1
|
Park S, Lee SS, Kim S, Lee Y, Park G, Kim JO, Choi J. The PTTG1/VASP axis promotes oral squamous cell carcinoma metastasis by modulating focal adhesion and actin filaments. Mol Oncol 2025; 19:1517-1531. [PMID: 39792809 PMCID: PMC12077276 DOI: 10.1002/1878-0261.13779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 11/28/2024] [Indexed: 01/12/2025] Open
Abstract
The dynamics of focal adhesions (FAs) are essential physiological processes involved in cell spreading, metastasis, and regulation of the actin cytoskeleton. FAs are complex structures comprising proteins, such as paxillin and zyxin, which interact with extracellular membranes and influence cell motility and morphology. Although related studies have been reported in various cancers, the function and molecular mechanisms of oral squamous cell carcinoma (OSCC) remain unknown. We investigated the coordination between the actin cytoskeleton and FA proteins, specifically introducing pituitary tumor-transforming gene 1 (PTTG1; also known as PTTG1 regulator of sister chromatid separation, securin) into OSCC. Furthermore, we explored the co-localization of several FAs and PTTG1 through small interfering RNA (siRNA) control or siRNA-vasodilator-stimulated phosphoprotein (VASP) and -PTTG1, examining the mechanisms mediated by the induced changes in OSCC both in vitro and in vivo. The knockdown of VASP and PTTG1 regulates the dynamic actin cytoskeleton, restricting cell protrusion and motility from the front to the rear of OSCC cells. Our findings may provide new insights into how cells interact with each other on the surface of FAs in OSCC, influencing metastatic properties.
Collapse
Affiliation(s)
- Suyeon Park
- Department of Oral Pathology, College of DentistryGangneung‐Wonju National UniversityKorea
| | - Sang Shin Lee
- Department of Oral Pathology, College of DentistryGangneung‐Wonju National UniversityKorea
| | - Shihyun Kim
- Department of Oral Pathology, College of DentistryGangneung‐Wonju National UniversityKorea
| | - Yeonjun Lee
- Research Institute of Oral Science, College of DentistryGangneung‐Wonju National UniversityKorea
| | - Gyeonwon Park
- Research Institute of Oral Science, College of DentistryGangneung‐Wonju National UniversityKorea
| | | | - Jongho Choi
- Department of Oral Pathology, College of DentistryGangneung‐Wonju National UniversityKorea
- Research Institute of Oral Science, College of DentistryGangneung‐Wonju National UniversityKorea
| |
Collapse
|
2
|
Chan XY, Chang KP, Yang CY, Liu CR, Hung CM, Huang CC, Liu HP, Wu CC. Upregulation of ENAH by a PI3K/AKT/β-catenin cascade promotes oral cancer cell migration and growth via an ITGB5/Src axis. Cell Mol Biol Lett 2024; 29:136. [PMID: 39511483 PMCID: PMC11545229 DOI: 10.1186/s11658-024-00651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Oral cancer accounts for 2% of cancer-related deaths globally, with over 90% of cases being oral cavity squamous cell carcinomas (OSCCs). Approximately 50% of patients with OSCC succumb to the disease within 5 years, primarily due to the advanced stage at which it is typically diagnosed. This underscores an urgent need to identify proteins related to OSCC progression to develop effective diagnostic and therapeutic strategies. METHODS To identify OSCC progression-related proteins, we conducted integrated proteome and transcriptome analyses on cancer tissues from patients and patient-derived xenograft (PDX) model mice. We investigated the role of protein-enabled homolog (ENAH), identified as an OSCC progression-associated protein, through proliferation, transwell migration, and invasion assays in OSCC cells. The mechanisms underlying ENAH-mediated functions were elucidated using gene knockdown and ectopic expression techniques in OSCC cells. RESULTS ENAH was identified as a candidate associated with OSCC progression based on integrated analyses, which showed increased ENAH levels in primary OSCC tissues compared with adjacent noncancerous counterparts, and sustained overexpression in the cancer tissues of PDX models. We confirmed that level of ENAH is increased in OSCC tissues and that its elevated expression correlates with poorer survival rates in patients with OSCC. Furthermore, the upregulation of ENAH in OSCC cells results from the activation of the GSK3β/β-catenin axis by the EGFR/PI3K/AKT cascade. ENAH expression enhances cell proliferation and mobility by upregulating integrin β5 in oral cancer cells. CONCLUSIONS The upregulation of ENAH through a PI3K/AKT/β-catenin signaling cascade enhances oral cancer cell migration and growth via the ITGB5/Src axis. These findings offer a new interpretation of the ENAH function in the OSCC progression and provide crucial information for developing new OSCC treatment strategies.
Collapse
Affiliation(s)
- Xiu-Ya Chan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chia-Yu Yang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chiao-Rou Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chu-Mi Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Chueh Huang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chih-Ching Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
3
|
Coscia SM, Moore AS, Thompson CP, Tirrito CF, Ostap EM, Holzbaur ELF. An interphase actin wave promotes mitochondrial content mixing and organelle homeostasis. Nat Commun 2024; 15:3793. [PMID: 38714822 PMCID: PMC11076292 DOI: 10.1038/s41467-024-48189-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 04/22/2024] [Indexed: 05/10/2024] Open
Abstract
Across the cell cycle, mitochondrial dynamics are regulated by a cycling wave of actin polymerization/depolymerization. In metaphase, this wave induces actin comet tails on mitochondria that propel these organelles to drive spatial mixing, resulting in their equitable inheritance by daughter cells. In contrast, during interphase the cycling actin wave promotes localized mitochondrial fission. Here, we identify the F-actin nucleator/elongator FMNL1 as a positive regulator of the wave. FMNL1-depleted cells exhibit decreased mitochondrial polarization, decreased mitochondrial oxygen consumption, and increased production of reactive oxygen species. Accompanying these changes is a loss of hetero-fusion of wave-fragmented mitochondria. Thus, we propose that the interphase actin wave maintains mitochondrial homeostasis by promoting mitochondrial content mixing. Finally, we investigate the mechanistic basis for the observation that the wave drives mitochondrial motility in metaphase but mitochondrial fission in interphase. Our data indicate that when the force of actin polymerization is resisted by mitochondrial tethering to microtubules, as in interphase, fission results.
Collapse
Affiliation(s)
- Stephen M Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew S Moore
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Cameron P Thompson
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christian F Tirrito
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E Michael Ostap
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Cerutti C, Lucotti S, Menendez ST, Reymond N, Garg R, Romero IA, Muschel R, Ridley AJ. IQGAP1 and NWASP promote human cancer cell dissemination and metastasis by regulating β1-integrin via FAK and MRTF/SRF. Cell Rep 2024; 43:113989. [PMID: 38536816 DOI: 10.1016/j.celrep.2024.113989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024] Open
Abstract
Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that β1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of β1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase β1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.
Collapse
Affiliation(s)
- Camilla Cerutti
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK; Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge UB8 3PH, UK.
| | - Serena Lucotti
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sofia T Menendez
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Nicolas Reymond
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Ritu Garg
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK
| | - Ignacio A Romero
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes MK7 6AA, UK
| | - Ruth Muschel
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anne J Ridley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 U1L, UK.
| |
Collapse
|
5
|
Eddington C, Schwartz JK, Titus MA. filoVision - using deep learning and tip markers to automate filopodia analysis. J Cell Sci 2024; 137:jcs261274. [PMID: 38264939 PMCID: PMC10941656 DOI: 10.1242/jcs.261274] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Filopodia are slender, actin-filled membrane projections used by various cell types for environment exploration. Analyzing filopodia often involves visualizing them using actin, filopodia tip or membrane markers. Due to the diversity of cell types that extend filopodia, from amoeboid to mammalian, it can be challenging for some to find a reliable filopodia analysis workflow suited for their cell type and preferred visualization method. The lack of an automated workflow capable of analyzing amoeboid filopodia with only a filopodia tip label prompted the development of filoVision. filoVision is an adaptable deep learning platform featuring the tools filoTips and filoSkeleton. filoTips labels filopodia tips and the cytosol using a single tip marker, allowing information extraction without actin or membrane markers. In contrast, filoSkeleton combines tip marker signals with actin labeling for a more comprehensive analysis of filopodia shafts in addition to tip protein analysis. The ZeroCostDL4Mic deep learning framework facilitates accessibility and customization for different datasets and cell types, making filoVision a flexible tool for automated analysis of tip-marked filopodia across various cell types and user data.
Collapse
Affiliation(s)
- Casey Eddington
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jessica K. Schwartz
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Margaret A. Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Graduate Program in Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
6
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Fan S, Shen Y, Li S, Xiang X, Li N, Li Y, Xu J, Cui M, Han X, Xia J, Huang Y. The S2 Subunit of Infectious Bronchitis Virus Affects Abl2-Mediated Syncytium Formation. Viruses 2023; 15:1246. [PMID: 37376546 DOI: 10.3390/v15061246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The S2 subunit serves a crucial role in infectious bronchitis virus (IBV) infection, particularly in facilitating membrane fusion. Using reverse genetic techniques, mutant strains of the S2 locus exhibited substantially different syncytium-forming abilities in chick embryonic kidney cells. To determine the precise formation mechanism of syncytium, we demonstrated the co-ordinated role of Abl2 and its mediated cytoskeletal regulatory pathway within the S2 subunit. Using a combination of fluorescence quantification, RNA silencing, and protein profiling techniques, the functional role of S2 subunits in IBV-infected cells was exhaustively determined. Our findings imply that Abl2 is not the primary cytoskeletal regulator, the viral S2 component is involved in indirect regulation, and the three different viral strains activate various cytoskeletal regulatory pathways through Abl2. CRK, CRKL, ABI1, NCKAP1, and ENAH also play a role in cytoskeleton regulation. Our research provides a point of reference for the development of an intracellular regulatory network for the S2 subunit and a foundation for the rational design of antiviral drug targets against Abl2.
Collapse
Affiliation(s)
- Shunyi Fan
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Yuxi Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Shuyun Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Xuelian Xiang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Nianling Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Yongxin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Jing Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Min Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Xinfeng Han
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Jing Xia
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| | - Yong Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Huimin Road, Wenjiang, Chengdu 611130, China
| |
Collapse
|
8
|
Lorenzen L, Frank D, Schwan C, Grosse R. Spatiotemporal Regulation of FMNL2 by N-Terminal Myristoylation and C-Terminal Phosphorylation Drives Rapid Filopodia Formation. Biomolecules 2023; 13:biom13030548. [PMID: 36979484 PMCID: PMC10046779 DOI: 10.3390/biom13030548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The actin nucleating and polymerizing formin-like 2 (FMNL2) is upregulated in several cancers and has been shown to play important roles in cell migration, invasion, cell–cell adhesion and filopodia formation. Here, using structured illumination microscopy we show that FMNL2 promotes rapid and highly dynamic filopodia formation in epithelial cells while remaining on the tip of the growing filopodia. This filopodia tip localization depends fully on its N-terminal myristoylation. We further show that FMNL2-dependent filopodia formation requires its serine 1072 phosphorylation within the diaphanous-autoregulatory domain (DAD) by protein kinase C (PKC) α. Consistent with this, filopodia formation depends on PKC activity and PKCα localizes to the base of growing filopodia. Thus, a PKCα–FMNL2 signaling module spatiotemporally controls dynamic filopodia formation.
Collapse
Affiliation(s)
- Lina Lorenzen
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Dennis Frank
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
- Correspondence: (C.S.); (R.G.)
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and Toxicology, Medical Faculty, University of Freiburg, 79104 Freiburg, Germany
- Centre for Integrative Biological Signalling Studies—CIBSS, 79104 Freiburg, Germany
- Correspondence: (C.S.); (R.G.)
| |
Collapse
|
9
|
Tsai FC, Henderson JM, Jarin Z, Kremneva E, Senju Y, Pernier J, Mikhajlov O, Manzi J, Kogan K, Le Clainche C, Voth GA, Lappalainen P, Bassereau P. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin-based membrane protrusions. SCIENCE ADVANCES 2022; 8:eabp8677. [PMID: 36240267 PMCID: PMC9565809 DOI: 10.1126/sciadv.abp8677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - J. Michael Henderson
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Université de Paris, CNRS UMR 3691, 75015 Paris, France
| | - Zack Jarin
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elena Kremneva
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Corresponding author. (F.-C.T.); (G.A.V.); (P.L.); (P.B.)
| |
Collapse
|
10
|
Tsai FC, Henderson JM, Jarin Z, Kremneva E, Senju Y, Pernier J, Mikhajlov O, Manzi J, Kogan K, Le Clainche C, Voth GA, Lappalainen P, Bassereau P. Activated I-BAR IRSp53 clustering controls the formation of VASP-actin-based membrane protrusions. SCIENCE ADVANCES 2022; 8:eabp8677. [PMID: 36240267 DOI: 10.1101/2022.03.04.483020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Filopodia are actin-rich membrane protrusions essential for cell morphogenesis, motility, and cancer invasion. How cells control filopodium initiation on the plasma membrane remains elusive. We performed experiments in cellulo, in vitro, and in silico to unravel the mechanism of filopodium initiation driven by the membrane curvature sensor IRSp53 (insulin receptor substrate protein of 53 kDa). We showed that full-length IRSp53 self-assembles into clusters on membranes depending on PIP2. Using well-controlled in vitro reconstitution systems, we demonstrated that IRSp53 clusters recruit the actin polymerase VASP (vasodilator-stimulated phosphoprotein) to assemble actin filaments locally on membranes, leading to the generation of actin-filled membrane protrusions reminiscent of filopodia. By pulling membrane nanotubes from live cells, we observed that IRSp53 can only be enriched and trigger actin assembly in nanotubes at highly dynamic membrane regions. Our work supports a regulation mechanism of IRSp53 in its attributes of curvature sensation and partner recruitment to ensure a precise spatial-temporal control of filopodium initiation.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - J Michael Henderson
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Université de Paris, CNRS UMR 3691, 75015 Paris, France
| | - Zack Jarin
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Elena Kremneva
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| | - Konstantin Kogan
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Pekka Lappalainen
- Institute of Biotechnology and Helsinki Institute of Life Sciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005 Paris, France
| |
Collapse
|
11
|
Fox S, Tran A, Trinkle-Mulcahy L, Copeland JW. Cooperative assembly of filopodia by the formin FMNL2 and I-BAR domain protein IRTKS. J Biol Chem 2022; 298:102512. [PMID: 36259517 PMCID: PMC9579038 DOI: 10.1016/j.jbc.2022.102512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022] Open
Abstract
Filopodia are long finger-like actin-based structures that project out from the plasma membrane as cells navigate and explore their extracellular environment. The initiation of filopodia formation requires release of tension at the plasma membrane followed by the coordinated assembly of long unbranched actin filaments. Filopodia growth is maintained by a tip complex that promotes actin polymerization and protects the growing barbed ends of the actin fibers from capping proteins. Filopodia growth also depends on additional F-actin bundling proteins to stiffen the actin filaments as well as extension of the membrane sheath projecting from the cell periphery. These activities can be provided by a number of actin-binding and membrane-binding proteins including formins such as formin-like 2 (FMNL2) and FMNL3, and Inverse-Bin-Amphiphysin-Rvs (I-BAR) proteins such as IRTKS and IRSp53, but the specific requirement for these proteins in filopodia assembly is not clear. We report here that IRTKS and IRSp53 are FMNL2-binding proteins. Coexpression of FMNL2 with either I-BAR protein promotes cooperative filopodia assembly. We find IRTKS, but not IRSp53, is required for FMNL2-induced filopodia assembly, and FMNL2 and IRTKS are mutually dependent cofactors in this process. Our results suggest that the primary function for FMNL2 during filopodia assembly is binding to the plasma membrane and that regulation of actin dynamics by its formin homology 2 domain is secondary. From these results, we conclude that FMNL2 initiates filopodia assembly via an unexpected novel mechanism, by bending the plasma membrane to recruit IRTKS and thereby nucleate filopodia assembly.
Collapse
|
12
|
Pei F, Wang M, Wang Y, Pan X, Cen X, Huang X, Jin Y, Zhao Z. Quantitative proteomic analysis of gingival crevicular fluids to identify novel biomarkers of gingival recession in orthodontic patients. J Proteomics 2022; 266:104647. [PMID: 35779762 DOI: 10.1016/j.jprot.2022.104647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/23/2022] [Accepted: 06/04/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To identify gingival recession-related biomarkers in orthodontic patients, we compared the proteome of gingival crevicular fluids (GCF) from healthy gingiva without orthodontic treatment (GH), healthy gingiva undergoing orthodontic treatment (OGH), and recessed gingiva undergoing orthodontic treatment (OGR). METHODS GCF samples were obtained from the anterior teeth of 15 volunteers (n = 5/group). Quantitative proteomic analysis was performed using DIA-based liquid chromatography-tandem mass spectrometry (LC-MS/MS). Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used to annotate differentially expressed proteins (DEPs). Receiver-operating characteristic (ROC) analysis was performed to detect and filter biomarker candidates, while Protein-Protein Interaction (PPI) Networks were utilized to determine the interactions between these DEPs. RESULTS A total of 253, 238, and 101 DEPs were found in OGR vs. OGH, OGR vs. GH, and OGH vs. GH groups, respectively. Based on the Venn diagram of three groups, 128 DEPs in OGR vs. OGH group were identified as specific proteins associated with progressive gingival recession (GR) during orthodontic treatment. Molecular function analysis showed that 128 DEPs were enriched in "molecular binding", including antigen binding, RNA binding, double-stranded RNA binding, cadherin binding involved in cell-cell adhesion, vinculin binding, S100 protein binding, and Ral GTPase binding. The majority of these DEPs were also involved in cytoskeletal regulation. In addition, biological process analysis showed an enrichment in translation, while cellular component analysis indicated that 128 DEPs were related to extracellular exosome. Furthermore, Ribosome and Phagosome were the top two terms in KEGG analysis. The results of ROC analysis demonstrated that 26 proteins could be potential biomarker candidates for GR. PPI networks analysis predicted that IQGAP1, ACTN1, TLN1, VASP, FN1, FERMT3, MYO1C, RALA, RPL35, SEC61G, KPNB1, and NPM1 could be involved in the development of GR via cytoskeletal regulation. CONCLUSIONS In summary, we identified several GCF proteins associated with GR after orthodontic treatment. These findings could contribute to the prevention of GR in susceptible patients before the initiation of orthodontic treatment. SIGNIFICANCE Orthodontic patients with GR often report esthetic defects or root hypersensitivity during orthodontic treatment, especially at the anterior teeth site. GCF, rich in protein, is an easily accessible source of potential biomarkers for the diagnosis of periodontal diseases; however, little is known about the changes in GCF proteome associated with GR in orthodontic patients. In this study we firstly used DIA-based LC-MS/MS to evaluate the proteome and to identify the biomarker candidates for GR in orthodontic patients. These findings will improve our understanding of GR during orthodontic treatment, and could contribute to an earlier diagnosis, or even prevention, of GR in susceptible populations before orthodontic treatment.
Collapse
Affiliation(s)
- Fang Pei
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Mengjiao Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yifan Wang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuefeng Pan
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiao Cen
- Department of Temporomandibular Joint, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Xinqi Huang
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Ying Jin
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Zhihe Zhao
- Department of Orthodontics, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Fung TS, Chakrabarti R, Kollasser J, Rottner K, Stradal TEB, Kage F, Higgs HN. Parallel kinase pathways stimulate actin polymerization at depolarized mitochondria. Curr Biol 2022; 32:1577-1592.e8. [PMID: 35290799 PMCID: PMC9078333 DOI: 10.1016/j.cub.2022.02.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022]
Abstract
Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-β, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
14
|
Ivanov SS, Castore R, Juarez Rodriguez MD, Circu M, Dragoi AM. Neisseria gonorrhoeae subverts formin-dependent actin polymerization to colonize human macrophages. PLoS Pathog 2021; 17:e1010184. [PMID: 34962968 PMCID: PMC8746766 DOI: 10.1371/journal.ppat.1010184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/10/2022] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Dynamic reorganization of the actin cytoskeleton dictates plasma membrane morphogenesis and is frequently subverted by bacterial pathogens for entry and colonization of host cells. The human-adapted bacterial pathogen Neisseria gonorrhoeae can colonize and replicate when cultured with human macrophages, however the basic understanding of how this process occurs is incomplete. N. gonorrhoeae is the etiological agent of the sexually transmitted disease gonorrhea and tissue resident macrophages are present in the urogenital mucosa, which is colonized by the bacteria. We uncovered that when gonococci colonize macrophages, they can establish an intracellular or a cell surface-associated niche that support bacterial replication independently. Unlike other intracellular bacterial pathogens, which enter host cells as single bacterium, establish an intracellular niche and then replicate, gonococci invade human macrophages as a colony. Individual diplococci are rapidly phagocytosed by macrophages and transported to lysosomes for degradation. However, we found that surface-associated gonococcal colonies of various sizes can invade macrophages by triggering actin skeleton rearrangement resulting in plasma membrane invaginations that slowly engulf the colony. The resulting intracellular membrane-bound organelle supports robust bacterial replication. The gonococci-occupied vacuoles evaded fusion with the endosomal compartment and were enveloped by a network of actin filaments. We demonstrate that gonococcal colonies invade macrophages via a process mechanistically distinct from phagocytosis that is regulated by the actin nucleating factor FMNL3 and is independent of the Arp2/3 complex. Our work provides insights into the gonococci life-cycle in association with human macrophages and defines key host determinants for macrophage colonization. During infection, the human-adapted bacterial pathogen Neisseria gonorrhoeae and causative agent of gonorrhea can invade the submucosa of the urogenital tract where it encounters tissue-resident innate immune sentinels, such as macrophages and neutrophils. Instead of eliminating gonococci, macrophages support robust bacterial replication. Here, we detail the life cycle of N. gonorrhoeae in association with macrophages and define key regulators that govern the colonization processes. We uncovered that N. gonorrhoeae establishes two distinct subcellular niches that support bacterial replication autonomously–one niche was on the macrophage surface and another one was intracellular. Gonococci subverted the host actin cytoskeleton through the actin nucleating factor FMNL3 to invade colonized macrophages and occupy a membrane-bound intracellular organelle. We propose that N. gonorrhoeae ability to occupy distinct subcellular niches when colonizing macrophages likely confers broad protection against multiple host defense responses.
Collapse
Affiliation(s)
- Stanimir S. Ivanov
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- * E-mail: (SSI); (AMD)
| | - Reneau Castore
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Maria Dolores Juarez Rodriguez
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Magdalena Circu
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center—Shreveport, Shreveport, Louisiana, United States of America
- * E-mail: (SSI); (AMD)
| |
Collapse
|
15
|
Myosin-X and talin modulate integrin activity at filopodia tips. Cell Rep 2021; 36:109716. [PMID: 34525374 PMCID: PMC8456781 DOI: 10.1016/j.celrep.2021.109716] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 11/20/2022] Open
Abstract
Filopodia assemble unique integrin-adhesion complexes to sense the extracellular matrix. However, the mechanisms of integrin regulation in filopodia are poorly defined. Here, we report that active integrins accumulate at the tip of myosin-X (MYO10)-positive filopodia, while inactive integrins are uniformly distributed. We identify talin and MYO10 as the principal integrin activators in filopodia. In addition, deletion of MYO10's FERM domain, or mutation of its β1-integrin-binding residues, reveals MYO10 as facilitating integrin activation, but not transport, in filopodia. However, MYO10's isolated FERM domain alone cannot activate integrins, potentially because of binding to both integrin tails. Finally, because a chimera construct generated by swapping MYO10-FERM by talin-FERM enables integrin activation in filopodia, our data indicate that an integrin-binding FERM domain coupled to a myosin motor is a core requirement for integrin activation in filopodia. Therefore, we propose a two-step integrin activation model in filopodia: receptor tethering by MYO10 followed by talin-mediated integrin activation.
Collapse
|
16
|
Dissecting the Inorganic Nanoparticle-Driven Interferences on Adhesome Dynamics. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2030011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inorganic nanoparticles have emerged as an attractive theranostic tool applied to different pathologies such as cancer. However, the increment in inorganic nanoparticle application in biomedicine has prompted the scientific community to assess their potential toxicities, often preventing them from entering clinical settings. Cytoskeleton network and the related adhesomes nest are present in most cellular processes such as proliferation, migration, and cell death. The nanoparticle treatment can interfere with the cytoskeleton and adhesome dynamics, thus inflicting cellular damage. Therefore, it is crucial dissecting the molecular mechanisms involved in nanoparticle cytotoxicity. This review will briefly address the main characteristics of different adhesion structures and focus on the most relevant effects of inorganic nanoparticles with biomedical potential on cellular adhesome dynamics. Besides, the review put into perspective the use of inorganic nanoparticles for cytoskeleton targeting or study as a versatile tool. The dissection of the molecular mechanisms involved in the nanoparticle-driven interference of adhesome dynamics will facilitate the future development of nanotheranostics targeting cytoskeleton and adhesomes to tackle several diseases, such as cancer.
Collapse
|
17
|
Arthur AL, Crawford A, Houdusse A, Titus MA. VASP-mediated actin dynamics activate and recruit a filopodia myosin. eLife 2021; 10:68082. [PMID: 34042588 PMCID: PMC8352590 DOI: 10.7554/elife.68082] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/20/2021] [Indexed: 11/17/2022] Open
Abstract
Filopodia are thin, actin-based structures that cells use to interact with their environments. Filopodia initiation requires a suite of conserved proteins but the mechanism remains poorly understood. The actin polymerase VASP and a MyTH-FERM (MF) myosin, DdMyo7 in amoeba, are essential for filopodia initiation. DdMyo7 is localized to dynamic regions of the actin-rich cortex. Analysis of VASP mutants and treatment of cells with anti-actin drugs shows that myosin recruitment and activation in Dictyostelium requires localized VASP-dependent actin polymerization. Targeting of DdMyo7 to the cortex alone is not sufficient for filopodia initiation; VASP activity is also required. The actin regulator locally produces a cortical actin network that activates myosin and together they shape the actin network to promote extension of parallel bundles of actin during filopodia formation. This work reveals how filopodia initiation requires close collaboration between an actin-binding protein, the state of the actin cytoskeleton and MF myosin activity.
Collapse
Affiliation(s)
- Ashley L Arthur
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Amy Crawford
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Université Sciences et Lettres, Sorbonne Université, Paris, France
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, United States
| |
Collapse
|
18
|
Dimchev V, Lahmann I, Koestler SA, Kage F, Dimchev G, Steffen A, Stradal TEB, Vauti F, Arnold HH, Rottner K. Induced Arp2/3 Complex Depletion Increases FMNL2/3 Formin Expression and Filopodia Formation. Front Cell Dev Biol 2021; 9:634708. [PMID: 33598464 PMCID: PMC7882613 DOI: 10.3389/fcell.2021.634708] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/07/2021] [Indexed: 01/12/2023] Open
Abstract
The Arp2/3 complex generates branched actin filament networks operating in cell edge protrusion and vesicle trafficking. Here we employ a conditional knockout mouse model permitting tissue- or cell-type specific deletion of the murine Actr3 gene (encoding Arp3). A functional Actr3 gene appeared essential for fibroblast viability and growth. Thus, we developed cell lines for exploring the consequences of acute, tamoxifen-induced Actr3 deletion causing near-complete loss of functional Arp2/3 complex expression as well as abolished lamellipodia formation and membrane ruffling, as expected. Interestingly, Arp3-depleted cells displayed enhanced rather than reduced cell spreading, employing numerous filopodia, and showed little defects in the rates of random cell migration. However, both exploration of new space by individual cells and collective migration were clearly compromised by the incapability to efficiently maintain directionality of migration, while the principal ability to chemotax was only moderately affected. Examination of actin remodeling at the cell periphery revealed reduced actin turnover rates in Arp2/3-deficient cells, clearly deviating from previous sequestration approaches. Most surprisingly, induced removal of Arp2/3 complexes reproducibly increased FMNL formin expression, which correlated with the explosive induction of filopodia formation. Our results thus highlight both direct and indirect effects of acute Arp2/3 complex removal on actin cytoskeleton regulation.
Collapse
Affiliation(s)
- Vanessa Dimchev
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ines Lahmann
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stefan A Koestler
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Frieda Kage
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Georgi Dimchev
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Franz Vauti
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Hans-Henning Arnold
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| | - Klemens Rottner
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany.,Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Braunschweig Integrated Centre of Systems Biology (BRICS), Braunschweig, Germany
| |
Collapse
|
19
|
Bleicher P, Nast-Kolb T, Sciortino A, de la Trobe YA, Pokrant T, Faix J, Bausch AR. Intra-bundle contractions enable extensile properties of active actin networks. Sci Rep 2021; 11:2677. [PMID: 33514794 PMCID: PMC7846802 DOI: 10.1038/s41598-021-81601-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/05/2021] [Indexed: 12/27/2022] Open
Abstract
The cellular cortex is a dynamic and contractile actomyosin network modulated by actin-binding proteins. We reconstituted a minimal cortex adhered to a model cell membrane mimicking two processes mediated by the motor protein myosin: contractility and high turnover of actin monomers. Myosin reorganized these networks by extensile intra‑bundle contractions leading to an altered growth mechanism. Hereby, stress within tethered bundles induced nicking of filaments followed by repair via incorporation of free monomers. This mechanism was able to break the symmetry of the previously disordered network resulting in the generation of extensile clusters, reminiscent of structures found within cells.
Collapse
Affiliation(s)
- P Bleicher
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
| | - T Nast-Kolb
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany
| | - A Sciortino
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany
| | - Y A de la Trobe
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany
| | - T Pokrant
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - J Faix
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - A R Bausch
- Physik-Department, Lehrstuhl für Biophysik E27, Technische Universität München, Garching, Germany.
- Center for Protein Assemblies (CPA), Ernst-Otto-Fischer Str. 8, 85747, Garching, Germany.
| |
Collapse
|
20
|
Jarsch IK, Gadsby JR, Nuccitelli A, Mason J, Shimo H, Pilloux L, Marzook B, Mulvey CM, Dobramysl U, Bradshaw CR, Lilley KS, Hayward RD, Vaughan TJ, Dobson CL, Gallop JL. A direct role for SNX9 in the biogenesis of filopodia. J Cell Biol 2020; 219:151579. [PMID: 32328641 PMCID: PMC7147113 DOI: 10.1083/jcb.201909178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Filopodia are finger-like actin-rich protrusions that extend from the cell surface and are important for cell-cell communication and pathogen internalization. The small size and transient nature of filopodia combined with shared usage of actin regulators within cells confounds attempts to identify filopodial proteins. Here, we used phage display phenotypic screening to isolate antibodies that alter the actin morphology of filopodia-like structures (FLS) in vitro. We found that all of the antibodies that cause shorter FLS interact with SNX9, an actin regulator that binds phosphoinositides during endocytosis and at invadopodia. In cells, we discover SNX9 at specialized filopodia in Xenopus development and that SNX9 is an endogenous component of filopodia that are hijacked by Chlamydia entry. We show the use of antibody technology to identify proteins used in filopodia-like structures, and a role for SNX9 in filopodia.
Collapse
Affiliation(s)
- Iris K Jarsch
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jonathan R Gadsby
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Annalisa Nuccitelli
- Antibody Discovery and Protein Engineering, AstraZeneca, Granta Park, Cambridge, UK
| | - Julia Mason
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hanae Shimo
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ludovic Pilloux
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Bishara Marzook
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Claire M Mulvey
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ulrich Dobramysl
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Charles R Bradshaw
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Tristan J Vaughan
- Antibody Discovery and Protein Engineering, AstraZeneca, Granta Park, Cambridge, UK
| | - Claire L Dobson
- Antibody Discovery and Protein Engineering, AstraZeneca, Granta Park, Cambridge, UK
| | - Jennifer L Gallop
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
21
|
Ljubojevic N, Henderson JM, Zurzolo C. The Ways of Actin: Why Tunneling Nanotubes Are Unique Cell Protrusions. Trends Cell Biol 2020; 31:130-142. [PMID: 33309107 DOI: 10.1016/j.tcb.2020.11.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 12/22/2022]
Abstract
Actin remodeling is at the heart of the response of cells to external or internal stimuli, allowing a variety of membrane protrusions to form. Fifteen years ago, tunneling nanotubes (TNTs) were identified, bringing a novel addition to the family of actin-supported cellular protrusions. Their unique property as conduits for cargo transfer between distant cells emphasizes the unique nature of TNTs among other protrusions. While TNTs in different pathological and physiological scenarios have been described, the molecular basis of how TNTs form is not well understood. In this review, we discuss the role of several actin regulators in the formation of TNTs and suggest potential players based on their comparison with other actin-based protrusions. New perspectives for discovering a distinct TNT formation pathway would enable us to target them in treating the increasing number of TNT-involved pathologies.
Collapse
Affiliation(s)
- Nina Ljubojevic
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015 Paris, France; Sorbonne Université, ED394 - Physiologie, Physiopathologie et Thérapeutique, 75005 Paris, France
| | - J Michael Henderson
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015 Paris, France; Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, UMR3691 CNRS, 75015 Paris, France.
| |
Collapse
|
22
|
Cheng KW, Mullins RD. Initiation and disassembly of filopodia tip complexes containing VASP and lamellipodin. Mol Biol Cell 2020; 31:2021-2034. [PMID: 32579429 PMCID: PMC7543071 DOI: 10.1091/mbc.e20-04-0270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The shapes of many eukaryotic cells depends on the actin cytoskeleton, and changes in actin assembly dynamics underlie many changes in cell shape. Ena/VASP-family actin polymerases, for example, modulate cell shape by accelerating actin filament assembly locally and slowing filament capping. When concentrated into discrete foci at the leading edge, VASP promotes filopodia assembly and forms part of a poorly understood molecular complex that remains associated with growing filopodia tips. Here we identify precursors of this filopodia tip complex in migrating B16F1 cells: small leading-edge clusters of the adaptor protein lamellipodin (Lpd) that subsequently recruit VASP and initiate filopodia formation. Dimerization, membrane association, and VASP binding are all required for lamellipodin to incorporate into filopodia tip complexes, and overexpression of monomeric, membrane-targeted lamellipodin mutants disrupts tip complex assembly. Once formed, tip complexes containing VASP and lamellipodin grow by fusing with each other, but their growth is limited by a size-dependent dynamic instability. Our results demonstrate that assembly and disassembly dynamics of filopodia tip complexes are determined, in part, by a network of multivalent interactions between Ena/VASP proteins, EVH1 ligands, and actin filaments.
Collapse
Affiliation(s)
- Karen W Cheng
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143
| | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143.,Howard Hughes Medical Institute, University of California, San Francisco, CA 94143
| |
Collapse
|
23
|
Gallop J. Filopodia and their links with membrane traffic and cell adhesion. Semin Cell Dev Biol 2020; 102:81-89. [DOI: 10.1016/j.semcdb.2019.11.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/14/2019] [Accepted: 11/28/2019] [Indexed: 01/24/2023]
|
24
|
Damiano-Guercio J, Kurzawa L, Mueller J, Dimchev G, Schaks M, Nemethova M, Pokrant T, Brühmann S, Linkner J, Blanchoin L, Sixt M, Rottner K, Faix J. Loss of Ena/VASP interferes with lamellipodium architecture, motility and integrin-dependent adhesion. eLife 2020; 9:55351. [PMID: 32391788 PMCID: PMC7239657 DOI: 10.7554/elife.55351] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/08/2020] [Indexed: 01/21/2023] Open
Abstract
Cell migration entails networks and bundles of actin filaments termed lamellipodia and microspikes or filopodia, respectively, as well as focal adhesions, all of which recruit Ena/VASP family members hitherto thought to antagonize efficient cell motility. However, we find these proteins to act as positive regulators of migration in different murine cell lines. CRISPR/Cas9-mediated loss of Ena/VASP proteins reduced lamellipodial actin assembly and perturbed lamellipodial architecture, as evidenced by changed network geometry as well as reduction of filament length and number that was accompanied by abnormal Arp2/3 complex and heterodimeric capping protein accumulation. Loss of Ena/VASP function also abolished the formation of microspikes normally embedded in lamellipodia, but not of filopodia capable of emanating without lamellipodia. Ena/VASP-deficiency also impaired integrin-mediated adhesion accompanied by reduced traction forces exerted through these structures. Our data thus uncover novel Ena/VASP functions of these actin polymerases that are fully consistent with their promotion of cell migration.
Collapse
Affiliation(s)
| | - Laëtitia Kurzawa
- CytoMorphoLab, Laboratoire de Physiologie cellulaire et Végétale, Interdisciplinary ResearchInstitute of Grenoble, CEA, CNRS, INRA, Grenoble-Alpes University, Grenoble, France.,CytomorphoLab, Hôpital Saint-Louis, Institut Universitaire d'Hematologie, UMRS1160, INSERM/AP-HP/UniversitéParis Diderot, Paris, France
| | - Jan Mueller
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Georgi Dimchev
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany
| | - Matthias Schaks
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Nemethova
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Thomas Pokrant
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Stefan Brühmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Joern Linkner
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Laurent Blanchoin
- CytoMorphoLab, Laboratoire de Physiologie cellulaire et Végétale, Interdisciplinary ResearchInstitute of Grenoble, CEA, CNRS, INRA, Grenoble-Alpes University, Grenoble, France.,CytomorphoLab, Hôpital Saint-Louis, Institut Universitaire d'Hematologie, UMRS1160, INSERM/AP-HP/UniversitéParis Diderot, Paris, France
| | - Michael Sixt
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany.,Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| |
Collapse
|
25
|
Benz PM, Ding Y, Stingl H, Loot AE, Zink J, Wittig I, Popp R, Fleming I. AKAP12 deficiency impairs VEGF-induced endothelial cell migration and sprouting. Acta Physiol (Oxf) 2020; 228:e13325. [PMID: 31162891 PMCID: PMC6916389 DOI: 10.1111/apha.13325] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Aim Protein kinase (PK) A anchoring protein (AKAP) 12 is a scaffolding protein that anchors PKA to compartmentalize cyclic AMP signalling. This study assessed the consequences of the downregulation or deletion of AKAP12 on endothelial cell migration and angiogenesis. Methods The consequences of siRNA‐mediated downregulation AKAP12 were studied in primary cultures of human endothelial cells as well as in endothelial cells and retinas from wild‐type versus AKAP12−/− mice. Molecular interactions were investigated using a combination of immunoprecipitation and mass spectrometry. Results AKAP12 was expressed at low levels in confluent endothelial cells but its expression was increased in actively migrating cells, where it localized to lamellipodia. In the postnatal retina, AKAP12 was expressed by actively migrating tip cells at the angiogenic front, and its deletion resulted in defective extension of the vascular plexus. In migrating endothelial cells, AKAP12 was co‐localized with the PKA type II‐α regulatory subunit as well as multiple key regulators of actin dynamics and actin filament‐based movement; including components of the Arp2/3 complex and the vasodilator‐stimulated phosphoprotein (VASP). Fitting with the evidence of a physical VASP/AKAP12/PKA complex, it was possible to demonstrate that the VEGF‐stimulated and PKA‐dependent phosphorylation of VASP was dependent on AKAP12. Indeed, AKAP12 colocalized with phospho‐Ser157 VASP at the leading edge of migrating endothelial cells. Conclusion The results suggest that compartmentalized AKAP12/PKA signalling mediates VASP phosphorylation at the leading edge of migrating endothelial cells to translate angiogenic stimuli into altered actin dynamics and cell movement.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Yindi Ding
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Heike Stingl
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Annemarieke E. Loot
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Ilka Wittig
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
- Functional Proteomics, SFB 815 Core Unit, Faculty of Medicine Goethe University Frankfurt am Main Germany
| | - Rüdiger Popp
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK), Partner site RheinMain Frankfurt am Main Germany
| |
Collapse
|
26
|
First person – Lorna Young. J Cell Sci 2018. [DOI: 10.1242/jcs.226340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Lorna Young is the first author on ‘ Roles for Ena/VASP proteins in FMNL3-mediated filopodial assembly’, published in Journal of Cell Science. Lorna is a postdoctoral researcher in the lab of Henry Higgs at Dartmouth College, Hanover, USA, investigating actin dynamics related to cell adhesion and migration.
Collapse
|