1
|
Chopra U, Bhansali P, Gangi Setty SR, Chakravortty D. Endoplasmic reticulum facilitates the coordinated division of Salmonella-containing vacuoles. mBio 2025; 16:e0011425. [PMID: 40272166 PMCID: PMC12077215 DOI: 10.1128/mbio.00114-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Salmonella Typhimurium (STM) resides in a membrane-bound compartment called the Salmonella-containing vacuole (SCV) in several infected cell types where bacterial and SCV division occur synchronously to maintain a single bacterium per vacuole. However, the mechanism behind this synchronous fission is not well understood. Fission of intracellular organelles is known to be regulated by the dynamic tubular endoplasmic reticulum (ER). In this study, we evaluated the role of ER in controlling SCV division. Interestingly, Salmonella-infected cells show activation of the unfolded protein response (UPR) and expansion of ER tubules. Altering the expression of ER morphology regulators, such as reticulon-4a (Rtn4a) and CLIMP63, significantly impacted bacterial proliferation, suggesting a potential role of tubular ER in facilitating SCV division. Live-cell imaging revealed the marking of tubular ER at the center of 78% of SCV division sites. This study also explored the role of SteA (a known Salmonella effector in modulating membrane dynamics) in coordinating the SCV division. SteA resides on the SCV membranes and helps form membrane contact between SCV and ER. The colocalization of ER with SCV enclosing STMΔsteA was significantly reduced, compared with SCV of STM WT or STMΔsteA:steA. STMΔsteA shows profound defects in SCV division, resulting in multiple bacteria in a single vacuole with proliferation defects. In vivo, the STMΔsteA shows a defect in colonization in the spleen and liver and affects the initial survival rate of mice. Overall, this study suggests a coordinated role of bacterial effector SteA in promoting ER contact/association with SCVs and regulating SCV division.IMPORTANCEThis study highlights the essential role of the host endoplasmic reticulum in facilitating SCV division and maintaining a single bacterium per vacuole. The Salmonella effector SteA helps maintain the single bacterium per vacuole state. In the absence of SteA, Salmonella resides as multiple bacteria within a single large vacuole. The STMΔsteA shows reduced proliferation under in vitro conditions and exhibits colonization defects in vivo, highlighting the importance of this effector in Salmonella pathogenesis. These findings suggest that targeting SteA could provide a novel therapeutic approach to inhibit Salmonella pathogenicity.
Collapse
Affiliation(s)
- Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
2
|
Carsten A, Wolters M, Aepfelbacher M. Super-resolution fluorescence microscopy for investigating bacterial cell biology. Mol Microbiol 2024; 121:646-658. [PMID: 38041391 DOI: 10.1111/mmi.15203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Super-resolution fluorescence microscopy technologies developed over the past two decades have pushed the resolution limit for fluorescently labeled molecules into the nanometer range. These technologies have the potential to study bacterial structures, for example, macromolecular assemblies such as secretion systems, with single-molecule resolution on a millisecond time scale. Here we review recent applications of super-resolution fluorescence microscopy with a focus on bacterial secretion systems. We also describe MINFLUX fluorescence nanoscopy, a relatively new technique that promises to one day produce molecular movies of molecular machines in action.
Collapse
Affiliation(s)
- Alexander Carsten
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Manuel Wolters
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
King KA, Benton AH, Caudill MT, Stoyanof ST, Kang L, Michalak P, Lahmers KK, Dunman PM, DeHart TG, Ahmad SS, Jutras BL, Poncin K, De Bolle X, Caswell CC. Post-transcriptional control of the essential enzyme MurF by a small regulatory RNA in Brucella abortus. Mol Microbiol 2024; 121:129-141. [PMID: 38082493 DOI: 10.1111/mmi.15207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 01/15/2024]
Abstract
Brucella abortus is a facultative, intracellular, zoonotic pathogen that resides inside macrophages during infection. This is a specialized niche where B. abortus encounters various stresses as it navigates through the macrophage. In order to survive this harsh environment, B. abortus utilizes post-transcriptional regulation of gene expression through the use of small regulatory RNAs (sRNAs). Here, we characterize a Brucella sRNAs called MavR (for MurF- and virulence-regulating sRNA), and we demonstrate that MavR is required for the full virulence of B. abortus in macrophages and in a mouse model of chronic infection. Transcriptomic and proteomic studies revealed that a major regulatory target of MavR is MurF. MurF is an essential protein that catalyzes the final cytoplasmic step in peptidoglycan (PG) synthesis; however, we did not detect any differences in the amount or chemical composition of PG in the ΔmavR mutant. A 6-nucleotide regulatory seed region within MavR was identified, and mutation of this seed region resulted in dysregulation of MurF production, as well as significant attenuation of infection in a mouse model. Overall, the present study underscores the importance of sRNA regulation in the physiology and virulence of Brucella.
Collapse
Affiliation(s)
- Kellie A King
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Angela H Benton
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Mitchell T Caudill
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - S Tristan Stoyanof
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Lin Kang
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, USA
- Center for One Health Research, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Pawel Michalak
- Department of Biomedical Sciences, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, USA
- Center for One Health Research, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
- Institute for Evolution, University of Haifa, Haifa, Israel
| | - Kevin K Lahmers
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Tanner G DeHart
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Saadman S Ahmad
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Brandon L Jutras
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, USA
| | - Katy Poncin
- URBM, Narilis, University of Namur, Namur, Belgium
| | | | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, VA-MD College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| |
Collapse
|
4
|
Verbeke J, Fayt Y, Martin L, Yilmaz O, Sedzicki J, Reboul A, Jadot M, Renard P, Dehio C, Renard H, Letesson J, De Bolle X, Arnould T. Host cell egress of Brucella abortus requires BNIP3L-mediated mitophagy. EMBO J 2023; 42:e112817. [PMID: 37232029 PMCID: PMC10350838 DOI: 10.15252/embj.2022112817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
The facultative intracellular pathogen Brucella abortus interacts with several organelles of the host cell to reach its replicative niche inside the endoplasmic reticulum. However, little is known about the interplay between the intracellular bacteria and the host cell mitochondria. Here, we showed that B. abortus triggers substantive mitochondrial network fragmentation, accompanied by mitophagy and the formation of mitochondrial Brucella-containing vacuoles during the late steps of cellular infection. Brucella-induced expression of the mitophagy receptor BNIP3L is essential for these events and relies on the iron-dependent stabilisation of the hypoxia-inducible factor 1α. Functionally, BNIP3L-mediated mitophagy appears to be advantageous for bacterial exit from the host cell as BNIP3L depletion drastically reduces the number of reinfection events. Altogether, these findings highlight the intricate link between Brucella trafficking and the mitochondria during host cell infection.
Collapse
Affiliation(s)
- Jérémy Verbeke
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Youri Fayt
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Lisa Martin
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Oya Yilmaz
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Angéline Reboul
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Michel Jadot
- Research Unit in Molecular Physiology (URPhyM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Patricia Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | | | - Henri‐François Renard
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Jean‐Jacques Letesson
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Xavier De Bolle
- Research Unit in Microorganisms Biology (URBM)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| | - Thierry Arnould
- Research Unit in Cell Biology (URBC)—Namur Research Institute for Life Sciences (NARILIS)University of NamurNamurBelgium
| |
Collapse
|
5
|
Mechanism of cyclic β-glucan export by ABC transporter Cgt of Brucella. Nat Struct Mol Biol 2022; 29:1170-1177. [PMID: 36456825 DOI: 10.1038/s41594-022-00868-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
Abstract
Polysaccharides play critical roles in bacteria, including the formation of protective capsules and biofilms and establishing specific host cell interactions. Their transport across membranes is often mediated by ATP-binding cassette (ABC) transporters, which utilize ATP to translocate diverse molecules. Cyclic β-glucans (CβGs) are critical for host interaction of the Rhizobiales, including the zoonotic pathogen Brucella. CβGs are exported into the periplasmic space by the cyclic glucan transporter (Cgt). The interaction of an ABC transporter with a polysaccharide substrate has not been visualized so far. Here we use single-particle cryoelectron microscopy to elucidate the structures of Cgt from Brucella abortus in four conformational states. The substrate-bound structure reveals an unusual binding pocket at the height of the cytoplasmic leaflet, whereas ADP-vanadate models hint at an alternative mechanism of substrate release. Our work provides insights into the translocation of large, heterogeneous substrates and sheds light on protein-polysaccharide interactions in general.
Collapse
|
6
|
Schulte M, Hensel M, Miskiewicz K. Exposure to stressors and antimicrobials induces cell-autonomous ultrastructural heterogeneity of an intracellular bacterial pathogen. Front Cell Infect Microbiol 2022; 12:963354. [DOI: 10.3389/fcimb.2022.963354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/25/2022] [Indexed: 11/17/2022] Open
Abstract
Despite their clonality, intracellular bacterial pathogens commonly show remarkable physiological heterogeneity during infection of host cells. Physiological heterogeneity results in distinct ultrastructural morphotypes, but the correlation between bacterial physiological state and ultrastructural appearance remains to be established. In this study, we showed that individual cells of Salmonella enterica serovar Typhimurium are heterogeneous in their ultrastructure. Two morphotypes based on the criterion of cytoplasmic density were discriminated after growth under standard culture conditions, as well as during intracellular lifestyle in mammalian host cells. We identified environmental conditions which affect cytoplasmic densities. Using compounds generating oxygen radicals and defined mutant strains, we were able to link the occurrence of an electron-dense ultrastructural morphotype to exposure to oxidative stress and other stressors. Furthermore, by combining ultrastructural analyses of Salmonella during infection and fluorescence reporter analyses for cell viability, we provided evidence that two characterized ultrastructural morphotypes with electron-lucent or electron-dense cytoplasm represent viable cells. Moreover, the presence of electron-dense types is stress related and can be experimentally induced only when amino acids are available in the medium. Our study proposes ultrastructural morphotypes as marker for physiological states of individual intracellular pathogens providing a new marker for single cell analyses.
Collapse
|
7
|
Mode S, Ketterer M, Québatte M, Dehio C. Antibiotic persistence of intracellular Brucella abortus. PLoS Negl Trop Dis 2022; 16:e0010635. [PMID: 35881641 PMCID: PMC9355222 DOI: 10.1371/journal.pntd.0010635] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/05/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Human brucellosis caused by the facultative intracellular pathogen Brucella spp. is an endemic bacterial zoonosis manifesting as acute or chronic infections with high morbidity. Treatment typically involves a combination therapy of two antibiotics for several weeks to months, but despite this harsh treatment relapses occur at a rate of 5–15%. Although poor compliance and reinfection may account for a fraction of the observed relapse cases, it is apparent that the properties of the infectious agent itself may play a decisive role in this phenomenon. Methodology/Principal findings We used B. abortus carrying a dual reporter in a macrophage infection model to gain a better understanding of the efficacy of recommended therapies in cellulo. For this we used automated fluorescent microscopy as a prime read-out and developed specific CellProfiler pipelines to score infected macrophages at the population and the single cell level. Combining microscopy of constitutive and induced reporters with classical CFU determination, we quantified the protective nature of the Brucella intracellular lifestyle to various antibiotics and the ability of B. abortus to persist in cellulo despite harsh antibiotic treatments. Conclusion/Significance We demonstrate that treatment of infected macrophages with antibiotics at recommended concentrations fails to fully prevent growth and persistence of B. abortus in cellulo, which may be explained by a protective nature of the intracellular niche(s). Moreover, we show the presence of bona fide intracellular persisters upon antibiotic treatment, which are metabolically active and retain the full infectious potential, therefore constituting a plausible reservoir for reinfection and relapse. In conclusion, our results highlight the need to extend the spectrum of models to test new antimicrobial therapies for brucellosis to better reflect the in vivo infection environment, and to develop therapeutic approaches targeting the persister subpopulation. Brucellosis is a zoonosis endemic to many low- and middle-income countries around the world. Therapies recommended by the WHO are comprised of at least two antibiotics for several weeks, sometimes months. Relapses are frequent despite these harsh treatments. The underlying reasons for these relapses, besides reinfection and non-compliance to treatment, are unknown. Our study shows that Brucella abortus can form so called “persisters” in rich broth but also inside macrophages. This small bacterial subpopulation survives antibiotic treatment and resumes growth after removal of the antibiotics and could therefore serve as a reservoir for relapses in human brucellosis. Furthermore, we show that the intracellular lifestyle of Brucella has protective properties against recommended antibiotics as observed for other intracellular pathogens, highlighting the necessity to develop new infection models to assess antibiotic efficacy.
Collapse
Affiliation(s)
- Selma Mode
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Maxime Québatte
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (MQ); (CD)
| | - Christoph Dehio
- Biozentrum, University of Basel, Basel, Switzerland
- * E-mail: (MQ); (CD)
| |
Collapse
|
8
|
Barral DC, Staiano L, Guimas Almeida C, Cutler DF, Eden ER, Futter CE, Galione A, Marques ARA, Medina DL, Napolitano G, Settembre C, Vieira OV, Aerts JMFG, Atakpa‐Adaji P, Bruno G, Capuozzo A, De Leonibus E, Di Malta C, Escrevente C, Esposito A, Grumati P, Hall MJ, Teodoro RO, Lopes SS, Luzio JP, Monfregola J, Montefusco S, Platt FM, Polishchuck R, De Risi M, Sambri I, Soldati C, Seabra MC. Current methods to analyze lysosome morphology, positioning, motility and function. Traffic 2022; 23:238-269. [PMID: 35343629 PMCID: PMC9323414 DOI: 10.1111/tra.12839] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.
Collapse
Affiliation(s)
- Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute for Genetic and Biomedical ResearchNational Research Council (CNR)MilanItaly
| | | | - Dan F. Cutler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Emily R. Eden
- University College London (UCL) Institute of OphthalmologyLondonUK
| | - Clare E. Futter
- University College London (UCL) Institute of OphthalmologyLondonUK
| | | | | | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Clinical Medicine and Surgery DepartmentFederico II UniversityNaplesItaly
| | - Otília V. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | | | | | - Gemma Bruno
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute of Biochemistry and Cell Biology, CNRRomeItaly
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | | | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Michael J. Hall
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Rita O. Teodoro
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - J. Paul Luzio
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | | | | | | | | - Maria De Risi
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Miguel C. Seabra
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
9
|
Vaughn B, Abu Kwaik Y. Idiosyncratic Biogenesis of Intracellular Pathogens-Containing Vacuoles. Front Cell Infect Microbiol 2021; 11:722433. [PMID: 34858868 PMCID: PMC8632064 DOI: 10.3389/fcimb.2021.722433] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/25/2021] [Indexed: 12/12/2022] Open
Abstract
While most bacterial species taken up by macrophages are degraded through processing of the bacteria-containing vacuole through the endosomal-lysosomal degradation pathway, intravacuolar pathogens have evolved to evade degradation through the endosomal-lysosomal pathway. All intra-vacuolar pathogens possess specialized secretion systems (T3SS-T7SS) that inject effector proteins into the host cell cytosol to modulate myriad of host cell processes and remodel their vacuoles into proliferative niches. Although intravacuolar pathogens utilize similar secretion systems to interfere with their vacuole biogenesis, each pathogen has evolved a unique toolbox of protein effectors injected into the host cell to interact with, and modulate, distinct host cell targets. Thus, intravacuolar pathogens have evolved clear idiosyncrasies in their interference with their vacuole biogenesis to generate a unique intravacuolar niche suitable for their own proliferation. While there has been a quantum leap in our knowledge of modulation of phagosome biogenesis by intravacuolar pathogens, the detailed biochemical and cellular processes affected remain to be deciphered. Here we discuss how the intravacuolar bacterial pathogens Salmonella, Chlamydia, Mycobacteria, Legionella, Brucella, Coxiella, and Anaplasma utilize their unique set of effectors injected into the host cell to interfere with endocytic, exocytic, and ER-to-Golgi vesicle traffic. However, Coxiella is the main exception for a bacterial pathogen that proliferates within the hydrolytic lysosomal compartment, but its T4SS is essential for adaptation and proliferation within the lysosomal-like vacuole.
Collapse
Affiliation(s)
- Bethany Vaughn
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States
| | - Yousef Abu Kwaik
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY, United States.,Center for Predictive Medicine, College of Medicine, University of Louisville, Louisville, KY, United States
| |
Collapse
|
10
|
Emerging technologies and infection models in cellular microbiology. Nat Commun 2021; 12:6764. [PMID: 34799563 PMCID: PMC8604907 DOI: 10.1038/s41467-021-26641-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
The field of cellular microbiology, rooted in the co-evolution of microbes and their hosts, studies intracellular pathogens and their manipulation of host cell machinery. In this review, we highlight emerging technologies and infection models that recently promoted opportunities in cellular microbiology. We overview the explosion of microscopy techniques and how they reveal unprecedented detail at the host-pathogen interface. We discuss the incorporation of robotics and artificial intelligence to image-based screening modalities, biochemical mapping approaches, as well as dual RNA-sequencing techniques. Finally, we describe chips, organoids and animal models used to dissect biophysical and in vivo aspects of the infection process. As our knowledge of the infected cell improves, cellular microbiology holds great promise for development of anti-infective strategies with translational applications in human health.
Collapse
|
11
|
Luizet JB, Raymond J, Lacerda TLS, Barbieux E, Kambarev S, Bonici M, Lembo F, Willemart K, Borg JP, Celli J, Gérard FCA, Muraille E, Gorvel JP, Salcedo SP. The Brucella effector BspL targets the ER-associated degradation (ERAD) pathway and delays bacterial egress from infected cells. Proc Natl Acad Sci U S A 2021; 118:e2105324118. [PMID: 34353909 PMCID: PMC8364137 DOI: 10.1073/pnas.2105324118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Perturbation of the endoplasmic reticulum (ER), a central organelle of the cell, can have critical consequences for cellular homeostasis. An elaborate surveillance system known as ER quality control ensures that cells can respond and adapt to stress via the unfolded protein response (UPR) and that only correctly assembled proteins reach their destination. Interestingly, several bacterial pathogens hijack the ER to establish an infection. However, it remains poorly understood how bacterial pathogens exploit ER quality-control functions to complete their intracellular cycle. Brucella spp. replicate extensively within an ER-derived niche, which evolves into specialized vacuoles suited for exit from infected cells. Here we present Brucella-secreted protein L (BspL), a Brucella abortus effector that interacts with Herp, a central component of the ER-associated degradation (ERAD) machinery. We found that BspL enhances ERAD at the late stages of the infection. BspL targeting of Herp and ERAD allows tight control of the kinetics of autophagic Brucella-containing vacuole formation, delaying the last step of its intracellular cycle and cell-to-cell spread. This study highlights a mechanism by which a bacterial pathogen hijacks ERAD components for fine regulation of its intracellular trafficking.
Collapse
Affiliation(s)
- Jean-Baptiste Luizet
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Julie Raymond
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Thais Lourdes Santos Lacerda
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Emeline Barbieux
- Department of Biology, Research Unit in Microorganisms Biology, Namur Research Institute for Life Sciences, 5000 Namur, Belgium
- Laboratory of Parasitology, Université Libre de Bruxelles Centre for Research in Immunology (UCRI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Stanimir Kambarev
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164
| | - Magali Bonici
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Frédérique Lembo
- Equipe labellisée Ligue 'Cell Polarity, Cell Signaling and Cancer', Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS, INSERM, 13009 Marseille, France
| | - Kévin Willemart
- Department of Biology, Research Unit in Microorganisms Biology, Namur Research Institute for Life Sciences, 5000 Namur, Belgium
| | - Jean-Paul Borg
- Equipe labellisée Ligue 'Cell Polarity, Cell Signaling and Cancer', Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, CNRS, INSERM, 13009 Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| | - Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164
| | - Francine C A Gérard
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France
| | - Eric Muraille
- Department of Biology, Research Unit in Microorganisms Biology, Namur Research Institute for Life Sciences, 5000 Namur, Belgium
- Laboratory of Parasitology, Université Libre de Bruxelles Centre for Research in Immunology (UCRI), Université Libre de Bruxelles, 6041 Gosselies, Belgium
| | - Jean-Pierre Gorvel
- Centre d'Immunologie de Marseille-Luminy, CNRS, INSERM, Aix-Marseille Université, 13009 Marseille, France
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, CNRS UMR5086, Université de Lyon, 69367 Lyon, France;
| |
Collapse
|
12
|
Ganeva I, Kukulski W. Membrane Architecture in the Spotlight of Correlative Microscopy. Trends Cell Biol 2020; 30:577-587. [DOI: 10.1016/j.tcb.2020.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/19/2022]
|
13
|
Hostile Takeover: Hijacking of Endoplasmic Reticulum Function by T4SS and T3SS Effectors Creates a Niche for Intracellular Pathogens. Microbiol Spectr 2020; 7. [PMID: 31198132 DOI: 10.1128/microbiolspec.psib-0027-2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
After entering a cell, intracellular pathogens must evade destruction and generate a niche for intracellular replication. A strategy shared by multiple intracellular pathogens is the deployment of type III secretion system (T3SS)- and type IV secretion system (T4SS)-injected proteins (effectors) that subvert cellular functions. A subset of these effectors targets activities of the host cell's endoplasmic reticulum (ER). Effectors are now appreciated to interfere with the ER in multiple ways, including capture of secretory vesicles, tethering of pathogen vacuoles to the ER, and manipulation of ER-based autophagy initiation and the unfolded-protein response. These strategies enable pathogens to generate a niche with access to cellular nutrients and to evade the host cell's defenses.
Collapse
|
14
|
Brucella abortus Depends on l-Serine Biosynthesis for Intracellular Proliferation. Infect Immun 2020; 88:IAI.00840-19. [PMID: 31740531 DOI: 10.1128/iai.00840-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/15/2023] Open
Abstract
l-Serine is a nonessential amino acid and a key intermediate in several relevant metabolic pathways. In bacteria, the major source of l-serine is the phosphorylated pathway, which comprises three enzymes: d-3-phosphoglycerate dehydrogenase (PGDH; SerA), phosphoserine amino transferase (PSAT; SerC), and l-phosphoserine phosphatase (PSP; SerB). The Brucella abortus genome encodes two PGDHs (SerA-1 and SerA-2), involved in the first step in l-serine biosynthesis, and one PSAT and one PSP, responsible for the second and third steps, respectively. In this study, we demonstrate that the serA1 serA2 double mutant and the serC and serB single mutants are auxotrophic for l-serine. These auxotrophic mutants can be internalized but are unable to replicate in HeLa cells and in J774A.1 macrophage-like cells. Replication defects of auxotrophic mutants can be reverted by cell medium supplementation with l-serine at early times postinfection. In addition, the serB mutant is attenuated in the murine intraperitoneal infection model and has an altered lipid composition, since the lack of l-serine abrogates phosphatidylethanolamine synthesis in this strain. Taken together, these results reveal that limited availability of l-serine within the host cell impairs proliferation of the auxotrophic strains, highlighting the relevance of this biosynthetic pathway in Brucella pathogenicity.
Collapse
|
15
|
Poncin K, Roba A, Jimmidi R, Potemberg G, Fioravanti A, Francis N, Willemart K, Zeippen N, Machelart A, Biondi EG, Muraille E, Vincent SP, De Bolle X. Occurrence and repair of alkylating stress in the intracellular pathogen Brucella abortus. Nat Commun 2019; 10:4847. [PMID: 31649248 PMCID: PMC6813329 DOI: 10.1038/s41467-019-12516-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/10/2019] [Indexed: 01/08/2023] Open
Abstract
It is assumed that intracellular pathogenic bacteria have to cope with DNA alkylating stress within host cells. Here we use single-cell reporter systems to show that the pathogen Brucella abortus does encounter alkylating stress during the first hours of macrophage infection. Genes encoding direct repair and base-excision repair pathways are required by B. abortus to face this stress in vitro and in a mouse infection model. Among these genes, ogt is found to be under the control of the conserved cell-cycle transcription factor GcrA. Our results highlight that the control of DNA repair in B. abortus displays distinct features that are not present in model organisms such as Escherichia coli. It is assumed that intracellular pathogenic bacteria must cope with DNA alkylating stress within host cells. Here, Poncin et al. show that the pathogen Brucella abortus does encounter alkylating stress within macrophages, and shed light into the pathways required for DNA repair in this organism.
Collapse
Affiliation(s)
- Katy Poncin
- URBM, Narilis, University of Namur, Namur, Belgium.,Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Agnès Roba
- URBM, Narilis, University of Namur, Namur, Belgium
| | - Ravikumar Jimmidi
- Unité de Chimie Organique, University of Namur, 61 rue de Bruxelles, 5000, Namur, Belgium
| | | | - Antonella Fioravanti
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, 50 Avenue Halley, Villeneuve d'Ascq, France.,VIB,Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
| | | | | | | | - Arnaud Machelart
- URBM, Narilis, University of Namur, Namur, Belgium.,Université de Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, Center for Infection and Immunity of Lille, Lille, France
| | - Emanuele G Biondi
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université de Lille, 50 Avenue Halley, Villeneuve d'Ascq, France
| | - Eric Muraille
- IMM, 31 Chemin Joseph Aiguier, 13009 Marseille, Aix-Marseille Université, Marseille, France.,Laboratoire de Parasitologie, Faculté de Médecine, Université Libre de Bruxelles, Brussels, Belgium
| | - Stéphane P Vincent
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
16
|
Byndloss MX, Tsai AY, Walker GT, Miller CN, Young BM, English BC, Seyffert N, Kerrinnes T, de Jong MF, Atluri VL, Winter MG, Celli J, Tsolis RM. Brucella abortus Infection of Placental Trophoblasts Triggers Endoplasmic Reticulum Stress-Mediated Cell Death and Fetal Loss via Type IV Secretion System-Dependent Activation of CHOP. mBio 2019; 10:e01538-19. [PMID: 31337727 PMCID: PMC6650558 DOI: 10.1128/mbio.01538-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
Subversion of endoplasmic reticulum (ER) function is a feature shared by multiple intracellular bacteria and viruses, and in many cases this disruption of cellular function activates pathways of the unfolded protein response (UPR). In the case of infection with Brucella abortus, the etiologic agent of brucellosis, the unfolded protein response in the infected placenta contributes to placentitis and abortion, leading to pathogen transmission. Here we show that B. abortus infection of pregnant mice led to death of infected placental trophoblasts in a manner that depended on the VirB type IV secretion system (T4SS) and its effector VceC. The trophoblast death program required the ER stress-induced transcription factor CHOP. While NOD1/NOD2 expression in macrophages contributed to ER stress-induced inflammation, these receptors did not play a role in trophoblast death. Both placentitis and abortion were independent of apoptosis-associated Speck-like protein containing a caspase activation and recruitment domain (ASC). These studies show that B. abortus uses its T4SS to induce cell-type-specific responses to ER stress in trophoblasts that trigger placental inflammation and abortion. Our results suggest further that in B. abortus the T4SS and its effectors are under selection as bacterial transmission factors.IMPORTANCEBrucella abortus infects the placenta of pregnant cows, where it replicates to high levels and triggers abortion of the calf. The aborted material is highly infectious and transmits infection to both cows and humans, but very little is known about how B. abortus causes abortion. By studying this infection in pregnant mice, we discovered that B. abortus kills trophoblasts, which are important cells for maintaining pregnancy. This killing required an injected bacterial protein (VceC) that triggered an endoplasmic reticulum (ER) stress response in the trophoblast. By inhibiting ER stress or infecting mice that lack CHOP, a protein induced by ER stress, we could prevent death of trophoblasts, reduce inflammation, and increase the viability of the pups. Our results suggest that B. abortus injects VceC into placental trophoblasts to promote its transmission by abortion.
Collapse
Affiliation(s)
- Mariana X Byndloss
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - April Y Tsai
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Gregory T Walker
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Cheryl N Miller
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Briana M Young
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Bevin C English
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Núbia Seyffert
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Tobias Kerrinnes
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Maarten F de Jong
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Vidya L Atluri
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Maria G Winter
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Jean Celli
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| | - Renée M Tsolis
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, California, USA
| |
Collapse
|
17
|
A Role for the VPS Retromer in Brucella Intracellular Replication Revealed by Genomewide siRNA Screening. mSphere 2019; 4:4/3/e00380-19. [PMID: 31243080 PMCID: PMC6595151 DOI: 10.1128/msphere.00380-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Brucella, the agent causing brucellosis, is a major zoonotic pathogen with worldwide distribution. Brucella resides and replicates inside infected host cells in membrane-bound compartments called Brucella-containing vacuoles (BCVs). Following uptake, Brucella resides in endosomal BCVs (eBCVs) that gradually mature from early to late endosomal features. Through a poorly understood process that is key to the intracellular lifestyle of Brucella, the eBCV escapes fusion with lysosomes by transitioning to the replicative BCV (rBCV), a replicative niche directly connected to the endoplasmic reticulum (ER). Despite the notion that this complex intracellular lifestyle must depend on a multitude of host factors, a holistic view on which of these components control Brucella cell entry, trafficking, and replication is still missing. Here we used a systematic cell-based small interfering RNA (siRNA) knockdown screen in HeLa cells infected with Brucella abortus and identified 425 components of the human infectome for Brucella infection. These include multiple components of pathways involved in central processes such as the cell cycle, actin cytoskeleton dynamics, or vesicular trafficking. Using assays for pathogen entry, knockdown complementation, and colocalization at single-cell resolution, we identified the requirement of the VPS retromer for Brucella to escape the lysosomal degradative pathway and to establish its intracellular replicative niche. We thus validated the VPS retromer as a novel host factor critical for Brucella intracellular trafficking. Further, our genomewide data shed light on the interplay between central host processes and the biogenesis of the Brucella replicative niche.IMPORTANCE With >300,000 new cases of human brucellosis annually, Brucella is regarded as one of the most important zoonotic bacterial pathogens worldwide. The agent causing brucellosis resides inside host cells within vacuoles termed Brucella-containing vacuoles (BCVs). Although a few host components required to escape the degradative lysosomal pathway and to establish the ER-derived replicative BCV (rBCV) have already been identified, the global understanding of this highly coordinated process is still partial, and many factors remain unknown. To gain deeper insight into these fundamental questions, we performed a genomewide RNA interference (RNAi) screen aiming at discovering novel host factors involved in the Brucella intracellular cycle. We identified 425 host proteins that contribute to Brucella cellular entry, intracellular trafficking, and replication. Together, this study sheds light on previously unknown host pathways required for the Brucella infection cycle and highlights the VPS retromer components as critical factors for the establishment of the Brucella intracellular replicative niche.
Collapse
|
18
|
Gruber-Vodicka HR, Leisch N, Kleiner M, Hinzke T, Liebeke M, McFall-Ngai M, Hadfield MG, Dubilier N. Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2. Nat Microbiol 2019; 4:1465-1474. [PMID: 31182796 PMCID: PMC6784892 DOI: 10.1038/s41564-019-0475-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/26/2019] [Indexed: 02/02/2023]
Abstract
Placozoa is an enigmatic phylum of simple, microscopic, marine metazoans1,2. Although intracellular bacteria have been found in all members of this phylum, almost nothing is known about their identity, location and interactions with their host3–6. We used metagenomic and metatranscriptomic sequencing of single host individuals, plus metaproteomic and imaging analyses, to show that the placozoan Trichoplax sp. H2 lives in symbiosis with two intracellular bacteria. One symbiont forms an undescribed genus in the Midichloriaceae (Rickettsiales)7,8 and has a genomic repertoire similar to that of rickettsial parasites9,10, but does not seem to express key genes for energy parasitism. Correlative image analyses and three-dimensional electron tomography revealed that this symbiont resides in the rough endoplasmic reticulum of its host’s internal fibre cells. The second symbiont belongs to the Margulisbacteria, a phylum without cultured representatives and not known to form intracellular associations11–13. This symbiont lives in the ventral epithelial cells of Trichoplax, probably metabolizes algal lipids digested by its host and has the capacity to supplement the placozoan’s nutrition. Our study shows that one of the simplest animals has evolved highly specific and intimate associations with symbiotic, intracellular bacteria and highlights that symbioses can provide access to otherwise elusive microbial dark matter. Using a multi-omics approach, together with imaging analyses, the authors characterize the two intracellular bacterial symbionts of Trichoplax, one of the simplest animals.
Collapse
Affiliation(s)
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Tjorven Hinzke
- Department of Pharmaceutical Biotechnology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany.,Institute of Marine Biotechnology, Greifswald, Germany.,Department of Geoscience, University of Calgary, Calgary, Alberta, Canada
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Margaret McFall-Ngai
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Michael G Hadfield
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
19
|
Weiner A, Enninga J. The Pathogen–Host Interface in Three Dimensions: Correlative FIB/SEM Applications. Trends Microbiol 2019; 27:426-439. [DOI: 10.1016/j.tim.2018.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 12/17/2022]
|
20
|
Alenquer M, Vale-Costa S, Etibor TA, Ferreira F, Sousa AL, Amorim MJ. Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites. Nat Commun 2019; 10:1629. [PMID: 30967547 PMCID: PMC6456594 DOI: 10.1038/s41467-019-09549-4] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus has an eight-partite RNA genome that during viral assembly forms a complex containing one copy of each RNA. Genome assembly is a selective process driven by RNA-RNA interactions and is hypothesized to lead to discrete punctate structures scattered through the cytosol. Here, we show that contrary to the accepted view, formation of these structures precedes RNA-RNA interactions among distinct viral ribonucleoproteins (vRNPs), as they assemble in cells expressing only one vRNP type. We demonstrate that these viral inclusions display characteristics of liquid organelles, segregating from the cytosol without a delimitating membrane, dynamically exchanging material and adapting fast to environmental changes. We provide evidence that viral inclusions develop close to endoplasmic reticulum (ER) exit sites, depend on continuous ER-Golgi vesicular cycling and do not promote escape to interferon response. We propose that viral inclusions segregate vRNPs from the cytosol and facilitate selected RNA-RNA interactions in a liquid environment. Influenza A virus forms cytosolic inclusions containing viral ribonucleoproteins. Here, the authors show that viral inclusions form juxtaposed the endoplasmic reticulum and have liquid properties, likely constituting sites of assembly of epidemic and pandemic influenza genomes.
Collapse
Affiliation(s)
- Marta Alenquer
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Temitope Akhigbe Etibor
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Filipe Ferreira
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Ana Laura Sousa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.,Electron Microscopy Facility, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156, Oeiras, Portugal.
| |
Collapse
|
21
|
Celli J. The Intracellular Life Cycle of Brucella spp. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0006-2019. [PMID: 30848234 PMCID: PMC6448592 DOI: 10.1128/microbiolspec.bai-0006-2019] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Indexed: 01/08/2023] Open
Abstract
Bacteria of the genus Brucella colonize a wide variety of mammalian hosts, in which their infectious cycle and ability to cause disease predominantly rely on an intracellular lifestyle within phagocytes. Upon entry into host cells, Brucella organisms undergo a complex, multistage intracellular cycle in which they sequentially traffic through, and exploit functions of, the endocytic, secretory, and autophagic compartments via type IV secretion system (T4SS)-mediated delivery of bacterial effectors. These effectors modulate an array of host functions and machineries to first promote conversion of the initial endosome-like Brucella-containing vacuole (eBCV) into a replication-permissive organelle derived from the host endoplasmic reticulum (rBCV) and then to an autophagy-related vacuole (aBCV) that mediates bacterial egress. Here we detail and discuss our current knowledge of cellular and molecular events of the Brucella intracellular cycle. We discuss the importance of the endosomal stage in determining T4SS competency, the roles of autophagy in rBCV biogenesis and aBCV formation, and T4SS-driven mechanisms of modulation of host secretory traffic in rBCV biogenesis and bacterial egress.
Collapse
Affiliation(s)
- Jean Celli
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA 99164
| |
Collapse
|
22
|
Poncin K, Gillet S, De Bolle X. Learning from the master: targets and functions of the CtrA response regulator in Brucella abortus and other alpha-proteobacteria. FEMS Microbiol Rev 2018; 42:500-513. [PMID: 29733367 DOI: 10.1093/femsre/fuy019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/02/2018] [Indexed: 12/27/2022] Open
Abstract
The α-proteobacteria are a fascinating group of free-living, symbiotic and pathogenic organisms, including the Brucella genus, which is responsible for a worldwide zoonosis. One common feature of α-proteobacteria is the presence of a conserved response regulator called CtrA, first described in the model bacterium Caulobacter crescentus, where it controls gene expression at different stages of the cell cycle. Here, we focus on Brucella abortus and other intracellular α-proteobacteria in order to better assess the potential role of CtrA in the infectious context. Comparative genomic analyses of the CtrA control pathway revealed the conservation of specific modules, as well as the acquisition of new factors during evolution. The comparison of CtrA regulons also suggests that specific clades of α-proteobacteria acquired distinct functions under its control, depending on the essentiality of the transcription factor. Other CtrA-controlled functions, for instance motility and DNA repair, are proposed to be more ancestral. Altogether, these analyses provide an interesting example of the plasticity of a regulation network, subject to the constraints of inherent imperatives such as cell division and the adaptations to diversified environmental niches.
Collapse
Affiliation(s)
- Katy Poncin
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Sébastien Gillet
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| | - Xavier De Bolle
- URBM-Biology, Université de Namur, Unité de recherche en biologie moléculaire, Belgium
| |
Collapse
|
23
|
Transposon Sequencing of Brucella abortus Uncovers Essential Genes for Growth In Vitro and Inside Macrophages. Infect Immun 2018; 86:IAI.00312-18. [PMID: 29844240 DOI: 10.1128/iai.00312-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Brucella abortus is a class III zoonotic bacterial pathogen able to survive and replicate inside host cells, including macrophages. Here we report a multidimensional transposon sequencing analysis to identify genes essential for Brucella abortus growth in rich medium and replication in RAW 264.7 macrophages. The construction of a dense transposon mutant library and mapping of 929,769 unique mini-Tn5 insertion sites in the genome allowed identification of 491 essential coding sequences and essential segments in the B. abortus genome. Chromosome II carries a lower proportion (5%) of essential genes than chromosome I (19%), supporting the hypothesis of a recent acquisition of a megaplasmid as the origin of chromosome II. Temporally resolved transposon sequencing analysis as a function of macrophage infection stages identified 79 genes with a specific attenuation phenotype in macrophages, at either 2, 5, or 24 h postinfection, and 86 genes for which the attenuated mutant phenotype correlated with a growth defect on plates. We identified 48 genes required for intracellular growth, including the virB operon, encoding the type IV secretion system, which supports the validity of the screen. The remaining genes encode amino acid and pyrimidine biosynthesis, electron transfer systems, transcriptional regulators, and transporters. In particular, we report the need of an intact pyrimidine nucleotide biosynthesis pathway in order for B. abortus to proliferate inside RAW 264.7 macrophages.
Collapse
|
24
|
Zúñiga-Ripa A, Barbier T, Lázaro-Antón L, de Miguel MJ, Conde-Álvarez R, Muñoz PM, Letesson JJ, Iriarte M, Moriyón I. The Fast-Growing Brucella suis Biovar 5 Depends on Phosphoenolpyruvate Carboxykinase and Pyruvate Phosphate Dikinase but Not on Fbp and GlpX Fructose-1,6-Bisphosphatases or Isocitrate Lyase for Full Virulence in Laboratory Models. Front Microbiol 2018; 9:641. [PMID: 29675004 PMCID: PMC5896264 DOI: 10.3389/fmicb.2018.00641] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 12/14/2022] Open
Abstract
Bacteria of the genus Brucella infect a range of vertebrates causing a worldwide extended zoonosis. The best-characterized brucellae infect domestic livestock, behaving as stealthy facultative intracellular parasites. This stealthiness depends on envelope molecules with reduced pathogen-associated molecular patterns, as revealed by the low lethality and ability to persist in mice of these bacteria. Infected cells are often engorged with brucellae without signs of distress, suggesting that stealthiness could also reflect an adaptation of the parasite metabolism to use local nutrients without harming the cell. To investigate this, we compared key metabolic abilities of Brucella abortus 2308 Wisconsin (2308W), a cattle biovar 1 virulent strain, and B. suis 513, the reference strain of the ancestral biovar 5 found in wild rodents. B. suis 513 used a larger number of C substrates and showed faster growth rates in vitro, two features similar to those of B. microti, a species phylogenomically close to B. suis biovar 5 that infects voles. However, whereas B. microti shows enhanced lethality and reduced persistence in mice, B. suis 513 was similar to B. abortus 2308W in this regard. Mutant analyses showed that B. suis 513 and B. abortus 2308W were similar in that both depend on phosphoenolpyruvate synthesis for virulence but not on the classical gluconeogenic fructose-1,6-bisphosphatases Fbp-GlpX or on isocitrate lyase (AceA). However, B. suis 513 used pyruvate phosphate dikinase (PpdK) and phosphoenolpyruvate carboxykinase (PckA) for phosphoenolpyruvate synthesis in vitro while B. abortus 2308W used only PpdK. Moreover, whereas PpdK dysfunction causes attenuation of B. abortus 2308W in mice, in B. suis, 513 attenuation occurred only in the double PckA-PpdK mutant. Also contrary to what occurs in B. abortus 2308, a B. suis 513 malic enzyme (Mae) mutant was not attenuated, and this independence of Mae and the role of PpdK was confirmed by the lack of attenuation of a double Mae-PckA mutant. Altogether, these results decouple fast growth rates from enhanced mouse lethality in the brucellae and suggest that an Fbp-GlpX-independent gluconeogenic mechanism is ancestral in this group and show differences in central C metabolic steps that may reflect a progressive adaptation to intracellular growth.
Collapse
Affiliation(s)
- Amaia Zúñiga-Ripa
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Thibault Barbier
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Leticia Lázaro-Antón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - María J de Miguel
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Conde-Álvarez
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Pilar M Muñoz
- Unidad de Producción y Sanidad Animal, Instituto Agroalimentario de Aragón, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | - Jean J Letesson
- Research Unit in Biology of Microorganisms, Namur Research Institute for Life Sciences, University of Namur, Namur, Belgium
| | - Maite Iriarte
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Moriyón
- Departamento de Microbiología y Parasitología e Instituto de Salud Tropical - Instituto de Investigación Sanitaria de Navarra, Universidad de Navarra, Pamplona, Spain
| |
Collapse
|