1
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
2
|
Wen M, Guo X, Gong Y, Xue F, Fan Z, Kang Z, Li J, Wang L, Wang X, Ren W. Injectable photosensitive bone cement enhancing angiogenesis and osteogenic differentiation for the treatment of bone nonunion. APL Bioeng 2025; 9:016114. [PMID: 40078866 PMCID: PMC11903057 DOI: 10.1063/5.0246207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Nonunion fractures present a significant clinical challenge because of their complex microenvironment, which includes poor vascularization, insufficient osteogenesis, infection, and separation of fracture ends. The current clinical treatments have certain limitations. Inspired by this phenomenon, sandcastle worms secrete adhesive proteins that bind sand grains, shell fragments, and mineral particles, thereby constructing their "castles." In this study, we developed an injectable bone cement using methacryloyl chitosan (CSMA) combined with a specific concentration of oyster shell nanoparticles (OS-np) to treat nonunion fractures. Oyster shells are composed primarily of calcium carbonate, which releases ions that promote angiogenesis and osteogenesis. The in vivo results at 8 weeks showed that the expression of BMP2, RUNX2, and VEGF in the OS-np/CSMA group was increased by 5.47, 4.38, and 3.54 times, respectively, compared to the control group, significantly enhancing vascularization and bone repair in the bone nonunion model. The injectability of the OS-np/CSMA bone cement ensures that it can adapt well to the complex structures of nonunion sites, providing a supportive matrix for new bone formation. Both in vivo and in vitro osteogenesis experiments demonstrated that the OS-np/CSMA bone cement significantly enhanced vascularization and bone repair in nonunion models, which was because of the synergistic effects of ion release and the bioactive properties of the oyster shell nanoparticles. This study highlights the potential of OS-np/CSMA injectable bone cement as a promising treatment strategy for complex nonunion fractures that effectively promotes angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Mengnan Wen
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Xueqiang Guo
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Yan Gong
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
| | - Fei Xue
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Zhanting Kang
- Department of Pathology, School of Basic Medical Science, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Jixiang Li
- Junji College of Xinxiang Medical University, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Lei Wang
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Xiansong Wang
- Authors to whom correspondence should be addressed:; ; and
| | - Wenjie Ren
- Institutes of Health Central Plain, The Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| |
Collapse
|
3
|
兰 元, 余 丽, 胡 芝, 邹 淑. [Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:263-272. [PMID: 38645873 PMCID: PMC11026875 DOI: 10.12182/20240360301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Indexed: 04/23/2024]
Abstract
The dynamic balance between bone formation and bone resorption is a critical process of bone remodeling. The imbalance of bone formation and bone resorption is closely associated with the occurrence and development of various bone-related diseases. Under both physiological and pathological conditions, non-coding RNAs (ncRNAs) play a crucial regulatory role in protein expression through either inhibiting mRNAs translation or promoting mRNAs degradation. Circular RNAs (circRNAs) are a type of non-linear ncRNAs that can resist the degradation of RNA exonucleases. There is accumulating evidence suggesting that circRNAs and microRNAs (miRNAs) serve as critical regulators of bone remodeling through their direct or indirect regulation of the expression of osteogenesis-related genes. Additionally, recent studies have revealed the involvement of the circRNAs-miRNAs regulatory network in the process by which mesenchymal stem cells (MSCs) differentiate towards the osteoblasts (OB) lineage and the process by which bone marrow-derived macrophages (BMDM) differentiate towards osteoclasts (OC). The circRNA-miRNA network plays an important regulatory role in the osteoblastic-osteoclastic balance of bone remodeling. Therefore, a thorough understanding of the circRNA-miRNA regulatory mechanisms will contribute to a better understanding of the regulatory mechanisms of the balance between osteoblastic and osteoclastic activities in the process of bone remodeling and the diagnosis and treatment of related diseases. Herein, we reviewed the functions of circRNA and microRNA. We also reviewed their roles in and the mechanisms of the circRNA-miRNA regulatory network in the process of bone remodeling. This review provides references and ideas for further research on the regulation of bone remodeling and the prevention and treatment of bone-related diseases.
Collapse
Affiliation(s)
- 元辰 兰
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 丽媛 余
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 芝爱 胡
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 正畸科 (成都 610041)State Key Laboratory of Oral Disease and National Clinical Research Center for Oral Diseases and Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Luo W, Zhang N, Wang Z, Chen H, Sun J, Yao C, Zhang Y. LncRNA USP2-AS1 facilitates the osteogenic differentiation of bone marrow mesenchymal stem cells by targeting KDM3A/ETS1/USP2 to activate the Wnt/β-catenin signaling pathway. RNA Biol 2024; 21:1-13. [PMID: 38131611 PMCID: PMC10761055 DOI: 10.1080/15476286.2023.2290771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 12/23/2023] Open
Abstract
Human bone marrow mesenchymal stem cells (HBMSCs) can promote new bone formation. Previous studies have proven the ability of long non-coding RNAs (lncRNAs) to modulate the osteogenic differentiation of mesenchymal stem cells. However, the molecular mechanism modulated by lncRNAs in affecting the osteogenic differentiation of HBMSCs remains largely unknown. Thus, this study aims to reveal the role of lncRNA ubiquitin-specific peptidase 2 antisense RNA 1 (USP2-AS1) in regulating the osteogenic differentiation of HBMSCs and investigate its regulatory mechanism. Through bioinformatics analysis and RT-qPCR, we confirmed that USP2-AS1 expression was increased in HBMSCs after culturing in osteogenic differentiation medium (OM-HBMSCs). Moreover, we uncovered that knockdown of USP2-AS1 inhibited the osteogenic differentiation of HBMSCs. Further exploration indicated that USP2-AS1 positively regulated the expression of its nearby gene USP2. Mechanistically, USP2-AS1 recruited lysine demethylase 3A (KDM3A) to stabilize ETS proto-oncogene 1 (ETS1), transcription factor that transcriptionally activated USP2. Additionally, USP2-induced Wnt/β-catenin signalling pathway activation via deubiquitination of β-catenin protein. In summary, our study proved that lncRNA USP2-AS1 facilitates the osteogenic differentiation of HBMSCs by targeting KDM3A/ETS1/USP2 axis to activate the Wnt/β-catenin signalling pathway.
Collapse
Affiliation(s)
- Wanxin Luo
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Na Zhang
- Department of Endocrinology, Jiangxi Provincial People’s Hospital, Nanchang, Jiangxi, China
- Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Ziping Wang
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Hao Chen
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Sun
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chen Yao
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Yafeng Zhang
- Department of Orthopaedics, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
5
|
Jankowski M, Farzaneh M, Ghaedrahmati F, Shirvaliloo M, Moalemnia A, Kulus M, Ziemak H, Chwarzyński M, Dzięgiel P, Zabel M, Piotrowska-Kempisty H, Bukowska D, Antosik P, Mozdziak P, Kempisty B. Unveiling Mesenchymal Stem Cells' Regenerative Potential in Clinical Applications: Insights in miRNA and lncRNA Implications. Cells 2023; 12:2559. [PMID: 37947637 PMCID: PMC10649218 DOI: 10.3390/cells12212559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023] Open
Abstract
It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Maurycy Jankowski
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farhoodeh Ghaedrahmati
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Future Science Group, Unitec House, 2 Albert Place, London N3 1QB, UK
| | - Arash Moalemnia
- Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Ziemak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Mikołaj Chwarzyński
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Physiotherapy, Wroclaw University School of Physical Education, 50-038 Wroclaw, Poland
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
6
|
Balistrieri A, Makino A, Yuan JXJ. Pathophysiology and pathogenic mechanisms of pulmonary hypertension: role of membrane receptors, ion channels, and Ca 2+ signaling. Physiol Rev 2023; 103:1827-1897. [PMID: 36422993 PMCID: PMC10110735 DOI: 10.1152/physrev.00030.2021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The pulmonary circulation is a low-resistance, low-pressure, and high-compliance system that allows the lungs to receive the entire cardiac output. Pulmonary arterial pressure is a function of cardiac output and pulmonary vascular resistance, and pulmonary vascular resistance is inversely proportional to the fourth power of the intraluminal radius of the pulmonary artery. Therefore, a very small decrease of the pulmonary vascular lumen diameter results in a significant increase in pulmonary vascular resistance and pulmonary arterial pressure. Pulmonary arterial hypertension is a fatal and progressive disease with poor prognosis. Regardless of the initial pathogenic triggers, sustained pulmonary vasoconstriction, concentric vascular remodeling, occlusive intimal lesions, in situ thrombosis, and vascular wall stiffening are the major and direct causes for elevated pulmonary vascular resistance in patients with pulmonary arterial hypertension and other forms of precapillary pulmonary hypertension. In this review, we aim to discuss the basic principles and physiological mechanisms involved in the regulation of lung vascular hemodynamics and pulmonary vascular function, the changes in the pulmonary vasculature that contribute to the increased vascular resistance and arterial pressure, and the pathogenic mechanisms involved in the development and progression of pulmonary hypertension. We focus on reviewing the pathogenic roles of membrane receptors, ion channels, and intracellular Ca2+ signaling in pulmonary vascular smooth muscle cells in the development and progression of pulmonary hypertension.
Collapse
Affiliation(s)
- Angela Balistrieri
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
- Harvard University, Cambridge, Massachusetts
| | - Ayako Makino
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California
| | - Jason X-J Yuan
- Section of Physiology, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
7
|
Lin R, Ge K, Fan D, Li J, Zhou G, Zhang K, Huang Y, Ma L, Zhang J. Multi-walled carbon nanotubes reversing the bone formation of bone marrow stromal cells by activating M2 macrophage polarization. Regen Biomater 2023; 10:rbad042. [PMID: 37274617 PMCID: PMC10234760 DOI: 10.1093/rb/rbad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 06/06/2023] Open
Abstract
Multi-walled carbon nanotubes (MWCNTs) are an excellent bone tissue repair material both in vitro and in vivo. The interactions between MWCNTs and single type of cells of bone tissue, including osteoblasts, bone marrow stromal cells (BMSCs) or osteoclasts, have been extensively studied. However, the interactions between MWCNTs with different types of cells in the bone microenvironment remain elusive. Bone microenvironment is a complex system composed of different types of cells, which have interactions between each other. In this work, the effects of MWCNTs on bone microenvironment were firstly studied by culture of MWCNTs with BMSCs, osteoblasts, osteoclasts, macrophages and vascular endothelial cells, respectively. Then, co-culture systems of macrophages-BMSCs, macrophages-calvaria and macrophages-BMSCs-vascular endothelial cells were treated with MWCNTs, respectively. The osteogenic differentiation of BMSCs and osteoblasts was inhibited when these two types of cells were cultured with MWCNTs, respectively. Strikingly, when co-culture MWCNTs with BMSCs and macrophages, the osteogenesis of BMSCs was promoted by inducing the M2 polymerization of macrophages. Meanwhile, MWCNTs promoted the bone formation in the osteolysis model of calvaria ex vivo. In addition, the formation of osteoclasts was inhibited, and angiogenesis was increased when treated with MWCNTs. This study revealed the inconsistent effects of MWCNTs on single type of bone cells and on the bone microenvironment. The results provided basic research data for the application of MWCNTs in bone tissue repair.
Collapse
Affiliation(s)
- Runlian Lin
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Kun Ge
- Corresponding address. E-mail: (K.G.); (L.M.)
| | - Dehui Fan
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Jing Li
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| | - Guoqiang Zhou
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
- College of Basic Medical Science, Hebei University, Baoding 071000, China
| | - Kaihan Zhang
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
| | - Yuanyu Huang
- School of Life Science, School of Medical Technology, Advanced Research Institute of Multidisciplinary Science, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lili Ma
- Corresponding address. E-mail: (K.G.); (L.M.)
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Material Science, Hebei University, Baoding 071002, China
| |
Collapse
|
8
|
Zhou M, Zheng M, Zhou X, Tian S, Yang X, Ning Y, Li Y, Zhang S. The roles of connexins and gap junctions in the progression of cancer. Cell Commun Signal 2023; 21:8. [PMID: 36639804 PMCID: PMC9837928 DOI: 10.1186/s12964-022-01009-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/03/2022] [Indexed: 01/15/2023] Open
Abstract
Gap junctions (GJs), which are composed of connexins (Cxs), provide channels for direct information exchange between cells. Cx expression has a strong spatial specificity; however, its influence on cell behavior and information exchange between cells cannot be ignored. A variety of factors in organisms can modulate Cxs and subsequently trigger a series of responses that have important effects on cellular behavior. The expression and function of Cxs and the number and function of GJs are in dynamic change. Cxs have been characterized as tumor suppressors in the past, but recent studies have highlighted the critical roles of Cxs and GJs in cancer pathogenesis. The complex mechanism underlying Cx and GJ involvement in cancer development is a major obstacle to the evolution of therapy targeting Cxs. In this paper, we review the post-translational modifications of Cxs, the interactions of Cxs with several chaperone proteins, and the effects of Cxs and GJs on cancer. Video Abstract.
Collapse
Affiliation(s)
- Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Shifeng Tian
- Graduate School, Tianjin Medical University, Tianjin, 300070 People’s Republic of China
| | - Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuwei Li
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, 300121 People’s Republic of China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin, 300121 People’s Republic of China
| |
Collapse
|
9
|
Wang H, Li X, Lai S, Cao Q, Liu Y, Li J, Zhu X, Fu W, Zhang X. Construction of Vascularized Tissue Engineered Bone with nHA-Coated BCP Bioceramics Loaded with Peripheral Blood-Derived MSC and EPC to Repair Large Segmental Femoral Bone Defect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:249-264. [PMID: 36548196 DOI: 10.1021/acsami.2c15000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The regenerative repair of segmental bone defect (SBD) is an urgent problem in the field of orthopedics. Rapid induction of angiogenesis and osteoinductivity after implantation of scaffold is critical. In this study, a unique tissue engineering strategy with mixture of peripheral blood-derived mesenchymal stem cells (PBMSC) and endothelial progenitor cells (PBEPC) was applied in a 3D-printed biphasic calcium phosphate (BCP) scaffold with highly bioactive nano hydroxyapatite (nHA) coating (nHA/BCP) to construct a novel vascularized tissue engineered bone (VTEB) for rabbit femoral SBD repair. The 2D coculture of PBMSC and PBEPC showed that they could promote the osteogenic or angiogenic differentiation of the cells from each other, especially in the group of PBEPC/PBMSC = 75:25. Besides, the 3D coculture results exhibited that the nHA coating could further promote PBEPC/PBMSC adhesion, proliferation, and osteogenic and angiogenic differentiation on the BCP scaffold. In vivo experiments showed that among the four groups (BCP, BCP-PBEPC/PBMSC, nHA/BCP, and nHA/BCP-PBEPC/PBMSC), the nHA/BCP-PBEPC/PBMSC group induced the best formation of blood vessels and new bone and, thus, the good repair of SBD. It revealed the synergistic effect of nHA and PBEPC/PBMSC on the angiogenesis and osteogenesis of the BCP scaffold. Therefore, the construction of VTEB in this study could provide a possibility for the regenerative repair of SBD.
Collapse
Affiliation(s)
- Huihui Wang
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Sike Lai
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Quanle Cao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yunyi Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Jian Li
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Weili Fu
- Department of Orthopaedic Surgery, Orthopaedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Highly porous multiple-cell-laden collagen/hydroxyapatite scaffolds for bone tissue engineering. Int J Biol Macromol 2022; 222:1264-1276. [DOI: 10.1016/j.ijbiomac.2022.09.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/15/2022]
|
11
|
Shirbaghaee Z, Hassani M, Heidari Keshel S, Soleimani M. Emerging roles of mesenchymal stem cell therapy in patients with critical limb ischemia. Stem Cell Res Ther 2022; 13:462. [PMID: 36068595 PMCID: PMC9449296 DOI: 10.1186/s13287-022-03148-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Critical limb ischemia (CLI), the terminal stage of peripheral arterial disease (PAD), is characterized by an extremely high risk of amputation and vascular issues, resulting in severe morbidity and mortality. In patients with severe limb ischemia with no alternative therapy options, such as endovascular angioplasty or bypass surgery, therapeutic angiogenesis utilizing cell-based therapies is vital for increasing blood flow to ischemic regions. Mesenchymal stem cells (MSCs) are currently considered one of the most encouraging cells as a regenerative alternative for the surgical treatment of CLI, including restoring tissue function and repairing ischemic tissue via immunomodulation and angiogenesis. The regenerative treatments for limb ischemia based on MSC therapy are still considered experimental. Despite recent advances in preclinical and clinical research studies, it is not recommended for regular clinical use. In this study, we review the immunomodulatory features of MSC besides the current understanding of different sources of MSC in the angiogenic treatment of CLI subjects and their potential applications as therapeutic agents. Specifically, this paper concentrates on the most current clinical application issues, and several recommendations are provided to improve the efficacy of cell therapy for CLI patients.
Collapse
Affiliation(s)
- Zeinab Shirbaghaee
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassani
- Department of Vascular and Endovascular Surgery, Ayatollah Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Applied Cell Science and Hematology Department, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
12
|
The Role of Connexin in Ophthalmic Neovascularization and the Interaction between Connexin and Proangiogenic Factors. J Ophthalmol 2022; 2022:8105229. [PMID: 35783340 PMCID: PMC9242797 DOI: 10.1155/2022/8105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 06/11/2022] [Indexed: 12/02/2022] Open
Abstract
The formation of new blood vessels is an important physiological process that occurs during development. When the body is injured, new blood vessel formation helps the body recuperate by supplying more oxygen and nutrients. However, this mechanism can have a negative effect. In ophthalmologic diseases, such as corneal new blood vessels, neonatal vascular glaucoma, and diabetes retinopathy, the formation of new blood vessels has become a critical component in patient survival. Connexin is a protein that regulates the cellular and molecular material carried by cells. It has been demonstrated that it is widely expressed in vascular endothelial cells, where it forms a slit connection between adjacent cells to promote cell-cell communication via hemichannels, as well as substance exchange into intracellular environments. Numerous studies have demonstrated that connexin in vascular endothelial cells plays an important role in angiogenesis and vascular leakage. The purpose of this study was to investigate the effect between the angiogenesis-associated factor and the connexin. It also reveals the effect of connexin on ophthalmic neovascularization.
Collapse
|
13
|
Bjørge IM, de Sousa BM, Patrício SG, Silva AS, Nogueira LP, Santos LF, Vieira SI, Haugen HJ, Correia CR, Mano JF. Bioengineered Hierarchical Bonelike Compartmentalized Microconstructs Using Nanogrooved Microdiscs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19116-19128. [PMID: 35446549 DOI: 10.1021/acsami.2c01161] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fabrication of vascularized large-scale constructs for regenerative medicine remains elusive since most strategies rely solely on cell self-organization or overly control cell positioning, failing to address nutrient diffusion limitations. We propose a modular and hierarchical tissue-engineering strategy to produce bonelike tissues carrying signals to promote prevascularization. In these 3D systems, disc-shaped microcarriers featuring nanogrooved topographical cues guide cell behavior by harnessing mechanotransduction mechanisms. A sequential seeding strategy of adipose-derived stromal cells and endothelial cells is implemented within compartmentalized, liquefied-core macrocapsules in a self-organizing and dynamic system. Importantly, our system autonomously promotes osteogenesis and construct's mineralization while promoting a favorable environment for prevascular-like endothelial organization. Given its modular and self-organizing nature, our strategy may be applied for the fabrication of larger constructs with a highly controlled starting point to be used for local regeneration upon implantation or as drug-screening platforms.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Bárbara M de Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Sónia G Patrício
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Ana Sofia Silva
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Liebert P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Lúcia F Santos
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro 3810-193, Portugal
| | - Håvard J Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo 0455, Norway
| | - Clara R Correia
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-168, Portugal
| |
Collapse
|
14
|
Tracy EP, Stielberg V, Rowe G, Benson D, Nunes SS, Hoying JB, Murfee WL, LeBlanc AJ. State of the field: cellular and exosomal therapeutic approaches in vascular regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H647-H680. [PMID: 35179976 PMCID: PMC8957327 DOI: 10.1152/ajpheart.00674.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 01/19/2023]
Abstract
Pathologies of the vasculature including the microvasculature are often complex in nature, leading to loss of physiological homeostatic regulation of patency and adequate perfusion to match tissue metabolic demands. Microvascular dysfunction is a key underlying element in the majority of pathologies of failing organs and tissues. Contributing pathological factors to this dysfunction include oxidative stress, mitochondrial dysfunction, endoplasmic reticular (ER) stress, endothelial dysfunction, loss of angiogenic potential and vascular density, and greater senescence and apoptosis. In many clinical settings, current pharmacologic strategies use a single or narrow targeted approach to address symptoms of pathology rather than a comprehensive and multifaceted approach to address their root cause. To address this, efforts have been heavily focused on cellular therapies and cell-free therapies (e.g., exosomes) that can tackle the multifaceted etiology of vascular and microvascular dysfunction. In this review, we discuss 1) the state of the field in terms of common therapeutic cell population isolation techniques, their unique characteristics, and their advantages and disadvantages, 2) common molecular mechanisms of cell therapies to restore vascularization and/or vascular function, 3) arguments for and against allogeneic versus autologous applications of cell therapies, 4) emerging strategies to optimize and enhance cell therapies through priming and preconditioning, and, finally, 5) emerging strategies to bolster therapeutic effect. Relevant and recent clinical and animal studies using cellular therapies to restore vascular function or pathologic tissue health by way of improved vascularization are highlighted throughout these sections.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Virginia Stielberg
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Gabrielle Rowe
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Daniel Benson
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
- Department of Bioengineering, University of Louisville, Louisville, Kentucky
| | - Sara S Nunes
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Heart & Stroke/Richard Lewar Centre of Excellence, University of Toronto, Toronto, Ontario, Canada
| | - James B Hoying
- Advanced Solutions Life Sciences, Manchester, New Hampshire
| | - Walter Lee Murfee
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
| | - Amanda Jo LeBlanc
- Cardiovascular Innovation Institute and the Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
15
|
Wang Q, Lin H, Ran J, Jiang Z, Ren Q, He W, Xiao H. miR-200a-3p represses osteogenesis of human periodontal ligament stem cells by targeting ZEB2 and activating the NF-κB pathway. Acta Odontol Scand 2022; 80:140-149. [PMID: 34632930 DOI: 10.1080/00016357.2021.1964593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Human periodontal ligament stem cells (hPDLSCs) bear multilineage differentiation potential and represent the cytological basis of periodontal tissue regeneration. microRNA (miR) is accepted as a critical regulator of cell differentiation. This study explored the molecular mechanism of miR-200a-3p in osteogenesis of hPDLSCs. MATERIAL AND METHODS hPDLSCs were cultured and identified in vitro. miR-200a-3p expression during osteogenic differentiation of hPDLSCs was detected. hPDLSCs were transfected with miR-200a-3p mimic or miR-200a-3p inhibitor. Alkaline phosphatase (ALP) activity, calcified nodules and osteogenesis-related genes of hPDLSCs were measured. The binding relationship between miR-200a-3p and ZEB2 was predicted and verified. hPDLSCs were infected with sh-ZEB2, and then the osteogenic capacity was examined. miR-200a-3p inhibitor-transfected hPDLSCs were infected with sh-ZEB2. The key proteins of the NF-κB pathway were measured. RESULTS miR-200a-3p expression was downregulated during osteogenic differentiation of hPDLSCs. Upregulation of miR-200a-3p reduced ALP activity, calcified nodules and osteogenesis-related genes of hPDLSCs, while downregulation of miR-200a-3p facilitated the osteogenesis of hPDLSCs. miR-200a-3p targeted ZEB2. ZEB2 silencing repressed osteogenesis of hPDLSCs. ZEB2 silencing attenuated the promoting effect of miR-200a-3p inhibitor on osteogenesis of hPDLSCs. miR-200a-3p activated the NF-κB pathway by targeting ZEB2. CONCLUSION miR-200a-3p repressed osteogenesis of hPDLSCs by targeting ZEB2 and activating the NF-κB pathway. This study may offer insights for periodontal tissue regeneration engineering.
Collapse
Affiliation(s)
- Qing Wang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jinxiang Ran
- Department of Orthodontics, Qiannan Traditional Chinese Medical Hospital, School of Stomatology and Medicine, Qiannan Buyi and Miao Autonomous Prefecture, Duyun, China
| | - Ziran Jiang
- Department of Orthodontics, Foshan Stomatology Hospital, School of Stomatology and Medicine, Foshan, China
| | - Qingyuan Ren
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Wulin He
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Hui Xiao
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Groven RVM, van Koll J, Poeze M, Blokhuis TJ, van Griensven M. miRNAs Related to Different Processes of Fracture Healing: An Integrative Overview. Front Surg 2021; 8:786564. [PMID: 34869574 PMCID: PMC8639603 DOI: 10.3389/fsurg.2021.786564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/25/2021] [Indexed: 12/21/2022] Open
Abstract
Fracture healing is a complex, dynamic process that is directed by cellular communication and requires multiple cell types, such as osteoblasts, osteoclasts, and immune cells. Physiological fracture healing can be divided into several phases that consist of different processes, such as angiogenesis, osteogenesis, and bone resorption/remodelling. This is needed to guarantee proper bone regeneration after fracture. Communication and molecular regulation between different cell types and within cells is therefore key in successfully orchestrating these processes to ensure adequate bone healing. Among others, microRNAs (miRNAs) play an important role in cellular communication. microRNAs are small, non-coding RNA molecules of ~22 nucleotides long that can greatly influence gene expression by post-transcriptional regulation. Over the course of the past decade, more insights have been gained in the field of miRNAs and their role in cellular signalling in both inter- and intracellular pathways. The interplay between miRNAs and their mRNA targets, and the effect thereof on different processes and aspects within fracture healing, have shown to be interesting research topics with possible future diagnostic and therapeutic potential. Considering bone regeneration, research moreover focusses on specific microRNAs and their involvement in individual pathways. However, it is required to combine these data to gain more understanding on the effects of miRNAs in the dynamic process of fracture healing, and to enhance their translational application in research, as well as in the clinic. Therefore, this review aims to provide an integrative overview on miRNAs in fracture healing, related to several key aspects in the fracture healing cascade. A special focus will be put on hypoxia, angiogenesis, bone resorption, osteoclastogenesis, mineralization, osteogenesis, osteoblastogenesis, osteocytogenesis, and chondrogenesis.
Collapse
Affiliation(s)
- Rald V M Groven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands.,Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Johan van Koll
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Martijn Poeze
- Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Taco J Blokhuis
- Division of Traumasurgery, Department of Surgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
17
|
Yang Y, Yang M, Shi D, Chen K, Zhao J, He S, Bai Y, Shen P, Ni H. Single-cell RNA Seq reveals cellular landscape-specific characteristics and potential etiologies for adolescent idiopathic scoliosis. JOR Spine 2021; 4:e1184. [PMID: 35005449 PMCID: PMC8717101 DOI: 10.1002/jsp2.1184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDS Abnormal vertebral growth and development have been found in adolescent idiopathic scoliosis (AIS) patients, and the proliferation and differentiation of bone development-related cells play important roles in its pathogenesis. However, a comprehensive single-cell-level differentiation roadmap in AIS has not been achieved. METHODS The present study compared the single-cell level cellular landscapes of spinal cancellous bone tissues between AIS patients and healthy subjects using high throughput single-cell RNA sequencing (scRNA-seq), which covers multiple cellular lineages including osteoblast, chondrocyte, osteoclast and related immunocytes. We constructed the differentiation trajectories of bone development-related cell lineages through pseudotime analysis, and the intercellular-communication networks between bone development-related cells and immunocytes were further developed. RESULTS A total of 11 distinct cell clusters were identified according to the genome-wide transcriptome profiles. t-Distributed stochastic neighbor embedding (t-SNE) analysis showed that mesenchymal stem cells (MSC) were classified into three subtypes: MSC-LOXL2, MSC-IGFBP5, and MSC-GJA1. Gene ontology (GO) analysis showed that MSC-GJA1 might possess greater osteoblast differentiation potential than the others. MSC-IGFBP5 was the specific MSC subtype observed only in AIS. There were two distinct gene expression clusters: OB-DPT and OB-OLFML2B, and the counts of osteoblasts derived from AIS was significantly less than that of non-AIS subjects. In AIS patients, MSC-IGFBP5 failed to differentiate into osteoblasts and exhibited negative regulation of cell proliferation and enhanced cell death. CPC-PCNA was found to be the specific chondrocyte progenitor cell (CPC) subtype observed only in AIS patients. The cell counts of OC-BIRC3 in AIS were less than those in controls. Pseudotime analysis suggested two possible distinct osteoclast differentiation patterns in AIS and control subjects. Monocytes in AIS mainly differentiated into OC-CRISP3. CONCLUSIONS Our single-cell analysis first revealed differences existed in the cellular states between AIS patients and healthy subjects and found the differentiation disruption of specific MSC and CPC clusters in AIS. Cell communication analysis provided the possible pathogenesis of osteoblast and chondrocyte differentiation dysfunction in AIS.
Collapse
Affiliation(s)
- Yilin Yang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyuan Yang
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Dongliang Shi
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Tongji University School of MedicineShanghaiChina
| | - Kai Chen
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Jian Zhao
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Shisheng He
- Department of Orthopaedics, Shanghai 10th People's HospitalTongji UniversityShanghaiChina
| | - Yushu Bai
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Pinquan Shen
- Department of Pediatric Orthopaedics, Xinhua HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Haijian Ni
- Department of Orthopaedics, Shanghai 10th People's HospitalTongji UniversityShanghaiChina
| |
Collapse
|
18
|
Chai M, Jiang M, Gu C, Lu Q, Zhou Y, Jin Z, Zhou Y, Tan W. Osteogenically differentiated mesenchymal stem cells promote the apoptosis of human umbilical vein endothelial cells in vitro. Biotechnol Appl Biochem 2021; 69:2138-2150. [PMID: 34694656 DOI: 10.1002/bab.2274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/18/2021] [Indexed: 12/16/2022]
Abstract
The absence of blood vessels in tissue engineered bone often leads to necrosis of internal cells after implantation, ultimately affecting the process of bone repair. Herein, mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured to induce osteogenesis and angiogenesis. Based on the findings, the number of HUVECs in the coculture system increased in the growth medium group, but decreased in the osteogenic induction medium (OIM) group. Considering that the paracrine effects of MSCs had changed, we tested the genes expression of osteogenically differentiated MSCs. The expression of osteogenic genes in MSCs increased during osteogenesis. Further, the expression levels of pigment epithelial-derived factor (PEDF) gene and protein, an antivascular factor, were also increased. To verify whether MSCs promote HUVECs apoptosis via PEDF, PEDF was silenced via siRNA. The conditioned medium of differentiated MSCs with PEDF silencing significantly improved the proliferation and apoptosis of HUVECs. Based on further experiments, PEDF mediated the apoptosis and proliferation of HUVECs through p53, BAX/BCL-2, FAS, and c-Caspase-3. However, when PEDF was silenced with siRNA, the osteogenic potential of MSCs was affected. The results of this study provide a theoretical basis for the construction of prevascularized bone tissues in vitro.
Collapse
Affiliation(s)
- Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Mingli Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ce Gu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Qiaohui Lu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
19
|
Sui S, Yu H, Wang X, Wang W, Yang X, Pan X, Zhou Q, Xin C, Du R, Wu S, Zhang J, Cao Q, Wang N, Kuehn MH, Zhu W. iPSC-Derived Trabecular Meshwork Cells Stimulate Endogenous TM Cell Division Through Gap Junction in a Mouse Model of Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:28. [PMID: 34427623 PMCID: PMC8399400 DOI: 10.1167/iovs.62.10.28] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/28/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Decreased trabecular meshwork (TM) cellularity has been implicated as a major reason for TM dysfunction and aqueous humor (AH) outflow abnormalities in primary open angle glaucoma. We previously found that transplantation of induced pluripotent stem cell (iPSC)-derived TM cells can restore TM function and stimulate endogenous TM cell division. The goal of the present study is to investigate whether signaling via gap junctions is involved in this process. Methods Differentiated iPSCs were characterized morphologically, transcriptionally, and immunohistochemically. After purification, iPSC-TM were co-cultured with mouse TM (MTM) cells to mimic the transplantation procedure. Through the pharmacological antagonists and short hairpin RNA (shRNA) technique, the gap junction function in iPSC-based therapy was determined. Results In the co-culture system, iPSC-TM increase MTM cell division as well as transfer of Ca2+ to MTM. This effect was blocked by treatment with the gap junction inhibitors carbenoxolone (CBX) or flufenamic acid (FFA). The shRNA mediated knock down of connexin 43 (Cx43) expression in iPSC-TM also results in decreased Ca2+ transfer and lower MTM proliferation rates. In vivo, Cx43 downregulation in transplanted iPSC-TM weakened their regenerative role in an Ad5.myocilinY437H mouse model of glaucoma. Mice receiving these cells exhibited lower TM cellularity and higher intraocular pressure (IOP) than those receiving unmodified iPSC-TM. Conclusions Our findings reveal a crucial role of gap junction, especially Cx43, in iPSC-based TM regeneration, and provides insights to enhance the regenerative effect of iPSCs in glaucoma therapy.
Collapse
Affiliation(s)
- Shangru Sui
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Hongxia Yu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiangji Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenyan Wang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
| | - Xuejiao Yang
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojing Pan
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Qingjun Zhou
- Qingdao Eye Hospital, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, China
| | - Chen Xin
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Rong Du
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Shen Wu
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Jingxue Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Qilong Cao
- Qingdao Haier Biotech Co. Ltd., Qingdao, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital Eye Center, Beijing, China
| | - Markus H. Kuehn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Wei Zhu
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing University & Capital Medical University, Beijing, China
| |
Collapse
|
20
|
miR-200-3p suppresses cell proliferation and reduces apoptosis in diabetic retinopathy via blocking the TGF-β2/Smad pathway. Biosci Rep 2021; 40:226902. [PMID: 33150936 PMCID: PMC7689656 DOI: 10.1042/bsr20201545] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has shown that microRNAs (miRNAs) play an important role in the pathogenesis of diabetic retinopathy (DR). However, the role and mechanism of miRNA in regulating high glucose (HG)-induced ARPE-19 cell injury are still not well understood. The present study aimed to investigate the effects of miR-200a-3p on DR progression and reveal the underlying mechanisms of their effects. In the present study, we observed that miR-200a-3p was significantly decreased, while transforming growth factor-β2 (TGF-β2) expression was up-regulated in ARPE-19 cells treated with HG and retina tissues of DR rats. Subsequently, overexpression of miR-200a-3p significantly promoted cell proliferation, reduced apoptosis, as well as inhibited the levels of inflammatory cytokines secreted, matrix metalloprotease 2/9 (MMP2/9), and vascular endothelial growth factor (VEGF) in HG-injured ARPE-19 cells. Moreover, miR-200a-3p was proved to target TGF-β2 mRNA by binding to its 3′ untranslated region (3′UTR) using a luciferase reporter assay. Mechanistically, overexpression of miR-200a-3p reduced HG-induced ARPE-19 cell injury and reduced inflammatory cytokines secreted, as well as down-regulated the expression of VEGF via inactivation of the TGF-β2/Smad pathway in vitro. In vivo experiments, up-regulation of miR-200a-3p ameliorated retinal neovascularization and inflammation of DR rats. In conclusion, our findings demonstrated that miR-200a-3p-elevated prevented DR progression by blocking the TGF-β2/Smad pathway, providing a new therapeutic biomarker for DR treatment in the clinic.
Collapse
|
21
|
Geraniin inhibits proliferation and induces apoptosis through inhibition of phosphatidylinositol 3-kinase/Akt pathway in human colorectal cancer in vitro and in vivo. Anticancer Drugs 2021; 31:575-582. [PMID: 32427739 DOI: 10.1097/cad.0000000000000929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Geraniin, a polyphenolic component isolated from Phyllanthus amarus, has been reported to possess diverse biological activities, including antitumor, antiinflammatory, antihyperglycemic, antihypertensive, and antioxidant. However, the role and underlying mechanisms of geraniin in colorectal cancer still remain unclear. In the present study, we found that geraniin notably inhibited cell proliferation and clonogenic formation of colorectal cancer cell SW480 and HT-29 in a dose-dependent manner by Cell Counting Kit 8, EdU, and colony formation assays, respectively. Additionally, geraniin remarkably induced apoptosis of SW480 and HT-29 cells in a dose-dependent way by Hoechst 33342 staining, flow cytometric analysis, and TdT-mediated dUTP nick-end labeling assays and increased the expressions of Bax, caspase-3, and caspase-9, while decreased the level of Bcl-2. Besides, wound healing, transwell migration, and invasion assays demonstrated that geraniin obviously inhibited the migration and invasion of SW480 and HT-29 cells. Moreover, it also inhibited the levels of phospho (p)-phosphatidylinositol 3-kinase and p-Akt. Furthermore, in-vivo animal study revealed that geraniin had the significant inhibitory effects on tumor growth and promoted cancer cell apoptosis remarkably, which further confirmed the antitumor effect of geraniin. Taken together, the present study exhibited the positive role of geraniin in inhibiting proliferation and inducing apoptosis through suppression of phosphatidylinositol 3-kinase/Akt pathway in colorectal cancer cells in vitro and in vivo, which might provide new insights in searching for new drug candidates of anticolorectal cancer.
Collapse
|
22
|
Santos D, Remans S, Van den Brande S, Vanden Broeck J. RNAs on the Go: Extracellular Transfer in Insects with Promising Prospects for Pest Management. PLANTS (BASEL, SWITZERLAND) 2021; 10:484. [PMID: 33806650 PMCID: PMC8001424 DOI: 10.3390/plants10030484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 01/16/2023]
Abstract
RNA-mediated pathways form an important regulatory layer of myriad biological processes. In the last decade, the potential of RNA molecules to contribute to the control of agricultural pests has not been disregarded, specifically via the RNA interference (RNAi) mechanism. In fact, several proofs-of-concept have been made in this scope. Furthermore, a novel research field regarding extracellular RNAs and RNA-based intercellular/interorganismal communication is booming. In this article, we review key discoveries concerning extracellular RNAs in insects, insect RNA-based cell-to-cell communication, and plant-insect transfer of RNA. In addition, we overview the molecular mechanisms implicated in this form of communication and discuss future biotechnological prospects, namely from the insect pest-control perspective.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; (S.R.); (S.V.d.B.); (J.V.B.)
| | | | | | | |
Collapse
|
23
|
Fukuda S, Akiyama M, Niki Y, Kawatsura R, Harada H, Nakahama KI. Inhibitory effects of miRNAs in astrocytes on C6 glioma progression via connexin 43. Mol Cell Biochem 2021; 476:2623-2632. [PMID: 33660186 DOI: 10.1007/s11010-021-04118-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/20/2021] [Indexed: 12/20/2022]
Abstract
In many types of tumor cells, cell communication via gap junction is decreased or missing. Therefore, cancer cells acquire unique cytosolic environments that differ from those of normal cells. This study assessed the differences in microRNA (miRNA) expression between cancer and normal cells. MicroRNA microarray analysis revealed five miRNAs that were highly expressed in normal astrocytes compared with that in C6 gliomas. To determine whether these miRNAs could pass through gap junctions, connexin 43 was expressed in C6 glioma cells and co-cultured with normal astrocytes. The co-culture experiment showed the possibility that miR-152-3p and miR-143-3p propagate from normal astrocytes to C6 glioma in connexin 43-dependent and -independent manners, respectively. Moreover, we established C6 glioma cells that expressed miR-152-3p or miR-143-3p. Although the proliferation of these miRNA-expressing C6 glioma cells did not differ from that of empty vectors introduced in C6 glioma cells, cell migration and invasion were significantly decreased in C6 glioma cells expressing miR-152-3p or miR-143-3p. These results suggest the possibility that miRNA produced by normal cells attenuates tumor progression through connexin 43-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- Shuhei Fukuda
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.,Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Masako Akiyama
- Research Administration Division, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuki Niki
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Risa Kawatsura
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Ken-Ichi Nakahama
- Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
24
|
Mechanism of dexmedetomidine regulating osteogenesis-angiogenesis coupling through the miR-361-5p/VEGFA axis in postmenopausal osteoporosis. Life Sci 2021; 275:119273. [PMID: 33631172 DOI: 10.1016/j.lfs.2021.119273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022]
Abstract
AIMS Postmenopausal osteoporosis (PMOP) is a growing health problem affecting many postmenopausal women. This study intended to identify the role of dexmedetomidine (Dex) in osteoporosis (OP). MAIN METHODS Microarray analysis was performed for the gene expression profiles of PMOP patients and postmenopausal healthy volunteers, and the most differentially expressed microRNA (miR)-361-5p was verified in clinic, and its diagnostic value in PMOP patients was analyzed. After establishment of OP model by ovariectomy, Dex treatment and overexpression of miR-361-5p or vascular endothelial growth factor A (VEGFA) were performed in OP rats or isolated bone marrow mesenchymal stem cells (BMSCs). Bone mineral density (BMD) related indexes and levels of osteogenesis-angiogenesis related genes were measured. The apoptosis and osteogenic differentiation of BMSCs were detected. After human umbilical vein endothelial cells (HUVECs) and BMSCs were cocultured, the angiogenesis of BMSCs was detected by Matrigel-based angiogenesis experiment. KEY FINDINGS miR-361-5p was highly expressed in PMOP patients and OP rats, with good diagnostic effect on PMOP. After Dex treatment, the expressions of miR-361-5p, VEGFA, BMD related indexes were increased in OP rats. In BMSCs, level of osteogenesis-angiogenesis related genes were increased after adding Dex, and the apoptosis was decreased after coculture of HUVECs and BMSCs. miR-361-5p could target VEGFA. After miR-361-5p overexpression + Dex treatment, the indexes related to osteogenesis and angiogenesis in OP rats and BMSCs were decreased, which were reversed after further overexpressing VEGFA. SIGNIFICANCE Dex can enhance VEGFA by inhibiting miR-361-5p, and then promote osteogenesis-angiogenesis, thus providing potential targets for PMOP treatment.
Collapse
|
25
|
Jiang W, Zhu P, Zhang T, Liao F, Yu Y, Liu Y, Shen H, Zhao Z, Huang X, Zhou N. MicroRNA-205 mediates endothelial progenitor functions in distraction osteogenesis by targeting the transcription regulator NOTCH2. Stem Cell Res Ther 2021; 12:101. [PMID: 33536058 PMCID: PMC7860583 DOI: 10.1186/s13287-021-02150-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Distraction osteogenesis (DO) is a highly efficacious form of reconstructive bone regeneration, but its clinical utility is limited by the prolonged period required for bone consolidation to occur. Understanding the mechanistic basis for DO and shortening this consolidation phase thus represent promising approaches to improving the clinical utility of this procedure. Methods A mandibular DO (MDO) canine model was established, after which small RNA sequencing was performed to identify relevant molecular targets genes. Putative miRNA target genes were identified through bioinformatics and confirmed through qPCR, Western blotting, and dual-luciferase reporter assays. Peripheral blood samples were collected to isolate serum and endothelial colony-forming cells (ECFCs) in order to measure miR-205, NOTCH2, and angiogenic cytokines expression levels. Lentiviral constructs were then used to inhibit or overexpress miR-205 and NOTCH2 in isolated ECFCs, after which the angiogenic activity of these cells was evaluated in migration, wound healing, proliferation, tube formation, and chick chorioallantoic membrane (CAM) assay. Autologous ECFCs transfected to knockdown miR-205 and were injected directly into the distraction callus. On days 14, 28, 35 and 42 after surgery, bone density was evaluated via CBCT, and callus samples were collected and evaluated via histological staining to analyze bone regeneration and remodeling. Results MiR-205 was identified as being one of the miRNAs that was most significantly downregulated in MDO callus samples. Downregulation of miR-205 was also observed in DO-ECFCs and serum of animals undergoing MDO. Inhibiting miR-205 markedly enhanced angiogenesis, whereas overexpressing miR-205 had the opposite effect in vitro. Importantly, NOTCH2, which is a unique regulator in bone angiogenesis, was identified as a miR-205 target gene. Consistent with this regulatory relationship, knocking down NOTCH2 suppressed angiogenesis, and transduction with a miR-205 inhibitor lentivirus was sufficient to rescue angiogenic activity. When ECFCs in which miR-205 had been inhibited were transplanted into the MDO callus, this significantly bolstered osteogenesis, and remodeling in vivo. Conclusions MiR-205 is a significant regulator of the MDO process, and inhibiting this miRNA can accelerate MDO-related mineralization. Overall, these results offer new insights into the mechanistic basis for this procedure, highlighting potential targets for therapeutic clinical intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02150-x.
Collapse
Affiliation(s)
- Weidong Jiang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Peiqi Zhu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Tao Zhang
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Fengchun Liao
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Yangyang Yu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Yan Liu
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Huijuan Shen
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Zhenchen Zhao
- Guangxi Medical University, Nanning, 530021, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China.,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China
| | - Xuanping Huang
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| | - Nuo Zhou
- Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Guangxi Medical University, Nanning, 530021, People's Republic of China. .,Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, People's Republic of China.
| |
Collapse
|
26
|
Zhai Z, Chen W, Hu Q, Wang X, Zhao Q, Tuerxunyiming M. High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493-5p/ZEB2 signalling. J Biochem 2021; 167:613-621. [PMID: 32463882 DOI: 10.1093/jb/mvaa011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
Diabetic osteoporosis (DOP) is attributed to the aberrant physiological function of bone marrow mesenchymal stem cells (BMSCs) under high glucose (HG) environment. MicroRNAs (miRNAs) are involved in the pathological processes of DOP. We aimed to explore the underlying mechanism of miRNA in DOP. BMSCs were cultured in osteogenic medium with HG to induce osteogenic differentiation, and the interaction between miR-493-5p and ZEB2 was assessed by luciferase assay. Herein, we found miR-493-5p is gradually reduced during osteogenic differentiation in BMSCs. HG treatment inhibits osteogenic differentiation and induces an up-regulation of miR-493-5p leading to reduced level of its downstream target ZEB2. Inhibition of miR-493-5p attenuates HG-induced osteogenic differentiation defects by upregulation of ZEB2. Mechanistically, miR-493-5p/ZEB2 signalling mediates HG-inhibited osteogenic differentiation by inactivation of Wnt/β-catenin signalling. More importantly, knockdown of miR-493-5p therapeutically alleviated the DOP condition in mice. HG prevents BMSCs osteogenic differentiation via up-regulation of miR-493-5p, which results in reduced level of ZEB2 by directly targeting its 3'-untranslated region of mRNA. Thus, miR-493-5p/ZEB2 is a potential therapeutic target and provides novel strategy for the treatment and management of DOP.
Collapse
Affiliation(s)
- Zhongshu Zhai
- Department of Endocrinology, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu 223400, China
| | - Wanhong Chen
- Department of Imaging, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, Jiangsu 223002, China
| | - Qiaosheng Hu
- Department of Endocrinology, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu 223400, China
| | - Xin Wang
- Department of Endocrinology, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu 223400, China
| | - Qing Zhao
- Department of Endocrinology, The Affiliated Lianshui County People's Hospital of Kangda College of Nanjing Medical University, Huai'an, Jiangsu 223400, China
| | - Muhadasi Tuerxunyiming
- Department of Pathology, Peking University Health Science Centre and Third Hospital, Beijing 100083, China
| |
Collapse
|
27
|
JIANG M, SHEN Q, ZHOU Y, REN W, CHAI M, ZHOU Y, TAN WS. Fluid shear stress and endothelial cells synergistically promote osteogenesis of mesenchymal stem cells via integrin β1-FAK-ERK1/2 pathway. Turk J Biol 2021; 45:683-694. [PMID: 35068949 PMCID: PMC8733951 DOI: 10.3906/biy-2104-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Prevascularization and mechanical stimulation have been reported as effective methods for the construction of functional bone tissue. However, their combined effects on osteogenic differentiation and its mechanism remain to be explored. Here, the effects of fluid shear stress (FSS) on osteogenic differentiation of rat bone-marrow-derived mesenchymal stem cells (BMSCs) when cocultured with human umbilical vein endothelial cells (HUVECs) were investigated, and underlying signaling mechanisms were further explored. FSS stimulation for 1-4 h/day increased alkaline phosphatase (ALP) activity and calcium deposition in coculture systems and promoted the proliferation of cocultured cells. FSS stimulation for 2 h/day was selected as the optimized protocol according to osteogenesis in the coculture. In this situation, the mRNA levels of ALP, runt-related transcriptional factor 2 (Runx2) and osteocalcin (OCN), and protein levels of OCN and osteopontin (OPN) in BMSCs were upregulated. Furthermore, FSS and coculture with HUVECs synergistically increased integrin β1 expression in BMSCs and further activated focal adhesion kinases (FAKs) and downstream extracellular signal-related kinase (ERK), leading to the enhancement of Runx2 expression. Blocking the phosphorylation of FAK abrogated FSS-induced ERK phosphorylation and inhibited osteogenesis of cocultured BMSCs. These results revealed that FSS and coculture with HUVECs synergistically promotes the osteogenesis of BMSCs, which was mediated by the integrin β1-FAK-ERK signaling pathway.
Collapse
Affiliation(s)
- Mingli JIANG
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Qihua SHEN
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Yi ZHOU
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Wenxia REN
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Miaomiao CHAI
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| | - Yan ZHOU
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
- * To whom correspondence should be addressed. E-mail: * Correspondence:
| | - Wen-Song TAN
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, ShanghaiChina
| |
Collapse
|
28
|
Ding MH, Lozoya EG, Rico RN, Chew SA. The Role of Angiogenesis-Inducing microRNAs in Vascular Tissue Engineering. Tissue Eng Part A 2020; 26:1283-1302. [PMID: 32762306 DOI: 10.1089/ten.tea.2020.0170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is an important process in tissue repair and regeneration as blood vessels are integral to supply nutrients to a functioning tissue. In this review, the application of microRNAs (miRNAs) or anti-miRNAs that can induce angiogenesis to aid in blood vessel formation for vascular tissue engineering in ischemic diseases such as peripheral arterial disease and stroke, cardiac diseases, and skin and bone tissue engineering is discussed. Endothelial cells (ECs) form the endothelium of the blood vessel and are recognized as the primary cell type that drives angiogenesis and studied in the applications that were reviewed. Besides ECs, mesenchymal stem cells can also play a pivotal role in these applications, specifically, by secreting growth factors or cytokines for paracrine signaling and/or as constituent cells in the new blood vessel formed. In addition to delivering miRNAs or cells transfected/transduced with miRNAs for angiogenesis and vascular tissue engineering, the utilization of extracellular vesicles (EVs), such as exosomes, microvesicles, and EVs collectively, has been more recently explored. Proangiogenic miRNAs and anti-miRNAs contribute to angiogenesis by targeting the 3'-untranslated region of targets to upregulate proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor, and hypoxia-inducible factor-1 and increase the transduction of VEGF signaling through the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways such as phosphatase and tensin homolog or regulating the signaling of other pathways important for angiogenesis such as the Notch signaling pathway and the pathway to produce nitric oxide. In conclusion, angiogenesis-inducing miRNAs and anti-miRNAs are promising tools for vascular tissue engineering for several applications; however, future work should emphasize optimizing the delivery and usage of these therapies as miRNAs can also be associated with the negative implications of cancer.
Collapse
Affiliation(s)
- May-Hui Ding
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Eloy G Lozoya
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Rene N Rico
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
29
|
Chai M, Gu C, Shen Q, Liu J, Zhou Y, Jin Z, Xiong W, Zhou Y, Tan W. Hypoxia alleviates dexamethasone-induced inhibition of angiogenesis in cocultures of HUVECs and rBMSCs via HIF-1α. Stem Cell Res Ther 2020; 11:343. [PMID: 32762747 PMCID: PMC7409505 DOI: 10.1186/s13287-020-01853-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/23/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND AIM Inadequate vascularization is a challenge in bone tissue engineering because internal cells are prone to necrosis due to a lack of nutrient supply. Rat bone marrow-derived mesenchymal stem cells (rBMSCs) and human umbilical vein endothelial cells (HUVECs) were cocultured to construct prevascularized bone tissue in osteogenic induction medium (OIM) in vitro. The angiogenic capacity of HUVECs was limited in the coculture system. In this study, the effects of the components in the medium on HUVEC angiogenesis were analyzed. METHODS The coculture system was established in OIM. Alizarin red staining and alkaline phosphatase staining were used to assess the osteogenic ability of MSCs. A Matrigel tube assay was used to assess the angiogenic ability of HUVECs in vitro. The proliferation of HUVECs was evaluated by cell counting and CCK-8 assays, and migration was evaluated by the streaked plate assay. The expression levels of angiogenesis-associated genes and proteins in HUVECs were measured by qRT-PCR and Western blotting, respectively. RESULTS Dexamethasone in the OIM suppressed the proliferation and migration of HUVECs, inhibiting the formation of capillary-like structures. Our research showed that dexamethasone stimulated HUVECs to secrete tissue inhibitor of metalloproteinase (TIMP-3), which competed with vascular endothelial growth factor (VEGF-A) to bind to vascular endothelial growth factor receptor 2 (VEGFR2, KDR). This effect was related to inhibiting the phosphorylation of ERK and AKT, which are two downstream targets of KDR. However, under hypoxia, the enhanced expression of hypoxia-inducible factor-1α (HIF-1α) decreased the expression of TIMP-3 and promoted the phosphorylation of KDR, improving HUVEC angiogenesis in the coculture system. CONCLUSION Coculture of hypoxia-preconditioned HUVECs and MSCs showed robust angiogenesis and osteogenesis in OIM, which has important implications for prevascularization in bone tissue engineering in the future.
Collapse
Affiliation(s)
- Miaomiao Chai
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Ce Gu
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Qihua Shen
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Jiaxing Liu
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Yi Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Ziyang Jin
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Wanli Xiong
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China.
| | - Wensong Tan
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, People's Republic of China
| |
Collapse
|
30
|
Rozas-Villanueva MF, Casanello P, Retamal MA. Role of ROS/RNS in Preeclampsia: Are Connexins the Missing Piece? Int J Mol Sci 2020; 21:ijms21134698. [PMID: 32630161 PMCID: PMC7369723 DOI: 10.3390/ijms21134698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/18/2020] [Accepted: 06/28/2020] [Indexed: 12/15/2022] Open
Abstract
Preeclampsia is a pregnancy complication that appears after 20 weeks of gestation and is characterized by hypertension and proteinuria, affecting both mother and offspring. The cellular and molecular mechanisms that cause the development of preeclampsia are poorly understood. An important feature of preeclampsia is an increase in oxygen and nitrogen derived free radicals (reactive oxygen species/reactive nitrogen species (ROS/RNS), which seem to be central players setting the development and progression of preeclampsia. Cell-to-cell communication may be disrupted as well. Connexins (Cxs), a family of transmembrane proteins that form hemichannels and gap junction channels (GJCs), are essential in paracrine and autocrine cell communication, allowing the movement of signaling molecules between cells as well as between the cytoplasm and the extracellular media. GJCs and hemichannels are fundamental for communication between endothelial and smooth muscle cells and, therefore, in the control of vascular contraction and relaxation. In systemic vasculature, the activity of GJCs and hemichannels is modulated by ROS and RNS. Cxs participate in the development of the placenta and are expressed in placental vasculature. However, it is unknown whether Cxs are modulated by ROS/RNS in the placenta, or whether this potential modulation contributes to the pathogenesis of preeclampsia. Our review addresses the possible role of Cxs in preeclampsia, and the plausible modulation of Cxs-formed channels by ROS and RNS. We suggest these factors may contribute to the development of preeclampsia.
Collapse
Affiliation(s)
- María F. Rozas-Villanueva
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile;
- Programa de Doctorado en Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7690000, Chile
| | - Paola Casanello
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7690000, Chile;
- Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7690000, Chile
| | - Mauricio A. Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile;
- Programa de Comunicación Celular de Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7690000, Chile
- Correspondence:
| |
Collapse
|
31
|
Zhou C, Zhang D, Du W, Zou J, Li X, Xie J. Substrate mechanics dictate cell-cell communication by gap junctions in stem cells from human apical papilla. Acta Biomater 2020; 107:178-193. [PMID: 32105834 DOI: 10.1016/j.actbio.2020.02.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
It is recognized that the interaction between cells and their physical microenvironment plays a fundamental role in controlling cell behaviors and even in determining cell fate. Any change in the physical properties of the extracellular matrix (ECM), such as its topography, geometry, and stiffness, controls this interaction. In the current study, we revealed a potent interconnection between the cell-matrix interaction and cell-cell communication that is mediated by interface stiffness, and elucidated this process in stem cells from human apical papilla (hSCAPs) in terms of mechanosensing, mechanotransduction, and gap junction-mediated cell-cell communication. We first fabricated polydimethylsiloxane (PDMS) substrates with the same topography and geometry but different stiffnesses and found that the cell morphology of the hSCAPs actively changed to adapt to the difference in substrate stiffness. We also found that the hSCAPs secreted more fibronectin in response to the stiff substrate. The focal adhesion plaques were changed by altering the expression of focal adhesion kinase (FAK) and paxillin. The FAK and paxillin bound to connexin 43 and, as a result, altered the gap junction formation. By performing a Lucifer yellow transfer assay, we further confirmed that the interface stiffness mediated cell-cell communication in living hSCAPs through changes in gap junction tunnels. The intrinsic mechanism that mediated cell-cell communication by extracellular stiffness show the great influence of the interaction between cells and their external physical microenvironment and stress the importance of microenvironmental mechanics in organ development and diseases. STATEMENT OF SIGNIFICANCE: Biochemical factors could direct cell behaviors such as cell proliferation, migration, differentiation, cell cycling and apoptosis. Likewise, biophysical factors could also determine cell behaviors in all biological processes. In the current study, we revealed a potent interconnection between the cell-matrix interaction and cell-cell communication by elucidating the whole process from cell mechanosensing, mechanotransduction to gap junction-mediated cell-cell communication. This process occurs in a collective of cells but not in that of a single cell. Biophysical properties of ECM induced cell-to-cell communication indicates the importance of microenvironmental mechanics in organ development and diseases. These findings should be of great interest in all biological fields, especially in biomaterials - cell/molecular biology involved in the interactions between the cell and its matrix.
Collapse
|
32
|
Syed SN, Frank AC, Raue R, Brüne B. MicroRNA-A Tumor Trojan Horse for Tumor-Associated Macrophages. Cells 2019; 8:E1482. [PMID: 31766495 PMCID: PMC6953083 DOI: 10.3390/cells8121482] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) significantly contribute to the regulation of gene expression, by virtue of their ability to interact with a broad, yet specific set of target genes. MiRs are produced and released by almost every cell type and play an important role in horizontal gene regulation in the tumor microenvironment (TME). In the TME, both tumor and stroma cells cross-communicate via diverse factors including miRs, which are taking central stage as a therapeutic target of anti-tumor therapy. One of the immune escape strategies adopted by tumor cells is to release miRs as a Trojan horse to hijack circulating or tumor-localized monocytes/macrophages to tune them for pro-tumoral functions. On the other hand, macrophage-derived miRs exert anti-tumor functions. The transfer of miRs from host to recipient cells depends on the supramolecular structure and composition of miR carriers, which determine the distinct uptake mechanism by recipient cells. In this review, we provide a recent update on the miR-mediated crosstalk between tumor cells and macrophages and their mode of uptake in the TME.
Collapse
Affiliation(s)
- Shahzad Nawaz Syed
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Ann-Christin Frank
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Rebecca Raue
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (S.N.S.); (A.-C.F.); (R.R.)
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, 60590 Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, 60596 Frankfurt, Germany
| |
Collapse
|
33
|
Correia CR, Bjørge IM, Zeng J, Matsusaki M, Mano JF. Liquefied Microcapsules as Dual-Microcarriers for 3D+3D Bottom-Up Tissue Engineering. Adv Healthc Mater 2019; 8:e1901221. [PMID: 31603632 DOI: 10.1002/adhm.201901221] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/28/2019] [Indexed: 12/13/2022]
Abstract
Cell encapsulation systems must ensure the diffusion of molecules to avoid the formation of necrotic cores. The architectural design of hydrogels, the gold standard tissue engineering strategy, is thus limited to a microsize range. To overcome such a limitation, liquefied microcapsules encapsulating cells and microparticles are proposed. Microcapsules with controlled sizes with average diameters of 608.5 ± 122.3 µm are produced at high rates by electrohydrodynamic atomization, and arginyl-glycyl-aspartic acid (RGD) domains are introduced in the multilayered membrane. While cells and microparticles interact toward the production of confined microaggregates, on the outside cell-mediated macroaggregates are formed due to the aggregation of microcapsules. The concept of simultaneous aggregation is herein termed as 3D+3D bottom-up tissue engineering. Microcapsules are cultured alone (microcapsule1 ) or on top of 2D cell beds composed of human umbilical vein endothelial cells (HUVECs) alone (microcapsule2 ) or cocultured with fibroblasts (microcapsule3 ). Microcapsules are able to support cell encapsulation shown by LiveDead, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphofenyl)-2H-tetrazolium (MTS), and dsDNA assays. Only microcapsule3 are able to form macroaggregates, as shown by F-actin immunofluorescence. The bioactive 3D system also presented alkaline phosphatase activity, thus allowing osteogenic differentiation. Upon implantation using the chick chorioallontoic membrane (CAM) model, microcapsules recruit a similar number of vessels with alike geometric parameters in comparison with CAMs supplemented with basic fibroblast growth factor (bFGF).
Collapse
Affiliation(s)
- Clara R. Correia
- CICECO‐Aveiro Institute of MaterialsDepartment of ChemistryCampus Universitário de Santiago 3810–193 Aveiro Portugal
| | - Isabel M. Bjørge
- CICECO‐Aveiro Institute of MaterialsDepartment of ChemistryCampus Universitário de Santiago 3810–193 Aveiro Portugal
| | - Jinfeng Zeng
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory ChemistryGraduate School of EngineeringOsaka University 2‐1 Yamadaoka, Suita Osaka 565‐0871 Japan
| | - Michiya Matsusaki
- Division of Applied ChemistryGraduate School of EngineeringOsaka University 2‐1 Yamadaoka, Suita Osaka 565‐0871 Japan
- JSTPRESTO 2‐1 Yamadaoka, Suita Osaka 565‐0871 Japan
| | - João F. Mano
- CICECO‐Aveiro Institute of MaterialsDepartment of ChemistryCampus Universitário de Santiago 3810–193 Aveiro Portugal
| |
Collapse
|
34
|
Abdelrazik H, Giordano E, Barbanti Brodano G, Griffoni C, De Falco E, Pelagalli A. Substantial Overview on Mesenchymal Stem Cell Biological and Physical Properties as an Opportunity in Translational Medicine. Int J Mol Sci 2019; 20:5386. [PMID: 31671788 PMCID: PMC6862078 DOI: 10.3390/ijms20215386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) have piqued worldwide interest for their extensive potential to treat a large array of clinical indications, their unique and controversial immunogenic and immune modulatory properties allowing ample discussions and debates for their possible applications. Emerging data demonstrating that the interaction of biomaterials and physical cues with MSC can guide their differentiation into specific cell lineages also provide new interesting insights for further MSC manipulation in different clinical applications. Moreover, recent discoveries of some regulatory molecules and signaling pathways in MSC niche that may regulate cell fate to distinct lineage herald breakthroughs in regenerative medicine. Although the advancement and success in the MSC field had led to an enormous increase in the amount of ongoing clinical trials, we still lack defined clinical therapeutic protocols. This review will explore the exciting opportunities offered by human and animal MSC, describing relevant biological properties of these cells in the light of the novel emerging evidence mentioned above while addressing the limitations and challenges MSC are still facing.
Collapse
Affiliation(s)
- Heba Abdelrazik
- Department of Clinical Pathology, Cairo University, Cairo 1137, Egypt.
- Department of Diagnosis, central laboratory department, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale Policlinico San Martino, 16131 Genoa, Italy.
| | - Emanuele Giordano
- Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, 47522 Cesena, Italy.
| | - Giovanni Barbanti Brodano
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Cristiana Griffoni
- Department of Oncological and Degenerative Spine Surgery, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy.
- Mediterranea Cardiocentro, 80122 Napoli, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
35
|
Inhibiting expression of Cxcl9 promotes angiogenesis in MSCs-HUVECs co-culture. Arch Biochem Biophys 2019; 675:108108. [PMID: 31550444 DOI: 10.1016/j.abb.2019.108108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/18/2019] [Accepted: 09/15/2019] [Indexed: 12/17/2022]
Abstract
The insufficient vascularization is a major challenge in bone tissue engineering, leading to partial necrosis of the implant. Pre-vascularization is a promising way via in vitro cells co-culture strategies using osteogenic cells and vasculogenic cells, and the cross-talk of cells is essential. In the present study, the effect of rat bone-marrow derived mesenchymal stem cells (BMSCs) on angiogenic capability of human umbilical vein endothelial cells (HUVECs) in growth medium (GM) and osteogenic induction medium (OIM) was investigated. It was demonstrated that cells co-cultured in OIM showed high efficiency in osteogenesis but failed to form capillary-like structure while the results of co-culture in GM were the opposite. By comparing the angiogenic capacity of co-cultures under GM and OIM, chemokine (C-X-C motif) ligand 9 (Cxcl9), secreted by BMSCs in OIM, was identified to be an angiostatic factor to counter-regulate vascular endothelial growth factor (VEGF) and prevent its binding to HUVECs, which abrogated angiogenesis of MSCs-ECs co-culture. Moreover, Cxcl9 was proved to suppress the osteogenic differentiation of BMSCs monoculture. The molecular mechanism of Cxcl9 activation in BMSCs involved mTOR/STAT1 signaling pathway. Therefore, blocking this signaling pathway via rapamycin addition resulted in the inhibition of Cxcl9 and improvement of osteogenic differentiation and angiogenic capacity of co-culture in OIM. These results reveal that Cxcl9 is a negative modulator of angiogenesis and osteogenesis, and its inhibition could promote pre-vascularization of bone tissue engineering.
Collapse
|
36
|
Sun J, Zhou Y, Ye Z, Tan WS. Transforming growth factor-β1 stimulates mesenchymal stem cell proliferation by altering cell cycle through FAK-Akt-mTOR pathway. Connect Tissue Res 2019; 60:406-417. [PMID: 30642198 DOI: 10.1080/03008207.2019.1570171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background: Mesenchymal stem cells (MSCs) are promising for cell therapy and regenerative medicine. An increased need for expanding of MSCs under serum-free condition to achieve a sufficient quantity for therapeutic applications is inevitable. Transforming growth factor-β1 (TGF-β1) is widely used for expanding clinical-grade MSCs in vitro. This work focuses on the influence of TGF-β1 on proliferation in rat bone marrow-derived MSCs (BMSCs) and the underlying mechanism. Materials and Methods: BMSCs were isolated and cultured with or without TGF-β1 in a serum-free medium and Cell Counting Kit-8 assay was used to detect BMSCs proliferation. Cell cycle transition was also analyzed. Further, the expression levels of cyclin D1, phosphorylated focal adhesion kinase, and downstream effectors in Akt-mTOR-S6K1 signaling pathway were examined by western blotting. Results and Conclusion: TGF-β1 triggered proliferation via accelerating G1/S cell cycle transition in BMSCs. The addition of TGF-β1 can activate Akt-mTOR-S6K1 pathway. Additionally, FAK was found to be involved in the process. Upon adding the FAK inhibitor, both the activation of Akt-mTOR-S6K1 and TGF-β1-induced cell proliferation were abrogated. Together, an insight understanding of how TGF-β1 influences BMSCs proliferation is achieved. This study provides a possible strategy of supplementing TGF-β1 in serum-free medium for in vitro expansion, which eventually would advance the production of clinical-grade MSCs for regenerative medicine.
Collapse
Affiliation(s)
- Jie Sun
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P. R. China
| | - Yan Zhou
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P. R. China
| | - Zhaoyang Ye
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P. R. China
| | - Wen-Song Tan
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , P. R. China
| |
Collapse
|
37
|
Wang J, Liu S, Li J, Zhao S, Yi Z. Roles for miRNAs in osteogenic differentiation of bone marrow mesenchymal stem cells. Stem Cell Res Ther 2019; 10:197. [PMID: 31253175 PMCID: PMC6599379 DOI: 10.1186/s13287-019-1309-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs), which were first discovered in bone marrow, are capable of differentiating into osteoblasts, chondrocytes, fat cells, and even myoblasts, and are considered multipotent cells. As a result of their potential for multipotential differentiation, self-renewal, immune regulation, and other effects, BMSCs have become an important source of seed cells for gene therapy, tissue engineering, cell replacement therapy, and regenerative medicine. MicroRNA (miRNA) is a highly conserved type of endogenous non-protein-encoding RNA of about 19-25 nucleotides in length, whose transcription process is independent of other genes. Generally, miRNA plays roles in regulating cell proliferation, differentiation, apoptosis, and development by binding to the 3' untranslated region of target mRNAs, whereby they can degrade or induce translational silencing. Although miRNAs play a regulatory role in various metabolic processes, they are not translated into proteins. Several studies have shown that miRNAs play an important role in the osteogenic differentiation of BMSCs. Herein, we describe in-depth studies of roles for miRNAs during the osteogenic differentiation of BMSCs, as they provide new theoretical and experimental rationales for bone tissue engineering and clinical treatment.
Collapse
Affiliation(s)
- Jicheng Wang
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China.,Xi'an Medical University, Xi'an, 710068, China
| | - Shizhang Liu
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China
| | - Jingyuan Li
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China
| | - Song Zhao
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China.,Xi'an Medical University, Xi'an, 710068, China
| | - Zhi Yi
- Shaanxi Provincial People's Hospital, 256 Youyi West Road, Beilin, Xi'an, 710068, China.
| |
Collapse
|
38
|
The Functional Implications of Endothelial Gap Junctions and Cellular Mechanics in Vascular Angiogenesis. Cancers (Basel) 2019; 11:cancers11020237. [PMID: 30781714 PMCID: PMC6406946 DOI: 10.3390/cancers11020237] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/08/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Angiogenesis—the sprouting and growth of new blood vessels from the existing vasculature—is an important contributor to tumor development, since it facilitates the supply of oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic process as their proliferation, motility, and morphology are modulated by pro-angiogenic and environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro studies have revealed that the gap junctions of endothelial cells also participate in the promotion of angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or -independent pathways, have been proposed. In particular, connexins might have the potential to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that are dynamically changed during the angiogenic processes. Here, we review the implication for endothelial gap junctions and cellular mechanics in vascular angiogenesis.
Collapse
|
39
|
Micrornas at the Interface between Osteogenesis and Angiogenesis as Targets for Bone Regeneration. Cells 2019; 8:cells8020121. [PMID: 30717449 PMCID: PMC6406308 DOI: 10.3390/cells8020121] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
Bone formation and regeneration is a multistep complex process crucially determined by the formation of blood vessels in the growth plate region. This is preceded by the expression of growth factors, notably the vascular endothelial growth factor (VEGF), secreted by osteogenic cells, as well as the corresponding response of endothelial cells, although the exact mechanisms remain to be clarified. Thereby, coordinated coupling between osteogenesis and angiogenesis is initiated and sustained. The precise interplay of these two fundamental processes is crucial during times of rapid bone growth or fracture repair in adults. Deviations in this balance might lead to pathologic conditions such as osteoarthritis and ectopic bone formation. Besides VEGF, the recently discovered important regulatory and modifying functions of microRNAs also support this key mechanism. These comprise two principal categories of microRNAs that were identified with specific functions in bone formation (osteomiRs) and/or angiogenesis (angiomiRs). However, as hypoxia is a major driving force behind bone angiogenesis, a third group involved in this process is represented by hypoxia-inducible microRNAs (hypoxamiRs). This review was focused on the identification of microRNAs that were found to have an active role in osteogenesis as well as angiogenesis to date that were termed "CouplingmiRs (CPLGmiRs)". Outlined representatives therefore represent microRNAs that already have been associated with an active role in osteogenic-angiogenic coupling or are presumed to have its potential. Elucidation of the molecular mechanisms governing bone angiogenesis are of great relevance for improving therapeutic options in bone regeneration, tissue-engineering, and the treatment of bone-related diseases.
Collapse
|
40
|
Lemcke H, David R. Potential mechanisms of microRNA mobility. Traffic 2018; 19:910-917. [PMID: 30058163 DOI: 10.1111/tra.12606] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
Abstract
microRNAs (miRNAs) are important epigenetic modulators of gene expression that control cellular physiology as well as tissue homeostasis, and development. In addition to the temporal aspects of miRNA-mediated gene regulation, the intracellular localization of miRNA is crucial for its silencing activity. Recent studies indicated that miRNA is even translocated between cells via gap junctional cell-cell contacts, allowing spatiotemporal modulation of gene expression within multicellular systems. Although non coding RNA remains a focus of intense research, studies regarding the intra-and intercellular mobility of small RNAs are still largely missing. Emerging data from experimental and computational work suggest the involvement of transport mechanisms governing proper localization of miRNA in single cells and cellular syncytia. Based on these data, we discuss a model of miRNA translocation that could help to address the spatial aspects of miRNA function and the impact of miRNA molecules on the intercellular signaling network.
Collapse
Affiliation(s)
- Heiko Lemcke
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| | - Robert David
- Department of Cardiac Surgery, Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University of Rostock, Rostock, Germany.,Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany
| |
Collapse
|