1
|
Arya SB, Collie SP, Xu Y, Fernandez M, Sexton JZ, Mosalaganti S, Coulombe PA, Parent CA. Neutrophils secrete exosome-associated DNA to resolve sterile acute inflammation. Nat Cell Biol 2025:10.1038/s41556-025-01671-4. [PMID: 40404894 DOI: 10.1038/s41556-025-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/09/2025] [Indexed: 05/24/2025]
Abstract
Acute inflammation, characterized by a rapid influx of neutrophils, is a protective response that can lead to chronic inflammatory diseases when left unresolved. We previously showed that secretion of LTB4-containing exosomes via nuclear envelope-derived multivesicular bodies is required for effective neutrophil infiltration during inflammation. Here we report that the co-secretion of these exosomes with nuclear DNA facilitates the resolution of the neutrophil infiltrate in a mouse skin model of sterile inflammation. Activated neutrophils exhibit rapid and repetitive DNA secretion as they migrate directionally using a mechanism distinct from suicidal neutrophil extracellular trap release and cell death. Packaging of DNA in the lumen of nuclear envelope-multivesicular bodies is mediated by lamin B receptor and chromatin decondensation. These findings advance our understanding of neutrophil functions during inflammation and the physiological relevance of DNA secretion.
Collapse
Affiliation(s)
- Subhash B Arya
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Samuel P Collie
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yang Xu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Martin Fernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan Z Sexton
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Shyamal Mosalaganti
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Pierre A Coulombe
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Carole A Parent
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Brady A, Mora Martinez LC, Hammond B, Whitefoot-Keliin KM, Haribabu B, Uriarte SM, Lawrenz MB. Distinct mechanisms of type 3 secretion system recognition control LTB4 synthesis in neutrophils and macrophages. PLoS Pathog 2024; 20:e1012651. [PMID: 39423229 PMCID: PMC11524448 DOI: 10.1371/journal.ppat.1012651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/30/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Leukotriene B4 (LTB4) is an inflammatory lipid produced in response to pathogens that is critical for initiating the inflammatory cascade needed to control infection. However, during plague, Yersinia pestis inhibits the timely synthesis of LTB4 and subsequent inflammation. Using bacterial mutants, we previously determined that Y. pestis inhibits LTB4 synthesis via the action of the Yop effector proteins that are directly secreted into host cells through a type 3 secretion system (T3SS). Here, we show that the T3SS is the primary pathogen associated molecular pattern (PAMP) required for production of LTB4 in response to both Yersinia and Salmonella. However, we also unexpectantly discovered that T3SS-mediated LTB4 synthesis by neutrophils and macrophages require the activation of two distinctly different host signaling pathways. We identified that phagocytosis and the NLRP3/CASP1 inflammasome significantly impact LTB4 synthesis by macrophages but not neutrophils. Instead, the SKAP2/PLC signaling pathway is required for T3SS-mediated LTB4 production by neutrophils. Finally, while recognition of the T3SS is required for LTB4 production, we also discovered that a second unrelated PAMP-mediated signal activates the MAP kinase pathway needed for synthesis. Together, these data demonstrate significant differences in the host factors and signaling pathways required by macrophages and neutrophils to quickly produce LTB4 in response to bacteria. Moreover, while macrophages and neutrophils might rely on different signaling pathways for T3SS-dependent LTB4 synthesis, Y. pestis has evolved virulence mechanisms to counteract this response by either leukocyte to inhibit LTB4 synthesis and colonize the host.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Leonardo C. Mora Martinez
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Benjamin Hammond
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Kaitlyn M. Whitefoot-Keliin
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Microbiomics, Inflammation and Pathogenicity, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
3
|
Brady A, Mora-Martinez LC, Hammond B, Haribabu B, Uriarte SM, Lawrenz MB. Distinct Mechanisms of Type 3 Secretion System Recognition Control LTB 4 Synthesis in Neutrophils versus Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601466. [PMID: 39005373 PMCID: PMC11244889 DOI: 10.1101/2024.07.01.601466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Leukotriene B4 (LTB4) is critical for initiating the inflammatory cascade in response to infection. However, Yersinia pestis colonizes the host by inhibiting the timely synthesis of LTB4 and inflammation. Here, we show that the bacterial type 3 secretion system (T3SS) is the primary pathogen associated molecular pattern (PAMP) responsible for LTB4 production by leukocytes in response to Yersinia and Salmonella, but synthesis is inhibited by the Yop effectors during Yersinia interactions. Moreover, we unexpectedly discovered that T3SS-mediated LTB4 synthesis by neutrophils and macrophages require two distinct host signaling pathways. We show that the SKAP2/PLC signaling pathway is essential for LTB4 production by neutrophils but not macrophages. Instead, phagocytosis and the NLRP3/CASP1 inflammasome are needed for LTB4 synthesis by macrophages. Finally, while recognition of the T3SS is required for LTB4 production, we also discovered a second unrelated PAMP-mediated signal independently activates the MAP kinase pathway needed for LTB4 synthesis. Together, these data demonstrate significant differences in the signaling pathways required by macrophages and neutrophils to quickly respond to bacterial infections.
Collapse
Affiliation(s)
- Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Leonardo C. Mora-Martinez
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Benjamin Hammond
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Microbiomics, Inflammation and Pathogenicity, Louisville, Kentucky, United States of America
| | - Silvia M. Uriarte
- Deptartment of Oral Immunology & Infectious Diseases, University of Louisville, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| | - Matthew B. Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, United States of America
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Louisville, Kentucky, United States of America
| |
Collapse
|
4
|
Arya SB, Collie SP, Xu Y, Fernandez M, Sexton JZ, Mosalaganti S, Coulombe PA, Parent CA. Neutrophils secrete exosome-associated DNA to resolve sterile acute inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590456. [PMID: 38712240 PMCID: PMC11071349 DOI: 10.1101/2024.04.21.590456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Acute inflammation, characterized by a rapid influx of neutrophils, is a protective response that can lead to chronic inflammatory diseases when left unresolved. Secretion of LTB 4 -containing exosomes is required for effective neutrophil infiltration during inflammation. In this study, we show that neutrophils release nuclear DNA in a non-lytic, rapid, and repetitive manner, via a mechanism distinct from suicidal NET release and cell death. The packaging of nuclear DNA occurs in the lumen of nuclear envelope (NE)-derived multivesicular bodies (MVBs) that harbor the LTB 4 synthesizing machinery and is mediated by the lamin B receptor (LBR) and chromatin decondensation. Disruption of secreted exosome-associated DNA (SEAD) in a model of sterile inflammation in mouse skin amplifies and prolongs the presence of neutrophils, impeding the onset of resolution. Together, these findings advance our understanding of neutrophil functions during inflammation and the physiological significance of NETs, with implications for novel treatments for inflammatory disorders.
Collapse
|
5
|
Miguez PA, de Paiva Gonçalves V, Musskopf ML, Rivera-Concepcion A, McGaughey S, Yu C, Lee DJ, Tuin SA, Ali A. Mitigation of BMP-induced inflammation in craniofacial bone regeneration and improvement of bone parameters by dietary hesperidin. Sci Rep 2024; 14:2602. [PMID: 38297106 PMCID: PMC10830467 DOI: 10.1038/s41598-024-52566-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024] Open
Abstract
Based on anti-inflammatory and osteogenic properties of hesperidin (HE), we hypothesized its systemic administration could be a cost-effective method of improving BMP-induced bone regeneration. Sprague-Dawley rats were allocated into 4 groups (n = 10/group): a 5-mm critical-sized mandible defect + collagen scaffold or, scaffold + 1 µg of BMP2 with and without dietary HE at 100 mg/kg. HE was administered by oral gavage 4 weeks prior to surgeries until euthanasia at day 7 or 14 post-surgery. The healing tissue within the defect collected at day 7 was subjected to gene expression analysis. Mandibles harvested at day 14 were subjected to microcomputed tomography and histology. HE + BMP2-treated rats had a statistically significant decrease in expression of inflammatory genes compared to BMP2 alone. The high-dose BMP2 alone caused cystic-like regeneration with incomplete defect closure. HE + BMP2 showed virtually complete bone fusion. Collagen fibril birefringence pattern (red color) under polarized light indicated high organization in BMP2-induced newly formed bone (NFB) in HE-supplemented group (p < 0.05). Clear changes in osteocyte lacunae as well as a statistically significant increase in osteoclasts were found around NFB in HE-treated rats. A significant increase in trabecular volume and thickness, and trabecular and cortical density was found in femurs of HE-supplemented rats (p < 0.05). Our findings show, for the first time, that dietary HE has a remarkable modulatory role in the function of locally delivered high-dose BMP2 in bone regeneration possibly via control of inflammation, osteogenesis, changes in osteocyte and osteoclast function and collagen maturation in regenerated and native bone. In conclusion, HE had a significant skeletal bone sparing effect and the ability to provide a more effective BMP-induced craniofacial regeneration.
Collapse
Affiliation(s)
- Patricia A Miguez
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, CB# 7455, Rm 4610, Koury Oral Health Sciences, 385 S. Columbia St., Chapel Hill, NC, 27599-7455, USA.
| | - Vinícius de Paiva Gonçalves
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marta L Musskopf
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, CB# 7455, Rm 4610, Koury Oral Health Sciences, 385 S. Columbia St., Chapel Hill, NC, 27599-7455, USA
| | | | - Skylar McGaughey
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christina Yu
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dong Joon Lee
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen A Tuin
- Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Aya Ali
- Division of Comprehensive Oral Health - Periodontology, Adams School of Dentistry, University of North Carolina at Chapel Hill, CB# 7455, Rm 4610, Koury Oral Health Sciences, 385 S. Columbia St., Chapel Hill, NC, 27599-7455, USA
| |
Collapse
|
6
|
Lundgren SM, Rocha-Gregg BL, Akdoǧan E, Mysore MN, Hayes S, Collins SR. Signaling dynamics distinguish high- and low-priority neutrophil chemoattractant receptors. Sci Signal 2023; 16:eadd1845. [PMID: 37788324 PMCID: PMC10680494 DOI: 10.1126/scisignal.add1845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2023] [Indexed: 10/05/2023]
Abstract
Human neutrophils respond to multiple chemoattractants to guide their migration from the vasculature to sites of infection and injury, where they clear pathogens and amplify inflammation. To properly focus their responses during this complex navigation, neutrophils prioritize pathogen- and injury-derived signals over long-range inflammatory signals, such as the leukotriene LTB4, secreted by host cells. Different chemoattractants can also drive qualitatively different modes of migration even though their receptors couple to the same Gαi family of G proteins. Here, we used live-cell imaging to demonstrate that the responses differed in their signaling dynamics. Low-priority chemoattractants caused transient responses, whereas responses to high-priority chemoattractants were sustained. We observed this difference in both primary neutrophils and differentiated HL-60 cells, for downstream signaling mediated by Ca2+, a major regulator of secretion, and Cdc42, a primary regulator of polarity and cell steering. The rapid attenuation of Cdc42 activation in response to LTB4 depended on the phosphorylation sites Thr308 and Ser310 in the carboxyl-terminal tail of its receptor LTB4R in a manner independent of endocytosis. Mutation of these residues to alanine impaired chemoattractant prioritization, although it did not affect chemoattractant-dependent differences in migration persistence. Our results indicate that distinct temporal regulation of shared signaling pathways distinguishes between receptors and contributes to chemoattractant prioritization.
Collapse
Affiliation(s)
- Stefan M. Lundgren
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Briana L. Rocha-Gregg
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Emel Akdoǧan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Maya N. Mysore
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Samantha Hayes
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Tamás SX, Roux BT, Vámosi B, Dehne FG, Török A, Fazekas L, Enyedi B. A genetically encoded sensor for visualizing leukotriene B4 gradients in vivo. Nat Commun 2023; 14:4610. [PMID: 37528073 PMCID: PMC10393954 DOI: 10.1038/s41467-023-40326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Leukotriene B4 (LTB4) is a potent lipid chemoattractant driving inflammatory responses during host defense, allergy, autoimmune and metabolic diseases. Gradients of LTB4 orchestrate leukocyte recruitment and swarming to sites of tissue damage and infection. How LTB4 gradients form and spread in live tissues to regulate these processes remains largely elusive due to the lack of suitable tools for monitoring LTB4 levels in vivo. Here, we develop GEM-LTB4, a genetically encoded green fluorescent LTB4 biosensor based on the human G-protein-coupled receptor BLT1. GEM-LTB4 shows high sensitivity, specificity and a robust fluorescence increase in response to LTB4 without affecting downstream signaling pathways. We use GEM-LTB4 to measure ex vivo LTB4 production of murine neutrophils. Transgenic expression of GEM-LTB4 in zebrafish allows the real-time visualization of both exogenously applied and endogenously produced LTB4 gradients. GEM-LTB4 thus serves as a broadly applicable tool for analyzing LTB4 dynamics in various experimental systems and model organisms.
Collapse
Affiliation(s)
- Szimonetta Xénia Tamás
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Benoit Thomas Roux
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Boldizsár Vámosi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
| | - Fabian Gregor Dehne
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Anna Török
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - László Fazekas
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary
| | - Balázs Enyedi
- Department of Physiology, Semmelweis University, Faculty of Medicine, Tűzoltó utca 37-47, H-1094, Budapest, Hungary.
- MTA-SE Lendület Tissue Damage Research Group, Hungarian Academy of Sciences and Semmelweis University, H-1094, Budapest, Hungary.
- HCEMM-SE Inflammatory Signaling Research Group, Department of Physiology, Semmelweis University, H-1094, Budapest, Hungary.
| |
Collapse
|
8
|
Dinca AL, Diaconu A, Birla RD, Coculescu BI, Dinca VG, Manole G, Marica C, Tudorache IS, Panaitescu E, Constantinoiu SM, Coculescu EC. Systemic inflammation factors as survival prognosis markers in ovarian neoplasm and the relationship with cancer-associated inflammatory mediators-a review. Int J Immunopathol Pharmacol 2023; 37:3946320231178769. [PMID: 37246293 DOI: 10.1177/03946320231178769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
At the level of the genital system, ovarian neoplasm is the most frequent cause of morbidity and mortality. In the specialized literature, the coexistence of an inflammatory process is admitted from the early stages of the evolution of this pathology. Starting from the importance of this process, both in determinism and in the evolution of carcinogenesis and summarizing the field of knowledge, for this study we considered two objectives: the first was the presentation of the pathogenic mechanism, through which chronic +ovarian inflammation is involved in the process of carcinogenesis, and the second is the justification of the clinical utility of the three parameters, accepted as biomarkers of systemic inflammation: neutrophil-lymphocyte ratio, platelet lymphocyte ratio, and lymphocyte-monocyte ratio in the assessment of prognosis. The study highlights the acceptance of these hematological parameters, with practical utility, as prognostic biomarkers in ovarian cancer, based on the intrinsic link with cancer-associated inflammatory mediators. Based on the data from the specialized literature, the conclusion is that in ovarian cancer, the inflammatory process induced by the presence of the tumor, induces changes in the types of circulating leukocytes, with immediate effects on the markers of systemic inflammation.
Collapse
Affiliation(s)
| | - Adriana Diaconu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Rodica Daniela Birla
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan-Ioan Coculescu
- Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- Cantacuzino National Medico-Military Institute for Research and Development, Bucharest, Romania
| | | | - Gheorghe Manole
- Romanian Academy of Medical Sciences
- Faculty of General Nursing, Bioterra University, Bucharest, Romania
| | - Cristian Marica
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Eugenia Panaitescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | | | - Elena Claudia Coculescu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
9
|
Oster L, Schröder J, Rugi M, Schimmelpfennig S, Sargin S, Schwab A, Najder K. Extracellular pH Controls Chemotaxis of Neutrophil Granulocytes by Regulating Leukotriene B 4 Production and Cdc42 Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:136-144. [PMID: 35715008 DOI: 10.4049/jimmunol.2100475] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Neutrophil granulocytes are the first and robust responders to the chemotactic molecules released from an inflamed acidic tissue. The aim of this study was to elucidate the role of microenvironmental pH in neutrophil chemotaxis. To this end, we used neutrophils from male C57BL/6J mice and combined live cell imaging chemotaxis assays with measurements of the intracellular pH (pHi) in varied extracellular pH (pHe). Observational studies were complemented by biochemical analyses of leukotriene B4 (LTB4) production and activation of the Cdc42 Rho GTPase. Our data show that pHi of neutrophils dose-dependently adapts to a given pH of the extracellular milieu. Neutrophil chemotaxis toward C5a has an optimum at pHi ∼7.1, and its pHi dependency is almost parallel to that of LTB4 production. Consequently, a shallow pHe gradient, resembling that encountered by neutrophils during extravasation from a blood vessel (pH ∼7.4) into the interstitium (pH ∼7.2), favors chemotaxis of stimulated neutrophils. Lowering pHe below pH 6.8, predominantly affects neutrophil chemotaxis, although the velocity is largely maintained. Inhibition of the Na+/H+ exchanger 1 (NHE1) with cariporide drastically attenuates neutrophil chemotaxis at the optimal pHi irrespective of the high LTB4 production. Neutrophil migration and chemotaxis are almost completely abrogated by inhibiting LTB4 production or blocking its receptor (BLT1). The abundance of the active GTP-bound form of Cdc42 is strongly reduced by NHE1 inhibition or pHe 6.5. In conclusion, we propose that the pH dependence of neutrophil chemotaxis toward C5a is caused by a pHi-dependent production of LTB4 and activation of Cdc42. Moreover, it requires the activity of NHE1.
Collapse
Affiliation(s)
- Leonie Oster
- Institute of Physiology II, Westfälische Wilhelms University, Münster, Germany
| | - Julia Schröder
- Institute of Physiology II, Westfälische Wilhelms University, Münster, Germany
| | - Micol Rugi
- Institute of Physiology II, Westfälische Wilhelms University, Münster, Germany
| | | | - Sarah Sargin
- Institute of Physiology II, Westfälische Wilhelms University, Münster, Germany
| | - Albrecht Schwab
- Institute of Physiology II, Westfälische Wilhelms University, Münster, Germany
| | - Karolina Najder
- Institute of Physiology II, Westfälische Wilhelms University, Münster, Germany
| |
Collapse
|
10
|
Gillies S, Verdon R, Stone V, Brown DM, Henry T, Tran L, Tucker C, Rossi AG, Tyler CR, Johnston HJ. Transgenic zebrafish larvae as a non-rodent alternative model to assess pro-inflammatory (neutrophil) responses to nanomaterials. Nanotoxicology 2022; 16:333-354. [PMID: 35797989 DOI: 10.1080/17435390.2022.2088312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Hazard studies for nanomaterials (NMs) commonly assess whether they activate an inflammatory response. Such assessments often rely on rodents, but alternative models are needed to support the implementation of the 3Rs principles. Zebrafish (Danio rerio) offer a viable alternative for screening NM toxicity by investigating inflammatory responses. Here, we used non-protected life stages of transgenic zebrafish (Tg(mpx:GFP)i114) with fluorescently-labeled neutrophils to assess inflammatory responses to silver (Ag) and zinc oxide (ZnO) NMs using two approaches. Zebrafish were exposed to NMs via water following a tail fin injury, or NMs were microinjected into the otic vesicle. Zebrafish were exposed to NMs at 3 days post-fertilization (dpf) and neutrophil accumulation at the injury or injection site was quantified at 0, 4, 6, 8, 24, and 48 h post-exposure. Zebrafish larvae were also exposed to fMLF, LTB4, CXCL-8, C5a, and LPS to identify a suitable positive control for inflammation induction. Aqueous exposure to Ag and ZnO NMs stimulated an enhanced and sustained neutrophilic inflammatory response in injured zebrafish larvae, with a greater response observed for Ag NMs. Following microinjection, Ag NMs stimulated a time-dependent neutrophil accumulation in the otic vesicle which peaked at 48 h. LTB4 was identified as a positive control for studies investigating inflammatory responses in injured zebrafish following aqueous exposure, and CXCL-8 for microinjection studies that assess responses in the otic vesicle. Our findings support the use of transgenic zebrafish to rapidly screen the pro-inflammatory effects of NMs, with potential for wider application in assessing chemical safety (e.g. pharmaceuticals).
Collapse
Affiliation(s)
| | | | | | | | | | - Lang Tran
- Institute of Occupational Medicine, Edinburgh, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
11
|
Brunetti RM, Kockelkoren G, Raghavan P, Bell GR, Britain D, Puri N, Collins SR, Leonetti MD, Stamou D, Weiner OD. WASP integrates substrate topology and cell polarity to guide neutrophil migration. J Cell Biol 2022; 221:e202104046. [PMID: 34964841 PMCID: PMC8719638 DOI: 10.1083/jcb.202104046] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/19/2021] [Accepted: 12/10/2021] [Indexed: 12/02/2022] Open
Abstract
To control their movement, cells need to coordinate actin assembly with the geometric features of their substrate. Here, we uncover a role for the actin regulator WASP in the 3D migration of neutrophils. We show that WASP responds to substrate topology by enriching to sites of inward, substrate-induced membrane deformation. Superresolution imaging reveals that WASP preferentially enriches to the necks of these substrate-induced invaginations, a distribution that could support substrate pinching. WASP facilitates recruitment of the Arp2/3 complex to these sites, stimulating local actin assembly that couples substrate features with the cytoskeleton. Surprisingly, WASP only enriches to membrane deformations in the front half of the cell, within a permissive zone set by WASP's front-biased regulator Cdc42. While WASP KO cells exhibit relatively normal migration on flat substrates, they are defective at topology-directed migration. Our data suggest that WASP integrates substrate topology with cell polarity by selectively polymerizing actin around substrate-induced membrane deformations in the front half of the cell.
Collapse
Affiliation(s)
- Rachel M. Brunetti
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Gabriele Kockelkoren
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Preethi Raghavan
- University of California, Berkeley–University of California, San Francisco Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - George R.R. Bell
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | - Derek Britain
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| | - Natasha Puri
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA
| | | | - Dimitrios Stamou
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
- Center for Geometrically Engineered Cellular Membranes, University of Copenhagen, Copenhagen, Denmark
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA
- Center for Geometrically Engineered Cellular Membranes, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
12
|
Roles of Eicosanoids in Regulating Inflammation and Neutrophil Migration as an Innate Host Response to Bacterial Infections. Infect Immun 2021; 89:e0009521. [PMID: 34031130 DOI: 10.1128/iai.00095-21] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Eicosanoids are lipid-based signaling molecules that play a unique role in innate immune responses. The multiple types of eicosanoids, such as prostaglandins (PGs) and leukotrienes (LTs), allow the innate immune cells to respond rapidly to bacterial invaders. Bacterial pathogens alter cyclooxygenase (COX)-derived prostaglandins (PGs) in macrophages, such as PGE2 15d-PGJ2, and lipoxygenase (LOX)-derived leukotriene LTB4, which has chemotactic functions. The PG synthesis and secretion are regulated by substrate availability of arachidonic acid and by the COX-2 enzyme, and the expression of this protein is regulated at multiple levels, both transcriptionally and posttranscriptionally. Bacterial pathogens use virulence strategies such as type three secretion systems (T3SSs) to deliver virulence factors altering the expression of eicosanoid-specific biosynthetic enzymes, thereby modulating the host response to bacterial lipopolysaccharides (LPS). Recent advances have identified a novel role of eicosanoids in inflammasome activation during intracellular infection with bacterial pathogens. Specifically, PGE2 was found to enhance inflammasome activation, driving the formation of pore-induced intracellular traps (PITs), thus trapping bacteria from escaping the dying cell. Finally, eicosanoids and IL-1β released from macrophages are implicated in the efferocytosis of neighboring neutrophils. Neutrophils play an essential role in phagocytosing and degrading PITs and associated bacteria to restore homeostasis. This review focuses on the novel functions of host-derived eicosanoids in the host-pathogen interactions.
Collapse
|
13
|
Kienle K, Glaser KM, Eickhoff S, Mihlan M, Knöpper K, Reátegui E, Epple MW, Gunzer M, Baumeister R, Tarrant TK, Germain RN, Irimia D, Kastenmüller W, Lämmermann T. Neutrophils self-limit swarming to contain bacterial growth in vivo. Science 2021; 372:372/6548/eabe7729. [PMID: 34140358 DOI: 10.1126/science.abe7729] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022]
Abstract
Neutrophils communicate with each other to form swarms in infected organs. Coordination of this population response is critical for the elimination of bacteria and fungi. Using transgenic mice, we found that neutrophils have evolved an intrinsic mechanism to self-limit swarming and avoid uncontrolled aggregation during inflammation. G protein-coupled receptor (GPCR) desensitization acts as a negative feedback control to stop migration of neutrophils when they sense high concentrations of self-secreted attractants that initially amplify swarming. Interference with this process allows neutrophils to scan larger tissue areas for microbes. Unexpectedly, this does not benefit bacterial clearance as containment of proliferating bacteria by neutrophil clusters becomes impeded. Our data reveal how autosignaling stops self-organized swarming behavior and how the finely tuned balance of neutrophil chemotaxis and arrest counteracts bacterial escape.
Collapse
Affiliation(s)
- Korbinian Kienle
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Katharina M Glaser
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sarah Eickhoff
- Institute of Systems Immunology, University of Würzburg, Max Planck Research Group, Würzburg, Germany
| | - Michael Mihlan
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Konrad Knöpper
- Institute of Systems Immunology, University of Würzburg, Max Planck Research Group, Würzburg, Germany
| | - Eduardo Reátegui
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, MA, USA.,William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, USA
| | - Maximilian W Epple
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism (IMPRS-IEM), Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany.,Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Ralf Baumeister
- Bioinformatics and Molecular Genetics, Faculty of Biology, Centre for Biochemistry and Molecular Cell Research, Faculty of Medicine, Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Teresa K Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Daniel Irimia
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Shriners Hospital for Children, Boston, MA, USA
| | - Wolfgang Kastenmüller
- Institute of Systems Immunology, University of Würzburg, Max Planck Research Group, Würzburg, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
14
|
SenGupta S, Hein LE, Xu Y, Zhang J, Konwerski JR, Li Y, Johnson C, Cai D, Smith JL, Parent CA. Triple-Negative Breast Cancer Cells Recruit Neutrophils by Secreting TGF-β and CXCR2 Ligands. Front Immunol 2021; 12:659996. [PMID: 33912188 PMCID: PMC8071875 DOI: 10.3389/fimmu.2021.659996] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
Tumor associated neutrophils (TANs) are frequently detected in triple-negative breast cancer (TNBC). Recent studies also reveal the importance of neutrophils in promoting tumor progression and metastasis during breast cancer. However, the mechanisms regulating neutrophil trafficking to breast tumors are less clear. We sought to determine whether neutrophil trafficking to breast tumors is determined directly by the malignant potential of cancer cells. We found that tumor conditioned media (TCM) harvested from highly aggressive, metastatic TNBC cells induced a polarized morphology and robust neutrophil migration, while TCM derived from poorly aggressive estrogen receptor positive (ER+) breast cancer cells had no activity. In a three-dimensional (3D) type-I collagen matrix, neutrophils migrated toward TCM from aggressive breast cancer cells with increased velocity and directionality. Moreover, in a neutrophil-tumor spheroid co-culture system, neutrophils migrated with increased directionality towards spheroids generated from TNBC cells compared to ER+ cells. Based on these findings, we next sought to characterize the active factors secreted by TNBC cell lines. We found that TCM-induced neutrophil migration is dependent on tumor-derived chemokines, and screening TCM elution fractions based on their ability to induce polarized neutrophil morphology revealed the molecular weight of the active factors to be around 12 kDa. TCM from TNBC cell lines contained copious amounts of GRO (CXCL1/2/3) chemokines and TGF-β cytokines compared to ER+ cell-derived TCM. TCM activity was inhibited by simultaneously blocking receptors specific to GRO chemokines and TGF-β, while the activity remained intact in the presence of either single receptor inhibitor. Together, our findings establish a direct link between the malignant potential of breast cancer cells and their ability to induce neutrophil migration. Our study also uncovers a novel coordinated function of TGF-β and GRO chemokines responsible for guiding neutrophil trafficking to the breast tumor.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Lauren E. Hein
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
| | - Yang Xu
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jason Zhang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Jamie R. Konwerski
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ye Li
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Dawen Cai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Janet L. Smith
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Carole A. Parent
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States
- Cancer Biology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Leukotriene B 4 and Its Receptor in Experimental Autoimmune Uveitis and in Human Retinal Tissues: Clinical Severity and LTB 4 Dependence of Retinal Th17 Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 191:320-334. [PMID: 33159884 DOI: 10.1016/j.ajpath.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
Nomacopan, a drug originally derived from tick saliva, has dual functions of sequestering leukotriene B4 (LTB4) and inhibiting complement component 5 (C5) activation. Nomacopan has been shown to provide therapeutic benefit in experimental autoimmune uveitis (EAU). Longer acting forms of nomacopan were more efficacious in mouse EAU models, and the long-acting variant that inhibited only LTB4 was at least as effective as the long-acting variant that inhibited both C5 and LTB4, preventing structural damage to the retina and a significantly reducing effector T helper 17 cells and inflammatory macrophages. Increased levels of LTB4 and C5a (produced upon C5 activation) were detected during disease progression. Activated retinal lymphocytes were shown to express LTB4 receptors (R) in vitro and in inflamed draining lymph nodes. Levels of LTB4R-expressing active/inflammatory retinal macrophages were also increased. Within the draining lymph node CD4+ T-cell population, 30% expressed LTB4R+ following activation in vitro, whereas retinal infiltrating cells expressed LTB4R and C5aR. Validation of expression of those receptors in human uveitis and healthy tissues suggests that infiltrating cells could be targeted by inhibitors of the LTB4-LTB4 receptor 1 (BLT1) pathway as a novel therapeutic approach. This study provides novel data on intraocular LTB4 and C5a in EAU, their associated receptor expression by retinal infiltrating cells in mouse and human tissues, and in attenuating EAU via the dual inhibitor nomacopan.
Collapse
|
16
|
Subramanian BC, Melis N, Chen D, Wang W, Gallardo D, Weigert R, Parent CA. The LTB4-BLT1 axis regulates actomyosin and β2-integrin dynamics during neutrophil extravasation. J Cell Biol 2020; 219:e201910215. [PMID: 32854115 PMCID: PMC7659729 DOI: 10.1083/jcb.201910215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 06/17/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022] Open
Abstract
The eicosanoid leukotriene B4 (LTB4) relays chemotactic signals to direct neutrophil migration to inflamed sites through its receptor BLT1. However, the mechanisms by which the LTB4-BLT1 axis relays chemotactic signals during intravascular neutrophil response to inflammation remain unclear. Here, we report that LTB4 produced by neutrophils acts as an autocrine/paracrine signal to direct the vascular recruitment, arrest, and extravasation of neutrophils in a sterile inflammation model in the mouse footpad. Using intravital subcellular microscopy, we reveal that LTB4 elicits sustained cell polarization and adhesion responses during neutrophil arrest in vivo. Specifically, LTB4 signaling coordinates the dynamic redistribution of non-muscle myosin IIA and β2-integrin, which facilitate neutrophil arrest and extravasation. Notably, we also found that neutrophils shed extracellular vesicles in the vascular lumen and that inhibition of extracellular vesicle release blocks LTB4-mediated autocrine/paracrine signaling required for neutrophil arrest and extravasation. Overall, we uncover a novel complementary mechanism by which LTB4 relays extravasation signals in neutrophils during early inflammation response.
Collapse
Affiliation(s)
- Bhagawat C. Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nicolas Melis
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Desu Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Weiye Wang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Devorah Gallardo
- Laboratory Animal Sciences Program, Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
17
|
Yang M, Bair JA, Hodges RR, Serhan CN, Dartt DA. Resolvin E1 Reduces Leukotriene B4-Induced Intracellular Calcium Increase and Mucin Secretion in Rat Conjunctival Goblet Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1823-1832. [PMID: 32561135 DOI: 10.1016/j.ajpath.2020.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/25/2023]
Abstract
Leukotriene B4 (LTB4) is a major proinflammatory mediator important in host defense, whereas resolvins (Rvs) are produced during the resolution phase of inflammation. The authors determined the actions of both RvE1 and RvD1 on LTB4-induced responses of goblet cells cultured from rat conjunctiva. The responses measured were an increase in the intracellular [Ca2+] ([Ca2+]i) and high-molecular-weight glycoprotein secretion. Treatment with RvE1 or RvD1 for 30 minutes significantly blocked the LTB4-induced [Ca2+]i increase. The actions of RvE1 on LTB4-induced [Ca2+]i increase were reversed by siRNA for the RvE1 receptor, and the actions of RvD1 were reversed by an RvD1 receptor inhibitor. The RvE1 and RvD1 block of LTB4-stimulated increase in [Ca2+]i was also reversed by an inhibitory peptide to β-adrenergic receptor kinase. LTB4 and block of the LTB4-stimulated increase in [Ca2+]i by RvE1 and RvD1 were partially mediated by the depletion of intracellular Ca2+ stores. RvE1, but not RvD1, counterregulated the LTB4-induced high-molecular-weight glycoprotein secretion. Thus, both RvE1 and RvD1 receptors directly inhibit LTB4 by phosphorylating the LTB4 receptor using β adrenergic receptor kinase. RvE1 receptor counterregulates the LTB4-induced increase in [Ca2+]i and secretion, whereas RvD1 receptor only counterregulates LTB4-induced [Ca2+]i increase.
Collapse
Affiliation(s)
- Menglu Yang
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey A Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Robin R Hodges
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital and Department of Anaesthesia, Perioperative and Pain Medicine, Harvard Medical School, Boston, Massachusetts
| | - Darlene A Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
18
|
Tackenberg H, Möller S, Filippi MD, Laskay T. The Small GTPase Cdc42 Is a Major Regulator of Neutrophil Effector Functions. Front Immunol 2020; 11:1197. [PMID: 32595647 PMCID: PMC7304460 DOI: 10.3389/fimmu.2020.01197] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Neutrophil granulocytes are key components of the innate immune system. As the first responders to inflammatory cues, they rapidly migrate toward the site of infection or inflammation and fulfill diverse effector functions. Since these effector functions can be both beneficial and harmful to the host and surrounding tissue, they require a strict control. The small GTPase Cdc42 is known to regulate neutrophil locomotion by controlling cytoskeleton rearrangement in murine neutrophils. However, the role of Cdc42 in other neutrophil functions in human neutrophils is still poorly understood. Here we demonstrate that in primary human neutrophils, Cdc42 controls directed and random migration, activation, and degranulation as well as the formation of reactive oxygen species, in a stimulus dependent manner. In addition, we show that Cdc42 regulates pathogen killing efficiency, both in murine and human neutrophils. Cdc42 regulation of neutrophil functions is linked to differential regulation of Akt, p38, and p42/44. Our data, therefore, suggests a mechanistic role for Cdc42 activity in primary human neutrophil biology, and identify Cdc42 activity as a target to modulate neutrophil effector mechanisms and killing efficacy.
Collapse
Affiliation(s)
- Heidi Tackenberg
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sonja Möller
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Marie-Dominique Filippi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Metzemaekers M, Gouwy M, Proost P. Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol 2020; 17:433-450. [PMID: 32238918 PMCID: PMC7192912 DOI: 10.1038/s41423-020-0412-0] [Citation(s) in RCA: 316] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Neutrophils are frontline cells of the innate immune system. These effector leukocytes are equipped with intriguing antimicrobial machinery and consequently display high cytotoxic potential. Accurate neutrophil recruitment is essential to combat microbes and to restore homeostasis, for inflammation modulation and resolution, wound healing and tissue repair. After fulfilling the appropriate effector functions, however, dampening neutrophil activation and infiltration is crucial to prevent damage to the host. In humans, chemoattractant molecules can be categorized into four biochemical families, i.e., chemotactic lipids, formyl peptides, complement anaphylatoxins and chemokines. They are critically involved in the tight regulation of neutrophil bone marrow storage and egress and in spatial and temporal neutrophil trafficking between organs. Chemoattractants function by activating dedicated heptahelical G protein-coupled receptors (GPCRs). In addition, emerging evidence suggests an important role for atypical chemoattractant receptors (ACKRs) that do not couple to G proteins in fine-tuning neutrophil migratory and functional responses. The expression levels of chemoattractant receptors are dependent on the level of neutrophil maturation and state of activation, with a pivotal modulatory role for the (inflammatory) environment. Here, we provide an overview of chemoattractant receptors expressed by neutrophils in health and disease. Depending on the (patho)physiological context, specific chemoattractant receptors may be up- or downregulated on distinct neutrophil subsets with beneficial or detrimental consequences, thus opening new windows for the identification of disease biomarkers and potential drug targets.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Rega Institute, KU Leuven, Herestraat 49 bus 1042, B-3000, Leuven, Belgium.
| |
Collapse
|
20
|
Golenkina EA, Viryasova GM, Dolinnaya NG, Bannikova VA, Gaponova TV, Romanova YM, Sud’ina GF. The Potential of Telomeric G-quadruplexes Containing Modified Oligoguanosine Overhangs in Activation of Bacterial Phagocytosis and Leukotriene Synthesis in Human Neutrophils. Biomolecules 2020; 10:E249. [PMID: 32041263 PMCID: PMC7072695 DOI: 10.3390/biom10020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Human neutrophils are the first line of defense against bacterial and viral infections. They eliminate pathogens through phagocytosis, which activate the 5-lipoxygenase (5-LOX) pathway resulting in synthesis of leukotrienes. Using HPLC analysis, flow cytometry, and other biochemical methods, we studied the effect of synthetic oligodeoxyribonucleotides (ODNs) able to fold into G-quadruplex structures on the main functions of neutrophils. Designed ODNs contained four human telomere TTAGGG repeats (G4) including those with phosphorothioate oligoguanosines attached to the end(s) of G-quadruplex core. Just modified analogues of G4 was shown to more actively than parent ODN penetrate into cells, improve phagocytosis of Salmonella typhimurium bacteria, affect 5-LOX activation, the cytosol calcium ion level, and the oxidative status of neutrophils. As evident from CD and UV spectroscopy data, the presence of oligoguanosines flanking G4 sequence leads to dramatic changes in G-quadruplex topology. While G4 folds into a single antiparallel structure, two main folded forms have been identified in solutions of modified ODNs: antiparallel and dominant, more stable parallel. Thus, both the secondary structure of ODNs and their ability to penetrate into the cytoplasm of cells are important for the activation of neutrophil cellular effects. Our results offer new clues for understanding the role of G-quadruplex ligands in regulation of integral cellular processes and for creating the antimicrobial agents of a new generation.
Collapse
Affiliation(s)
- Ekaterina A. Golenkina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia; (E.A.G.); (G.M.V.)
| | - Galina M. Viryasova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia; (E.A.G.); (G.M.V.)
| | - Nina G. Dolinnaya
- Lomonosov Moscow State University, Department of Chemistry, Moscow 119234, Russia; (N.G.D.); (V.A.B.)
| | - Valeria A. Bannikova
- Lomonosov Moscow State University, Department of Chemistry, Moscow 119234, Russia; (N.G.D.); (V.A.B.)
| | - Tatjana V. Gaponova
- National Research Center for Hematology, Russia Federation Ministry of Public Health, Moscow 125167, Russia;
| | - Yulia M. Romanova
- Gamaleya National Research Centre of Epidemiology and Microbiology, Moscow 123098, Russia;
| | - Galina F. Sud’ina
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119234, Russia; (E.A.G.); (G.M.V.)
| |
Collapse
|
21
|
C3a elicits unique migratory responses in immature low-density neutrophils. Oncogene 2020; 39:2612-2623. [PMID: 32020055 DOI: 10.1038/s41388-020-1169-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
Abstract
Neutrophils represent the immune system's first line of defense and are rapidly recruited into inflamed tissue. In cancer associated inflammation, phenotypic heterogeneity has been ascribed to this cell type, whereby neutrophils can manifest anti- or pro-metastatic functions depending on the cellular/micro-environmental context. Here, we demonstrate that pro-metastatic immature low-density neutrophils (iLDNs) more efficiently accumulate in the livers of mice bearing metastatic lesions compared with anti-metastatic mature high-density neutrophils (HDNs). Transcriptomic analyses reveal enrichment of a migration signature in iLDNs relative to HDNs. We find that conditioned media derived from liver-metastatic breast cancer cells, but not lung-metastatic variants, specifically induces chemotaxis of iLDNs and not HDNs. Chemotactic responses are due to increased surface expression of C3aR in iLDNs relative to HDNs. In addition, we detect elevated secretion of cancer-cell derived C3a from liver-metastatic versus lung-metastatic breast cancer cells. Perturbation of C3a/C3aR signaling axis with either a small molecule inhibitor, SB290157, or reducing the levels of secreted C3a from liver-metastatic breast cancer cells by short hairpin RNAs, can abrogate the chemotactic response of iLDNs both in vitro and in vivo, respectively. Together, these data reveal novel mechanisms through which iLDNs prefentially accumulate in liver tissue harboring metastases in response to tumor-derived C3a secreted from the liver-aggressive 4T1 breast cancer cells.
Collapse
|
22
|
Chemokine receptor trafficking coordinates neutrophil clustering and dispersal at wounds in zebrafish. Nat Commun 2019; 10:5166. [PMID: 31727891 PMCID: PMC6856356 DOI: 10.1038/s41467-019-13107-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 10/13/2019] [Indexed: 12/22/2022] Open
Abstract
Immune cells congregate at specific loci to fight infections during inflammatory responses, a process that must be transient and self-resolving. Cell dispersal promotes resolution, but it remains unclear how transition from clustering to dispersal is regulated. Here we show, using quantitative live imaging in zebrafish, that differential ligand-induced trafficking of chemokine receptors such as Cxcr1 and Cxcr2 orchestrates the state of neutrophil congregation at sites of tissue damage. Through receptor mutagenesis and biosensors, we show that Cxcr1 promotes clustering at wound sites, but is promptly desensitized and internalized, which prevents excess congregation. By contrast, Cxcr2 promotes bidirectional motility and is sustained at the plasma membrane. Persistent plasma membrane residence of Cxcr2 prolongs downstream signaling and is required for sustained exploratory motion conducive to dispersal. Thus, differential trafficking of two chemokine receptors allows coordination of antagonistic cell behaviors, promoting a self-resolving migratory response. Inflammatory responses must be induced and resolved timely to serve protection from pathogens without inducing excessive tissue damage. Here the authors use live imaging in zebrafish to show that the intracellular trafficking of two chemokine receptors, Cxcr1 and Cxcr2, is differentially regulated on activated neutrophils to control their clustering and dispersal, respectively.
Collapse
|
23
|
Varricchi G, Rossi FW, Galdiero MR, Granata F, Criscuolo G, Spadaro G, de Paulis A, Marone G. Physiological Roles of Mast Cells: Collegium Internationale Allergologicum Update 2019. Int Arch Allergy Immunol 2019; 179:247-261. [PMID: 31137021 DOI: 10.1159/000500088] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/02/2019] [Indexed: 11/19/2022] Open
Abstract
Mast cells are immune cells which have a widespread distribution in nearly all tissues. These cells and their mediators are canonically viewed as primary effector cells in allergic disorders. However, in the last years, mast cells have gained recognition for their involvement in several physiological and pathological conditions. They are highly heterogeneous immune cells displaying a constellation of surface receptors and producing a wide spectrum of inflammatory and immunomodulatory mediators. These features enable the cells to act as sentinels in harmful situations as well as respond to metabolic and immune changes in their microenvironment. Moreover, they communicate with many immune and nonimmune cells implicated in several immunological responses. Although mast cells contribute to host responses in experimental infections, there is no satisfactory model to study how they contribute to infection outcome in humans. Mast cells modulate physiological and pathological angiogenesis and lymphangiogenesis, but their role in tumor initiation and development is still controversial. Cardiac mast cells store and release several mediators that can exert multiple effects in the homeostatic control of different cardiometabolic functions. Although mast cells and their mediators have been simplistically associated with detrimental roles in allergic disorders, there is increasing evidence that they can also have homeostatic or protective roles in several pathophysiological processes. These findings may reflect the functional heterogeneity of different subsets of mast cells.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francesca Wanda Rossi
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Francescopaolo Granata
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Amato de Paulis
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,World Allergy Organization (WAO) Center of Excellence, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences (DiSMeT), Naples, Italy, .,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy, .,World Allergy Organization (WAO) Center of Excellence, Naples, Italy, .,Institute of Endocrinology and Experimental Oncology (IEOS), CNR, Naples, Italy,
| |
Collapse
|
24
|
First person – Bhagawat C. Subramanian. J Cell Sci 2018. [DOI: 10.1242/jcs.225250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Bhagawat C. Subramanian is the first author on ‘The LTB4–BLT1 axis regulates the polarized trafficking of chemoattractant GPCRs during neutrophil chemotaxis’, published in Journal of Cell Science. Bhagawat is a Visiting Postdoctoral Fellow in the lab of Dr Roberto Weigert at the National Cancer Institute, NIH, Bethesda, USA, working on understanding the molecular signaling that drives innate immune cell behavior during inflammation, through the use of subcellular imaging modalities in live animals.
Collapse
|