1
|
Jiang R, Huang Y, Ye R, Zhang Y, Dong M, Zhang H, Cheng Z, Zhang Z, Zhang J, Zhang Q, Sun G, Jin W. Brown adipocyte exosome - derived C22:6 inhibits the IL-1β signaling pathway to alleviate rheumatoid arthritis. Front Immunol 2025; 16:1543288. [PMID: 40416978 PMCID: PMC12098281 DOI: 10.3389/fimmu.2025.1543288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/17/2025] [Indexed: 05/27/2025] Open
Abstract
Introduction Rheumatoid arthritis (RA) is an autoimmune disorder characterized by significant disability and teratogenic effects, for which there are few effective curative therapies. Exosomes derived from mesenchymal stem cells (MSCs) exhibit anti-inflammatory and tissue regenerative properties. This study aimed to investigate the therapeutic potential of exosomes derived from human classical interscapular brown adipocytes (hcBAC-exos) in alleviating symptoms of RA in a mouse model. Methods We established a mouse model of collagen-induced arthritis (CIA) to evaluate the efficacy of hcBAC-exos. Specifically, we assessed the degree of RA remission by applying vitamin E emulsion, as well as a mixture of vitamin E emulsion and hcBAC-exos, to the foot paws of CIA mice. Additionally, the effects of hcBAC-exos on pro-inflammatory cytokines in macrophages (RAW264.7 cells) were investigated at the cellular level. The active components of hcBAC-exos were analyzed via lipidomics, and the mechanism of their ability to inhibit inflammation was explored. Results Administration of hcBAC-exos significantly reduced the expression of pro-inflammatory cytokines in macrophages. In the CIA mouse model, transdermal application of hcBAC-exos led to notable decreases in ankle swelling and the serum levels of IL-1β and TNFα (P < 0.5). Mechanistically, lipidomic analysis showed that Docosahexaenoic acid (C22:6) is highly enriched in hcBAC-exos. Furthermore, we found that C22:6 specifically inhibits IL-1β expression by binding to the amino acids Y183, S210, E265, S182, and R223 of TLR4, mutating these amino acids results in the loss of C22:6 binding activity to TLR4. Discussion Our findings suggest that the hcBAC-exos-C22:6-TLR4-IL-1β signaling pathway plays a crucial role in the context of RA, indicating the potential clinical applications of hcBAC-exos in the treatment of inflammatory conditions such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Rui Jiang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- The Zhongzhou Laboratory for Integrative Biology of Henan University, Zhengzhou, Henan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Huang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongcai Ye
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yujian Zhang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Dong
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hanlin Zhang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyu Cheng
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zhang
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Zhang
- Department of Gastroenterology and Hepatology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Qiaoli Zhang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Sun
- Department of Gastroenterology and Hepatology, First Medical Center, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Wanzhu Jin
- State Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- The Zhongzhou Laboratory for Integrative Biology of Henan University, Zhengzhou, Henan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Barr SI, Abd El-Azeem EM, Bessa SS, Mohamed TM. Role of exosomes in pathogenesis, diagnosis, and treatment of diabetic nephropathy. BMC Nephrol 2025; 26:230. [PMID: 40340661 PMCID: PMC12063312 DOI: 10.1186/s12882-025-04120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 04/11/2025] [Indexed: 05/10/2025] Open
Abstract
Diabetic nephropathy (DN) is a serious microvascular complication that can progress to end-stage renal disease, with its prevalence and associated mortality increasing globally. However extensive research, the precise mechanisms underlying DN pathogenesis remain unclear, and the current treatment options for DN are limited to dialysis or renal replacement therapy, although several experimental approaches have shown potential, they remain investigational and lack clinical translation. Exosomes play a pivotal role in disease diagnosis and prognosis. Urinary exosomes, originating from various kidney cells, reflect the kidney's pathological condition and are involved in cell-to-cell communication through autocrine or paracrine signaling; therefore, they could contribute to the pathogenesis of DN and potential therapeutic approaches. Additionally, due to their diverse cargo, which depend on cellular origin and pathological state, exosomes may act as biomarkers for the early prediction of DN. This review presents a comprehensive overview of the latest findings on the role of exosomes in the diagnosis, pathogenesis, and treatment of DN.
Collapse
Affiliation(s)
- Shaimaa I Barr
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Eman M Abd El-Azeem
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sahar S Bessa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
3
|
Zhang Z, She L, Bai M. Efficacy of exosomes in acute kidney injury treatment and the associated mechanism (Review). Mol Med Rep 2025; 31:137. [PMID: 40145555 PMCID: PMC11963750 DOI: 10.3892/mmr.2025.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/31/2025] [Indexed: 03/28/2025] Open
Abstract
Acute kidney injury (AKI) is a syndrome characterized by rapid loss of renal function with a high morbidity and mortality. However, due to the complex pathophysiologic mechanisms of AKI, no specific treatment for this disease is currently available. Animal models have demonstrated the protective effects of exosomes on AKI; however, the underlying mechanisms require further investigation. The present review focuses on the efficacy of exosomes derived from different cell sources, including mesenchymal stem cells, endothelial progenitor cells and tubular epithelial cells, in the treatment of AKI and the associated mechanism. Furthermore, the effects of exosomal contents, including microRNAs, circular RNAs, long non‑coding RNAs, messenger RNAs and proteins, on the repair of renal tubules, protection against renal tubular epithelial cell injury, protection against fibrosis, inhibition of early endoplasmic reticulum stress and mediation of inflammation during AKI are also summarized in the present review.
Collapse
Affiliation(s)
- Zehao Zhang
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Lecheng She
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
4
|
Du G, He J, Zhan Y, Chen L, Hu Y, Qian J, Huang H, Meng F, Shan L, Chen Z, Hu D, Zhu C, Yue M, Qi Y, Tan W. Changes and application prospects of biomolecular materials in small extracellular vesicles (sEVs) after flavivirus infection. Eur J Med Res 2025; 30:275. [PMID: 40229861 PMCID: PMC11998145 DOI: 10.1186/s40001-025-02539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Small extracellular vesicles (sEVs), also known as exosomes, are membranous vesicles filled with various proteins and nucleic acids, serving as a communication vector between cells. Recent research has highlighted their role in viral diseases. This review synthesizes current understanding of viral sEVs and includes recent findings on sEVs infected with flaviviruses. It discusses the implications of viral sEVs research for advancing arbovirus sEVs research and anticipates the potential applications of sEVs in flavivirus infections.
Collapse
Affiliation(s)
- Gengting Du
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Junhua He
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Yan Zhan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Leru Chen
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Yue Hu
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Jiaojiao Qian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huan Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fanjin Meng
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Laiyou Shan
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | - Zhiyu Chen
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China
| | | | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Ming Yue
- Department of Infectious Diseases, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yong Qi
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China
| | - Weilong Tan
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, People's Republic of China.
- Nanjing Jinling Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
5
|
Dehghani S, Ocakcı O, Hatipoglu PT, Özalp VC, Tevlek A. Exosomes as Biomarkers and Therapeutic Agents in Neurodegenerative Diseases: Current Insights and Future Directions. Mol Neurobiol 2025:10.1007/s12035-025-04825-5. [PMID: 40095345 DOI: 10.1007/s12035-025-04825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Neurodegenerative diseases (NDs) like Alzheimer's, Parkinson's, and ALS rank among the most challenging global health issues, marked by substantial obstacles in early diagnosis and effective treatment. Current diagnostic techniques frequently demonstrate inadequate sensitivity and specificity, whilst conventional treatment strategies encounter challenges related to restricted bioavailability and insufficient blood-brain barrier (BBB) permeability. Recently, exosomes-nanoscale vesicles packed with proteins, RNAs, and lipids-have emerged as promising agents with the potential to reshape diagnostic and therapeutic approaches to these diseases. Unlike conventional drug carriers, they naturally traverse the BBB and can deliver bioactive molecules to affected neural cells. Their molecular cargo can influence cell signaling, reduce neuroinflammation, and potentially slow neurodegenerative progression. Moreover, exosomes serve as non-invasive biomarkers, enabling early and precise diagnosis while allowing real-time disease monitoring. Additionally, engineered exosomes, loaded with therapeutic molecules, enhance this capability by targeting diseased neurons and overcoming conventional treatment barriers. By offering enhanced specificity, reduced immunogenicity, and an ability to bypass physiological limitations, exosome-based strategies present a transformative advantage over existing diagnostic and therapeutic approaches. This review examines the multifaceted role of exosomes in NDDs, emphasizing their diagnostic capabilities, intrinsic therapeutic functions, and transformative potential as advanced treatment vehicles.
Collapse
Affiliation(s)
- Sam Dehghani
- Faculty of Medicine, Undergraduate Program, Atılım University, 06830, Ankara, Turkey
| | - Ozgecan Ocakcı
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey
| | - Pars Tan Hatipoglu
- Faculty of Medicine, Undergraduate Program, Atılım University, 06830, Ankara, Turkey
| | - Veli Cengiz Özalp
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey
| | - Atakan Tevlek
- Department of Medical Biology, Faculty of Medicine, AtıLıM University, 06830, Ankara, Turkey.
| |
Collapse
|
6
|
Wang Z, Huang Y, He S, Zhou Y, Zhao L, Wang F. Dynamic and functional analyses of exosomal miRNAs regulating cellular microenvironment of ovarian cancer cells. J Ovarian Res 2025; 18:25. [PMID: 39930447 PMCID: PMC11808964 DOI: 10.1186/s13048-025-01608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/23/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Exosomes, extracellular vesicles with an average diameter of 30 ~ 150 nm, are pivotal in mediating the cellular microenvironment (CM) through their cargo-carrying capability. Despite extensive studies, the dynamic and regulatory mechanisms of exosomal cargoes, including lipids, proteins, nucleic acids, and metabolites, remain poorly understood. METHODS In this study, we collected culture medium of ovarian cancer cells at four different time points (12, 24, 36, 48 h). Exosomes were isolated using ultracentrifugation, and miRNA sequencing was performed for exosomes from each group (T12, T24, T36, and T48). RESULTS A total of 131 miRNAs were identified in all groups. Specifically, 41, 115, 63, and 24 miRNAs were detected in the T12, T24, T36, and T48 groups, respectively. Among these, 15 miRNAs were common to the all groups, while 3, 57, 10, and 3 miRNAs were unique to the T12, T24, T36, and T48 groups, respectively. Functional analyses of the target genes for both common and specific miRNAs indicated that numerous target genes were involved in signaling pathways and cancer-related processes. CONCLUSION It suggested that exosomal miRNAs might be critical in intercellular communication and in dynamically remodeling the tumor microenvironment. These insights could enhance our understanding of the role of exosomal miRNAs in cancer biology and inform the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhaoxia Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China.
- First Hospital of Shanxi Medical University, 85 South Jiefang Road, Taiyuan, Shanxi, 030001, P.R. China.
| | - Yanan Huang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Simin He
- Department of Health Statistics and Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Ying Zhou
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Le Zhao
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | - Fuyuan Wang
- Department of Gynecology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| |
Collapse
|
7
|
Li Q, Liu Q, Li S, Zuo X, Zhou H, Gao Z, Xia B. Golgi-derived extracellular vesicle production induced by SARS-CoV-2 envelope protein. Apoptosis 2025; 30:197-209. [PMID: 39580578 DOI: 10.1007/s10495-024-02035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/25/2024]
Abstract
Extracellular vesicles facilitate cell-to-cell communication, and some enveloped viruses utilize these vesicles as carriers to mediate viral transmission. SARS-CoV-2 envelope protein (2-E) forms a cation channel and overexpression of 2-E led to the generation of a distinct type of large extracellular vesicles (2-E-EVs). Although 2-E-EVs have been demonstrated to facilitate viral transmission in a receptor-independent way, the characteristics and biogenesis mechanism remain enigmatic. Via lipidomics and proteomic analysis, we found 2-E-EVs are distinct from endosome-derived exosomes. 2-E-EVs are notably enriched in Golgi apparatus components, aligning with the observed fragmentation in Golgi morphology. Through live cell imaging, we established a connection between 2-E-EVs formation, Golgi fragmentation, and channel activity, emphasizing the role of 2-E-EVs as ion channel-induced extracellular vesicles. Our work highlights 2-E-EVs as distinctive Golgi-derived vesicles, contributing to a deeper understanding of 2-E channel-mediated virus-host dynamics, with implications for therapeutic strategies and drug delivery.
Collapse
Affiliation(s)
- Qiguang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Qian Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Shuangqu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China
| | - Xiaoli Zuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
- Zhongshan Institute of Drug Discovery, Institution for Drug Discovery Innovation, Chinese Academy of Science, Zhongshan, 528400, China.
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
8
|
Sanchez JC, Pierpont TM, Argueta-Zamora D, Wilson K, August A, Cerione RA. PTEN loss in glioma cell lines leads to increased extracellular vesicle biogenesis and PD-L1 cargo in a PI3K-dependent manner. J Biol Chem 2025; 301:108143. [PMID: 39732171 PMCID: PMC11791317 DOI: 10.1016/j.jbc.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
Phosphatase and Tensin Homolog (PTEN) is one of the most frequently lost tumor suppressors in cancer and the predominant negative regulator of the PI3K-AKT signaling axis. A growing body of evidence has highlighted the loss of PTEN with immuno-modulatory functions including the upregulation of the programmed death ligand-1 (PD-L1), an altered tumor-derived secretome that drives an immunosuppressive tumor immune microenvironment and resistance to certain immunotherapies. Given their roles in immunosuppression and tumor growth, we examined whether the loss of PTEN would impact the biogenesis, cargo, and function of extracellular vesicles (EVs) in the context of the anti-tumor associated cytokine interferon-γ. Through genetic and pharmacological approaches, we show that total cellular expression of PD-L1 is regulated by JAK/STAT signaling, not PI3K signaling. Instead, we observe that PTEN loss specifically upregulates cell surface levels of PD-L1 and enhances the biogenesis of EVs enriched with PD-L1 in a PI3K-dependent manner. We demonstrate that because of these changes, EVs derived from glioma cells lacking PTEN have a greater ability to suppress T cell receptor signaling. Taken together, these findings provide important new insights into how the loss of PTEN can contribute to an immunosuppressive tumor immune microenvironment, facilitate immune evasion, and highlight a novel role for PI3K signaling in the regulation of EV biogenesis and the cargo they contain.
Collapse
Affiliation(s)
- Julio C Sanchez
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Timothy M Pierpont
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Dariana Argueta-Zamora
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kristin Wilson
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Richard A Cerione
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
9
|
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular Vesicles: Advanced Tools for Disease Diagnosis, Monitoring, and Therapies. Int J Mol Sci 2024; 26:189. [PMID: 39796048 PMCID: PMC11720073 DOI: 10.3390/ijms26010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-encapsulated vesicles released by cells into the extracellular space. They play a crucial role in intercellular communication by transporting bioactive molecules such as proteins, lipids, and nucleic acids. EVs can be detected in body fluids, including blood plasma, urine, saliva, amniotic fluid, breast milk, and pleural ascites. The complexity and diversity of EVs require a robust and standardized approach. By adhering to standardized protocols and guidelines, researchers can ensure the consistency, purity, and reproducibility of isolated EVs, facilitating their use in diagnostics, therapies, and research. Exosomes and microvesicles represent an exciting frontier in modern medicine, with significant potential to transform the diagnosis and treatment of various diseases with an important role in personalized medicine and precision therapy. The primary objective of this review is to provide an updated analysis of the significance of EVs by highlighting their mechanisms of action and exploring their applications in the diagnosis and treatment of various diseases. Additionally, the review addresses the existing limitations and future potential of EVs, offering practical recommendations to resolve current challenges and enhance their viability for clinical use. This comprehensive approach aims to bridge the gap between EV research and its practical application in healthcare.
Collapse
Affiliation(s)
| | | | | | - María Isabel Torres
- Department of Experimental Biology, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (P.L.); (J.N.D.); (T.P.)
| |
Collapse
|
10
|
Rocher C, Vernale A, Fierro‐Constaín L, Séjourné N, Chenesseau S, Marschal C, Issartel J, Le Goff E, Stroebel D, Jouvion J, Dutilleul M, Matthews C, Marschal F, Brouilly N, Massey‐Harroche D, Schenkelaars Q, Ereskovsky A, Le Bivic A, Renard E, Borchiellini C. The Buds of Oscarella lobularis (Porifera, Homoscleromorpha): A New Convenient Model for Sponge Cell and Evolutionary Developmental Biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:503-528. [PMID: 39364688 PMCID: PMC11587685 DOI: 10.1002/jez.b.23271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024]
Abstract
The comparative study of the four non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera) provides insights into the origin of bilaterian traits. To complete our knowledge of the cell biology and development of these animals, additional non-bilaterian models are needed. Given the developmental, histological, ecological, and genomic differences between the four sponge classes (Demospongiae, Calcarea, Homoscleromorpha, and Hexactinellida), we have been developing the Oscarella lobularis (Porifera, class Homoscleromorpha) model over the past 15 years. Here, we report a new step forward by inducing, producing, and maintaining in vitro thousands of clonal buds that now make possible various downstream applications. This study provides a full description of bud morphology, physiology, cells and tissues, from their formation to their development into juveniles, using adapted cell staining protocols. In addition, we show that buds have outstanding capabilities of regeneration after being injured and of re-epithelization after complete cell dissociation. Altogether, Oscarella buds constitute a relevant all-in-one sponge model to access a large set of biological processes, including somatic morphogenesis, epithelial morphogenesis, cell fate, body axes formation, nutrition, contraction, ciliary beating, and respiration.
Collapse
Grants
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE;
- AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR).
- The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments.
- The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
- This work was funded by the Centre National de la recherche Scientifique (CNRS, UMR7263 and UMR7288) : project for international scientific cooperation (PICS) STraS involving CR, AE, SC, ER, CB, ELG, ALB, DMH, CM, AV), and also by the Aix-Marseille University and the A*MIDEX foundation project (ANR-11-IDEX-0001-02 to CB, ER, ALB, CR, NS, SC, ChM, AE; AMX-18-INT-021 to CB, ER, ALB, CR, DML, NB, CM); as well as the National research agency (ANR) : ANR-21-CE13-0013-02 to ALB, DML, CB, ER, CR, CM, SC and ANR-22-CE13-0026 to DS, JJ, ER, CB, QS, CR, CM, SC); ALB, DMH and NB are supported by the LabEx INFORM (ANR-11-LABX-0054) both funded by the «Investissements d'Avenir » French Government program, managed by the French National Research Agency (ANR). The DB RAS government basic research program no. 0088-2021-0009 (TEM studies) to AE. AE also acknowledge the Saint-Petersburg State University (Saint-Petersburg, Russia) and the Koltzov Institute of Developmental Biology of Russian Academy of Sciences (Moscow, Russia) for their technical and financial support to perform some of the experiments. The region Sud/PACA and Aix-Marseille University are also acknowledged for funding PhD fellowships of Laura Fierro-Constaín and Amélie Vernale, respectively. The light and electron microscopy experiments were performed at the PiCSL-FBI core facility (IBDM, AMU-Marseille), a member of the France-BioImaging National Research Infrastructure (ANR-10-INBS-04).
Collapse
Affiliation(s)
- Caroline Rocher
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Amélie Vernale
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | | - Nina Séjourné
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | - Julien Issartel
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | - Emilie Le Goff
- ISEM, CNRS, IRDUniversity of MontpellierMontpellierFrance
| | - David Stroebel
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Julie Jouvion
- ENS, CNRS, INSERM, Institute de Biologie de l'Ecole Normale Supérieure (IBENS)Université PSLParisFrance
| | - Morgan Dutilleul
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | - Florent Marschal
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
| | | | | | | | | | | | - Emmanuelle Renard
- Aix Marseille Univ, IMBE, CNRS, IRD, Avignon UnivMarseilleFrance
- Aix Marseille UniversityMarseilleFrance
| | | |
Collapse
|
11
|
Hua Y, Jiang P, Dai C, Li M. Extracellular vesicle autoantibodies. J Autoimmun 2024; 149:103322. [PMID: 39341173 DOI: 10.1016/j.jaut.2024.103322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Autoantibodies are immunoglobulin proteins produced by autoreactive B cells responding to self-antigens. Extracellular vesicles (EVs) are membranous structures released by almost all types of cells and extensively distributed in various biological fluids. Studies have indicated that EVs loaded with self-antigens not only play important roles in antigen presentation and autoantibody production but can also form functional immune complexes with autoantibodies (termed EV autoantibodies). While numerous papers have summarized the production and function of pathogenic autoantibodies in diseases, especially autoimmune diseases, reviews on EV autoantibodies are rare. In this review, we outline the existing knowledge about EVs, autoantibodies, and EV antigens, highlighting the formation of EV autoantibodies and their functions in autoimmune diseases and cancers. In conclusion, EV autoantibodies may be involved in the occurrence of disease(s) and also serve as potential non-invasive markers that could help in the diagnosis and/or prognosis of disease. Additional studies designed to define in more detail the molecular characteristics of EV autoantibodies and their contribution to disease are recommended.
Collapse
Affiliation(s)
- Yan Hua
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China
| | - Panpan Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China
| | - Chunyang Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China
| | - Ming Li
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China; Department of Laboratory Medicine, Anhui Provincial Cancer Hospital, Hefei, Anhui, 230031, China; Core Unit of National Clinical Research Center for Laboratory Medicine of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
12
|
Patel SA, Park S, Zhu D, Torr EE, Dureke AG, McIntyre A, Muzyka N, Severson J, Skop AR. Extracellular vesicles, including large translating vesicles called midbody remnants, are released during the cell cycle. Mol Biol Cell 2024; 35:ar155. [PMID: 39535882 PMCID: PMC11656471 DOI: 10.1091/mbc.e23-10-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell-cell communication, but the biogenesis of large EVs has remained elusive. Here, we show that the biogenesis of large EVs (>800 nm-2 µm) occurs predominantly through the completion of successful cytokinesis, and the majority of large EVs are midbody remnants (MBRs) with translation activity, and the unique marker MKLP1. Blocking the cell cycle or cytokinesis, genetically or chemically, significantly decreases MBRs and large (800 nm-2 µm), medium (500-800 nm), and small (<300 nm) EVs, suggesting that proliferative cells can also generate all sizes of EVs. The canonical EV markers including CD9, CD63, CD81 localize to the spindle midzone, midbody, and MBRs, suggesting that these markers are not specific for detecting EVs exclusively. Importantly, all commonly used EV isolation methods isolate MBRs, confounding previous EV research. Last, isolated MBRs maintain translation activity regardless of the isolation method. We propose a model for the biogenesis of EVs throughout the cell cycle and suggest that some large EVs are primarily generated from mitotic cells. The discovery of MBRs as a unique class of large, translating EVs has implications for using them as cancer diagnostic markers and for engineering them for therapeutic cargo delivery during mitosis.
Collapse
Affiliation(s)
- Smit A. Patel
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Sungjin Park
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Dantong Zhu
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | | | | | - Nadiya Muzyka
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | - Ahna R. Skop
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| |
Collapse
|
13
|
Zhang H, Xia J, Wang X, Wang Y, Chen J, He L, Dai J. Recent Progress of Exosomes in Hematological Malignancies: Pathogenesis, Diagnosis, and Therapeutic Strategies. Int J Nanomedicine 2024; 19:11611-11631. [PMID: 39539968 PMCID: PMC11559222 DOI: 10.2147/ijn.s479697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Hematological malignancies originate from the hematopoietic system, including lymphoma, multiple myeloma, leukaemia, etc. They are highly malignant with a high incidence, a poor prognosis and a high mortality. Although the novel therapeutic strategies have partly improved the clinical efficacy of hematological malignancies, patients still face up with drug resistance, refractory disease and disease relapse. Many studies have shown that exosomes play an important role in hematological malignancies. Exosomes are nanoscale vesicles secreted by cells with a size ranging from 40 to 160 nm. They contain various intracellular components such as membrane proteins, lipids, and nucleic acids. These nanoscale vesicles transmit information between cells with the cargos. Thus, they participate in a variety of pathological processes such as angiogenesis, proliferation, metastasis, immunomodulation and drug resistance, which results in important role in the pathogenesis and progression of hematological malignancies. Furthermore, exosomes and the components carried in them can be used as potential biomarkers for the diagnosis, therapeutic sensitivity and prognosis in hematological malignancies. In the therapy of hematologic malignancies, certain exosome are potential to be used as therapeutic targets, meanwhile, exosomes are suitable drug carriers with lipid bilayer membrane and the nanostructure. Moreover, the tumor-derived exosomes of patients with hematologic malignancies can be developed into anti-tumor vaccines. The research and application of exosomes in hematological malignancies are summarized and discussed in this review.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jingyi Xia
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xueqing Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yifan Wang
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jie Chen
- Central Laboratory, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Lin He
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Jingying Dai
- Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| |
Collapse
|
14
|
Yang W, Li Q, Wang F, Zhang X, Zhang X, Wang M, Xue D, Zhao Y, Tang L. Exosomal miR-155-5p promote the occurrence of carotid atherosclerosis. J Cell Mol Med 2024; 28:e70187. [PMID: 39495676 PMCID: PMC11534067 DOI: 10.1111/jcmm.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024] Open
Abstract
Periodontitis is a significant independent risk factor for atherosclerosis. Yet, the exact mechanism of action is still not fully understood. In this study, we investigated the effect of exosomes-miR-155-5p derived from periodontal endothelial cells on atherosclerosis in vitro and in vivo. Higher expression of miR-155-5p was detected in the plasma exosomes of patients with chronic periodontitis (CP) and carotid atherosclerosis (CAS) compared to patients with CP. Also, the expression level of miR-155-5p was associated with the severity of CP. miR-155-5p-enriched exosomes from HUVECs increased the angiogenesis and permeability of HAECs and promoted the expression of angiogenesis, permeability, and inflammation genes. Along with the overexpression or inhibition of miR-155-5p, the biological effect of HUVECs-derived exosomes on HAECs changed correspondingly. In ApoE-/- mouse models, miR-155-5p-enriched exosomes promoted the occurrence of carotid atherosclerosis by increasing permeable and angiogenic activity. Collectively, these findings highlight a molecular mechanism of periodontitis in CAS, uncovering exosomal miR-155-5p derived periodontitis affecting carotid endothelial cells in an 'exosomecrine' manner. Exosomal miR-155-5p may be used as a biomarker and target for clinical intervention to control this intractable disease in future, and the graphic abstract was shown in Figure S1.
Collapse
Affiliation(s)
- Wen‐Wen Yang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Qing‐Xiang Li
- Department of Oral and Maxillofacial SurgeryPeking University School and Hospital of StomatologyBeijingChina
| | - Fei Wang
- Department of Vascular Surgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xin‐Ran Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Xian‐Li Zhang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Meng Wang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Dong Xue
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Ying Zhao
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Lu Tang
- Department of Stomatology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
15
|
Bobbili MR, Görgens A, Yan Y, Vogt S, Gupta D, Corso G, Barbaria S, Patrioli C, Weilner S, Pultar M, Jacak J, Hackl M, Schosserer M, Grillari R, Kjems J, Andaloussi SEL, Grillari J. Snorkel-tag based affinity chromatography for recombinant extracellular vesicle purification. J Extracell Vesicles 2024; 13:e12523. [PMID: 39400515 PMCID: PMC11472238 DOI: 10.1002/jev2.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid nanoparticles and play an important role in cell-cell communications, making them potential therapeutic agents and allowing to engineer for targeted drug delivery. The expanding applications of EVs in next generation medicine is still limited by existing tools for scaling standardized EV production, single EV tracing and analytics, and thus provide only a snapshot of tissue-specific EV cargo information. Here, we present the Snorkel-tag, for which we have genetically fused the EV surface marker protein CD81, to a series of tags with an additional transmembrane domain to be displayed on the EV surface, resembling a snorkel. This system enables the affinity purification of EVs from complex matrices in a non-destructive form while maintaining EV characteristics in terms of surface protein profiles, associated miRNA patterns and uptake into a model cell line. Therefore, we consider the Snorkel-tag to be a widely applicable tool in EV research, allowing for efficient preparation of EV standards and reference materials, or dissecting EVs with different surface markers when fusing to other tetraspanins in vitro or in vivo.
Collapse
Affiliation(s)
- Madhusudhan Reddy Bobbili
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
- Ludwig Boltzmann Institute for TraumatologyThe Research Center in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue Regeneration
| | - André Görgens
- Department of Laboratory Medicine, Division of Biomolecular and Cellular MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Institute for Transfusion Medicine, University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Yan Yan
- Department of Molecular Biology and Genetics, Centre for Cellular Signal Patterns (CellPat), Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityAarhus CDenmark
- Omiics ApSAarhus NDenmark
| | - Stefan Vogt
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
| | - Dhanu Gupta
- Department of Laboratory Medicine, Division of Biomolecular and Cellular MedicineKarolinska InstitutetStockholmSweden
- Institute of Developmental and Regenerative MedicineUniversity of Oxford, IMS‐Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, HeadingtonOxfordUnited Kingdom
- Department of PaediatricsUniversity of Oxford, South Parks RoadOxfordUnited Kingdom
| | - Giulia Corso
- Department of Laboratory Medicine, Division of Biomolecular and Cellular MedicineKarolinska InstitutetStockholmSweden
- Evercyte GmbHViennaAustria
| | - Samir Barbaria
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
| | - Carolina Patrioli
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
| | - Sylvia Weilner
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
| | | | - Jaroslaw Jacak
- Ludwig Boltzmann Institute for TraumatologyThe Research Center in Cooperation with AUVAViennaAustria
- School of Medical Engineering and Applied Social ScienceUniversity of Applied Sciences Upper AustriaLinzAustria
| | - Matthias Hackl
- Austrian Cluster for Tissue Regeneration
- TAmiRNATAmiRNA GmbHViennaAustria
| | - Markus Schosserer
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
- Austrian Cluster for Tissue Regeneration
- Institute of Medical GeneticsCenter for Pathobiochemistry and GeneticsMedical University of ViennaViennaAustria
| | - Regina Grillari
- Austrian Cluster for Tissue Regeneration
- Evercyte GmbHViennaAustria
| | - Jørgen Kjems
- Department of Molecular Biology and Genetics, Centre for Cellular Signal Patterns (CellPat), Interdisciplinary Nanoscience Centre (iNANO)Aarhus UniversityAarhus CDenmark
| | - Samir EL Andaloussi
- Department of Laboratory Medicine, Division of Biomolecular and Cellular MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
| | - Johannes Grillari
- Institute of Molecular Biotechnology, Department of BiotechnologyBOKU UniversityViennaAustria
- Ludwig Boltzmann Institute for TraumatologyThe Research Center in Cooperation with AUVAViennaAustria
- Austrian Cluster for Tissue Regeneration
| |
Collapse
|
16
|
Falero-Diaz G, Barboza CDA, Kaiser K, Tallman KA, Montoya C, Patel SB, Hutcheson JD, Lassance-Soares RM. The Systemic Effect of Ischemia Training and Its Impact on Bone Marrow-Derived Monocytes. Cells 2024; 13:1602. [PMID: 39404366 PMCID: PMC11475150 DOI: 10.3390/cells13191602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE Monocytes are innate immune cells that play a central role in inflammation, an essential component during neovascularization. Our recent publication demonstrated that ischemia training by 24 h unilateral occlusion of the femoral artery (FA) can modify bone marrow-derived monocytes (BM-Mono), allowing them to improve collateral remodeling in a mouse model of hindlimb ischemia. Here, we expand on our previous findings, investigating a potential systemic effect of ischemia training and how this training can impact BM-Mono. METHODS AND RESULTS BM-Mono from mice exposed to ischemia training (24 h) or Sham (same surgical procedure without femoral artery occlusion-ischemia training) procedures were used as donors in adoptive transfer experiments where recipients were subjected to hindlimb ischemia. Donor cells were divided corresponding to the limb from which they were isolated (left-limb previously subjected to 24 h ischemia and right-contralateral limb). Recipients who received 24 h ischemic-trained monocytes isolated from either limb had remarkable blood flow recovery compared to recipients with Sham monocytes (monocytes isolated from Sham group-no ischemia training). Since these data suggested a systemic effect of ischemic training, circulating extracellular vesicles (EVs) were investigated as potential players. EVs were isolated from both groups, 24 h-trained and Sham, and the former showed increased expression of histone deacetylase 1 (HDAC1), which is known to downregulate 24-dehydrocholesterol reductase (Dhcr24) gene expression. Since we previously revealed that ischemia training downregulates Dhcr24 in BM-Mono, we incubated EVs from 24 h-trained and Sham groups with wild-type (WT) BM-Mono and demonstrated that WT BM-Mono incubated with 24 h-trained EVs had lower gene expression of Dhcr24 and an HDAC1 inhibitor blunted this effect. Next, we repeated the adoptive transfer experiment using Dhcr24 KO mice as donors of BM-Mono for WT mice subjected to hindlimb ischemia. Recipients who received Dhcr24 KO BM-Mono had greater limb perfusion than those who received WT BM-Mono. Further, we focused on the 24 h-trained monocytes (which previously showed downregulation of Dhcr24 gene expression and higher desmosterol) to test the expression of a few genes downstream of the desmosterol pathway, confirm the Dhcr24 protein level and assess its differentiation in M2-like macrophage phenotype. We found that 24 h-trained BM-Mono had greater expression of key genes in the desmosterol pathway, such as liver X receptors (LXRs) and ATP-binding cassette transporter (ABCA1), and we confirmed low protein expression of Dhcr24. Further, we demonstrated that ischemic-trained BM-Mono polarized towards an anti-inflammatory M2 macrophage phenotype. Finally, we demonstrated that 24 h-trained monocytes adhere less to endothelial cells, and the same pattern was shown by WT BM-Mono treated with Dhcr24 inhibitor. CONCLUSIONS Ischemia training leads to a systemic effect that, at least in part, involves circulating EVs and potential epigenetic modification in BM-Mono. These ischemic-trained BM-Mono demonstrated an anti-inflammatory phenotype towards M2 macrophage differentiation and less ability to adhere to endothelial cells, which is associated with the downregulation of Dhcr24 in those cells. These data together suggest that Dhcr24 might be an important target within monocytes to improve the outcomes of hindlimb ischemia.
Collapse
Affiliation(s)
- Gustavo Falero-Diaz
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| | - Catarina de A. Barboza
- Department of Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Katherine Kaiser
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (K.K.); (J.D.H.)
| | - Keri A. Tallman
- Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA;
| | - Christopher Montoya
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| | - Shailendra B. Patel
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Joshua D. Hutcheson
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA; (K.K.); (J.D.H.)
| | - Roberta M. Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (G.F.-D.); (C.M.)
| |
Collapse
|
17
|
Wu J, Chen Y. Unraveling the Connection: Extracellular Vesicles and Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:8139-8157. [PMID: 39139506 PMCID: PMC11321355 DOI: 10.2147/ijn.s477851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer vesicles released during cell activation, cellular damage, or apoptosis. They carry nucleic acids, proteins, and lipids facilitating intercellular communication and activate signaling pathways in target cells. In non-small cell lung cancer (NSCLC), EVs may contribute to tumor growth and metastasis by modulating immune responses, facilitating epithelial-mesenchymal transition, and promoting angiogenesis, while potentially contributing to resistance to chemotherapy drugs. EVs in liquid biopsies serve as non-invasive biomarkers for early cancer detection and diagnosis. Due to their small size, inherent molecular transport properties, and excellent biocompatibility, EVs also act as natural drug delivery vehicles in NSCLC therapy.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
18
|
Sędzik M, Rakoczy K, Sleziak J, Kisiel M, Kraska K, Rubin J, Łuniewska W, Choromańska A. Comparative Analysis of Exosomes and Extracellular Microvesicles in Healing Pathways: Insights for Advancing Regenerative Therapies. Molecules 2024; 29:3681. [PMID: 39125084 PMCID: PMC11314465 DOI: 10.3390/molecules29153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Exosomes and microvesicles bear great potential to broaden therapeutic options in the clinical context. They differ in genesis, size, cargo, and composition despite their similarities. They were identified as participating in various processes such as angiogenesis, cell migration, and intracellular communication. Additionally, they are characterized by their natural biocompatibility. Therefore, researchers concluded that they could serve as a novel curative method capable of achieving unprecedented results. Indeed, in experiments, they proved remarkably efficient in enhancing wound regeneration and mitigating inflammation. Despite immense advancements in research on exosomes and microvesicles, the time for their large-scale application is yet to come. This article aims to gather and analyze current knowledge on those promising particles, their characteristics, and their potential clinical implementations.
Collapse
Affiliation(s)
- Mikołaj Sędzik
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Sleziak
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Michał Kisiel
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Karolina Kraska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Jakub Rubin
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Wiktoria Łuniewska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (M.S.); (K.R.); (J.S.); (M.K.); (K.K.); (J.R.); (W.Ł.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
19
|
Chen S, Gao J, Zhang T. From mesenchymal stem cells to their extracellular vesicles: Progress and prospects for asthma therapy. Asian J Pharm Sci 2024; 19:100942. [PMID: 39253613 PMCID: PMC11382190 DOI: 10.1016/j.ajps.2024.100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/18/2023] [Accepted: 05/20/2024] [Indexed: 09/11/2024] Open
Abstract
Asthma is a widespread public health concern, with an increasing incidence. Despite the implementation of current treatment strategies, asthma control, particularly for severe cases, remains suboptimal. Recent research has revealed the encouraging prospects of extracellular vesicles (EVs) secreted by mesenchymal stem cells (MSCs) as a viable therapeutic option for alleviating asthma symptoms. Therefore, the present review aims to provide an overview of the current progress and the therapeutic mechanisms of using MSC-derived EVs (MSC-EVs) for asthma treatment. Additionally, different administration approaches for EVs and their impacts on biodistribution and the curative outcomes of EVs are summarized. Notably, the potential benefits of nebulized inhalation of MSC-EVs are addressed. Also, the possibilities and challenges of using MSC-EVs for asthma treatment in clinics are highlighted. Overall, this review is intended to give new insight into the utilization of MSC-EVs as a potential biological drug for asthma treatment.
Collapse
Affiliation(s)
- Shihan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
20
|
Li D, Zhang T, Guo Y, Bi C, Liu M, Wang G. Biological impact and therapeutic implication of tumor-associated macrophages in hepatocellular carcinoma. Cell Death Dis 2024; 15:498. [PMID: 38997297 PMCID: PMC11245522 DOI: 10.1038/s41419-024-06888-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The tumor microenvironment is a complex space comprised of normal, cancer and immune cells. The macrophages are considered as the most abundant immune cells in tumor microenvironment and their function in tumorigenesis is interesting. Macrophages can be present as M1 and M2 polarization that show anti-cancer and oncogenic activities, respectively. Tumor-associated macrophages (TAMs) mainly have M2 polarization and they increase tumorigenesis due to secretion of factors, cytokines and affecting molecular pathways. Hepatocellular carcinoma (HCC) is among predominant tumors of liver that in spite of understanding its pathogenesis, the role of tumor microenvironment in its progression still requires more attention. The presence of TAMs in HCC causes an increase in growth and invasion of HCC cells and one of the reasons is induction of glycolysis that such metabolic reprogramming makes HCC distinct from normal cells and promotes its malignancy. Since M2 polarization of TAMs stimulates tumorigenesis in HCC, molecular networks regulating M2 to M1 conversion have been highlighted and moreover, drugs and compounds with the ability of targeting TAMs and suppressing their M2 phenotypes or at least their tumorigenesis activity have been utilized. TAMs increase aggressive behavior and biological functions of HCC cells that can result in development of therapy resistance. Macrophages can provide cell-cell communication in HCC by secreting exosomes having various types of biomolecules that transfer among cells and change their activity. Finally, non-coding RNA transcripts can mainly affect polarization of TAMs in HCC.
Collapse
Affiliation(s)
- Deming Li
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Ting Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Ye Guo
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China
| | - Cong Bi
- Department of Radiology, The First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Ming Liu
- Department of Oral Radiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, PR China.
| | - Gang Wang
- Department of Intervention, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, PR China.
| |
Collapse
|
21
|
Larey AM, Spoerer TM, Daga KR, Morfin MG, Hynds HM, Carpenter J, Hines KM, Marklein RA. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. Bioact Mater 2024; 37:153-171. [PMID: 38549769 PMCID: PMC10972802 DOI: 10.1016/j.bioactmat.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function is mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Furthermore, clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.
Collapse
Affiliation(s)
- Andrew M. Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Thomas M. Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R. Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G. Morfin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jana Carpenter
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Ross A. Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
22
|
Barr SI, Bessa SS, Mohamed TM, Abd El-Azeem EM. Exosomal UMOD gene expression and urinary uromodulin level as early noninvasive diagnostic biomarkers for diabetic nephropathy in type 2 diabetic patients. Diabetol Int 2024; 15:389-399. [PMID: 39101162 PMCID: PMC11291796 DOI: 10.1007/s13340-023-00686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/11/2023] [Indexed: 08/06/2024]
Abstract
Background Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Exosomes are promising biomarkers for disease diagnosis and uromodulin is a kidney-specific protein. So, this study was designed to investigate the change in the gene expression of urinary exosomal uromodulin mRNA and urinary uromodulin level and determine the diagnostic potential of these noninvasive biomarkers in the early stage of diabetic nephropathy in type 2 diabetic patients. Method This study included 100 participants; urinary exosomes were isolated using polyethylene glycol (PEG). Gene expression of exosomal uromodulin mRNA was determined by quantitative real-time polymerase chain reaction (q-RT-PCR). The urinary uromodulin levels were determined by an enzyme-linked immunosorbent assay (ELISA). Result In this study, the gene expression of exosomal uromodulin (UMOD) mRNA and the level of urinary uromodulin showed a significant increase in all diabetic groups with and without nephropathy compared to the control group. The exosomal UMOD mRNA showed a significant positive correlation with urinary uromodulin in all groups. Multiple logistic regression showed that urinary uromodulin was an independent determinant for DN. A diagnostic model of two indicators, exosomal UMOD mRNA and urinary uromodulin, can significantly predict DN. The area under the curve is 0.095, with a 95% confidence interval of 0.98-1, and 0.81, with a 95% confidence interval of 0.69-0.92, for the exosomal UMOD mRNA and urinary uromodulin, respectively. Conclusion Urinary exosomal mRNA of UMOD and urinary uromodulin levels are progressively elevated in an early stage of DN, even before the microalbuminuria stage, so they could be used as early predictors for DN.
Collapse
Affiliation(s)
- Shaimaa I. Barr
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sahar S. Bessa
- Internal Medicine Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Tarek M. Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | | |
Collapse
|
23
|
Molnar SM, Kim Y, Wieczorek L, Williams A, Patil KA, Khatkar P, Santos MF, Mensah G, Lorico A, Polonis VR, Kashanchi F. Extracellular vesicle isolation methods identify distinct HIV-1 particles released from chronically infected T-cells. J Extracell Vesicles 2024; 13:e12476. [PMID: 38978287 PMCID: PMC11231049 DOI: 10.1002/jev2.12476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/16/2024] [Indexed: 07/10/2024] Open
Abstract
The current study analyzed the intersecting biophysical, biochemical, and functional properties of extracellular particles (EPs) with the human immunodeficiency virus type-1 (HIV-1) beyond the currently accepted size range for HIV-1. We isolated five fractions (Frac-A through Frac-E) from HIV-infected cells by sequential differential ultracentrifugation (DUC). All fractions showed a heterogeneous size distribution with median particle sizes greater than 100 nm for Frac-A through Frac-D but not for Frac-E, which contained small EPs with an average size well below 50 nm. Synchronized and released cultures contained large infectious EPs in Frac-A, with markers of amphisomes and viral components. Additionally, Frac-E uniquely contained EPs positive for CD63, HSP70, and HIV-1 proteins. Despite its small average size, Frac-E contained membrane-protected viral integrase, detectable only after SDS treatment, indicating that it is enclosed in vesicles. Single particle analysis with dSTORM further supported these findings as CD63, HIV-1 integrase, and the viral surface envelope (Env) glycoprotein (gp) colocalized on the same Frac-E particles. Surprisingly, Frac-E EPs were infectious, and infectivity was significantly reduced by immunodepleting Frac-E with anti-CD63, indicating the presence of this protein on the surface of infectious small EPs in Frac-E. To our knowledge, this is the first time that extracellular vesicle (EV) isolation methods have identified infectious small HIV-1 particles (smHIV-1) that are under 50 nm. Collectively, our data indicate that the crossroads between EPs and HIV-1 potentially extend beyond the currently accepted biophysical properties of HIV-1, which may have further implications for viral pathogenesis.
Collapse
Affiliation(s)
- Sebastian M. Molnar
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Yuriy Kim
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Lindsay Wieczorek
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military MedicineBethesdaMarylandUSA
| | - Anastasia Williams
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Kajal Ashok Patil
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Pooja Khatkar
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Mark F. Santos
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Gifty Mensah
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| | - Aurelio Lorico
- College of MedicineTouro University NevadaHendersonNevadaUSA
| | - Victoria R. Polonis
- Military HIV‐1 Research ProgramWalter Reed Army Institute of ResearchSilver SpringMarylandUSA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of System BiologyGeorge Mason UniversityManassasVirginiaUSA
| |
Collapse
|
24
|
Wang S, Tian R, Bi Y, Meng F, Zhang R, Wang C, Wang D, Liu L, Zhang B. A review of distribution and functions of extracellular DNA in the environment and wastewater treatment systems. CHEMOSPHERE 2024; 359:142264. [PMID: 38714248 DOI: 10.1016/j.chemosphere.2024.142264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 05/04/2024] [Indexed: 05/09/2024]
Abstract
Extracellular DNA refers to DNA fragments existing outside the cell, originating from various cell release mechanisms, including active secretion, cell lysis, and phage-mediated processes. Extracellular DNA serves as a vital environmental biomarker, playing crucial ecological and environmental roles in water bodies. This review is summarized the mechanisms of extracellular DNA release, including pathways involving cell lysis, extracellular vesicles, and type IV secretion systems. Then, the extraction and detection methods of extracellular DNA from water, soil, and biofilm are described and analyzed. Finally, we emphasize the role of extracellular DNA in microbial community systems, including its significant contributions to biofilm formation, biodiversity through horizontal gene transfer, and electron transfer processes. This review offers a comprehensive insight into the sources, distribution, functions, and impacts of extracellular DNA within aquatic environments, aiming to foster further exploration and understanding of extracellular DNA dynamics in aquatic environments as well as other environments.
Collapse
Affiliation(s)
- Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Ruimin Tian
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Yanmeng Bi
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Fansheng Meng
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Dong Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China
| | - Lingjie Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road 26, Tianjin, 300384, China; Tianjin Key Laboratory of Aquatic Science and Technology, Jinjing Road 26, Tianjin, China.
| | - Bo Zhang
- Tianjin Eco-City Water Investment and Construction Co. Ltd, Hexu Road 276, Tianjin, 300467, China
| |
Collapse
|
25
|
Shimizu Y, Ntege EH, Inoue Y, Matsuura N, Sunami H, Sowa Y. Optimizing mesenchymal stem cell extracellular vesicles for chronic wound healing: Bioengineering, standardization, and safety. Regen Ther 2024; 26:260-274. [PMID: 38978963 PMCID: PMC11228664 DOI: 10.1016/j.reth.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 07/10/2024] Open
Abstract
Chronic wounds represent a significant global burden, afflicting millions with debilitating complications. Despite standard care, impaired healing persists due to factors like persistent inflammation and impaired tissue regeneration. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) offer an innovative regenerative medicine approach, delivering stem cell-derived therapeutic cargo in engineered nanoscale delivery systems. This review examines pioneering bioengineering strategies to engineer MSC-EVs into precision nanotherapeutics for chronic wounds. Emerging technologies like CRISPR gene editing, microfluidic manufacturing, and biomimetic delivery systems are highlighted for their potential to enhance MSC-EV targeting, optimize therapeutic cargo enrichment, and ensure consistent clinical-grade production. However, key hurdles remain, including batch variability, rigorous safety assessment for potential tumorigenicity, immunogenicity, and biodistribution profiling. Crucially, collaborative frameworks harmonizing regulatory science with bioengineering and patient advocacy hold the key to expediting global clinical translation. By overcoming these challenges, engineered MSC-EVs could catalyze a new era of off-the-shelf regenerative therapies, restoring hope and healing for millions afflicted by non-healing wounds.
Collapse
Affiliation(s)
- Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshikazu Inoue
- Department of Plastic and Reconstructive Surgery, School of Medicine, Fujita Health University, 1-98, Dengakugakubo, Kutsukake, Toyoake, Aichi, 470-1192, Japan
| | - Naoki Matsuura
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Hiroshi Sunami
- Center for Advanced Medical Research, School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Nakagami, Okinawa, 903-0215, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, 329-0498, Tochigi, Japan
| |
Collapse
|
26
|
Kim KY, Shin KY, Chang KA. Potential Exosome Biomarkers for Parkinson's Disease Diagnosis: A Systematic Review and Meta-Analysis. Int J Mol Sci 2024; 25:5307. [PMID: 38791346 PMCID: PMC11121363 DOI: 10.3390/ijms25105307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide. Given its prevalence, reliable biomarkers for early diagnosis are required. Exosomal proteins within extracellular nanovesicles are promising candidates for diagnostic, screening, prognostic, and disease monitoring purposes in neurological diseases such as PD. This review aims to evaluate the potential of extracellular vesicle proteins or miRNAs as biomarkers for PD. A comprehensive literature search until January 2024 was conducted across multiple databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, to identify relevant studies reporting exosome biomarkers in blood samples from PD patients. Out of 417 articles screened, 47 studies were selected for analysis. Among exosomal protein biomarkers, α-synuclein, tau, Amyloid β 1-42, and C-X-C motif chemokine ligand 12 (CXCL12) were identified as significant markers for PD. Concerning miRNA biomarkers, miRNA-24, miR-23b-3p, miR-195-3p, miR-29c, and mir-331-5p are promising across studies. α-synuclein exhibited increased levels in PD patients compared to control groups in twenty-one studies, while a decrease was observed in three studies. Our meta-analysis revealed a significant difference in total exosomal α-synuclein levels between PD patients and healthy controls (standardized mean difference [SMD] = 1.369, 95% confidence interval [CI] = 0.893 to 1.846, p < 0.001), although these results are limited by data availability. Furthermore, α-synuclein levels significantly differ between PD patients and healthy controls (SMD = 1.471, 95% CI = 0.941 to 2.002, p < 0.001). In conclusion, certain exosomal proteins and multiple miRNAs could serve as potential biomarkers for diagnosis, prognosis prediction, and assessment of disease progression in PD.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
27
|
Suciu TS, Feștilă D, Berindan-Neagoe I, Nutu A, Armencea G, Aghiorghiesei AI, Vulcan T, Băciuț M. Circular RNA-Mediated Regulation of Oral Tissue-Derived Stem Cell Differentiation: Implications for Oral Medicine and Orthodontic Applications. Stem Cell Rev Rep 2024; 20:656-671. [PMID: 38279054 PMCID: PMC10984898 DOI: 10.1007/s12015-024-10683-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 01/28/2024]
Abstract
Circular RNAs (circRNAs) are a novel class of endogenous non-coding RNAs (ncRNAs) which unlike linear RNAs, have a covalently closed continuous loop structure. circRNAs are found abundantly in human cells and their biology is complex. They feature unique expression to different types of cells, tissues, and developmental stages. To the present, the functional roles of circular RNAs are not fully understood. They reportedly act as microRNA (miRNA) sponges, therefore having key regulatory functions in diverse physiological and pathological processes. As for dentistry field, lines of evidence indicate that circRNAs play vital roles in the odontogenic and osteogenic differentiation of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs). Abnormal expression of circRNAs have been found in other areas of pathology frequently reflected also in the oral environment, such as inflammation or bone and soft tissue loss. Therefore, circRNAs could be of significant importance in various fields in dentistry, especially in bone and soft tissue engineering and regeneration. Understanding the molecular mechanisms occurring during the regulation of oral biological and tissue remodeling processes could augment the discovery of novel diagnostic biomarkers and therapeutic strategies that will improve orthodontic and other oral therapeutic protocols.
Collapse
Affiliation(s)
- Tudor-Sergiu Suciu
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania
| | - Dana Feștilă
- Department of Orthodontics and Dentofacial Orthopedics, Iuliu Hațieganu University of Medicine and Pharmacy, 400083, Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, 400337, Cluj-Napoca, Romania
| | - Gabriel Armencea
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| | - Alexandra Iulia Aghiorghiesei
- Department of Prosthodontics and Dental Materials, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Talida Vulcan
- Department of Dermatology, Iuliu Hațieganu University of Medicine and Pharmacy, 400006, Cluj-Napoca, Romania
| | - Mihaela Băciuț
- Department of Maxillofacial Surgery and Implantology, Iuliu Hațieganu University of Medicine and Pharmacy, 400029, Cluj-Napoca, Romania
| |
Collapse
|
28
|
Caamaño D, Cabezas J, Aguilera C, Martinez I, Wong YS, Sagredo DS, Ibañez B, Rodriguez S, Castro FO, Rodriguez-Alvarez L. DNA Content in Embryonic Extracellular Vesicles Is Independent of the Apoptotic Rate in Bovine Embryos Produced In Vitro. Animals (Basel) 2024; 14:1041. [PMID: 38612280 PMCID: PMC11011075 DOI: 10.3390/ani14071041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Pre-implantation embryos release extracellular vesicles containing different molecules, including DNA. The presence of embryonic DNA in E-EVs released into the culture medium during in vitro embryo production could be useful for genetic diagnosis. However, the vesicles containing DNA might be derived from embryos suffering from apoptosis, i.e., embryos of bad quality. This work intended to confirm that embryos release DNA that is useful for genotyping by evaluating the effect of embryonic apoptosis on DNA content in E-EVs. Bovine embryos were produced by parthenogenesis and in vitro fertilization (IVF). On Day 5, morulae were transferred to individual cultures in an EV-depleted SOF medium. On Day 7, embryos were used to evaluate cellular apoptosis, and each culture medium was collected to evaluate E-EV concentration, characterization, and DNA quantification. While no effect of the origin of the embryo on the apoptotic rate was found, arrested morulae had a higher apoptotic rate. E-EVs containing DNA were identified in all samples, and the concentration of those vesicles was not affected by the origin or quality of the embryos. However, the concentration of DNA was higher in EVs released by the arrested parthenogenetic embryos. There was a correlation between the concentration of E-EVs, the concentration of DNA-positive E-EVs, and the concentration of DNA. There was no negative effect of apoptotic rate on DNA-positive E-EVs and DNA concentration; however, embryos of the best quality with a low apoptotic rate still released EVs containing DNA. This study confirms that the presence of DNA in E-EVs is independent of embryo quality. Therefore, E-EVs could be used in liquid biopsy for noninvasive genetic diagnosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Lleretny Rodriguez-Alvarez
- Laboratory of Animal Biotechnology, Department of Animal Science, Faculty of Veterinary Sciences, Universidad de Concepción, Av. Vicente Mendez 595, Chillán 3780000, Chile; (D.C.); (J.C.); (C.A.); (I.M.); (Y.S.W.); (D.S.S.); (B.I.); (S.R.); (F.O.C.)
| |
Collapse
|
29
|
Sanchez JC, Pierpont TM, Argueta-Zamora D, Wilson K, August A, Cerione RA. PTEN loss in glioma cell lines leads to increased extracellular vesicles biogenesis and PD-L1 cargo in a PI3K-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.26.550575. [PMID: 38464280 PMCID: PMC10925116 DOI: 10.1101/2023.07.26.550575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Phosphatase and Tensin Homologue (PTEN) is one of the most frequently lost tumor suppressors in cancer and the predominant negative regulator of the PI3K/AKT signaling axis. A growing body of evidence has highlighted the loss of PTEN with immuno-modulatory functions including the upregulation of the programmed death ligand-1 (PD-L1), an altered tumor derived secretome that drives an immunosuppressive tumor immune microenvironment (TIME), and resistance to certain immunotherapies. Given their roles in immunosuppression and tumor growth, we examined whether the loss of PTEN would impact the biogenesis, cargo, and function of extracellular vesicles (EVs) in the context of the anti-tumor associated cytokine interferon-γ (IFN-γ). Through genetic and pharmacological approaches, we show that PD-L1 expression is regulated by JAK/STAT signaling, not PI3K signaling. Instead, we observe that PTEN loss positively upregulates cell surface levels of PD-L1 and enhances the biogenesis of EVs enriched with PD-L1 in a PI3K-dependent manner. We demonstrate that because of these changes, EVs derived from glioma cells lacking PTEN have a greater ability to suppress T cell receptor (TCR) signaling. Taken together, these findings provide important new insights into how the loss of PTEN can contribute to an immunosuppressive TIME, facilitate immune evasion, and highlight a novel role for PI3K signaling in the regulation of EV biogenesis and the cargo they contain.
Collapse
Affiliation(s)
- Julio C Sanchez
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Timothy M Pierpont
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Dariana Argueta-Zamora
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Kristin Wilson
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Richard A Cerione
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
30
|
Reyes-Ábalos AL, Álvarez-Zabaleta M, Olivera-Bravo S, Di Tomaso MV. Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling. Int J Cell Biol 2024; 2024:5524487. [PMID: 38439918 PMCID: PMC10911912 DOI: 10.1155/2024/5524487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 03/06/2024] Open
Abstract
Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells.
Collapse
Affiliation(s)
- Ana Laura Reyes-Ábalos
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
- Unidad de Microscopía Electrónica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Magdalena Álvarez-Zabaleta
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - Silvia Olivera-Bravo
- Departamento de Neurobiología y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - María Vittoria Di Tomaso
- Departamento de Genética, Instituto de Investigaciones Biológicas Clemente Estable-Ministerio de Educación y Cultura, Montevideo, Uruguay
| |
Collapse
|
31
|
Kisielewska M, Rakoczy K, Skowron I, Górczyńska J, Kacer J, Bocheńska A, Choromańska A. Utilizing Extracellular Vesicles for Eliminating 'Unwanted Molecules': Harnessing Nature's Structures in Modern Therapeutic Strategies. Molecules 2024; 29:948. [PMID: 38474460 DOI: 10.3390/molecules29050948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Extracellular vesicles (EVs) are small phospholipid bilayer-bond structures released by diverse cell types into the extracellular environment, maintaining homeostasis of the cell by balancing cellular stress. This article provides a comprehensive overview of extracellular vesicles, their heterogeneity, and diversified roles in cellular processes, emphasizing their importance in the elimination of unwanted molecules. They play a role in regulating oxidative stress, particularly by discarding oxidized toxic molecules. Furthermore, endoplasmic reticulum stress induces the release of EVs, contributing to distinct results, including autophagy or ER stress transmission to following cells. ER stress-induced autophagy is a part of unfolded protein response (UPR) and protects cells from ER stress-related apoptosis. Mitochondrial-derived vesicles (MDVs) also play a role in maintaining homeostasis, as they carry damaged mitochondrial components, thereby preventing inflammation. Moreover, EVs partake in regulating aging-related processes, and therefore they can potentially play a crucial role in anti-aging therapies, including the treatment of age-related diseases such as Alzheimer's disease or cardiovascular conditions. Overall, the purpose of this article is to provide a better understanding of EVs as significant mediators in both physiological and pathological processes, and to shed light on their potential for therapeutic interventions targeting EV-mediated pathways in various pathological conditions, with an emphasis on age-related diseases.
Collapse
Affiliation(s)
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Julia Kacer
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Agata Bocheńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
32
|
Aloi N, Drago G, Ruggieri S, Cibella F, Colombo P, Longo V. Extracellular Vesicles and Immunity: At the Crossroads of Cell Communication. Int J Mol Sci 2024; 25:1205. [PMID: 38256278 PMCID: PMC10816988 DOI: 10.3390/ijms25021205] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Extracellular vesicles (EVs), comprising exosomes and microvesicles, are small membranous structures secreted by nearly all cell types. They have emerged as crucial mediators in intercellular communication, playing pivotal roles in diverse physiological and pathological processes, notably within the realm of immunity. These roles go beyond mere cellular interactions, as extracellular vesicles stand as versatile and dynamic components of immune regulation, impacting both innate and adaptive immunity. Their multifaceted involvement includes immune cell activation, antigen presentation, and immunomodulation, emphasising their significance in maintaining immune homeostasis and contributing to the pathogenesis of immune-related disorders. Extracellular vesicles participate in immunomodulation by delivering a wide array of bioactive molecules, including proteins, lipids, and nucleic acids, thereby influencing gene expression in target cells. This manuscript presents a comprehensive review that encompasses in vitro and in vivo studies aimed at elucidating the mechanisms through which EVs modulate human immunity. Understanding the intricate interplay between extracellular vesicles and immunity is imperative for unveiling novel therapeutic targets and diagnostic tools applicable to various immunological disorders, including autoimmune diseases, infectious diseases, and cancer. Furthermore, recognising the potential of EVs as versatile drug delivery vehicles holds significant promise for the future of immunotherapies.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Colombo
- Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB-CNR), Via Ugo La Malfa 153, 90146 Palermo, Italy; (N.A.); (G.D.); (S.R.); (F.C.); (V.L.)
| | | |
Collapse
|
33
|
Shi H, Yang Y, Xing H, Jia J, Xiong W, Guo S, Yang S. Exosomal non-coding RNAs: Emerging insights into therapeutic potential and mechanisms in bone healing. J Tissue Eng 2024; 15:20417314241286606. [PMID: 39371940 PMCID: PMC11456177 DOI: 10.1177/20417314241286606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Exosomes are nano-sized extracellular vesicles (EVs) released by diverse types of cells, which affect the functions of targeted cells by transporting bioactive substances. As the main component of exosomes, non-coding RNA (ncRNA) is demonstrated to impact multiple pathways participating in bone healing. Herein, this review first introduces the biogenesis and secretion of exosomes, and elucidates the role of the main cargo in exosomes, ncRNAs, in mediating intercellular communication. Subsequently, the potential molecular mechanism of exosomes accelerating bone healing is elucidated from the following four aspects: macrophage polarization, vascularization, osteogenesis and osteoclastogenesis. Then, we systematically introduce construction strategies based on modified exosomes in bone regeneration field. Finally, the clinical trials of exosomes for bone healing and the challenges of exosome-based therapies in the biomedical field are briefly introduced, providing solid theoretical frameworks and optimization methods for the clinical application of exosomes in orthopedics.
Collapse
Affiliation(s)
- Huixin Shi
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Department of Rehabilitation, The First Hospital of China Medical University, Shenyang, China
| | - Hao Xing
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jialin Jia
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Affiliated Hospital of Medical College of Shihezi University, Shihezi, Xinjiang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
34
|
Federico M. The Limitations of Current T Cell-Driven Anticancer Immunotherapies Can Be Overcome with an Original Extracellular-Vesicle-Based Vaccine Strategy. Vaccines (Basel) 2023; 11:1847. [PMID: 38140250 PMCID: PMC10747787 DOI: 10.3390/vaccines11121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The emergence of tumors associated with defects in immune surveillance often involve the impairment of key functions of T lymphocytes. Therefore, several anticancer immunotherapies have focused on the induction/strengthening of the tumor-specific activity of T cells. In particular, strategies based on immune checkpoint inhibitors, CAR-T cells, and mRNA vaccines share a common goal of inducing/recovering an effective antitumor cytotoxic activity, often resulting in either exhausted or absent in patients' lymphocytes. In many instances, these approaches have been met with success, becoming part of current clinic protocols. However, the most practiced strategies sometimes also pay significant tolls in terms of adverse events, a lack of target specificity, tumor escape, and unsustainable costs. Hence, new antitumor immunotherapies facing at least some of these issues need to be explored. In this perspective article, the characteristics of a novel CD8+ T cell-specific anticancer vaccine strategy based on in vivo-engineered extracellular vesicles are described. How this approach can be exploited to overcome at least some of the limitations of current antitumor immunotherapies is also discussed.
Collapse
Affiliation(s)
- Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
35
|
Zhu Y, Yan J, Zhang H, Cui G. Bone marrow mesenchymal stem cell‑derived exosomes: A novel therapeutic agent for tendon‑bone healing (Review). Int J Mol Med 2023; 52:121. [PMID: 37937691 PMCID: PMC10635703 DOI: 10.3892/ijmm.2023.5324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
In sports medicine, injuries related to the insertion of tendons into bones, including rotator cuff injuries, anterior cruciate ligament injuries and Achilles tendon ruptures, are commonly observed. However, traditional therapies have proven to be insufficient in achieving satisfactory outcomes due to the intricate anatomical structure associated with these injuries. Adult bone marrow mesenchymal stem cells possess self‑renewal and multi‑directional differentiation potential and can generate various mesenchymal tissues to aid in the recovery of bone, cartilage, adipose tissue and bone marrow hematopoietic tissue. In addition, extracellular vesicles derived from bone marrow mesenchymal stem cells known as exosomes, contain lipids, proteins and nucleic acids that govern the tissue microenvironment, facilitate tissue repair and perform various biological functions. Studies have demonstrated that bone marrow mesenchymal stem cell‑derived exosomes can function as natural nanocapsules for drug delivery and can enhance tendon‑bone healing strength. The present review discusses the latest research results on the role of exosomes released by bone marrow mesenchymal stem cells in tendon‑bone healing and provides valuable information for implementing these techniques in regenerative medicine and sports health.
Collapse
Affiliation(s)
- Yongjia Zhu
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Jiapeng Yan
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Hongfei Zhang
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Guanxing Cui
- Department of Arthritis, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
36
|
Han B, Fang W, Yang Z, Wang Y, Zhao S, Hoang BX, Vangsness CT. Enhancement of Chondrogenic Markers by Exosomes Derived from Cultured Human Synovial Fluid-Derived Cells: A Comparative Analysis of 2D and 3D Conditions. Biomedicines 2023; 11:3145. [PMID: 38137366 PMCID: PMC10740632 DOI: 10.3390/biomedicines11123145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
OBJECTIVE The goal of this pilot study was to investigate the effects of exosomes derived from synovial fluid-derived cells (SFDCs) cultured under normoxic conditions in a two-dimensional (2D) monolayer or encapsulated within a three-dimensional (3D) matrix for chondrogenic differentiation in vitro and cartilage defect repair in vivo. DESIGN Synovial fluid samples were obtained from three patients, and SFDCs were isolated and expanded either in a 2D monolayer culture or seeded within a transglutaminase cross-linked gelatin (Col-Tgel) to create a 3D gel culture. Exosomes derived from each environment were isolated and characterized. Then, their effects on cartilage-cell proliferation and chondrogenic differentiation were assessed using an in vitro organoid model, and their potential for enhancing cartilage repair was evaluated using a rat cartilage defect model. RESULTS SFDCs obtained from different donors reached a state of senescence after four passages in 2D culture. However, transferring these cells to a 3D culture environment mitigated the senescence and improved cell viability. The 3D-cultured exosomes exhibited enhanced potency in promoting chondrogenic differentiation, as evidenced by the increased expression of chondrogenic genes and greater deposition of cartilage-specific extracellular matrix. Furthermore, the 3D-cultured exosomes demonstrated superior effectiveness in enhancing cartilage repair and exhibited better healing properties compared to exosomes derived from a 2D culture. CONCLUSIONS The optimized 3D culture provided a more favorable environment for the proliferation of human synovial cells and the secretion of exosomes compared to the 2D culture. The 3D-cultured exosomes exhibited greater potential for promoting chondrogenic gene expression in vitro and demonstrated improved healing properties in repairing cartilage defects compared to exosomes derived from the 2D culture.
Collapse
Affiliation(s)
- Bo Han
- Department of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302A, Los Angeles, CA 90089, USA (B.X.H.)
| | - William Fang
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhi Yang
- Department of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302A, Los Angeles, CA 90089, USA (B.X.H.)
| | - Yuntao Wang
- Department of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302A, Los Angeles, CA 90089, USA (B.X.H.)
| | - Shuqing Zhao
- Department of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302A, Los Angeles, CA 90089, USA (B.X.H.)
| | - Ba Xuan Hoang
- Department of Surgery and Biomedical Engineering, Keck School of Medicine, University of Southern California, 1333 San Pablo St., BMT 302A, Los Angeles, CA 90089, USA (B.X.H.)
| | - C. Thomas Vangsness
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
37
|
Sheikh A, Zechmann B, Sayes CM, Taube JH, Greathouse KL. A preparation of bacterial outer membrane with osmium tetroxide and uranyl acetate co-stain enables improved structural determination by transmission electron microscopy. Microscopy (Oxf) 2023; 72:515-519. [PMID: 37148329 PMCID: PMC10673695 DOI: 10.1093/jmicro/dfad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 05/08/2023] Open
Abstract
Biological nanoparticles, such as bacterial outer membrane vesicles (OMVs), are routinely characterized through transmission electron microscopy (TEM). In this study, we report a novel method to prepare OMVs for TEM imaging. To preserve vesicular shape and structure, we developed a dual fixation protocol involving osmium tetroxide incubation prior to negative staining with uranyl acetate. Combining osmium tetroxide with uranyl acetate resulted in preservation of sub-50 nm vesicles and improved morphological stability, enhancing characterization of lipid-based nanoparticles by TEM.
Collapse
Affiliation(s)
- Aadil Sheikh
- Department of Biology, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| | - Joseph H Taube
- Department of Biology, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
| | - K Leigh Greathouse
- Department of Biology, Baylor University, One Bear Place #97046, Waco, TX 76798, USA
- Nutrition Sciences, Baylor University, One Bear Place #97311, Waco, TX 76798, USA
| |
Collapse
|
38
|
Huang L, Wu E, Liao J, Wei Z, Wang J, Chen Z. Research Advances of Engineered Exosomes as Drug Delivery Carrier. ACS OMEGA 2023; 8:43374-43387. [PMID: 38027310 PMCID: PMC10666244 DOI: 10.1021/acsomega.3c04479] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Exosomes are nanoscale vesicles secreted by living cells that have similar membrane composition to parental cells and carry a variety of proteins, lipids, and nucleic acids. Therefore, exosomes have certain biological activities and play an important role in intercellular communication. On the basis of its potential as a carrier for drug delivery systems, exosomes have been engineered to compensate for the shortage of natural exosomes through various engineering strategies for improving drug delivery efficiency, enhancing targeting to tissues and organs, and extending the circulating half-life of exosomes. This review focuses on the engineered exosomes loading drugs through different strategies, discussions on exosome surface modification strategies, and summarizes the advantages and disadvantages of different strategies. In addition, this review provides an overview of the recent applications of engineered exosomes in a number of refractory and relapsable diseases. This review has the potential to provide a reference for further research and development of engineered exosomes.
Collapse
Affiliation(s)
- Lianghui Huang
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Enguang Wu
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Jiawei Liao
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Zongyi Wei
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Jin Wang
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of
Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China
| |
Collapse
|
39
|
Larey AM, Spoerer TM, Daga KR, Morfin MG, Hynds HM, Carpenter J, Hines KM, Marklein RA. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567730. [PMID: 38014258 PMCID: PMC10680807 DOI: 10.1101/2023.11.19.567730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function can be mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.
Collapse
Affiliation(s)
- Andrew M. Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Thomas M. Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R. Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G. Morfin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jana Carpenter
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Ross A. Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
40
|
Rao D, Lu H, Wang X, Lai Z, Zhang J, Tang Z. Tissue-derived exosome proteomics identifies promising diagnostic biomarkers for esophageal cancer. eLife 2023; 12:e86209. [PMID: 37966470 PMCID: PMC10651172 DOI: 10.7554/elife.86209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Esophageal cancer (EC) is a fatal digestive disease with a poor prognosis and frequent lymphatic metastases. Nevertheless, reliable biomarkers for EC diagnosis are currently unavailable. Accordingly, we have performed a comparative proteomics analysis on cancer and paracancer tissue-derived exosomes from eight pairs of EC patients using label-free quantification proteomics profiling and have analyzed the differentially expressed proteins through bioinformatics. Furthermore, nano-flow cytometry (NanoFCM) was used to validate the candidate proteins from plasma-derived exosomes in 122 EC patients. Of the 803 differentially expressed proteins discovered in cancer and paracancer tissue-derived exosomes, 686 were up-regulated and 117 were down-regulated. Intercellular adhesion molecule-1 (CD54) was identified as an up-regulated candidate for further investigation, and its high expression in cancer tissues of EC patients was validated using immunohistochemistry, real-time quantitative PCR (RT-qPCR), and western blot analyses. In addition, plasma-derived exosome NanoFCM data from 122 EC patients concurred with our proteomic analysis. The receiver operating characteristic (ROC) analysis demonstrated that the AUC, sensitivity, and specificity values for CD54 were 0.702, 66.13%, and 71.31%, respectively, for EC diagnosis. Small interference (si)RNA was employed to silence the CD54 gene in EC cells. A series of assays, including cell counting kit-8, adhesion, wound healing, and Matrigel invasion, were performed to investigate EC viability, adhesive, migratory, and invasive abilities, respectively. The results showed that CD54 promoted EC proliferation, migration, and invasion. Collectively, tissue-derived exosomal proteomics strongly demonstrates that CD54 is a promising biomarker for EC diagnosis and a key molecule for EC development.
Collapse
Affiliation(s)
- Dingyu Rao
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Hua Lu
- The First Clinical School of Medicine of Southern Medical UniversityGuangzhouChina
| | - Xiongwei Wang
- Department of Anesthesiology, Longhua District Central HospitalShenzhenChina
| | - Zhonghong Lai
- Department of Traumatology, First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| | - Jiali Zhang
- The First School of Clinical Medicine, Gannan Medical UniversityGanzhouChina
| | - Zhixian Tang
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Gannan Medical UniversityGanzhouChina
| |
Collapse
|
41
|
Nenciarini S, Cavalieri D. Immunomodulatory Potential of Fungal Extracellular Vesicles: Insights for Therapeutic Applications. Biomolecules 2023; 13:1487. [PMID: 37892168 PMCID: PMC10605264 DOI: 10.3390/biom13101487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles (EVs) are membranous vesicular organelles that perform a variety of biological functions including cell communication across different biological kingdoms. EVs of mammals and, to a lesser extent, bacteria have been deeply studied over the years, whereas investigations of fungal EVs are still in their infancy. Fungi, encompassing both yeast and filamentous forms, are increasingly recognized for their production of extracellular vesicles (EVs) containing a wealth of proteins, lipids, and nucleic acids. These EVs play pivotal roles in orchestrating fungal communities, bolstering pathogenicity, and mediating interactions with the environment. Fungal EVs have emerged as promising candidates for innovative applications, not only in the management of mycoses but also as carriers for therapeutic molecules. Yet, numerous questions persist regarding fungal EVs, including their mechanisms of generation, release, cargo regulation, and discharge. This comprehensive review delves into the present state of knowledge regarding fungal EVs and provides fresh insights into the most recent hypotheses on the mechanisms driving their immunomodulatory properties. Furthermore, we explore the considerable potential of fungal EVs in the realms of medicine and biotechnology. In the foreseeable future, engineered fungal cells may serve as vehicles for tailoring cargo- and antigen-specific EVs, positioning them as invaluable biotechnological tools for diverse medical applications, such as vaccines and drug delivery.
Collapse
Affiliation(s)
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019 Florence, Italy;
| |
Collapse
|
42
|
Qi C, Shi H, Fan M, Chen W, Yao H, Jiang C, Meng L, Pang S, Lin R. Microvesicles from bone marrow-derived mesenchymal stem cells promote Helicobacter pylori-associated gastric cancer progression by transferring thrombospondin-2. Cell Commun Signal 2023; 21:274. [PMID: 37798762 PMCID: PMC10552243 DOI: 10.1186/s12964-023-01127-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/09/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Our previous study found that bone marrow-derived mesenchymal stem cells (BMSCs) promote Helicobacter pylori (H pylori)-associated gastric cancer (GC) progression by secreting thrombospondin-2 (THBS2). Extracellular vesicles (EVs) are important carriers for intercellular communication, and EVs secreted by BMSCs have been shown to be closely related to tumor development. The aim of this study was to investigate whether BMSC-derived microvesicles (MVs, a main type of EV) play a role in H. pylori-associated GC by transferring THBS2. METHODS BMSCs and THBS2-deficient BMSCs were treated with or without the supernatant of H. pylori for 12 h at a multiplicity of infection of 50, and their EVs were collected. Then, the effects of BMSC-derived MVs and THBS2-deficient BMSC-derived MVs on the GC cell line MGC-803 were assessed by in vitro proliferation, migration, and invasion assays. In addition, a subcutaneous xenograft tumor model, a nude mouse intraperitoneal metastasis model, and a tail vein injection metastasis model were constructed to evaluate the effects of BMSC-derived MVs and THBS2-deficient BMSC-derived MVs on GC development and metastasis in vivo. RESULTS BMSC-derived MVs could be readily internalized by MGC-803 cells. BMSC-derived MVs after H. pylori treatment significantly promoted their proliferation, migration and invasion in vitro (all P < 0.05) and promoted tumor development and metastasis in a subcutaneous xenograft tumor model, a nude mouse intraperitoneal metastasis model, and a tail vein injection metastasis model in vivo (all P < 0.05). The protein expression of THBS2 was significantly upregulated after H. pylori treatment in BMSC-derived MVs (P < 0.05). Depletion of the THBS2 gene reduces the tumor-promoting ability of BMSC-MVs in an H. pylori infection microenvironment both in vitro and in vivo. CONCLUSION Overall, these findings indicate that MVs derived from BMSCs can promote H. pylori-associated GC development and metastasis by delivering the THBS2 protein. Video Abstract.
Collapse
Affiliation(s)
- Cuihua Qi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
- Department of Gastroenterology, The First Affiliated Hospital of Shihezi University, Shihezi, 832002 China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Weigang Chen
- Department of Gastroenterology, The First Affiliated Hospital of Shihezi University, Shihezi, 832002 China
| | - Hailing Yao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Chen Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Lingjun Meng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4300222 China
| |
Collapse
|
43
|
Fettucciari K, Dini F, Marconi P, Bassotti G. Role of the Alteration in Calcium Homeostasis in Cell Death Induced by Clostridioides difficile Toxin A and Toxin B. BIOLOGY 2023; 12:1117. [PMID: 37627001 PMCID: PMC10452684 DOI: 10.3390/biology12081117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Clostridioides difficile (C. difficile), responsible for 15-25% of gastrointestinal infections, causes health problems mainly due to the toxic activity of toxins A and B (Tcds). These are responsible for its clinical manifestations, including diarrhea, pseudomembranous colitis, toxic megacolon and death, with a mortality of 5-30% in primary infection, that increase following relapses. Studies on Tcd-induced cell death have highlighted a key role of caspases, calpains, and cathepsins, with involvement of mitochondria and reactive oxygen species (ROS) in a complex signaling pathway network. The complex response in the execution of various types of cell death (apoptosis, necrosis, pyroptosis and pyknosis) depends on the amount of Tcd, cell types, and Tcd receptors involved, and could have as initial/precocious event the alterations in calcium homeostasis. The entities, peculiarities and cell types involved in these alterations will decide the signaling pathways activated and cell death type. Calcium homeostasis alterations can be caused by calcium influx through calcium channel activation, transient intracellular calcium oscillations, and leakage of calcium from intracellular stores. These increases in cytoplasmic calcium have important effects on all calcium-regulated molecules, which may play a direct role in several cell death types and/or activate other cell death effectors, such as caspases, calpains, ROS and proapoptotic Bcl-2 family members. Furthermore, some support for the possible role of the calcium homeostasis alteration in Tcd-induced cell death originates from the similarity with cytotoxic effects that cause pore-forming toxins, based mainly on calcium influx through plasma membrane pores.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Fabrizio Dini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy;
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, 06129 Perugia, Italy;
- Gastroenterology & Hepatology Unit, Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| |
Collapse
|
44
|
Brodeur A, Migneault F, Lanoie M, Beillevaire D, Turgeon J, Karakeussian-Rimbaud A, Thibodeau N, Boilard É, Dieudé M, Hébert MJ. Apoptotic exosome-like vesicles transfer specific and functional mRNAs to endothelial cells by phosphatidylserine-dependent macropinocytosis. Cell Death Dis 2023; 14:449. [PMID: 37474514 PMCID: PMC10359336 DOI: 10.1038/s41419-023-05991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Apoptosis of endothelial cells prompts the release of apoptotic exosome-like vesicles (ApoExos), subtype extracellular vesicles secreted by apoptotic cells after caspase-3 activation. ApoExos are different from both apoptotic bodies and classical exosomes in their protein and nucleic acid contents and functions. In contrast to classical apoptotic bodies, ApoExos induce immunogenic responses that can be maladaptive when not tightly regulated. In the present study, we elucidated the mechanisms by which ApoExos are internalized by endothelial cells, which leads to shared specific and functional mRNAs of importance to endothelial function. Using flow cytometry and confocal microscopy, we revealed that ApoExos were actively internalized by endothelial cells. SiRNA-induced inhibition of classical endocytosis pathways with pharmacological inhibitors showed that ApoExos were internalized via phosphatidylserine-dependent macropinocytosis independently of classical endocytosis pathways. An electron microscopy analysis revealed that ApoExos increased the macropinocytosis rate in endothelial cells, setting in motion a positive feedback loop that increased the amount of internalized ApoExos. Deep sequencing of total RNA revealed that ApoExos possessed a unique protein-coding RNA profile, with PCSK5 being the most abundant mRNA. Internalization of ApoExos by cells led to the transfer of this RNA content from the ApoExos to cells. Specifically, PCSK5 mRNA was transferred to cells that had taken up ApoExos, and these cells subsequently expressed PCSK5. Collectively, our findings suggest that macropinocytosis is an effective entry pathway for the delivery of RNAs carried by ApoExos and that these RNAs are functionally expressed by the endothelial cells that internalize them. As ApoExos express a specific mRNA signature, these results suggest new avenues to understand how ApoExos produced at sites of vascular injury impact vascular function.
Collapse
Affiliation(s)
- Alexandre Brodeur
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Francis Migneault
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
| | - Maude Lanoie
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Déborah Beillevaire
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Département de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Julie Turgeon
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
| | - Annie Karakeussian-Rimbaud
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
| | - Nicolas Thibodeau
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
| | - Éric Boilard
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Département de Microbiologie et Immunologie, Québec, QC, Canada
| | - Mélanie Dieudé
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Héma-Québec, Québec, QC, Canada
| | - Marie-Josée Hébert
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM) and Université de Montréal, Montréal, QC, Canada.
- Canadian Donation and Transplantation Research Program (CDTRP), Edmonton, AL, Canada.
- Département de Médecine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
45
|
Zhang Y, Dou Y, Liu Y, Di M, Bian H, Sun X, Yang Q. Advances in Therapeutic Applications of Extracellular Vesicles. Int J Nanomedicine 2023; 18:3285-3307. [PMID: 37346366 PMCID: PMC10281276 DOI: 10.2147/ijn.s409588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale bilayer phospholipid membrane vesicles released by cells. Contained large molecules such as nucleic acid, protein, and lipid, EVs are an integral part of cell communication. The contents of EVs vary based on the cell source and play an important role in both pathological and physiological conditions. EVs can be used as drugs or targets in disease treatment, and changes in the contents of EVs can indicate the progression of diseases. In recent years, with the continuous exploration of the structure, characteristics, and functions of EVs, the potential of engineered EVs for drug delivery and therapy being constantly explored. This review provides a brief overview of the structure, characteristics and functions of EVs, summarizes the advanced application of EVs and outlook on the prospect of it. It is our hope that this review will increase understanding of the current development of medical applications of EVs and help us overcome future challenges.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Mingyuan Di
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Hanming Bian
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, People’s Republic of China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
46
|
Kao YC, Chang YW, Lai CP, Chang NW, Huang CH, Chen CS, Huang HC, Juan HF. Ectopic ATP synthase stimulates the secretion of extracellular vesicles in cancer cells. Commun Biol 2023; 6:642. [PMID: 37322056 PMCID: PMC10272197 DOI: 10.1038/s42003-023-05008-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
ABSTARCT Ectopic ATP synthase on the plasma membrane (eATP synthase) has been found in various cancer types and is a potential target for cancer therapy. However, whether it provides a functional role in tumor progression remains unclear. Here, quantitative proteomics reveals that cancer cells under starvation stress express higher eATP synthase and enhance the production of extracellular vesicles (EVs), which are vital regulators within the tumor microenvironment. Further results show that eATP synthase generates extracellular ATP to stimulate EV secretion by enhancing P2X7 receptor-triggered Ca2+ influx. Surprisingly, eATP synthase is also located on the surface of tumor-secreted EVs. The EVs-surface eATP synthase increases the uptake of tumor-secreted EVs in Jurkat T-cells via association with Fyn, a plasma membrane protein found in immune cells. The eATP synthase-coated EVs uptake subsequently represses the proliferation and cytokine secretion of Jurkat T-cells. This study clarifies the role of eATP synthase on EV secretion and its influence on immune cells.
Collapse
Affiliation(s)
- Yi-Chun Kao
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Wen Chang
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan
| | - Charles P Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan
| | - Nai-Wen Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan
| | - Chen-Hao Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan
| | - Chien-Sheng Chen
- Department of Food Safety / Hygiene and Risk Management, National Cheng Kung University, Tainan, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, 106, Taiwan.
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, 106, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106, Taiwan.
- Center for Computational and Systems Biology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
47
|
Jiang X, Lei R. Extracellular lncRNAs secreted and absorbed by cardiomyocytes. J Cell Biochem 2023. [PMID: 37183382 DOI: 10.1002/jcb.30425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Exosomes are membrane-surrounded extracellular vesicles released by almost all cell types, which mediate intercellular communications by delivering bioactive molecules from secretory cells to recipient cells. Long noncoding RNAs (lncRNAs) are a large class of non-(protein)-coding RNAs with lengths exceeding 200 nucleotides that are very active in the development of cardiovascular diseases (CVDs). Increasing evidence suggests that exosomal lncRNAs also play important roles in the progress of CVDs. We focus on the current available studies regarding these extracellular lncRNAs secreted and absorbed by cardiomyocytes and their functional roles in CVDs, hopefully providing a basis for deeper understanding of the pathological mechanisms of CVDs and their potential for clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Ronghui Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
48
|
Sako Y, Sato-Kaneko F, Shukla NM, Yao S, Belsuzarri MM, Chan M, Saito T, Lao FS, Kong H, Puffer M, Messer K, Pu M, Cottam HB, Carson DA, Hayashi T. Identification of a Novel Small Molecule That Enhances the Release of Extracellular Vesicles with Immunostimulatory Potency via Induction of Calcium Influx. ACS Chem Biol 2023; 18:982-993. [PMID: 37039433 PMCID: PMC10127211 DOI: 10.1021/acschembio.3c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Extracellular vesicles (EVs) transfer antigens and immunomodulatory molecules in immunologic synapses as a part of intracellular communication, and EVs equipped with immunostimulatory functions have been utilized for vaccine formulation. Hence, we sought small-molecule compounds that increase immunostimulatory EVs released by antigen-presenting dendritic cells (DCs) for enhancement of vaccine immunogenicity. We previously performed high-throughput screening on a 28K compound library using three THP-1 reporter cell lines with CD63 Turbo-Luciferase, NF-κB, and interferon-sensitive response element (ISRE) reporter constructs, respectively. Because intracellular Ca2+ elevation enhances EV release, we screened 80 hit compounds and identified compound 634 as a Ca2+ influx inducer. 634 enhanced EV release in murine bone marrow-derived dendritic cells (mBMDCs) and increased costimulatory molecule expression on the surface of EVs and the parent cells. EVs isolated from 634-treated mBMDCs induced T cell proliferation in the presence of antigenic peptides. To assess the roles of intracellular Ca2+ elevation in immunostimulatory EV release, we performed structure-activity relationship (SAR) studies of 634. The analogues that retained the ability to induce Ca2+ influx induced more EVs with immunostimulatory properties from mBMDCs than did those that lacked the ability to induce Ca2+ influx. The levels of Ca2+ induction of synthesized analogues correlated with the numbers of EVs released and costimulatory molecule expression on the parent cells. Collectively, our study presents that a small molecule, 634, enhances the release of EVs with immunostimulatory potency via induction of Ca2+ influx. This agent is a novel tool for EV-based immune studies and vaccine development.
Collapse
Affiliation(s)
- Yukiya Sako
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Fumi Sato-Kaneko
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Nikunj M. Shukla
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Shiyin Yao
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Masiel M. Belsuzarri
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Michael Chan
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Tetsuya Saito
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
- Department
of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Fitzgerald S. Lao
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Helen Kong
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Marina Puffer
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Karen Messer
- The
Herbert Wertheim School of Public Health and Longevity, University of California San Diego, La Jolla, California 92093-0901, United States
| | - Minya Pu
- The
Herbert Wertheim School of Public Health and Longevity, University of California San Diego, La Jolla, California 92093-0901, United States
| | - Howard B. Cottam
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Dennis A. Carson
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| | - Tomoko Hayashi
- Moores
Cancer Center, University of California
San Diego, 9500 Gilman Dr, La Jolla, California 92093-0809, United States
| |
Collapse
|
49
|
Da Fonseca Ferreira A, Wei J, Zhang L, Macon CJ, Degnan B, Jayaweera D, Hare JM, Kolber MA, Bellio M, Khan A, Pan Y, Dykxhoorn DM, Wang L, Dong C. HIV Promotes Atherosclerosis via Circulating Extracellular Vesicle MicroRNAs. Int J Mol Sci 2023; 24:7567. [PMID: 37108729 PMCID: PMC10146407 DOI: 10.3390/ijms24087567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
People living with HIV (PLHIV) are at a higher risk of having cerebrocardiovascular diseases (CVD) compared to HIV negative (HIVneg) individuals. The mechanisms underlying this elevated risk remains elusive. We hypothesize that HIV infection results in modified microRNA (miR) content in plasma extracellular vesicles (EVs), which modulates the functionality of vascular repairing cells, i.e., endothelial colony-forming cells (ECFCs) in humans or lineage negative bone marrow cells (lin- BMCs) in mice, and vascular wall cells. PLHIV (N = 74) have increased atherosclerosis and fewer ECFCs than HIVneg individuals (N = 23). Plasma from PLHIV was fractionated into EVs (HIVposEVs) and plasma depleted of EVs (HIV PLdepEVs). HIVposEVs, but not HIV PLdepEVs or HIVnegEVs (EVs from HIVneg individuals), increased atherosclerosis in apoE-/- mice, which was accompanied by elevated senescence and impaired functionality of arterial cells and lin- BMCs. Small RNA-seq identified EV-miRs overrepresented in HIVposEVs, including let-7b-5p. MSC (mesenchymal stromal cell)-derived tailored EVs (TEVs) loaded with the antagomir for let-7b-5p (miRZip-let-7b) counteracted, while TEVs loaded with let-7b-5p recapitulated the effects of HIVposEVs in vivo. Lin- BMCs overexpressing Hmga2 (a let-7b-5p target gene) lacking the 3'UTR and as such is resistant to miR-mediated regulation showed protection against HIVposEVs-induced changes in lin- BMCs in vitro. Our data provide a mechanism to explain, at least in part, the increased CVD risk seen in PLHIV.
Collapse
Affiliation(s)
- Andrea Da Fonseca Ferreira
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jianqin Wei
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lukun Zhang
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Conrad J. Macon
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Bernard Degnan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Dushyantha Jayaweera
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joshua M. Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael A. Kolber
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Michael Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yue Pan
- Biostatistics Division, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Derek M. Dykxhoorn
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liyong Wang
- John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chunming Dong
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Section of Cardiology, Department of Medicine, Miami VA Health System, University of Miami, Miami, FL 33146, USA
| |
Collapse
|
50
|
Heinrich E, Hartwig O, Walt C, Kardani A, Koch M, Jahromi LP, Hoppstädter J, Kiemer AK, Loretz B, Lehr CM, Fuhrmann G. Cell-Derived Vesicles for Antibiotic Delivery-Understanding the Challenges of a Biogenic Carrier System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207479. [PMID: 36938700 DOI: 10.1002/smll.202207479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Recently, extracellular vesicles (EVs) sparked substantial therapeutic interest, particularly due to their ability to mediate targeted transport between tissues and cells. Yet, EVs' technological translation as therapeutics strongly depends on better biocompatibility assessments in more complex models and elementary in vitro-in vivo correlation, and comparison of mammalian versus bacterial vesicles. With this in mind, two new types of EVs derived from human B-lymphoid cells with low immunogenicity and from non-pathogenic myxobacteria SBSr073 are introduced here. A large-scale isolation protocol to reduce plastic waste and cultivation space toward sustainable EV research is established. The biocompatibility of mammalian and bacterial EVs is comprehensively evaluated using cytokine release and endotoxin assays in vitro, and an in vivo zebrafish larvae model is applied. A complex three-dimensional human cell culture model is used to understand the spatial distribution of vesicles in epithelial and immune cells and again used zebrafish larvae to study the biodistribution in vivo. Finally, vesicles are successfully loaded with the fluoroquinolone ciprofloxacin (CPX) and showed lower toxicity in zebrafish larvae than free CPX. The loaded vesicles are then tested effectively on enteropathogenic Shigella, whose infections are currently showing increasing resistance against available antibiotics.
Collapse
Affiliation(s)
- Eilien Heinrich
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Olga Hartwig
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Christine Walt
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Arefeh Kardani
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Leila Pourtalebi Jahromi
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Alexandra K Kiemer
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Brigitta Loretz
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
| | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Gregor Fuhrmann
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
- Friedrich-Alexander-University Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|