to polarize macrophages into a pro-inflammatory phenotype. Furthermore, extra centrosomes increase the immunogenicity of cancer cells and render them more susceptible to NK-cell attack. Hence, the PIDDosome acts as a dual effector, able to engage not only the p53 network for cell cycle control but also NF-κB signaling to instruct innate immunity.
Collapse
Affiliation(s)
- Irmina Garcia‐Carpio
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vincent Z Braun
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Elias S Weiler
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Marina Leone
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
| | - Sergio Niñerola
- Instituto de Neurociencias, Consejo Superior de Investigaciones CientíficasUniversidad Miguel HernándezAlicanteSpain
| | - Angel Barco
- Instituto de Neurociencias, Consejo Superior de Investigaciones CientíficasUniversidad Miguel HernándezAlicanteSpain
| | - Luca L Fava
- Armenise‐Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology – CIBIOUniversity of TrentoTrentoItaly
| | - Andreas Villunger
- Institute for Developmental Immunology, BiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
8
|
Bertran-Alamillo J, Giménez-Capitán A, Román R, Talbot S, Whiteley R, Floc'h N, Martínez-Pérez E, Martin MJ, Smith PD, Sullivan I, Terp MG, Saeh J, Marino-Buslje C, Fabbri G, Guo G, Xu M, Tornador C, Aguilar-Hernández A, Reguart N, Ditzel HJ, Martínez-Bueno A, Nabau-Moretó N, Gascó A, Rosell R, Pease JE, Polanska UM, Travers J, Urosevic J, Molina-Vila MA. BID expression determines the apoptotic fate of cancer cells after abrogation of the spindle assembly checkpoint by AURKB or TTK inhibitors. Mol Cancer 2023; 22:110. [PMID: 37443114 PMCID: PMC10339641 DOI: 10.1186/s12943-023-01815-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Drugs targeting the spindle assembly checkpoint (SAC), such as inhibitors of Aurora kinase B (AURKB) and dual specific protein kinase TTK, are in different stages of clinical development. However, cell response to SAC abrogation is poorly understood and there are no markers for patient selection. METHODS A panel of 53 tumor cell lines of different origins was used. The effects of drugs were analyzed by MTT and flow cytometry. Copy number status was determined by FISH and Q-PCR; mRNA expression by nCounter and RT-Q-PCR and protein expression by Western blotting. CRISPR-Cas9 technology was used for gene knock-out (KO) and a doxycycline-inducible pTRIPZ vector for ectopic expression. Finally, in vivo experiments were performed by implanting cultured cells or fragments of tumors into immunodeficient mice. RESULTS Tumor cells and patient-derived xenografts (PDXs) sensitive to AURKB and TTK inhibitors consistently showed high expression levels of BH3-interacting domain death agonist (BID), while cell lines and PDXs with low BID were uniformly resistant. Gene silencing rendered BID-overexpressing cells insensitive to SAC abrogation while ectopic BID expression in BID-low cells significantly increased sensitivity. SAC abrogation induced activation of CASP-2, leading to cleavage of CASP-3 and extensive cell death only in presence of high levels of BID. Finally, a prevalence study revealed high BID mRNA in 6% of human solid tumors. CONCLUSIONS The fate of tumor cells after SAC abrogation is driven by an AURKB/ CASP-2 signaling mechanism, regulated by BID levels. Our results pave the way to clinically explore SAC-targeting drugs in tumors with high BID expression.
Collapse
Affiliation(s)
- Jordi Bertran-Alamillo
- Laboratory of Oncology, Pangaea Oncology, Quiron Dexeus University Hospital, C/ Sabino Arana 5-19, 08913, Barcelona, Spain
| | - Ana Giménez-Capitán
- Laboratory of Oncology, Pangaea Oncology, Quiron Dexeus University Hospital, C/ Sabino Arana 5-19, 08913, Barcelona, Spain
| | - Ruth Román
- Laboratory of Oncology, Pangaea Oncology, Quiron Dexeus University Hospital, C/ Sabino Arana 5-19, 08913, Barcelona, Spain
| | - Sara Talbot
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Rebecca Whiteley
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Nicolas Floc'h
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | | | - Matthew J Martin
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Paul D Smith
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Ivana Sullivan
- Servicio de Oncología Médica, Hospital de la Santa Creu i Sant Pau, Barcelona, 08025, Spain
- Instituto Oncológico Dr. Rosell, Hospital Universitario Dexeus, Barcelona, 08028, Spain
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, 5000, Denmark
| | - Jamal Saeh
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, 02451, USA
| | | | - Giulia Fabbri
- Translational Medicine, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, 02451, USA
| | - Grace Guo
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, 02451, USA
| | - Man Xu
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, MA, 02451, USA
| | | | | | - Noemí Reguart
- Thoracic Oncology Unit, Department of Medical Oncology, Hospital Clínic, Barcelona, 08036, Spain
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, University of Southern Denmark, Odense C, 5000, Denmark
- Department of Oncology, Odense University Hospital, Odense, 5000, Denmark
| | | | | | - Amaya Gascó
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Rafael Rosell
- Instituto Oncológico Dr. Rosell, Hospital Universitario Dexeus, Barcelona, 08028, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, 08916, Spain
| | - J Elizabeth Pease
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Urszula M Polanska
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Jon Travers
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK
| | - Jelena Urosevic
- Bioscience, Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, CB21 6GH, UK.
| | - Miguel A Molina-Vila
- Laboratory of Oncology, Pangaea Oncology, Quiron Dexeus University Hospital, C/ Sabino Arana 5-19, 08913, Barcelona, Spain.
| |
Collapse
|
9
|
Lledo B, Marco A, Morales R, Ortiz JA, García-Hernández E, Lozano FM, Cascales A, Guerrero J, Bernabeu A, Bernabeu R. Identification of novel candidate genes associated with meiotic aneuploidy in human embryos by whole-exome sequencing. J Assist Reprod Genet 2023; 40:1755-1763. [PMID: 37171739 PMCID: PMC10352178 DOI: 10.1007/s10815-023-02825-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
PURPOSE To identify novel genetic variants responsible for meiotic embryonic aneuploidy. METHODS A prospective observational cohort study that included 29 couples who underwent trophectoderm biopsies from 127 embryos and performed whole-exome sequencing (WES) between November 2019 and March 2022. Patients were divided into two groups according to the expected embryo aneuploidy rate based on maternal age. RESULTS After variant filtering in the WES analysis of 58 patients/donors, five heterozygous variants were identified in female partners from the study group that had an impact on embryo aneuploidy. Additionally, a slowdown in embryo development and a decrease in the number of blastocysts available for biopsy were observed in the study group embryos. CONCLUSION This study has identified new candidate genes and variants not previously associated with meiotic embryo aneuploidy, but which are involved in important biological processes related to cell division and chromosome segregation. WES may be an efficient tool to identify patients with a higher-than-expected risk of embryo aneuploidy based on maternal age and allow for individualized genetic counselling prior to treatment.
Collapse
Affiliation(s)
- B Lledo
- Instituto Bernabeu Biotech, 03016, Alicante, Spain.
| | - A Marco
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - R Morales
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - J A Ortiz
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | | | - F M Lozano
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - A Cascales
- Instituto Bernabeu Biotech, 03016, Alicante, Spain
| | - J Guerrero
- Instituto Bernabeu of Fertility and Gynaecology, 03016, Alicante, Spain
| | - A Bernabeu
- Instituto Bernabeu of Fertility and Gynaecology, 03016, Alicante, Spain
- Cátedra de Medicina Comunitaria y Salud Reproductiva, Miguel Hernández University, Alicante, Spain
| | - R Bernabeu
- Instituto Bernabeu of Fertility and Gynaecology, 03016, Alicante, Spain
- Cátedra de Medicina Comunitaria y Salud Reproductiva, Miguel Hernández University, Alicante, Spain
| |
Collapse
|
10
|
Urbaniak A, Jablonska K, Suchanski J, Partynska A, Szymczak-Kulus K, Matkowski R, Maciejczyk A, Ugorski M, Dziegiel P. Prolactin-induced protein (PIP) increases the sensitivity of breast cancer cells to drug-induced apoptosis. Sci Rep 2023; 13:6574. [PMID: 37085653 PMCID: PMC10121699 DOI: 10.1038/s41598-023-33707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/18/2023] [Indexed: 04/23/2023] Open
Abstract
We have previously shown that high expression of prolactin-induced protein (PIP) correlates with the response of breast cancer (BC) patients to standard adjuvant chemotherapy (doxorubicin and cyclophosphamide), which suggests that the absence of this glycoprotein is associated with resistance of tumor cells to chemotherapy. Therefore, in the present study, we analyzed the impact of PIP expression on resistance of BC cells to anti-cancer drugs and its biological role in BC progression. Expression of PIP and apoptotic genes in BC cell lines was analyzed using real-time PCR and Western blotting. PIP was detected in BC tissue specimens using immunohistochemistry. The tumorigenicity of cancer cells was analyzed by the in vivo tumor growth assay. Apoptotic cells were detected based on caspase-3 activation, Annexin V binding and TUNEL assay. The interaction of PIP with BC cells was analyzed using flow cytometry. Using two cellular models of BC (i.e. T47D cells with the knockdown of the PIP gene and MDA-MB-231 cells overexpressing PIP), we found that high expression of PIP resulted in (1) increased sensitivity of BC cells to apoptosis induced by doxorubicin (DOX), 4-hydroperoxycyclophosphamide (4-HC), and paclitaxel (PAX), and (2) improved efficacy of anti-cancer therapy with DOX in the xenograft mice model. Accordingly, a clinical study revealed that BC patients with higher PIP expression were characterized by longer 5-year overall survival and disease-free survival. Subsequent studies showed that PIP up-regulated the expression of the following pro-apoptotic genes: CRADD, DAPK1, FASLG, CD40 and BNIP2. This pro-apoptotic activity is mediated by secreted PIP and most probably involves the specific surface receptor. This study demonstrates that a high expression level of PIP sensitizes BC cells to anti-cancer drugs. Increased sensitivity to chemotherapy is the result of pro-apoptotic activity of PIP, which is evidenced by up-regulation of specific pro-apoptotic genes. As high expression of PIP significantly correlated with a better response of patients to anti-cancer drugs, this glycoprotein can be a marker for the prognostic evaluation of adjuvant chemotherapy.
Collapse
Affiliation(s)
- Anna Urbaniak
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368, Wroclaw, Poland
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, 53-114, Wroclaw, Poland
| | - Karolina Jablonska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| | - Jaroslaw Suchanski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland
| | - Aleksandra Partynska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368, Wroclaw, Poland
| | - Katarzyna Szymczak-Kulus
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, 53-114, Wroclaw, Poland
| | - Rafal Matkowski
- Department of Oncology, Wroclaw Medical University, 50-368, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413, Wroclaw, Poland
| | - Adam Maciejczyk
- Department of Oncology, Wroclaw Medical University, 50-368, Wroclaw, Poland
- Lower Silesian Oncology, Pulmonology and Hematology Center, 53-413, Wroclaw, Poland
| | - Maciej Ugorski
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, C.K. Norwida 31, 50-375, Wroclaw, Poland.
| | - Piotr Dziegiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chalubinskiego 6a, 50-368, Wroclaw, Poland.
- Department of Human Biology, Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, 51-612, Wroclaw, Poland.
| |
Collapse
|
11
|
Li Y, Shah RB, Sarti S, Belcher AL, Lee BJ, Gorbatenko A, Nemati F, Yu I, Stanley Z, Shao Z, Silva JM, Zha S, Sidi S. A Non-Canonical IRAK Signaling Pathway Triggered by DNA Damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527716. [PMID: 36798275 PMCID: PMC9934671 DOI: 10.1101/2023.02.08.527716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Interleukin-1 receptor (IL-1R)-associated kinases (IRAKs) are core effectors of Toll-like receptor (TLR) and IL-1R signaling, with no reported roles outside of innate immunity. We find that vertebrate cells exposed to ionizing radiation (IR) sequentially activate IRAK4 and IRAK1 through a phosphorylation cascade mirroring that induced by TLR/IL-1R, resulting in a potent anti-apoptotic response. However, IR-induced IRAK1 activation does not require the receptors or the IRAK4/1 adaptor protein MyD88, and instead of remaining in the cytoplasm, the activated kinase is immediately transported to the nucleus via a conserved nuclear localization signal. We identify: double-strand DNA breaks (DSBs) as the biologic trigger for this pathway; the E3 ubiquitin ligase Pellino1 as the scaffold enabling IRAK4/1 activation in place of TLR/IL-1R-MyD88; and the pro-apoptotic PIDDosome (PIDD1-RAIDD-caspase-2) as a critical downstream target in the nucleus. The data delineate a non-canonical IRAK signaling pathway derived from, or ancestral to, TLR signaling. This DSB detection pathway, which is also activated by genotoxic chemotherapies, provides multiple actionable targets for overcoming tumor resistance to mainstay cancer treatments.
Collapse
|
12
|
Alasar AA, Tüncel Ö, Gelmez AB, Sağlam B, Vatansever İE, Akgül B. Genomewide m 6A Mapping Uncovers Dynamic Changes in the m 6A Epitranscriptome of Cisplatin-Treated Apoptotic HeLa Cells. Cells 2022; 11:cells11233905. [PMID: 36497162 PMCID: PMC9738315 DOI: 10.3390/cells11233905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/07/2022] Open
Abstract
Cisplatin (CP), which is a conventional cancer chemotherapeutic drug, induces apoptosis by modulating a diverse array of gene regulatory mechanisms. However, cisplatin-mediated changes in the m6A methylome are unknown. We employed an m6A miCLIP-seq approach to investigate the effect of m6A methylation marks under cisplatin-mediated apoptotic conditions on HeLa cells. Our high-resolution approach revealed numerous m6A marks on 972 target mRNAs with an enrichment on 132 apoptotic mRNAs. We tracked the fate of differentially methylated candidate mRNAs under METTL3 knockdown and cisplatin treatment conditions. Polysome profile analyses revealed perturbations in the translational efficiency of PMAIP1 and PHLDA1 transcripts. Congruently, PMAIP1 amounts were dependent on METTL3. Additionally, cisplatin-mediated apoptosis was sensitized by METTL3 knockdown. These results suggest that apoptotic pathways are modulated by m6A methylation events and that the METTL3-PMAIP1 axis modulates cisplatin-mediated apoptosis in HeLa cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Bünyamin Akgül
- Correspondence: ; Tel.: +011-90-232-7507316; Fax: +011-90-232-7507302
| |
Collapse
|
13
|
Langlois-Lemay L, D’Amours D. Moonlighting at the Poles: Non-Canonical Functions of Centrosomes. Front Cell Dev Biol 2022; 10:930355. [PMID: 35912107 PMCID: PMC9329689 DOI: 10.3389/fcell.2022.930355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Centrosomes are best known as the microtubule organizing centers (MTOCs) of eukaryotic cells. In addition to their classic role in chromosome segregation, centrosomes play diverse roles unrelated to their MTOC activity during cell proliferation and quiescence. Metazoan centrosomes and their functional doppelgängers from lower eukaryotes, the spindle pole bodies (SPBs), act as important structural platforms that orchestrate signaling events essential for cell cycle progression, cellular responses to DNA damage, sensory reception and cell homeostasis. Here, we provide a critical overview of the unconventional and often overlooked roles of centrosomes/SPBs in the life cycle of eukaryotic cells.
Collapse
Affiliation(s)
- Laurence Langlois-Lemay
- Department of Cellular and Molecular Medicine, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
14
|
Hååg P, Olsson M, Forsberg J, Lindberg ML, Stenerlöw B, Zong D, Kanter L, Lewensohn R, Viktorsson K, Zhivotovsky B, Stenke L. Caspase-2 is a mediator of apoptotic signaling in response to gemtuzumab ozogamicin in acute myeloid leukemia. Cell Death Discov 2022; 8:284. [PMID: 35690610 PMCID: PMC9188552 DOI: 10.1038/s41420-022-01071-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/02/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022] Open
Abstract
The antibody conjugate gemtuzumab ozogamicin (GO; Mylotarg®) provides targeted therapy of acute myeloid leukemia (AML), with recent approvals for patients with CD33-positive disease at diagnosis or relapse, as monotherapy or combined with chemotherapeutics. While its clinical efficacy is well documented, the molecular routes by which GO induces AML cell death warrant further analyses. We have earlier reported that this process is initiated via mitochondria-mediated caspase activation. Here we provide additional data, focusing on the involvement of caspase-2 in this mechanism. We show that this enzyme plays an important role in triggering apoptotic death of human AML cells after exposure to GO or its active moiety calicheamicin. Accordingly, the caspase-2 inhibitor z-VDVAD-fmk reduced GO-induced caspase-3 activation. This finding was validated with shRNA and siRNA targeting caspase-2, resulting in reduced caspase-3 activation and cleavage of poly [ADP-ribose] polymerase 1 (PARP-1). We previously demonstrated that GO-induced apoptosis included a conformational change of Bax into a pro-apoptotic state. Present data reveal that GO-treatment also induced Bid cleavage, which was partially reduced by caspase-2 specific inhibition while the effect on GO-induced Bax conformational change remained unaltered. In mononuclear cells isolated from AML patients that responded to GO treatment in vitro, processing of caspase-2 was evident, whereas in cells from an AML patient refractory to treatment no such processing was seen. When assessing diagnostic samples from 22 AML patients, who all entered complete remission (CR) following anthracycline-based induction therapy, and comparing patients with long versus those with short CR duration no significant differences in baseline caspase-2 or caspase-3 full-length protein expression levels were found. In summary, we demonstrate that GO triggers caspase-2 cleavage in human AML cells and that the subsequent apoptosis of these cells in part relies on caspase-2. These findings may have future clinical implications.
Collapse
Affiliation(s)
- Petra Hååg
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden.
| | - Magnus Olsson
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Jeremy Forsberg
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | | | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-75185, Uppsala, Sweden
| | - Dali Zong
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
- Laboratory of Genome Integrity, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Lena Kanter
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Rolf Lewensohn
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
- Theme Cancer, Medical Unit head and neck, lung and skin tumors, Thoracic Oncoflogy Center, Karolinska University Hospital, SE-171 64, Solna, Sweden
| | - Kristina Viktorsson
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, 191992, Moscow, Russia
| | - Leif Stenke
- Department of Oncology-Pathology, Karolinska Institutet, SE-171 64, Solna, Sweden
- Theme Cancer, Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Solna, Karolinska Institutet, SE-171 64, Solna, Sweden
| |
Collapse
|
15
|
Whiteley SL, Holleley CE, Georges A. Developmental dynamics of sex reprogramming by high incubation temperatures in a dragon lizard. BMC Genomics 2022; 23:322. [PMID: 35459109 PMCID: PMC9034607 DOI: 10.1186/s12864-022-08544-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In some vertebrate species, gene-environment interactions can determine sex, driving bipotential gonads to differentiate into either ovaries or testes. In the central bearded dragon (Pogona vitticeps), the genetic influence of sex chromosomes (ZZ/ZW) can be overridden by high incubation temperatures, causing ZZ male to female sex reversal. Previous research showed ovotestes, a rare gonadal phenotype with traits of both sexes, develop during sex reversal, leading to the hypothesis that sex reversal relies on high temperature feminisation to outcompete the male genetic cue. To test this, we conducted temperature switching experiments at key developmental stages, and analysed the effect on gonadal phenotypes using histology and transcriptomics. RESULTS We found sexual fate is more strongly influenced by the ZZ genotype than temperature. Any exposure to low temperatures (28 °C) caused testes differentiation, whereas sex reversal required longer exposure to high temperatures. We revealed ovotestes exist along a spectrum of femaleness to male-ness at the transcriptional level. We found inter-individual variation in gene expression changes following temperature switches, suggesting both genetic sensitivity to, and the timing and duration of the temperature cue influences sex reversal. CONCLUSIONS These findings bring new insights to the mechanisms underlying sex reversal, improving our understanding of thermosensitive sex systems in vertebrates.
Collapse
Affiliation(s)
- Sarah L Whiteley
- Institute for Applied Ecology, University of Canberra, Canberra, Australia.
- Australian National Wildlife Collection, CSIRO, Canberra, Australia.
| | - Clare E Holleley
- Australian National Wildlife Collection, CSIRO, Canberra, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, Australia
| |
Collapse
|
16
|
PIDD1 in cell cycle control, sterile inflammation and cell death. Biochem Soc Trans 2022; 50:813-824. [PMID: 35343572 PMCID: PMC9162469 DOI: 10.1042/bst20211186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.
Collapse
|
17
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
18
|
Tummers B, Green DR. The evolution of regulated cell death pathways in animals and their evasion by pathogens. Physiol Rev 2022; 102:411-454. [PMID: 34898294 PMCID: PMC8676434 DOI: 10.1152/physrev.00002.2021] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 09/01/2021] [Accepted: 09/01/2022] [Indexed: 12/21/2022] Open
Abstract
The coevolution of host-pathogen interactions underlies many human physiological traits associated with protection from or susceptibility to infections. Among the mechanisms that animals utilize to control infections are the regulated cell death pathways of pyroptosis, apoptosis, and necroptosis. Over the course of evolution these pathways have become intricate and complex, coevolving with microbes that infect animal hosts. Microbes, in turn, have evolved strategies to interfere with the pathways of regulated cell death to avoid eradication by the host. Here, we present an overview of the mechanisms of regulated cell death in Animalia and the strategies devised by pathogens to interfere with these processes. We review the molecular pathways of regulated cell death, their roles in infection, and how they are perturbed by viruses and bacteria, providing insights into the coevolution of host-pathogen interactions and cell death pathways.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
19
|
Abstract
DNA mutation is a common event in the human body, but in most situations, it is fixed right away by the DNA damage response program. In case the damage is too severe to repair, the programmed cell death system will be activated to get rid of the cell. However, if the damage affects some critical components of this system, the genetic scars are kept and multiply through mitosis, possibly leading to cancer someday. There are many forms of programmed cell death, but apoptosis and necroptosis represent the default and backup strategy, respectively, in the maintenance of optimal cell population as well as in cancer prevention. For the same reason, the ideal approach for cancer treatment is to induce apoptosis in the cancer cells because it proceeds 20 times faster than tumor cell proliferation and leaves no mess behind. Induction of necroptosis can be the second choice in case apoptosis becomes hard to achieve, however, necroptosis finishes the job at a cost-inflammation.
Collapse
Affiliation(s)
- Xianmei Meng
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Tong Dang
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jianyuan Chai
- Inner Mongolia Institute of Digestive Diseases, Inner Mongolia Engineering Research Center for Prevention and Treatment of Digestive Diseases, Inner Mongolia University of Science and Technology, 74506The Second Affiliated Hospital of Baotou Medical College, Baotou, China.,Laboratory of Gastrointestinal Injury and Cancer, VA Long Beach Healthcare System, Long Beach, CA, USA.,College of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
20
|
Pathogenic variants in PIDD1 lead to an autosomal recessive neurodevelopmental disorder with pachygyria and psychiatric features. Eur J Hum Genet 2021; 29:1226-1234. [PMID: 34163010 PMCID: PMC8385073 DOI: 10.1038/s41431-021-00910-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/01/2021] [Accepted: 05/20/2021] [Indexed: 02/02/2023] Open
Abstract
The PIDDosome is a multiprotein complex, composed by the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the proform of caspase-2 that induces apoptosis in response to DNA damage. In the recent years, biallelic pathogenic variants in CRADD have been associated with a neurodevelopmental disorder (MRT34; MIM 614499) characterized by pachygyria with a predominant anterior gradient, megalencephaly, epilepsy and intellectual disability. More recently, biallelic pathogenic variants in PIDD1 have been described in a few families with apparently nonsydnromic intellectual disability. Here, we aim to delineate the genetic and radio-clinical features of PIDD1-related disorder. Exome sequencing was carried out in six consanguineous families. Thorough clinical and neuroradiological evaluation was performed for all the affected individuals as well as reviewing all the data from previously reported cases. We identified five distinct novel homozygous variants (c.2584C>T p.(Arg862Trp), c.1340G>A p.(Trp447*), c.2116_2120del p.(Val706Hisfs*30), c.1564_1565delCA p.(Gln522fs*44), and c.1804_1805del p.(Gly602fs*26) in eleven subjects displaying intellectual disability, behaviorial and psychiatric features, and a typical anterior-predominant pachygyria, remarkably resembling the CRADD-related neuroimaging pattern. In summary, we outlin`e the phenotypic and molecular spectrum of PIDD1 biallelic variants supporting the evidence that the PIDD1/CRADD/caspase-2 signaling is crucial for normal gyration of the developing human neocortex as well as cognition and behavior.
Collapse
|
21
|
Shah RB, Kernan JL, van Hoogstraten A, Ando K, Li Y, Belcher AL, Mininger I, Bussenault AM, Raman R, Ramanagoudr-Bhojappa R, Huang TT, D'Andrea AD, Chandrasekharappa SC, Aggarwal AK, Thompson R, Sidi S. FANCI functions as a repair/apoptosis switch in response to DNA crosslinks. Dev Cell 2021; 56:2207-2222.e7. [PMID: 34256011 DOI: 10.1016/j.devcel.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/12/2021] [Accepted: 06/10/2021] [Indexed: 12/16/2022]
Abstract
Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.
Collapse
Affiliation(s)
- Richa B Shah
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jennifer L Kernan
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anya van Hoogstraten
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyohiro Ando
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuanyuan Li
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alicia L Belcher
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivy Mininger
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrei M Bussenault
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Renuka Raman
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramanagouda Ramanagoudr-Bhojappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Settara C Chandrasekharappa
- Cancer Genomics Unit, Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruth Thompson
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncology & Metabolism, University of Sheffield Medical School, Sheffield, UK
| | - Samuel Sidi
- Department of Medicine, Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, the Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
22
|
Burigotto M, Fava LL. The PIDDosome: centrosome guardian and backup on the DNA damage response. Mol Cell Oncol 2021; 8:1893625. [PMID: 34027036 DOI: 10.1080/23723556.2021.1893625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The PIDDosome is a Caspase-2-activating platform assembling in response to centrosome amplification or genotoxic stress. We have recently shown that both stimuli depend on ANKRD26 (ankyrin repeat domain-containing protein 26)-mediated localization of PIDD1 (p53-inducible protein with death domain) at the centrosome, demonstrating how this organelle can directly influence cell fate.
Collapse
Affiliation(s)
- Matteo Burigotto
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| | - Luca L Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento, Italy
| |
Collapse
|
23
|
Evans LT, Anglen T, Scott P, Lukasik K, Loncarek J, Holland AJ. ANKRD26 recruits PIDD1 to centriolar distal appendages to activate the PIDDosome following centrosome amplification. EMBO J 2021; 40:e105106. [PMID: 33350495 PMCID: PMC7883295 DOI: 10.15252/embj.2020105106] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/22/2022] Open
Abstract
Centriole copy number is tightly maintained by the once-per-cycle duplication of these organelles. Centrioles constitute the core of centrosomes, which organize the microtubule cytoskeleton and form the poles of the mitotic spindle. Centrosome amplification is frequently observed in tumors, where it promotes aneuploidy and contributes to invasive phenotypes. In non-transformed cells, centrosome amplification triggers PIDDosome activation as a protective response to inhibit cell proliferation, but how extra centrosomes activate the PIDDosome remains unclear. Using a genome-wide screen, we identify centriole distal appendages as critical for PIDDosome activation in cells with extra centrosomes. The distal appendage protein ANKRD26 is found to interact with and recruit the PIDDosome component PIDD1 to centriole distal appendages, and this interaction is required for PIDDosome activation following centrosome amplification. Furthermore, a recurrent ANKRD26 mutation found in human tumors disrupts PIDD1 localization and PIDDosome activation in cells with extra centrosomes. Our data support a model in which ANKRD26 initiates a centriole-derived signal to limit cell proliferation in response to centrosome amplification.
Collapse
Affiliation(s)
- Lauren T Evans
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Taylor Anglen
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Phillip Scott
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kimberly Lukasik
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMDUSA
| | - Jadranka Loncarek
- Laboratory of Protein Dynamics and SignalingNIH/NCI/CCRFrederickMDUSA
| | - Andrew J Holland
- Department of Molecular Biology and GeneticsJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
24
|
Krenning L, Raaijmakers JA, Medema RH. Centrosomes: Please keep your social distance! EMBO J 2021; 40:e107525. [PMID: 33491191 DOI: 10.15252/embj.2020107525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 01/08/2023] Open
Abstract
Accurate control of centrosome number is essential for proper chromosome segregation, and it is well established that centrosome abnormalities can trigger a p53-dependent cell cycle arrest. Two new studies published in The EMBO Journal demonstrate how PIDD1 is recruited to centrosomes and that the localization of PIDD1 to distal appendages of centrosomes is required for PIDDosome activation at clustered supernumerary centrosomes.
Collapse
Affiliation(s)
- Lenno Krenning
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jonne A Raaijmakers
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - René H Medema
- Division of Cell Biology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
25
|
Burigotto M, Mattivi A, Migliorati D, Magnani G, Valentini C, Roccuzzo M, Offterdinger M, Pizzato M, Schmidt A, Villunger A, Maffini S, Fava LL. Centriolar distal appendages activate the centrosome-PIDDosome-p53 signalling axis via ANKRD26. EMBO J 2021; 40:e104844. [PMID: 33350486 PMCID: PMC7883297 DOI: 10.15252/embj.2020104844] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/22/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Centrosome amplification results into genetic instability and predisposes cells to neoplastic transformation. Supernumerary centrosomes trigger p53 stabilization dependent on the PIDDosome (a multiprotein complex composed by PIDD1, RAIDD and Caspase-2), whose activation results in cleavage of p53's key inhibitor, MDM2. Here, we demonstrate that PIDD1 is recruited to mature centrosomes by the centriolar distal appendage protein ANKRD26. PIDDosome-dependent Caspase-2 activation requires not only PIDD1 centrosomal localization, but also its autoproteolysis. Following cytokinesis failure, supernumerary centrosomes form clusters, which appear to be necessary for PIDDosome activation. In addition, in the context of DNA damage, activation of the complex results from a p53-dependent elevation of PIDD1 levels independently of centrosome amplification. We propose that PIDDosome activation can in both cases be promoted by an ANKRD26-dependent local increase in PIDD1 concentration close to the centrosome. Collectively, these findings provide a paradigm for how centrosomes can contribute to cell fate determination by igniting a signalling cascade.
Collapse
Affiliation(s)
- Matteo Burigotto
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Alessia Mattivi
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Daniele Migliorati
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Giovanni Magnani
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Chiara Valentini
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Michela Roccuzzo
- Advanced Imaging Core FacilityDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Martin Offterdinger
- Division of NeurobiochemistryBioopticsBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Massimo Pizzato
- Laboratory of Virus‐Cell InteractionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| | - Alexander Schmidt
- Proteomics Core FacilityBiozentrumUniversity of BaselBaselSwitzerland
| | - Andreas Villunger
- Division of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Stefano Maffini
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Luca L Fava
- Armenise‐Harvard Laboratory of Cell DivisionDepartment of Cellular, Computational and Integrative Biology—CIBIOUniversity of TrentoTrentoItaly
| |
Collapse
|
26
|
Deveaux AE, Allen TA, Al Abo M, Qin X, Zhang D, Patierno BM, Gu L, Gray JE, Pecot CV, Dressman HK, McCall SJ, Kittles RA, Hyslop T, Owzar K, Crawford J, Patierno SR, Clarke JM, Freedman JA. RNA splicing and aggregate gene expression differences in lung squamous cell carcinoma between patients of West African and European ancestry. Lung Cancer 2021; 153:90-98. [PMID: 33465699 DOI: 10.1016/j.lungcan.2021.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Despite disparities in lung cancer incidence and mortality, the molecular landscape of lung cancer in patients of African ancestry remains underexplored, and race-related differences in RNA splicing remain unexplored. MATERIALS AND METHODS We identified differentially spliced genes (DSGs) and differentially expressed genes (DEGs) in biobanked lung squamous cell carcinoma (LUSC) between patients of West African and European ancestry, using ancestral genotyping and Affymetrix Clariom D array. DSGs and DEGs were validated independently using the National Cancer Institute Genomic Data Commons. Associated biological processes, overlapping canonical pathways, enriched gene sets, and cancer relevance were identified using Gene Ontology Consortium, Ingenuity Pathway Analysis, Gene Set Enrichment Analysis, and CancerMine, respectively. Association with LUSC survival was conducted using The Cancer Genome Atlas. RESULTS 4,829 DSGs and 267 DEGs were identified, including novel targets in NSCLC as well as genes identified previously to have relevance to NSCLC. RNA splicing events within 3 DSGs as well as 1 DEG were validated in the independent cohort. 853 DSGs and 29 DEGs have been implicated as potential drivers, oncogenes and/or tumor suppressor genes. Biological processes enriched among DSGs and DEGs included metabolic process, biological regulation, and multicellular organismal process and, among DSGs, ion transport. Overlapping canonical pathways among DSGs included neuronal signaling pathways and, among DEGs, cell metabolism involving biosynthesis. Gene sets enriched among DSGs included KRAS Signaling, UV Response, E2 F Targets, Glycolysis, and Coagulation. 355 RNA splicing events within DSGs and 18 DEGs show potential association with LUSC patient survival. CONCLUSION These DSGs and DEGs, which show potential biological and clinical relevance, could have the ability to drive novel biomarker and therapeutic development to mitigate LUSC disparities.
Collapse
Affiliation(s)
- April E Deveaux
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Tyler A Allen
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Muthana Al Abo
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Xiaodi Qin
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Dadong Zhang
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brendon M Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Lin Gu
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Chad V Pecot
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, 27599, USA
| | - Holly K Dressman
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shannon J McCall
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Rick A Kittles
- Department of Population Sciences, Division of Health Equities, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Terry Hyslop
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kouros Owzar
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey Crawford
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Steven R Patierno
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey M Clarke
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jennifer A Freedman
- Department of Medicine, Division of Medical Oncology, Duke University School of Medicine, Durham, NC, 27710, USA; Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
27
|
Sheikh TI, Vasli N, Pastore S, Kharizi K, Harripaul R, Fattahi Z, Pande S, Naeem F, Hussain A, Mir A, Islam O, Girisha KM, Irfan M, Ayub M, Schwarzer C, Najmabadi H, Shukla A, Sladky VC, Braun VZ, Garcia-Carpio I, Villunger A, Vincent JB. Biallelic mutations in the death domain of PIDD1 impair caspase-2 activation and are associated with intellectual disability. Transl Psychiatry 2021; 11:1. [DOI: https:/doi.org/10.1038/s41398-020-01158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 10/10/2023] Open
Abstract
AbstractPIDD1encodes p53-Induced Death Domain protein 1, which acts as a sensor surveilling centrosome numbers and p53 activity in mammalian cells. Early results also suggest a role in DNA damage response where PIDD1 may act as a cell-fate switch, through interaction with RIP1 and NEMO/IKKg, activating NF-κB signaling for survival, or as an apoptosis-inducing protein by activating caspase-2. Biallelic truncating mutations in CRADD—the protein bridging PIDD1 and caspase-2—have been reported in intellectual disability (ID), and in a form of lissencephaly. Here, we identified five families with ID from Iran, Pakistan, and India, with four different biallelic mutations inPIDD1, all disrupting the Death Domain (DD), through which PIDD1 interacts with CRADD or RIP1. Nonsense mutations Gln863* and Arg637* directly disrupt the DD, as does a missense mutation, Arg815Trp. A homozygous splice mutation in the fifth family is predicted to disrupt splicing upstream of the DD, as confirmed using an exon trap. In HEK293 cells, we show that both Gln863* and Arg815Trp mutants fail to co-localize with CRADD, leading to its aggregation and mis-localization, and fail to co-precipitate CRADD. Using genome-edited cell lines, we show that these threePIDD1mutations all cause loss of PIDDosome function.Pidd1null mice show decreased anxiety, but no motor abnormalities. Together this indicates thatPIDD1mutations in humans may cause ID (and possibly lissencephaly) either through gain of function or secondarily, due to altered scaffolding properties, while complete loss of PIDD1, as modeled in mice, may be well tolerated or is compensated for.
Collapse
|
28
|
Sheikh TI, Vasli N, Pastore S, Kharizi K, Harripaul R, Fattahi Z, Pande S, Naeem F, Hussain A, Mir A, Islam O, Girisha KM, Irfan M, Ayub M, Schwarzer C, Najmabadi H, Shukla A, Sladky VC, Braun VZ, Garcia-Carpio I, Villunger A, Vincent JB. Biallelic mutations in the death domain of PIDD1 impair caspase-2 activation and are associated with intellectual disability. Transl Psychiatry 2021; 11:1. [PMID: 33414379 PMCID: PMC7791037 DOI: 10.1038/s41398-020-01158-w] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
PIDD1 encodes p53-Induced Death Domain protein 1, which acts as a sensor surveilling centrosome numbers and p53 activity in mammalian cells. Early results also suggest a role in DNA damage response where PIDD1 may act as a cell-fate switch, through interaction with RIP1 and NEMO/IKKg, activating NF-κB signaling for survival, or as an apoptosis-inducing protein by activating caspase-2. Biallelic truncating mutations in CRADD-the protein bridging PIDD1 and caspase-2-have been reported in intellectual disability (ID), and in a form of lissencephaly. Here, we identified five families with ID from Iran, Pakistan, and India, with four different biallelic mutations in PIDD1, all disrupting the Death Domain (DD), through which PIDD1 interacts with CRADD or RIP1. Nonsense mutations Gln863* and Arg637* directly disrupt the DD, as does a missense mutation, Arg815Trp. A homozygous splice mutation in the fifth family is predicted to disrupt splicing upstream of the DD, as confirmed using an exon trap. In HEK293 cells, we show that both Gln863* and Arg815Trp mutants fail to co-localize with CRADD, leading to its aggregation and mis-localization, and fail to co-precipitate CRADD. Using genome-edited cell lines, we show that these three PIDD1 mutations all cause loss of PIDDosome function. Pidd1 null mice show decreased anxiety, but no motor abnormalities. Together this indicates that PIDD1 mutations in humans may cause ID (and possibly lissencephaly) either through gain of function or secondarily, due to altered scaffolding properties, while complete loss of PIDD1, as modeled in mice, may be well tolerated or is compensated for.
Collapse
Affiliation(s)
- Taimoor I Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Molecular Genetics Laboratory, North York General Hosptial Genetics Program, Toronto, ON, M2K 1E1, Canada
| | - Nasim Vasli
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Stephen Pastore
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Kimia Kharizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19834, Iran
| | - Ricardo Harripaul
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19834, Iran
| | - Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Farooq Naeem
- General and Health Systems Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Abrar Hussain
- Human Molecular Genetics Lab, Department of Biological Sciences, FBAS, International Islamic University, Islamabad, Pakistan
| | - Asif Mir
- Human Molecular Genetics Lab, Department of Biological Sciences, FBAS, International Islamic University, Islamabad, Pakistan
| | - Omar Islam
- Department of Diagnostic Radiology, Queens University, Kingston, ON, K7L 2V7, Canada
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Muhammad Irfan
- Department of Mental Health, Psychiatry and Behavioural Sciences, Peshawar Medical College, Riphah International University, Islamabad, Pakistan
| | - Muhammad Ayub
- Lahore Institute of Research & Development, Lahore, 51000, Pakistan
- Department of Psychiatry, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19834, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, 14667, Iran
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Valentina C Sladky
- Institute for Developmental Immunology, Biocenter Medical University of Innsbruck, Innsbruck, Austria
| | - Vincent Zoran Braun
- Institute for Developmental Immunology, Biocenter Medical University of Innsbruck, Innsbruck, Austria
| | - Irmina Garcia-Carpio
- Institute for Developmental Immunology, Biocenter Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter Medical University of Innsbruck, Innsbruck, Austria.
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.
| | - John B Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
29
|
Sladky VC, Knapp K, Szabo TG, Braun VZ, Bongiovanni L, van den Bos H, Spierings DCJ, Westendorp B, Curinha A, Stojakovic T, Scharnagl H, Timelthaler G, Tsuchia K, Pinter M, Semmler G, Foijer F, de Bruin A, Reiberger T, Rohr‐Udilova N, Villunger A. PIDDosome-induced p53-dependent ploidy restriction facilitates hepatocarcinogenesis. EMBO Rep 2020; 21:e50893. [PMID: 33225610 PMCID: PMC7726793 DOI: 10.15252/embr.202050893] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Polyploidization frequently precedes tumorigenesis but also occurs during normal development in several tissues. Hepatocyte ploidy is controlled by the PIDDosome during development and regeneration. This multi-protein complex is activated by supernumerary centrosomes to induce p53 and restrict proliferation of polyploid cells, otherwise prone for chromosomal instability. PIDDosome deficiency in the liver results in drastically increased polyploidy. To investigate PIDDosome-induced p53-activation in the pathogenesis of liver cancer, we chemically induced hepatocellular carcinoma (HCC) in mice. Strikingly, PIDDosome deficiency reduced tumor number and burden, despite the inability to activate p53 in polyploid cells. Liver tumors arise primarily from cells with low ploidy, indicating an intrinsic pro-tumorigenic effect of PIDDosome-mediated ploidy restriction. These data suggest that hyperpolyploidization caused by PIDDosome deficiency protects from HCC. Moreover, high tumor cell density, as a surrogate marker of low ploidy, predicts poor survival of HCC patients receiving liver transplantation. Together, we show that the PIDDosome is a potential therapeutic target to manipulate hepatocyte polyploidization for HCC prevention and that tumor cell density may serve as a novel prognostic marker for recurrence-free survival in HCC patients.
Collapse
Affiliation(s)
- Valentina C Sladky
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Katja Knapp
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Tamas G Szabo
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Vincent Z Braun
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Laura Bongiovanni
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Diana CJ Spierings
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Bart Westendorp
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Ana Curinha
- Institute of PathophysiologyBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Tatjana Stojakovic
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsUniversity Hospital GrazGrazAustria
| | - Hubert Scharnagl
- Clinical Institute of Medical and Chemical Laboratory DiagnosticsMedical University of GrazGrazAustria
| | - Gerald Timelthaler
- Institute for Cancer ResearchInternal Medicine IMedical University of ViennaViennaAustria
| | - Kaoru Tsuchia
- Department of Gastroenterology & HepatologyMusashino Red Cross HospitalTokyoJapan
| | - Matthias Pinter
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Georg Semmler
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Floris Foijer
- European Research Institute for the Biology of AgeingUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Alain de Bruin
- Department of Biomolecular Health SciencesFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Department PediatricsUniversity Medical Center GroningenUniversity GroningenGroningenThe Netherlands
| | - Thomas Reiberger
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Nataliya Rohr‐Udilova
- Division of Gastroenterology and HepatologyDepartment of Medicine IIIMedical University of ViennaViennaAustria
| | - Andreas Villunger
- Institute of Developmental ImmunologyBiocenterMedical University of InnsbruckInnsbruckAustria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI‐RUD)ViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| |
Collapse
|
30
|
De Palma FDE, Del Monaco V, Pol JG, Kremer M, D’Argenio V, Stoll G, Montanaro D, Uszczyńska-Ratajczak B, Klein CC, Vlasova A, Botti G, D’Aiuto M, Baldi A, Guigó R, Kroemer G, Maiuri MC, Salvatore F. The abundance of the long intergenic non-coding RNA 01087 differentiates between luminal and triple-negative breast cancers and predicts patient outcome. Pharmacol Res 2020; 161:105249. [DOI: 10.1016/j.phrs.2020.105249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
|
31
|
Hiregange D, Naick H, Rao BJ. ATR signalling mediates the prosurvival function of phospho-NPM against PIDDosome mediated cell death. Cell Signal 2020; 71:109602. [DOI: 10.1016/j.cellsig.2020.109602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
|
32
|
Podralska M, Ciesielska S, Kluiver J, van den Berg A, Dzikiewicz-Krawczyk A, Slezak-Prochazka I. Non-Coding RNAs in Cancer Radiosensitivity: MicroRNAs and lncRNAs as Regulators of Radiation-Induced Signaling Pathways. Cancers (Basel) 2020; 12:E1662. [PMID: 32585857 PMCID: PMC7352793 DOI: 10.3390/cancers12061662] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/07/2023] Open
Abstract
Radiotherapy is a cancer treatment that applies high doses of ionizing radiation to induce cell death, mainly by triggering DNA double-strand breaks. The outcome of radiotherapy greatly depends on radiosensitivity of cancer cells, which is determined by multiple proteins and cellular processes. In this review, we summarize current knowledge on the role of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in determining the response to radiation. Non-coding RNAs modulate ionizing radiation response by targeting key signaling pathways, including DNA damage repair, apoptosis, glycolysis, cell cycle arrest, and autophagy. Additionally, we indicate miRNAs and lncRNAs that upon overexpression or inhibition alter cellular radiosensitivity. Current data indicate the potential of using specific non-coding RNAs as modulators of cellular radiosensitivity to improve outcome of radiotherapy.
Collapse
Affiliation(s)
- Marta Podralska
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland;
| | - Sylwia Ciesielska
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700RB Groningen, The Netherlands; (J.K.); (A.v.d.B.)
| | | | | |
Collapse
|
33
|
Sladky VC, Villunger A. Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 2020; 27:2037-2047. [PMID: 32415279 PMCID: PMC7308375 DOI: 10.1038/s41418-020-0556-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The PIDDosome is a multiprotein complex that drives activation of caspase-2, an endopeptidase originally implicated in apoptosis. Yet, unlike other caspases involved in cell death and inflammation, caspase-2 seems to exert additional versatile functions unrelated to cell death. These emerging roles range from control of transcription factor activity to ploidy surveillance. Thus, caspase-2 and the PIDDosome act as a critical regulatory unit controlling cellular differentiation processes during organogenesis and regeneration. These newly established functions of the PIDDosome and its downstream effector render its components attractive targets for drug-development aiming to prevent fatty liver diseases, neurodegenerative disorders or osteoporosis. ![]()
Collapse
Affiliation(s)
- Valentina C Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
34
|
E2F-Family Members Engage the PIDDosome to Limit Hepatocyte Ploidy in Liver Development and Regeneration. Dev Cell 2020; 52:335-349.e7. [PMID: 31983631 DOI: 10.1016/j.devcel.2019.12.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/27/2019] [Accepted: 12/24/2019] [Indexed: 01/12/2023]
Abstract
E2F transcription factors control the cytokinesis machinery and thereby ploidy in hepatocytes. If or how these proteins limit proliferation of polyploid cells with extra centrosomes remains unknown. Here, we show that the PIDDosome, a signaling platform essential for caspase-2-activation, limits hepatocyte ploidy and is instructed by the E2F network to control p53 in the developing as well as regenerating liver. Casp2 and Pidd1 act as direct transcriptional targets of E2F1 and its antagonists, E2F7 and E2F8, that together co-regulate PIDDosome expression during juvenile liver growth and regeneration. Of note, whereas hepatocyte aneuploidy correlates with the basal ploidy state, the degree of aneuploidy itself is not limited by PIDDosome-dependent p53 activation. Finally, we provide evidence that the same signaling network is engaged to control ploidy in the human liver after resection. Our study defines the PIDDosome as a primary target to manipulate hepatocyte ploidy and proliferation rates in the regenerating liver.
Collapse
|
35
|
Zhang M, Chen L, Xu F, Jiang L, Yan W, Kunwar B, Tang F, Yang K, Shen C, Huang H, Lv J, Qin C, Wu X, Zeng S, Li M, Zhong S, Chen Q. Involvement of Upregulated P53-Induced Death Domain Protein in Retinal Ganglion Cells Apoptosis After Optic Nerve Crush. Curr Mol Med 2019; 20:51-59. [PMID: 31533600 DOI: 10.2174/1566524019666190918160032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/14/2022]
Abstract
Purpose:
Retinal ganglion cells (RGCs) apoptosis is a common characteristic
of optic neuropathies. p53-induced protein with a death domain (PIDD) is a well-known
regulator of genotoxic stress-induced apoptosis, which is constitutively cleaved into
three main fragments: PIDD-N, PIDD-C and PIDD-CC. Thus, we aim to determine the
physiological relevance of PIDD in RGCs apoptosis in an optic nerve crush (ONC)
model.
Methods:
All animals were evenly randomized into four groups: sham-control group,
con-siRNA group, ONC group, and PIDD-siRNA group (ONC +PIDD-siRNA).
Expressions of PIDD, caspase-2, Brn3a and tBid in ONC model were analyzed by
Western blot and immunofluorescence. Mean densities of RGCs/mm2 were calculated
with Fluoro-Gold (FG). Moreover, we tested the effect of PIDD-siRNA on ONC-induced
RGCs apoptosis using TUNEL staining.
Results:
The level of full-length PIDD was weakly present and showed no significant
differences at any time points. PIDD-CC and PIDD-C were significantly up-regulated in
the retina at 3 days after ONC. Meanwhile, the expression of PIDD was significantly
increased in Brn3a (a marker of RGCs) positive cells, indicating that the localization of
PIDD appeared to be confined to RGCs. Furthermore, inhibition of PIDD prevented
RGCs apoptosis by inhibiting caspase-2 and tBid activation.
Conclusions:
Taken together, PIDD may play a crucial role in RGCs apoptosis after
ONC, and this process may be relevant to caspase-2 and tBid.
Collapse
Affiliation(s)
- Mingyuan Zhang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Lifei Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Fan Xu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Li Jiang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Wenya Yan
- Guangzhou Medical University, Guangzhou 511436, China
| | - Bibhav Kunwar
- Guangzhou Medical University, Guangzhou 511436, China
| | - Fen Tang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Ke Yang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chaolan Shen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Hui Huang
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Jian Lv
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Chen Qin
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Xiaonian Wu
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Siming Zeng
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Min Li
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Shan Zhong
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| | - Qi Chen
- Department of Ophthalmology, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China
| |
Collapse
|
36
|
A Cell's Fate: An Overview of the Molecular Biology and Genetics of Apoptosis. Int J Mol Sci 2019; 20:ijms20174133. [PMID: 31450613 PMCID: PMC6747454 DOI: 10.3390/ijms20174133] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
Apoptosis is one of the main types of regulated cell death, a complex process that can be triggered by external or internal stimuli, which activate the extrinsic or the intrinsic pathway, respectively. Among various factors involved in apoptosis, several genes and their interactive networks are crucial regulators of the outcomes of each apoptotic phase. Furthermore, mitochondria are key players in determining the way by which cells will react to internal stress stimuli, thus being the main contributor of the intrinsic pathway, in addition to providing energy for the whole process. Other factors that have been reported as important players of this intricate molecular network are miRNAs, which regulate the genes involved in the apoptotic process. Imbalance in any of these mechanisms can lead to the development of several illnesses, hence, an overall understanding of these processes is essential for the comprehension of such situations. Although apoptosis has been widely studied, the current literature lacks an updated and more general overview on this subject. Therefore, here, we review and discuss the mechanisms of apoptosis, highlighting the roles of genes, miRNAs, and mitochondria involved in this type of cell death.
Collapse
|
37
|
Kurki MI, Saarentaus E, Pietiläinen O, Gormley P, Lal D, Kerminen S, Torniainen-Holm M, Hämäläinen E, Rahikkala E, Keski-Filppula R, Rauhala M, Korpi-Heikkilä S, Komulainen-Ebrahim J, Helander H, Vieira P, Männikkö M, Peltonen M, Havulinna AS, Salomaa V, Pirinen M, Suvisaari J, Moilanen JS, Körkkö J, Kuismin O, Daly MJ, Palotie A. Contribution of rare and common variants to intellectual disability in a sub-isolate of Northern Finland. Nat Commun 2019; 10:410. [PMID: 30679432 PMCID: PMC6345990 DOI: 10.1038/s41467-018-08262-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023] Open
Abstract
The contribution of de novo variants in severe intellectual disability (ID) has been extensively studied whereas the genetics of mild ID has been less characterized. To elucidate the genetics of milder ID we studied 442 ID patients enriched for mild ID (>50%) from a population isolate of Finland. Using exome sequencing, we show that rare damaging variants in known ID genes are observed significantly more often in severe (27%) than in mild ID (13%) patients. We further observe a significant enrichment of functional variants in genes not yet associated with ID (OR: 2.1). We show that a common variant polygenic risk significantly contributes to ID. The heritability explained by polygenic risk score is the highest for educational attainment (EDU) in mild ID (2.2%) but lower for more severe ID (0.6%). Finally, we identify a Finland enriched homozygote variant in the CRADD ID associated gene.
Collapse
Affiliation(s)
- Mitja I Kurki
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Olli Pietiläinen
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Stem Cell and Regenerative Biology, University of Harvard, Cambridge, MA, 02138, USA
| | - Padhraig Gormley
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Dennis Lal
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sini Kerminen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Minna Torniainen-Holm
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Eija Hämäläinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Elisa Rahikkala
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital,, University of Oulu, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Riikka Keski-Filppula
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital,, University of Oulu, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Merja Rauhala
- Northern Ostrobothnia Hospital District, Center for Intellectual Disability Care, 90220, Oulu, Finland
| | - Satu Korpi-Heikkilä
- Northern Ostrobothnia Hospital District, Center for Intellectual Disability Care, 90220, Oulu, Finland
| | - Jonna Komulainen-Ebrahim
- Department of Children and Adolescents, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, FI-90029, Oulu, Finland
| | - Heli Helander
- Department of Children and Adolescents, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, FI-90029, Oulu, Finland
| | - Päivi Vieira
- Department of Children and Adolescents, Oulu University Hospital, Medical Research Center Oulu, University of Oulu, FI-90029, Oulu, Finland
| | - Minna Männikkö
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Infrastructure for population studies, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Markku Peltonen
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
| | - Jaana Suvisaari
- National Institute for Health and Welfare, 00271, Helsinki, Finland
| | - Jukka S Moilanen
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital,, University of Oulu, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Jarmo Körkkö
- Northern Ostrobothnia Hospital District, Center for Intellectual Disability Care, 90220, Oulu, Finland
| | - Outi Kuismin
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- PEDEGO Research Unit, University of Oulu, FI-90014, Oulu, Finland
- Medical Research Center, Oulu University Hospital,, University of Oulu, FI-90014, Oulu, Finland
- Department of Clinical Genetics, Oulu University Hospital, 90220, Oulu, Finland
| | - Mark J Daly
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Aarno Palotie
- Psychiatric & Neurodevelopmental Genetics Unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
- The Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FI-00014, Helsinki, Finland.
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA.
| |
Collapse
|
38
|
An IRAK1-PIN1 signalling axis drives intrinsic tumour resistance to radiation therapy. Nat Cell Biol 2019; 21:203-213. [PMID: 30664786 PMCID: PMC6428421 DOI: 10.1038/s41556-018-0260-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/07/2018] [Indexed: 11/30/2022]
Abstract
Drug-based strategies to overcome tumour resistance to radiotherapy (R-RT) remain limited by the single-agent toxicity of traditional radiosensitizers (e.g., platinums) and a lack of targeted alternatives. In a screen for compounds that restore radiosensitivity in p53 mutant zebrafish while tolerated in non-irradiated wild-type animals, we identified the benzimidazole anthelmintic, oxfendazole. Surprisingly, oxfendazole acts via inhibition of IRAK1, a kinase otherwise involved in Interleukin-1 and Toll-like receptor (IL-1R/TLR) immune responses. IRAK1 drives R-RT in a pathway involving IRAK4 and TRAF6 but not the IL-1R/TLR—IRAK adaptor MyD88. Rather than stimulating NF-κB, radiation-activated IRAK1 acts to prevent apoptosis mediated by the PIDDosome complex (PIDD/RAIDD/caspase-2). Countering this pathway with IRAK1 inhibitors suppresses R-RT in tumour models derived from cancers in which TP53 mutations predict R-RT. Lastly, IRAK1 inhibitors synergize with inhibitors of PIN1, a prolyl isomerase essential for IRAK1 activation in response to pathogens and, as shown here, ionizing radiation. These data identify an IRAK1 radiation-response pathway as a rational chemo-RT target.
Collapse
|
39
|
Haschka M, Karbon G, Fava LL, Villunger A. Perturbing mitosis for anti-cancer therapy: is cell death the only answer? EMBO Rep 2018; 19:e45440. [PMID: 29459486 PMCID: PMC5836099 DOI: 10.15252/embr.201745440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/15/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
Interfering with mitosis for cancer treatment is an old concept that has proven highly successful in the clinics. Microtubule poisons are used to treat patients with different types of blood or solid cancer since more than 20 years, but how these drugs achieve clinical response is still unclear. Arresting cells in mitosis can promote their demise, at least in a petri dish. Yet, at the molecular level, this type of cell death is poorly defined and cancer cells often find ways to escape. The signaling pathways activated can lead to mitotic slippage, cell death, or senescence. Therefore, any attempt to unravel the mechanistic action of microtubule poisons will have to investigate aspects of cell cycle control, cell death initiation in mitosis and after slippage, at single-cell resolution. Here, we discuss possible mechanisms and signaling pathways controlling cell death in mitosis or after escape from mitotic arrest, as well as secondary consequences of mitotic errors, particularly sterile inflammation, and finally address the question how clinical efficacy of anti-mitotic drugs may come about and could be improved.
Collapse
Affiliation(s)
- Manuel Haschka
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlinde Karbon
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Luca L Fava
- Centre for Integrative Biology (CIBIO), University of Trento, Povo, Italy
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|