1
|
Li Z, Shao R, Xin H, Zhu Y, Jiang S, Wu J, Yan H, Jia T, Ge M, Shi X. Paxillin and Kindlin: Research Progress and Biological Functions. Biomolecules 2025; 15:173. [PMID: 40001476 PMCID: PMC11853175 DOI: 10.3390/biom15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Paxillin and kindlin are essential regulatory proteins involved in cell adhesion, migration, and signal transduction. Paxillin influences cytoskeletal dynamics by interacting with multiple signaling proteins, while kindlin regulates integrin activation, affecting adhesion and motility. This review examines the structures and functions of these proteins, focusing on their roles in cancer progression, immune response, and therapeutic potential. The cooperation between paxillin and kindlin in integrin activation and focal adhesion dynamics offers valuable insights into tumor metastasis, immune function, and tissue repair.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaofeng Shi
- The Second Affiliated Hospital of Nanjing Medical University, No.262, North Zhongshan Road, Nanjing 210003, China; (Z.L.)
| |
Collapse
|
2
|
Qadota H, McPherson A, Corbitt R, Dackowski EK, Matsunaga Y, Oberhauser AF, Benian GM. Genetic analysis suggests a surface of PAT-4 (ILK) that interacts with UNC-112 (kindlin). G3 (BETHESDA, MD.) 2022; 12:jkac117. [PMID: 35536217 PMCID: PMC9258589 DOI: 10.1093/g3journal/jkac117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
Integrin plays a crucial role in the attachment of cells to the extracellular matrix. Integrin recruits many proteins intracellularly, including a 4-protein complex (kindlin, ILK, PINCH, and parvin). Caenorhabditis elegans muscle provides an excellent model to study integrin adhesion complexes. In Caenorhabditis elegans, UNC-112 (kindlin) binds to the cytoplasmic tail of PAT-3 (β-integrin) and to PAT-4 (ILK). We previously reported that PAT-4 binding to UNC-112 is essential for the binding of UNC-112 to PAT-3. Although there are crystal structures for ILK and a kindlin, there is no co-crystal structure available. To understand the molecular interaction between PAT-4 and UNC-112, we took a genetic approach. First, using a yeast 2-hybrid method, we isolated mutant PAT-4 proteins that cannot bind to UNC-112 and then isolated suppressor mutant UNC-112 proteins that restore interaction with mutant PAT-4 proteins. Second, we demonstrated that these mutant PAT-4 proteins cannot localize to attachment structures in nematode muscle, but upon co-expression of an UNC-112 suppressor mutant protein, mutant PAT-4 proteins could localize to attachment structures. Third, overexpression of a PAT-4 mutant results in the disorganization of adhesion plaques at muscle cell boundaries and co-expression of the UNC-112 suppressor mutant protein alleviates this defect. Thus, we demonstrate that UNC-112 binding to PAT-4 is required for the localization and function of PAT-4 in integrin adhesion complexes in vivo. The missense mutations were mapped onto homology models of PAT-4 and UNC-112, and taking into account previously isolated mutations, we suggest a surface of PAT-4 that binds to UNC-112.
Collapse
Affiliation(s)
- Hiroshi Qadota
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Annie McPherson
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Rachel Corbitt
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | | | - Yohei Matsunaga
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| | - Andres F Oberhauser
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Guy M Benian
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
3
|
McDonald PC, Dedhar S. New Perspectives on the Role of Integrin-Linked Kinase (ILK) Signaling in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14133209. [PMID: 35804980 PMCID: PMC9264971 DOI: 10.3390/cancers14133209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Today, the vast majority of deaths from cancer are due to cancer metastasis. Metastasis requires that cancer cells escape from the initial tumor, travel through blood vessels, and form new tumors in distant host tissues. Integrin-linked kinase (ILK) is overexpressed by many types of cancer cells and provides both structural and signaling functions that are important for successful metastasis. Here, we discuss recent findings that show how ILK is involved in promoting physical changes important for cell motility and invasion, and how ILK relays signals to other machinery components during metastasis, including interactions with components of the immune system and communication between cancer cells and normal cells, to affect the process of metastasis. We also discuss the contribution of ILK to therapeutic resistance and examine efforts to target ILK for the treatment of metastatic disease. Abstract Cancer metastasis is a major barrier to the long-term survival of cancer patients. In cancer cells, integrin engagement downstream of cell-extracellular matrix (ECM) interactions results in the recruitment of cytoskeletal and signaling molecules to form multi-protein complexes to promote processes critical for metastasis. One of the major functional components of these complexes is Integrin Linked Kinase (ILK). Here, we discuss recent advances in our understanding of the importance of ILK as a signaling effector in processes linked to tumor progression and metastasis. New mechanistic insights as to the role of ILK in cellular plasticity, epithelial mesenchymal transition (EMT), migration, and invasion, including the impact of ILK on the formation of invadopodia, filopodia-like protrusions (FLPs), and Neutrophil Extracellular Trap (NET)-induced motility are highlighted. Recent findings detailing the contribution of ILK to therapeutic resistance and the importance of ILK as a potentially therapeutically tractable vulnerability in both solid tumors and hematologic malignancies are discussed. Indeed, pharmacologic inhibition of ILK activity using specific small molecule inhibitors is effective in curtailing the contribution of ILK to these processes, potentially offering a novel therapeutic avenue for inhibiting critical steps in the metastatic cascade leading to reduced drug resistance and increased therapeutic efficacy.
Collapse
Affiliation(s)
- Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| |
Collapse
|
4
|
Ripamonti M, Wehrle-Haller B, de Curtis I. Paxillin: A Hub for Mechano-Transduction from the β3 Integrin-Talin-Kindlin Axis. Front Cell Dev Biol 2022; 10:852016. [PMID: 35450290 PMCID: PMC9016114 DOI: 10.3389/fcell.2022.852016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/14/2022] [Indexed: 01/11/2023] Open
Abstract
Focal adhesions are specialized integrin-dependent adhesion complexes, which ensure cell anchoring to the extracellular matrix. Focal adhesions also function as mechano-signaling platforms by perceiving and integrating diverse physical and (bio)chemical cues of their microenvironment, and by transducing them into intracellular signaling for the control of cell behavior. The fundamental biological mechanism of creating intracellular signaling in response to changes in tensional forces appears to be tightly linked to paxillin recruitment and binding to focal adhesions. Interestingly, the tension-dependent nature of the paxillin binding to adhesions, combined with its scaffolding function, suggests a major role of this protein in integrating multiple signals from the microenvironment, and accordingly activating diverse molecular responses. This minireview offers an overview of the molecular bases of the mechano-sensitivity and mechano-signaling capacity of core focal adhesion proteins, and highlights the role of paxillin as a key component of the mechano-transducing machinery based on the interaction of cells to substrates activating the β3 integrin-talin1-kindlin.
Collapse
Affiliation(s)
- Marta Ripamonti
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Geneva, Switzerland
| | - Ivan de Curtis
- Division of Neuroscience, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milano, Italy
- *Correspondence: Ivan de Curtis,
| |
Collapse
|
5
|
Harryman WL, Marr KD, Nagle RB, Cress AE. Integrins and Epithelial-Mesenchymal Cooperation in the Tumor Microenvironment of Muscle-Invasive Lethal Cancers. Front Cell Dev Biol 2022; 10:837585. [PMID: 35300411 PMCID: PMC8921537 DOI: 10.3389/fcell.2022.837585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
Muscle-invasive lethal carcinomas traverse into and through this specialized biophysical and growth factor enriched microenvironment. We will highlight cancers that originate in organs surrounded by smooth muscle, which presents a barrier to dissemination, including prostate, bladder, esophageal, gastric, and colorectal cancers. We propose that the heterogeneity of cell-cell and cell-ECM adhesion receptors is an important driver of aggressive tumor networks with functional consequences for progression. Phenotype heterogeneity of the tumor provides a biophysical advantage for tumor network invasion through the tensile muscle and survival of the tumor network. We hypothesize that a functional epithelial-mesenchymal cooperation (EMC)exists within the tumor invasive network to facilitate tumor escape from the primary organ, invasion and traversing of muscle, and navigation to metastatic sites. Cooperation between specific epithelial cells within the tumor and stromal (mesenchymal) cells interacting with the tumor is illustrated using the examples of laminin-binding adhesion molecules—especially integrins—and their response to growth and inflammatory factors in the tumor microenvironment. The cooperation between cell-cell (E-cadherin, CDH1) and cell-ECM (α6 integrin, CD49f) expression and growth factor receptors is highlighted within poorly differentiated human tumors associated with aggressive disease. Cancer-associated fibroblasts are examined for their role in the tumor microenvironment in generating and organizing various growth factors. Cellular structural proteins are potential utility markers for future spatial profiling studies. We also examine the special characteristics of the smooth muscle microenvironment and how invasion by a primary tumor can alter this environment and contribute to tumor escape via cooperation between epithelial and stromal cells. This cooperative state allows the heterogenous tumor clusters to be shaped by various growth factors, co-opt or evade immune system response, adapt from hypoxic to normoxic conditions, adjust to varying energy sources, and survive radiation and chemotherapeutic interventions. Understanding the epithelial-mesenchymal cooperation in early tumor invasive networks holds potential for both identifying early biomarkers of the aggressive transition and identification of novel agents to prevent the epithelial-mesenchymal cooperation phenotype. Epithelial-mesenchymal cooperation is likely to unveil new tumor subtypes to aid in selection of appropriate therapeutic strategies.
Collapse
Affiliation(s)
- William L Harryman
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States
| | - Kendra D Marr
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, United States.,Medical Scientist Training Program, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Ray B Nagle
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Anne E Cress
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, United States.,Department of Cellular and Molecular Medicine and Department of Radiation Oncology, College of Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
6
|
ATP allosterically stabilizes integrin-linked kinase for efficient force generation. Proc Natl Acad Sci U S A 2022; 119:e2106098119. [PMID: 35259013 PMCID: PMC8933812 DOI: 10.1073/pnas.2106098119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pseudokinase integrin-linked kinase (ILK) is a central component of focal adhesions, cytoplasmic multiprotein complexes that integrate and transduce biochemical and mechanical signals from the extracellular environment into the cell and vice versa. However, the precise molecular functions, particularly the mechanosensory properties of ILK and the significance of retained adenosine triphosphate (ATP) binding, are still unclear. Combining molecular-dynamics simulations with cell biology, we establish a role for ATP binding to pseudokinases. We find that ATP promotes the structural stability of ILK, allosterically influences the interaction between ILK and its binding partner parvin at adhesions, and enhances the mechanoresistance of this complex. On the cellular level, ATP binding facilitates efficient traction force buildup, focal adhesion stabilization, and efficient cell migration. Focal adhesions link the actomyosin cytoskeleton to the extracellular matrix regulating cell adhesion, shape, and migration. Adhesions are dynamically assembled and disassembled in response to extrinsic and intrinsic forces, but how the essential adhesion component integrin-linked kinase (ILK) dynamically responds to mechanical force and what role adenosine triphosphate (ATP) bound to this pseudokinase plays remain elusive. Here, we apply force–probe molecular-dynamics simulations of human ILK:α-parvin coupled to traction force microscopy to explore ILK mechanotransducing functions. We identify two key salt-bridge–forming arginines within the allosteric, ATP-dependent force-propagation network of ILK. Disrupting this network by mutation impedes parvin binding, focal adhesion stabilization, force generation, and thus migration. Under tension, ATP shifts the balance from rupture of the complex to protein unfolding, indicating that ATP increases the force threshold required for focal adhesion disassembly. Our study proposes a role of ATP as an obligatory binding partner for structural and mechanical integrity of the pseudokinase ILK, ensuring efficient cellular force generation and migration.
Collapse
|
7
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
8
|
Huang S, Liao J, Luo X, Liu F, Shi G, Wen W. Kindlin-2 promoted the progression of keloids through the Smad pathway and Fas/FasL pathway. Exp Cell Res 2021; 408:112813. [PMID: 34492266 DOI: 10.1016/j.yexcr.2021.112813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Keloids are benign skin tumors characterized by aggressive growth. To date, there is no exact treatment because little is known about its pathological mechanism. Therefore, it is important to investigate the mechanism of its occurrence and development to identify therapeutic targets. In this study, the expression of Kindlin-2 was higher in keloid fibroblasts (KFs) than in normal skin fibroblasts (NFs). In vitro experiments showed that knocking down Kindlin-2 in KFs could promote cell apoptosis and inhibit cell proliferation, cell migration and invasion, and contractile capability. Western blot results showed that the phosphorylation of Smad3 in KFs was inhibited after knocking down Kindlin-2, inhibiting the activation of the Smad pathway. Moreover, knocking down Kindlin-2 increased the expression of Fas and FasL in KFs, which demonstrated that knocking down Kindlin-2 promoted the activation of the exogenous apoptotic pathway of KFs and then facilitated apoptosis. The above results revealed that knocking down Kindlin-2 in KFs can inhibit the activation of the Smad pathway and promote the activation of the Fas/FasL exogenous apoptosis pathway, thereby altering the cytological function of KFs. Therefore, Kindlin-2 might play an important role in the occurrence and development of keloids and could become a new target to treat keloids.
Collapse
Affiliation(s)
- Shaobin Huang
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing Liao
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaohua Luo
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fang Liu
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ge Shi
- Department of Cosmetic and Plastic Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Weiping Wen
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
9
|
Mia MS, Jarajapu Y, Rao R, Mathew S. Integrin β1 Promotes Pancreatic Tumor Growth by Upregulating Kindlin-2 and TGF-β Receptor-2. Int J Mol Sci 2021; 22:ijms221910599. [PMID: 34638957 PMCID: PMC8508632 DOI: 10.3390/ijms221910599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment plays a critical role in defining the growth and malignancy of solid tumors. Extracellular matrix (ECM) proteins such as collagen, vitronectin, and fibronectin are major components of the tumor microenvironment. Tumor growth-promoting reciprocal interaction between ECM and cytoplasmic proteins is regulated by the cell surface receptors called integrins. This study investigated the mechanism by which integrin β1 promotes pancreatic tumor growth. In MIA PaCa-2 pancreatic cancer cell line, the loss of integrin β1 protein reduced the ability of cells to proliferate in a 3D matrix and compromised the ability to form a focal adhesion complex. Decreased expression of integrin α5 was observed in KO cells, which resulted in impaired cell spreading and adhesion on vitronectin and fibronectin. Reduced expression of the integrin-associated protein, kindlin-2 was also recorded. The downregulation of kindlin-2 decreased the phosphorylation of Smad2/3 by reducing the expression of TGF-β receptor 2. These results unravel a new mechanism of integrin β1 in tumor growth by modifying the expression of kindlin-2 and TGF-β receptor 2 signaling.
Collapse
Affiliation(s)
- Md Saimon Mia
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND 58108-6050, USA; (M.S.M.); (Y.J.)
| | - Yagna Jarajapu
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND 58108-6050, USA; (M.S.M.); (Y.J.)
| | - Reena Rao
- Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - Sijo Mathew
- Department of Pharmaceutical Sciences, School of Pharmacy, North Dakota State University, Fargo, ND 58108-6050, USA; (M.S.M.); (Y.J.)
- Correspondence: ; Tel.: +1-701-231-8214
| |
Collapse
|
10
|
Guzy R, Redente EF. Kindlin for the Fire: Targeting Proline Synthesis to Extinguish Matrix Production in Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2021; 65:4-5. [PMID: 33844940 PMCID: PMC8320124 DOI: 10.1165/rcmb.2021-0137ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Robert Guzy
- Department of Medicine, The University of Chicago, Chicago, Illinois
| | - Elizabeth F Redente
- Department of Pediatrics, National Jewish Health, Denver, Colorado and.,Department of Medicine University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
11
|
Bu W, Levitskaya Z, Tan SM, Gao YG. Emerging evidence for kindlin oligomerization and its role in regulating kindlin function. J Cell Sci 2021; 134:256567. [PMID: 33912917 DOI: 10.1242/jcs.256115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated cell-extracellular matrix (ECM) interactions play crucial roles in a broad range of physiological and pathological processes. Kindlins are important positive regulators of integrin activation. The FERM-domain-containing kindlin family comprises three members, kindlin-1, kindlin-2 and kindlin-3 (also known as FERMT1, FERMT2 and FERMT3), which share high sequence similarity (identity >50%), as well as domain organization, but exhibit diverse tissue-specific expression patterns and cellular functions. Given the significance of kindlins, analysis of their atomic structures has been an attractive field for decades. Recently, the structures of kindlin and its β-integrin-bound form have been obtained, which greatly advance our understanding of the molecular functions that involve kindlins. In particular, emerging evidence indicates that oligomerization of kindlins might affect their integrin binding and focal adhesion localization, positively or negatively. In this Review, we presented an update on the recent progress of obtaining kindlin structures, and discuss the implication for integrin activation based on kindlin oligomerization, as well as the possible regulation of this process.
Collapse
Affiliation(s)
- Wenting Bu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China518055
| | - Zarina Levitskaya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore637551.,NTU Institute of Structural Biology, Nanyang Technological University, 59 Nanyang Drive, Singapore639798
| |
Collapse
|
12
|
Dudiki T, Mahajan G, Liu H, Zhevlakova I, Bertagnolli C, Nascimento DW, Kothapalli CR, Byzova TV. Kindlin3 regulates biophysical properties and mechanics of membrane to cortex attachment. Cell Mol Life Sci 2021; 78:4003-4018. [PMID: 33783564 PMCID: PMC11071771 DOI: 10.1007/s00018-021-03817-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/01/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
Kindlin3 (K3), a FERM domain containing protein expressed in hematopoietic cells controls integrin activation and thus hemostatic and inflammatory responses. However, its role in the mechanics of plasma membrane remains unclear. Here, we show that genetic knockout of K3 in microglia and macrophages resulted in defective plasma membrane tension and membrane blebbing. Atomic force microscopy (AFM) of K3-deficient cells revealed a significant loss in membrane-to-cortex attachment (MCA), and consequently reduced membrane tension. This loss in MCA is amplified by the mislocalization of the cell cortex proteins-ezrin, radixin, and moesin (ERM)-to the plasma membrane of microglia and macrophages. Re-expression of K3 in K3-deficient macrophages rescued the defects and localization of ERMs implying a key role for K3 in MCA. Analysis of two K3 mutants, K3int affecting integrin binding and activation, and K3pxn/act disrupting binding to paxillin and actin but not integrin functions, demonstrated that the role of K3 in membrane mechanics is separate from integrin activation. The K3pxn/act mutant substantially diminished both membrane tension and Yes-associated protein (YAP) translocation to the nucleus, while preserving integrin activation, cell spreading, and migration. Together, our results show that K3 coordinates membrane mechanics, ERM protein recruitment to the membrane, and YAP translocation by linking integrin at the membrane to paxillin and actin of the cytoskeleton. This novel function of K3 is distinct from its role in integrin activation.
Collapse
Affiliation(s)
- Tejasvi Dudiki
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Gautam Mahajan
- Chemical and Biomedical Engineering Department, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA
| | - Huan Liu
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Irina Zhevlakova
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chase Bertagnolli
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | | | - Chandrasekhar R Kothapalli
- Chemical and Biomedical Engineering Department, Washkewicz College of Engineering, Cleveland State University, Cleveland, OH, 44115, USA.
| | - Tatiana V Byzova
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
13
|
Qin L, Fu X, Ma J, Lin M, Zhang P, Wang Y, Yan Q, Tao C, Liu W, Tang B, Chen D, Bai X, Cao H, Xiao G. Kindlin-2 mediates mechanotransduction in bone by regulating expression of Sclerostin in osteocytes. Commun Biol 2021; 4:402. [PMID: 33767359 PMCID: PMC7994671 DOI: 10.1038/s42003-021-01950-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
Osteocytes act as mechanosensors in bone; however, the underlying mechanism remains poorly understood. Here we report that deleting Kindlin-2 in osteocytes causes severe osteopenia and mechanical property defects in weight-bearing long bones, but not in non-weight-bearing calvariae. Kindlin-2 loss in osteocytes impairs skeletal responses to mechanical stimulation in long bones. Control and cKO mice display similar bone loss induced by unloading. However, unlike control mice, cKO mice fail to restore lost bone after reloading. Osteocyte Kindlin-2 deletion impairs focal adhesion (FA) formation, cytoskeleton organization and cell orientation in vitro and in bone. Fluid shear stress dose-dependently increases Kindlin-2 expression and decreases that of Sclerostin by downregulating Smad2/3 in osteocytes; this latter response is abolished by Kindlin-2 ablation. Kindlin-2-deficient osteocytes express abundant Sclerostin, contributing to bone loss in cKO mice. Collectively, we demonstrate an indispensable novel role of Kindlin-2 in maintaining skeletal responses to mechanical stimulation by inhibiting Sclerostin expression during osteocyte mechanotransduction.
Collapse
Affiliation(s)
- Lei Qin
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Xuekun Fu
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Jing Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Manxia Lin
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Peijun Zhang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Yishu Wang
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Qinnan Yan
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Wen Liu
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Di Chen
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Huiling Cao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
14
|
Liu J, Liu Z, Chen K, Chen W, Fang X, Li M, Zhou X, Ding N, Lei H, Guo C, Qian T, Wang Y, Liu L, Chen Y, Zhao H, Sun Y, Deng Y, Wu C. Kindlin-2 promotes rear focal adhesion disassembly and directional persistence during cell migration. J Cell Sci 2021; 134:jcs244616. [PMID: 33277381 DOI: 10.1242/jcs.244616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 11/22/2020] [Indexed: 01/13/2023] Open
Abstract
Cell migration involves front-to-rear asymmetric focal adhesion (FA) dynamics, which facilitates trailing edge detachment and directional persistence. Here, we show that kindlin-2 is crucial for FA sliding and disassembly in migrating cells. Loss of kindlin-2 markedly reduced FA number and selectively impaired rear FA sliding and disassembly, resulting in defective rear retraction and reduced directional persistence during cell migration. Kindlin-2-deficient cells failed to develop serum-induced actomyosin-dependent tension at FAs. At the molecular level, kindlin-2 directly interacted with myosin light chain kinase (MYLK, hereafter referred to as MLCK), which was enhanced in response to serum stimulation. Serum deprivation inhibited rear FA disassembly, which was released in response to serum stimulation. Overexpression of the MLCK-binding kindlin-2 F0F1 fragment (amino acid residues 1-167), which inhibits the interaction of endogenous kindlin-2 with MLCK, phenocopied kindlin-2 deficiency-induced migration defects. Inhibition of MLCK, like loss of kindlin-2, also impaired trailing-edge detachment, rear FA disassembly and directional persistence. These results suggest a role of kindlin-2 in promoting actomyosin contractility at FAs, leading to increased rear FA sliding and disassembly, and directional persistence during cell migration.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongzhen Liu
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Keng Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wei Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiyuan Fang
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Li
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuening Zhou
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ning Ding
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan Lei
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Guo
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tao Qian
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yilin Wang
- Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lin Liu
- Department of Cell Biology and Genetics, College of Life Sciences, Nan Kai University, Tianjin, 300071, China
| | - Yonglong Chen
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Ying Sun
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Deng
- Department of Biology, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, and Shenzhen Key Laboratory of Cell Microenvironment, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
15
|
Zhu L, Plow EF, Qin J. Initiation of focal adhesion assembly by talin and kindlin: A dynamic view. Protein Sci 2020; 30:531-542. [PMID: 33336515 DOI: 10.1002/pro.4014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
Focal adhesions (FAs) are integrin-containing protein complexes regulated by a network of hundreds of protein-protein interactions. They are formed in a spatiotemporal manner upon the activation of integrin transmembrane receptors, which is crucial to trigger cell adhesion and many other cellular processes including cell migration, spreading and proliferation. Despite decades of studies, a detailed molecular level understanding on how FAs are organized and function is lacking due to their highly complex and dynamic nature. However, advances have been made on studying key integrin activators, talin and kindlin, and their associated proteins, which are major components of nascent FAs critical for initiating the assembly of mature FAs. This review will discuss the structural and functional findings of talin and kindlin and their immediate interaction network, which will shed light upon the architecture of nascent FAs and how they act as seeds for FA assembly to dynamically regulate diverse adhesion-dependent physiological and pathological responses.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Edward F Plow
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jun Qin
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Chen D, Zhang C, Chen J, Yang M, Afzal TA, An W, Maguire EM, He S, Luo J, Wang X, Zhao Y, Wu Q, Xiao Q. miRNA-200c-3p promotes endothelial to mesenchymal transition and neointimal hyperplasia in artery bypass grafts. J Pathol 2020; 253:209-224. [PMID: 33125708 PMCID: PMC7839516 DOI: 10.1002/path.5574] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/17/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence has suggested a critical role for endothelial‐to‐mesenchymal transition (EndoMT) in a variety of pathological conditions. MicroRNA‐200c‐3p (miR‐200c‐3p) has been implicated in epithelial‐to‐mesenchymal transition. However, the functional role of miR‐200c‐3p in EndoMT and neointimal hyperplasia in artery bypass grafts remains largely unknown. Here we demonstrated a critical role for miR‐200c‐3p in EndoMT. Proteomics and luciferase activity assays revealed that fermitin family member 2 (FERM2) is the functional target of miR‐200c‐3p during EndoMT. FERMT2 gene inactivation recapitulates the effect of miR‐200c‐3p overexpression on EndoMT, and the inhibitory effect of miR‐200c‐3p inhibition on EndoMT was reversed by FERMT2 knockdown. Further mechanistic studies revealed that FERM2 suppresses smooth muscle gene expression by preventing serum response factor nuclear translocation and preventing endothelial mRNA decay by interacting with Y‐box binding protein 1. In a model of aortic grafting using endothelial lineage tracing, we observed that miR‐200c‐3p expression was dramatically up‐regulated, and that EndoMT contributed to neointimal hyperplasia in grafted arteries. MiR‐200c‐3p inhibition in grafted arteries significantly up‐regulated FERM2 gene expression, thereby preventing EndoMT and reducing neointimal formation. Importantly, we found a high level of EndoMT in human femoral arteries with atherosclerotic lesions, and that miR‐200c‐3p expression was significantly increased, while FERMT2 expression levels were dramatically decreased in diseased human arteries. Collectively, we have documented an unexpected role for miR‐200c‐3p in EndoMT and neointimal hyperplasia in grafted arteries. Our findings offer a novel therapeutic opportunity for treating vascular diseases by specifically targeting the miR‐200c‐3p/FERM2 regulatory axis. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Dan Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Cheng Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Jiangyong Chen
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Cardiothoracic Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, PR China
| | - Mei Yang
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Tayyab A Afzal
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Weiwei An
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eithne M Maguire
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Shiping He
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jun Luo
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Xiaowen Wang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yu Zhao
- Vascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qingchen Wu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Qingzhong Xiao
- Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Key Laboratory of Cardiovascular Diseases at The Second Affiliated Hospital, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China.,Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, PR China
| |
Collapse
|
17
|
Kadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA. Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. J Biol Chem 2020; 295:11161-11173. [PMID: 32546480 DOI: 10.1074/jbc.ra120.013618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
The integrin family of transmembrane adhesion receptors coordinates complex signaling networks that control the ability of cells to sense and communicate with the extracellular environment. Kindlin proteins are a central cytoplasmic component of these networks, directly binding integrin cytoplasmic domains and mediating interactions with cytoskeletal and signaling proteins. The physiological importance of kindlins is well established, but how the scaffolding functions of kindlins are regulated at the molecular level is still unclear. Here, using a combination of GFP nanotrap association assays, pulldown and integrin-binding assays, and live-cell imaging, we demonstrate that full-length kindlins can oligomerize (self-associate) in mammalian cells, and we propose that this self-association inhibits integrin binding and kindlin localization to focal adhesions. We show that both kindlin-2 and kindlin-3 can self-associate and that kindlin-3 self-association is more robust. Using chimeric mapping, we demonstrate that the F2PH and F3 subdomains are important for kindlin self-association. Through comparative sequence analysis of kindlin-2 and kindlin-3, we identify kindlin-3 point mutations that decrease self-association and enhance integrin binding, affording mutant kindlin-3 the ability to localize to focal adhesions. Our results support the notion that kindlin self-association negatively regulates integrin binding.
Collapse
Affiliation(s)
- Yasmin A Kadry
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Eesha M Maisuria
- Department of Molecular Biophysics and Biochemistry, Yale College, Yale University, New Haven, Connecticut, USA
| | | | - David A Calderwood
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA .,Department of Cell Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
18
|
Kadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183206. [PMID: 31991120 PMCID: PMC7063833 DOI: 10.1016/j.bbamem.2020.183206] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/06/2023]
Abstract
The integrin family of transmembrane adhesion receptors is essential for sensing and adhering to the extracellular environment. Integrins are heterodimers composed of non-covalently associated α and β subunits that engage extracellular matrix proteins and couple to intracellular signaling and cytoskeletal complexes. Humans have 24 different integrin heterodimers with differing ligand binding specificities and non-redundant functions. Complex structural rearrangements control the ability of integrins to engage ligands and to activate diverse downstream signaling networks, modulating cell adhesion and dynamics, processes which are crucial for metazoan life and development. Here we review the structural and signaling functions of integrins focusing on recent advances which have enhanced our understanding of how integrins are activated and regulated, and the cytoplasmic signaling networks downstream of integrins.
Collapse
Affiliation(s)
- Yasmin A Kadry
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, United States of America; Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, United States of America..
| |
Collapse
|
19
|
Gagné D, Benoit YD, Groulx JF, Vachon PH, Beaulieu JF. ILK supports RhoA/ROCK-mediated contractility of human intestinal epithelial crypt cells by inducing the fibrillogenesis of endogenous soluble fibronectin during the spreading process. BMC Mol Cell Biol 2020; 21:14. [PMID: 32183701 PMCID: PMC7079544 DOI: 10.1186/s12860-020-00259-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/05/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Fibronectin (FN) assembly into an insoluble fibrillar matrix is a crucial step in many cell responses to extracellular matrix (ECM) properties, especially with regards to the integrin-related mechanosensitive signaling pathway. We have previously reported that the silencing of expression of integrin-linked kinase (ILK) in human intestinal epithelial crypt (HIEC) cells causes significant reductions in proliferation and spreading through concomitantly acquired impairment of soluble FN deposition. These defects in ILK-depleted cells are rescued by growth on exogenous FN. In the present study we investigated the contribution of ILK in the fibrillogenesis of FN and its relation to integrin-actin axis signaling and organization. RESULTS We show that de novo fibrillogenesis of endogenous soluble FN is ILK-dependent. This function seemingly induces the assembly of an ECM that supports increased cytoskeletal tension and the development of a fully spread contractile cell phenotype. We observed that HIEC cell adhesion to exogenous FN or collagen-I (Col-I) is sufficient to restore fibrillogenesis of endogenous FN in ILK-depleted cells. We also found that optimal engagement of the Ras homolog gene family member A (RhoA) GTPase/Rho-associated kinase (ROCK-1, ROCK-2)/myosin light chain (MLC) pathway, actin ventral stress fiber formation, and integrin adhesion complex (IAC) maturation rely primarily upon the cell's capacity to execute FN fibrillogenesis, independent of any significant ILK input. Lastly, we confirm the integrin α5β1 as the main integrin responsible for FN assembly, although in ILK-depleted cells αV-class integrins expression is needed to allow the rescue of FN fibrillogenesis on exogenous substrate. CONCLUSION Our study demonstrates that ILK specifically induces the initiation of FN fibrillogenesis during cell spreading, which promotes RhoA/ROCK-dependent cell contractility and maturation of the integrin-actin axis structures. However, the fibrillogenesis process and its downstream effect on RhoA signaling, cell contractility and spreading are ILK-independent in human intestinal epithelial crypt cells.
Collapse
Affiliation(s)
- David Gagné
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4 Canada
| | - Yannick D. Benoit
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5 Canada
| | - Jean-François Groulx
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, California, 92093 USA
| | - Pierre H. Vachon
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, J1H 5N4 Canada
| | - Jean-François Beaulieu
- Laboratory of Intestinal Physiopathology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, and Research Center of the Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, J1H 5N4 Canada
| |
Collapse
|
20
|
Zhang Y, Cui Y, Wang L, Han J. Autophagy promotes osteoclast podosome disassembly and cell motility athrough the interaction of kindlin3 with LC3. Cell Signal 2020; 67:109505. [DOI: 10.1016/j.cellsig.2019.109505] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
|
21
|
Liu H, Zhu L, Dudiki T, Gabanic B, Good L, Podrez EA, Cherepanova OA, Qin J, Byzova TV. Macrophage Migration and Phagocytosis Are Controlled by Kindlin-3's Link to the Cytoskeleton. THE JOURNAL OF IMMUNOLOGY 2020; 204:1954-1967. [PMID: 32094207 DOI: 10.4049/jimmunol.1901134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023]
Abstract
Major myeloid cell functions from adhesion to migration and phagocytosis are mediated by integrin adhesion complexes, also known as adhesome. The presence of a direct integrin binding partner Kindlin-3 is crucial for these functions, and its lack causes severe immunodeficiency in humans. However, how Kindlin-3 is incorporated into the adhesome and how its function is regulated is poorly understood. In this study, using nuclear magnetic resonance spectroscopy, we show that Kindlin-3 directly interacts with paxillin (PXN) and leupaxin (LPXN) via G43/L47 within its F0 domain. Surprisingly, disruption of Kindlin-3-PXN/LPXN interactions in Raw 264.7 macrophages promoted cell spreading and polarization, resulting in upregulation of both general cell motility and directed cell migration, which is in a drastic contrast to the consequences of Kindlin-3 knockout. Moreover, disruption of Kindlin-3-PXN/LPXN binding promoted the transition from mesenchymal to amoeboid mode of movement as well as augmented phagocytosis. Thus, these novel links between Kindlin-3 and key adhesome members PXN/LPXN limit myeloid cell motility and phagocytosis, thereby providing an important immune regulatory mechanism.
Collapse
Affiliation(s)
- Huan Liu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Liang Zhu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Tejasvi Dudiki
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Benjamin Gabanic
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Logan Good
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Eugene A Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Olga A Cherepanova
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Jun Qin
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; and
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195;
| |
Collapse
|
22
|
Su VL, Simon B, Draheim KM, Calderwood DA. Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation. J Biol Chem 2020; 295:3269-3284. [PMID: 32005669 DOI: 10.1074/jbc.ra119.009794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 01/29/2020] [Indexed: 02/06/2023] Open
Abstract
Nuclear accumulation of the small phosphoprotein integrin cytoplasmic domain-associated protein-1 (ICAP1) results in recruitment of its binding partner, Krev/Rap1 interaction trapped-1 (KRIT1), to the nucleus. KRIT1 loss is the most common cause of cerebral cavernous malformation, a neurovascular dysplasia resulting in dilated, thin-walled vessels that tend to rupture, increasing the risk for hemorrhagic stroke. KRIT1's nuclear roles are unknown, but it is known to function as a scaffolding or adaptor protein at cell-cell junctions and in the cytosol, supporting normal blood vessel integrity and development. As ICAP1 controls KRIT1 subcellular localization, presumably influencing KRIT1 function, in this work, we investigated the signals that regulate ICAP1 and, hence, KRIT1 nuclear localization. ICAP1 contains a nuclear localization signal within an unstructured, N-terminal region that is rich in serine and threonine residues, several of which are reportedly phosphorylated. Using quantitative microscopy, we revealed that phosphorylation-mimicking substitutions at Ser-10, or to a lesser extent at Ser-25, within this N-terminal region inhibit ICAP1 nuclear accumulation. Conversely, phosphorylation-blocking substitutions at these sites enhanced ICAP1 nuclear accumulation. We further demonstrate that p21-activated kinase 4 (PAK4) can phosphorylate ICAP1 at Ser-10 both in vitro and in cultured cells and that active PAK4 inhibits ICAP1 nuclear accumulation in a Ser-10-dependent manner. Finally, we show that ICAP1 phosphorylation controls nuclear localization of the ICAP1-KRIT1 complex. We conclude that serine phosphorylation within the ICAP1 N-terminal region can prevent nuclear ICAP1 accumulation, providing a mechanism that regulates KRIT1 localization and signaling, potentially influencing vascular development.
Collapse
Affiliation(s)
- Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Bertrand Simon
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Kyle M Draheim
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520.
| |
Collapse
|
23
|
Sun X, Su VL, Calderwood DA. The subcellular localization of type I p21-activated kinases is controlled by the disordered variable region and polybasic sequences. J Biol Chem 2019; 294:14319-14332. [PMID: 31391252 DOI: 10.1074/jbc.ra119.007692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
p21-activated kinases (PAKs) are serine/threonine kinase effectors of the small GTPases Rac and Cdc42 and major participants in cell adhesion, motility, and survival. Type II PAKs (PAK4, -5, and -6) are recruited to cell-cell boundaries, where they regulate adhesion dynamics and colony escape. In contrast, the type I PAK, PAK1, does not localize to cell-cell contacts. We have now found that the other type I PAKs (PAK2 and PAK3) also fail to target to cell-cell junctions. PAKs contain extensive similarities in sequence and domain organization; therefore, focusing on PAK1 and PAK6, we used chimeras and truncation mutants to investigate their differences in localization. We observed that a weakly conserved sequence region (the variable region), located between the Cdc42-binding CRIB domain and the kinase domain, inhibits PAK1 targeting to cell-cell junctions. Accordingly, substitution of the PAK1 variable region with that from PAK6 or removal of this region of PAK1 resulted in its localization to cell-cell contacts. We further show that Cdc42 binding is required, but not sufficient, to direct PAKs to cell-cell contacts and that an N-terminal polybasic sequence is necessary for PAK1 recruitment to cell-cell contacts, but only if the variable region-mediated inhibition is released. We propose that all PAKs contain cell-cell boundary-targeting motifs but that the variable region prevents type I PAK accumulation at junctions. This highlights the importance of this poorly conserved, largely disordered region in PAK regulation and raises the possibility that variable region inhibition may be released by cellular signals.
Collapse
Affiliation(s)
- Xiaowen Sun
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - Valerie L Su
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520
| | - David A Calderwood
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520.,Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
24
|
Zheng CC, Hu HF, Hong P, Zhang QH, Xu WW, He QY, Li B. Significance of integrin-linked kinase (ILK) in tumorigenesis and its potential implication as a biomarker and therapeutic target for human cancer. Am J Cancer Res 2019; 9:186-197. [PMID: 30755822 PMCID: PMC6356918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023] Open
Abstract
Integrin-linked kinase (ILK), which is an ankyrin repeat-containing serine/threonine protein kinase, interacts with integrin β1 and the β3 cytoplasmic domain and phosphorylates integrin β1. ILK has multiple functions in cells, such as cell-extracellular matrix interactions, cell cycle, apoptosis, cell proliferation and cell motility, which are associated with the interacting partners of ILK and downstream signaling pathways. Upregulation of ILK is frequently observed in cancer tissues compared to corresponding normal tissues. Emerging evidence has demonstrated that ILK plays an important role in biological processes associated with tumorigenesis, including cancer cell proliferation, angiogenesis, metastasis, and drug resistance. Furthermore, inhibition of ILK expression and activity using siRNA or chemical inhibitors has shown a significant suppressive effect on cancer development and progression, implicating the potential of ILK as a target for cancer treatment. In this review, we summarized the functional role of ILK in tumorigenesis, with the expectation that targeting ILK could provide more evidence for cancer therapy.
Collapse
Affiliation(s)
- Can-Can Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Hui-Fang Hu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Pan Hong
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Qi-Hua Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Wen Wen Xu
- Institute of Biomedicine, Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Jinan UniversityGuangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| | - Bin Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou 510632, China
| |
Collapse
|
25
|
Urner S, Planas-Paz L, Hilger LS, Henning C, Branopolski A, Kelly-Goss M, Stanczuk L, Pitter B, Montanez E, Peirce SM, Mäkinen T, Lammert E. Identification of ILK as a critical regulator of VEGFR3 signalling and lymphatic vascular growth. EMBO J 2018; 38:embj.201899322. [PMID: 30518533 PMCID: PMC6331728 DOI: 10.15252/embj.201899322] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
Vascular endothelial growth factor receptor‐3 (VEGFR3) signalling promotes lymphangiogenesis. While there are many reported mechanisms of VEGFR3 activation, there is little understanding of how VEGFR3 signalling is attenuated to prevent lymphatic vascular overgrowth and ensure proper lymph vessel development. Here, we show that endothelial cell‐specific depletion of integrin‐linked kinase (ILK) in mouse embryos hyper‐activates VEGFR3 signalling and leads to overgrowth of the jugular lymph sacs/primordial thoracic ducts, oedema and embryonic lethality. Lymphatic endothelial cell (LEC)‐specific deletion of Ilk in adult mice initiates lymphatic vascular expansion in different organs, including cornea, skin and myocardium. Knockdown of ILK in human LECs triggers VEGFR3 tyrosine phosphorylation and proliferation. ILK is further found to impede interactions between VEGFR3 and β1 integrin in vitro and in vivo, and endothelial cell‐specific deletion of an Itgb1 allele rescues the excessive lymphatic vascular growth observed upon ILK depletion. Finally, mechanical stimulation disrupts the assembly of ILK and β1 integrin, releasing the integrin to enable its interaction with VEGFR3. Our data suggest that ILK facilitates mechanically regulated VEGFR3 signalling via controlling its interaction with β1 integrin and thus ensures proper development of lymphatic vessels.
Collapse
Affiliation(s)
- Sofia Urner
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lara Planas-Paz
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Laura Sophie Hilger
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Carina Henning
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Anna Branopolski
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Molly Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Lukas Stanczuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Bettina Pitter
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Eloi Montanez
- Walter-Brendel-Center of Experimental Medicine, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eckhard Lammert
- Institute of Metabolic Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany .,Institute for Beta Cell Biology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany
| |
Collapse
|
26
|
First person – Yasmin Kadry. J Cell Sci 2018. [DOI: 10.1242/jcs.226175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
First Person is a series of interviews with the first authors of a selection of papers published in Journal of Cell Science, helping early-career researchers promote themselves alongside their papers. Yasmin Kadry is the first author on ‘Kindlin-2 interacts with a highly-conserved surface of ILK to regulate focal adhesion localization and cell spreading’, published in Journal of Cell Science. Yasmin is a PhD student in the lab of David Calderwood at Yale University, New Haven, CT, investigating the roles of kindlins and integrin-linked kinase (ILK) in integrin-related functions.
Collapse
|