1
|
Galkina S, Matveeva K, Takki O, Volodkina V, Kulak M, Shalutina J, Gaginskaya E. Coilin-containing nuclear biomolecular condensates in zebra finch Taeniopygia guttata growing oocytes. Dev Biol 2025; 524:144-151. [PMID: 40374142 DOI: 10.1016/j.ydbio.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/17/2025]
Abstract
In most animals, oocyte growth is accompanied by genome activation, an increase in nuclear volume, and the formation of various biomolecular condensates (BioMCs) through multivalent interactions involving intrinsically disordered protein regions (IDRs) and phase separation. In this study, we characterize specific nuclear biomolecular condensates (NBioMCs) detectable by light microscopy in the oocytes of the zebra finch (Taeniopygia guttata, Passeriformes, Aves), a model species in genomics and neurobiology. We identified a nucleolus in oocytes at the early diplotene stage and observed numerous NBioMCs that tested positive for coilin in oocytes at the lampbrush stage, a period of active transcription. The coilin-positive NBioMCs may be freely distributed within the nucleus or associated with chromosome centromeres. They share characteristics with several known nuclear structures, including nucleoli (due to the presence of fibrillarin and nucleolin), Cajal bodies (marked by coilin and scaRNA2), interchromatin granule clusters (containing SRSF2), and centromeric protein bodies (CPBs) described in other avian species (exhibiting centromeric localization when chromosome-associated and containing STAG2 and SMC5). However, their specific function in zebra finch oocytes remains unclear and requires further investigation.
Collapse
Affiliation(s)
| | | | - Olga Takki
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Maria Kulak
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | | |
Collapse
|
2
|
Sanfeliu-Cerdán N, Krieg M. The mechanobiology of biomolecular condensates. BIOPHYSICS REVIEWS 2025; 6:011310. [PMID: 40160200 PMCID: PMC11952833 DOI: 10.1063/5.0236610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
The central goal of mechanobiology is to understand how the mechanical forces and material properties of organelles, cells, and tissues influence biological processes and functions. Since the first description of biomolecular condensates, it was hypothesized that they obtain material properties that are tuned to their functions inside cells. Thus, they represent an intriguing playground for mechanobiology. The idea that biomolecular condensates exhibit diverse and adaptive material properties highlights the need to understand how different material states respond to external forces and whether these responses are linked to their physiological roles within the cell. For example, liquids buffer and dissipate, while solids store and transmit mechanical stress, and the relaxation time of a viscoelastic material can act as a mechanical frequency filter. Hence, a liquid-solid transition of a condensate in the force transmission pathway can determine how mechanical signals are transduced within and in-between cells, affecting differentiation, neuronal network dynamics, and behavior to external stimuli. Here, we first review our current understanding of the molecular drivers and how rigidity phase transitions are set forth in the complex cellular environment. We will then summarize the technical advancements that were necessary to obtain insights into the rich and fascinating mechanobiology of condensates, and finally, we will highlight recent examples of physiological liquid-solid transitions and their connection to specific cellular functions. Our goal is to provide a comprehensive summary of the field on how cells harness and regulate condensate mechanics to achieve specific functions.
Collapse
Affiliation(s)
- Neus Sanfeliu-Cerdán
- ICFO - Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Michael Krieg
- ICFO - Institut de Ciències Fotòniques, Castelldefels, The Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
3
|
Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 2025; 26:213-236. [PMID: 39516712 DOI: 10.1038/s41580-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1-10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.
Collapse
Affiliation(s)
- Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Ramachandran V, Potoyan DA. Molecular Drivers of RNA Phase Separation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.20.633842. [PMID: 39896463 PMCID: PMC11785085 DOI: 10.1101/2025.01.20.633842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
RNA molecules are essential in orchestrating the assembly of biomolecular condensates and membraneless compartments in cells. Many condensates form via the association of RNA with proteins containing specific RNA binding motifs. However, recent reports indicate that low-complexity RNA sequences can self-assemble into condensate phases without protein assistance. Divalent cations significantly influence the thermodynamics and dynamics of RNA condensates, which exhibit base-specific lower-critical solution temperatures (LCST). The precise molecular origins of these temperatures remain elusive. In this study, we employ atomistic molecular simulations to elucidate the molecular driving forces governing the temperature-dependent phase behavior of RNA, providing new insights into the origins of LCST. Using RNA tetranucleotides and their chemically modified analogs, we map RNA condensates' equilibrium thermodynamic profiles and structural ensembles across various temperatures and ionic conditions. Our findings reveal that magnesium ions promote LCST behavior by inducing local order-disorder transitions within RNA structures. Consistent with experimental observations, we demonstrate that the thermal stability of RNA condensates follows the Poly(G) > Poly(A) > Poly(C) > Poly(U) order shaped by the interplay of base-stacking and hydrogen bonding interactions. Furthermore, our simulations show that ionic conditions and post-translational modifications can fine-tune RNA self-assembly and modulate condensate physical properties.
Collapse
Affiliation(s)
- V Ramachandran
- Department of Chemistry, Iowa State University, Ames, IA 50011
| | - D A Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology
- Bioinformatics and Computational Biology Program, Iowa State University
| |
Collapse
|
5
|
McCaig CD. Epigenetic Regulation Via Electrical Forces. Rev Physiol Biochem Pharmacol 2025; 187:251-272. [PMID: 39838016 DOI: 10.1007/978-3-031-68827-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Multiple epigenetic modulations occur to chromatin rather than to DNA itself and these influence gene expression or gene silencing profoundly. Both the creation of these post-translational modifications and the mechanisms of their readout are regulated significantly by electrical forces several of which are discussed. They are also influenced by phase separation which itself is driven by electrical forces.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
6
|
Sztacho M, Červenka J, Šalovská B, Antiga L, Hoboth P, Hozák P. The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization. PLoS Genet 2024; 20:e1011462. [PMID: 39621780 DOI: 10.1371/journal.pgen.1011462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/24/2024] [Accepted: 10/14/2024] [Indexed: 12/25/2024] Open
Abstract
The RNA content is crucial for the formation of nuclear compartments, such as nuclear speckles and nucleoli. Phosphatidylinositol 4,5-bisphosphate (PIP2) is found in nuclear speckles, nucleoli, and nuclear lipid islets and is involved in RNA polymerase I/II transcription. Intriguingly, the nuclear localization of PIP2 was also shown to be RNA-dependent. We therefore investigated whether PIP2 and RNA cooperate in the establishment of nuclear architecture. In this study, we unveiled the RNA-dependent PIP2-associated (RDPA) nuclear proteome in human cells by mass spectrometry. We found that intrinsically disordered regions (IDRs) with polybasic PIP2-binding K/R motifs are prevalent features of RDPA proteins. Moreover, these IDRs of RDPA proteins exhibit enrichment for phosphorylation, acetylation, and ubiquitination sites. Our results show for the first time that the RDPA protein Bromodomain-containing protein 4 (BRD4) associates with PIP2 in the RNA-dependent manner via electrostatic interactions, and that altered PIP2 levels affect the number of nuclear foci of BRD4 protein. Thus, we propose that PIP2 spatiotemporally orchestrates nuclear processes through association with RNA and RDPA proteins and affects their ability to form foci presumably via phase separation. This suggests the pivotal role of PIP2 in the establishment of a functional nuclear architecture competent for gene expression.
Collapse
Affiliation(s)
- Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Červenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Laboratory of Proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Šalovská
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, Connecticut, United States of America
| | - Ludovica Antiga
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Zhang X, Li W, Sun S, Liu Y. Advances in the structure and function of the nucleolar protein fibrillarin. Front Cell Dev Biol 2024; 12:1494631. [PMID: 39605984 PMCID: PMC11599257 DOI: 10.3389/fcell.2024.1494631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Fibrillarin (FBL) is a highly conserved and well-researched nucleolar protein found in eukaryotes. Its presence was first identified in 1985 through protein immunoblotting analyses using antisera from patients with autoimmune scleroderma. Through immunoelectron microscopy, FBL was shown to be localized in the dense fibrillar component of the nucleolus, leading to the term "fibrillarin". The FBL protein is composed of 321 amino acids and contains two significant functional domains: the GAR domain and the methyltransferase domain. It is expressed in the nucleolus of eukaryotes. This makes FBL one of the most studied nucleolar proteins. While methylation is not essential for cell survival, the FBL gene is crucial for eukaryotic cells, underscoring the importance of investigating additional functions that do not rely on FBL methylation. This review will primarily examine the protein structural domains of FBL and its classic methyltransferase activity. Additionally, our review will examine the importance of the eukaryote-specific GAR structural domain of FBL in regulating intracellular phase separation. Furthermore, this paper analyzes recent developments in the utilization of FBL in the study of pathogen infections and cancer research over the past decade.
Collapse
Affiliation(s)
- Xue Zhang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Wenxin Li
- Department of Hepatobiliary and pancreatic, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shulan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yefu Liu
- Department of Hepatobiliary and pancreatic, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
8
|
Street LA, Rothamel KL, Brannan KW, Jin W, Bokor BJ, Dong K, Rhine K, Madrigal A, Al-Azzam N, Kim JK, Ma Y, Gorhe D, Abdou A, Wolin E, Mizrahi O, Ahdout J, Mujumdar M, Doron-Mandel E, Jovanovic M, Yeo GW. Large-scale map of RNA-binding protein interactomes across the mRNA life cycle. Mol Cell 2024; 84:3790-3809.e8. [PMID: 39303721 PMCID: PMC11530141 DOI: 10.1016/j.molcel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.
Collapse
Affiliation(s)
- Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Kristopher W Brannan
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kevin Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Assael Madrigal
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Ahdout
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mayuresh Mujumdar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA; Sanford Stem Cell Institute, Innovation Center, San Diego, CA, USA.
| |
Collapse
|
9
|
Ye R, Zhao H, Wang X, Xue Y. Technological advancements in deciphering RNA-RNA interactions. Mol Cell 2024; 84:3722-3736. [PMID: 39047724 DOI: 10.1016/j.molcel.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/28/2024] [Indexed: 07/27/2024]
Abstract
RNA-RNA interactions (RRIs) can dictate RNA molecules to form intricate higher-order structures and bind their RNA substrates in diverse biological processes. To elucidate the function, binding specificity, and regulatory mechanisms of various RNA molecules, especially the vast repertoire of non-coding RNAs, advanced technologies and methods that globally map RRIs are extremely valuable. In the past decades, many state-of-the-art technologies have been developed for this purpose. This review focuses on those high-throughput technologies for the global mapping of RRIs. We summarize the key concepts and the pros and cons of different technologies. In addition, we highlight the novel biological insights uncovered by these RRI mapping methods and discuss the future challenges for appreciating the crucial roles of RRIs in gene regulation across bacteria, viruses, archaea, and mammals.
Collapse
Affiliation(s)
- Rong Ye
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hailian Zhao
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Wang
- State Key Laboratory of Female Fertility Promotion, Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
| | - Yuanchao Xue
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Effah W, Khalil M, Hwang DJ, Miller DD, Narayanan R. Advances in the understanding of androgen receptor structure and function and in the development of next-generation AR-targeted therapeutics. Steroids 2024; 210:109486. [PMID: 39111362 PMCID: PMC11380798 DOI: 10.1016/j.steroids.2024.109486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Androgen receptor (AR) and its ligand androgens are important for development and physiology of various tissues. AR and its ligands also play critical role in the development of various diseases, making it a valuable therapeutic target. AR ligands, both agonists and antagonists, are being widely used to treat pathological conditions, including prostate cancer and hypogonadism. Despite AR being studied widely over the last five decades, the last decade has seen striking advances in the knowledge on AR and discoveries that have the potential to translate to the clinic. This review provides an overview of the advances in AR biology, AR molecular mechanisms of action, and next generation molecules that are currently in development. Several of the areas described in the review are just unraveling and the next decade will bring more clarity on these developments that will put AR at the forefront of both basic biology and drug development.
Collapse
Affiliation(s)
- Wendy Effah
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Marjana Khalil
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ramesh Narayanan
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States; UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, United States.
| |
Collapse
|
11
|
Hong M, Zhou X, Zeng C, Xu D, Xu T, Liao S, Wang K, Zhu C, Shan G, Huang X, Chen X, Feng X, Guang S. Nucleolar stress induces nucleolar stress body formation via the NOSR-1/NUMR-1 axis in Caenorhabditis elegans. Nat Commun 2024; 15:7256. [PMID: 39179648 PMCID: PMC11343841 DOI: 10.1038/s41467-024-51693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental stimuli not only alter gene expression profiles but also induce structural changes in cells. How distinct nuclear bodies respond to cellular stress is poorly understood. Here, we identify a subnuclear organelle named the nucleolar stress body (NoSB), the formation of which is induced by the inhibition of rRNA transcription or inactivation of rRNA processing and maturation in C. elegans. NoSB does not colocalize with other previously described subnuclear organelles. We conduct forward genetic screening and identify a bZIP transcription factor, named nucleolar stress response-1 (NOSR-1), that is required for NoSB formation. The inhibition of rRNA transcription or inactivation of rRNA processing and maturation increases nosr-1 expression. By using transcriptome analysis of wild-type animals subjected to different nucleolar stress conditions and nosr-1 mutants, we identify that the SR-like protein NUMR-1 (nuclear localized metal responsive) is the target of NOSR-1. Interestingly, NUMR-1 is a component of NoSB and itself per se is required for the formation of NoSB. We conclude that the NOSR-1/NUMR-1 axis likely responds to nucleolar stress and mediates downstream stress-responsive transcription programs and subnuclear morphology alterations in C. elegans.
Collapse
Affiliation(s)
- Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaotian Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shimiao Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ge Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
12
|
Qian D, Ausserwoger H, Sneideris T, Farag M, Pappu RV, Knowles TPJ. Dominance analysis to assess solute contributions to multicomponent phase equilibria. Proc Natl Acad Sci U S A 2024; 121:e2407453121. [PMID: 39102550 PMCID: PMC11331137 DOI: 10.1073/pnas.2407453121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/05/2024] [Indexed: 08/07/2024] Open
Abstract
Phase separation in aqueous solutions of macromolecules underlies the generation of biomolecular condensates in cells. Condensates are membraneless bodies, representing dense, macromolecule-rich phases that coexist with the dilute, macromolecule-deficient phases. In cells, condensates comprise hundreds of different macromolecular and small molecule solutes. How do different solutes contribute to the driving forces for phase separation? To answer this question, we introduce a formalism we term energy dominance analysis. This approach rests on analysis of shapes of the dilute phase boundaries, slopes of tie lines, and changes to dilute phase concentrations in response to perturbations of concentrations of different solutes. The framework is based solely on conditions for phase equilibria in systems with arbitrary numbers of macromolecules and solution components. Its practical application relies on being able to measure dilute phase concentrations of the components of interest. The dominance framework is both theoretically facile and experimentally applicable. We present the formalism that underlies dominance analysis and establish its accuracy and flexibility by deploying it to analyze phase diagrams probed in simulations and in experiments.
Collapse
Affiliation(s)
- Daoyuan Qian
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Hannes Ausserwoger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Tomas Sneideris
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
| | - Mina Farag
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO63130
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EWCambridge, United Kingdom
- Cavendish Laboratory, Department of Physics, University of Cambridge, CB3 0HECambridge, United Kingdom
| |
Collapse
|
13
|
Ramachandran V, Potoyan DA. Atomistic insights into the reentrant phase-transitions in polyuracil and polylysine mixtures. J Chem Phys 2024; 161:015101. [PMID: 38949285 PMCID: PMC11378353 DOI: 10.1063/5.0206190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024] Open
Abstract
The phase separation of protein and RNA mixtures underpins the assembly and regulation of numerous membraneless organelles in cells. The ubiquity of protein-RNA condensates in cellular regulatory processes is in part due to their sensitivity to RNA concentration, which affects their physical properties and stability. Recent experiments with poly-cationic peptide-RNA mixtures have revealed closed-loop phase diagrams featuring lower and upper critical solution temperatures. These diagrams indicate reentrant phase transitions shaped by biomolecular interactions and entropic forces such as solvent and ion reorganization. We employed atomistic simulations to study mixtures with various RNA-polylysine stoichiometries and temperatures to elucidate the microscopic driving forces behind reentrant phase transitions in protein-RNA mixtures. Our findings reveal an intricate interplay between hydration, ion condensation, and specific RNA-polylysine hydrogen bonding, resulting in distinct stoichiometry-dependent phase equilibria governing stabilities and structures of the condensate phase. Our simulations show that reentrant transitions are accompanied by desolvation around the phosphate groups of RNA, with increased contacts between phosphate and lysine side chains. In RNA-rich systems at lower temperatures, RNA molecules can form an extensive pi-stacking and hydrogen bond network, leading to percolation. In protein-rich systems, no such percolation-induced transitions are observed. Furthermore, we assessed the performance of three prominent water force fields-Optimal Point Charge (OPC), TIP4P-2005, and TIP4P-D-in capturing reentrant phase transitions. OPC provided a superior balance of interactions, enabling effective capture of reentrant transitions and accurate characterization of changes in solvent reorganization. This study offers atomistic insights into the nature of reentrant phase transitions using simple model peptide and nucleotide mixtures. We believe that our results are broadly applicable to larger classes of peptide-RNA mixtures exhibiting reentrant phase transitions.
Collapse
Affiliation(s)
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
14
|
Lakadamyali M. From feulgen to modern methods: marking a century of DNA imaging advances. Histochem Cell Biol 2024; 162:13-22. [PMID: 38753186 PMCID: PMC11227465 DOI: 10.1007/s00418-024-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/07/2024]
Abstract
The mystery of how human DNA is compactly packaged into a nucleus-a space a hundred thousand times smaller-while still allowing for the regulation of gene function, has long been one of the greatest enigmas in cell biology. This puzzle is gradually being solved, thanks in part to the advent of new technologies. Among these, innovative genome-labeling techniques combined with high-resolution imaging methods have been pivotal. These methods facilitate the visualization of DNA within intact nuclei and have significantly contributed to our current understanding of genome organization. This review will explore various labeling and imaging approaches that are revolutionizing our understanding of the three-dimensional organization of the genome, shedding light on the relationship between its structure and function.
Collapse
Affiliation(s)
- Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
15
|
Lerra L, Panatta M, Bär D, Zanini I, Tan JY, Pisano A, Mungo C, Baroux C, Panse VG, Marques AC, Santoro R. An RNA-dependent and phase-separated active subnuclear compartment safeguards repressive chromatin domains. Mol Cell 2024; 84:1667-1683.e10. [PMID: 38599210 PMCID: PMC11065421 DOI: 10.1016/j.molcel.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/19/2023] [Accepted: 03/16/2024] [Indexed: 04/12/2024]
Abstract
The nucleus is composed of functionally distinct membraneless compartments that undergo phase separation (PS). However, whether different subnuclear compartments are connected remains elusive. We identified a type of nuclear body with PS features composed of BAZ2A that associates with active chromatin. BAZ2A bodies depend on RNA transcription and BAZ2A non-disordered RNA-binding TAM domain. Although BAZ2A and H3K27me3 occupancies anticorrelate in the linear genome, in the nuclear space, BAZ2A bodies contact H3K27me3 bodies. BAZ2A-body disruption promotes BAZ2A invasion into H3K27me3 domains, causing H3K27me3-body loss and gene upregulation. Weak BAZ2A-RNA interactions, such as with nascent transcripts, promote BAZ2A bodies, whereas the strong binder long non-coding RNA (lncRNA) Malat1 impairs them while mediating BAZ2A association to chromatin at nuclear speckles. In addition to unraveling a direct connection between nuclear active and repressive compartments through PS mechanisms, the results also showed that the strength of RNA-protein interactions regulates this process, contributing to nuclear organization and the regulation of chromatin and gene expression.
Collapse
Affiliation(s)
- Luigi Lerra
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland; RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich 8057, Switzerland
| | - Martina Panatta
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland; RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich 8057, Switzerland
| | - Dominik Bär
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland
| | - Isabella Zanini
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland
| | - Jennifer Yihong Tan
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Agnese Pisano
- Institute of Medical Microbiology, University of Zurich, Zurich 8057, Switzerland
| | - Chiara Mungo
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland; Molecular Life Science Program, Life Science Zurich Graduate School, University of Zurich, Zurich 8057, Switzerland
| | - Célia Baroux
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich 8057, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich 8057, Switzerland
| | - Ana C Marques
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
16
|
Yuan T, Yan H, Bailey MLP, Williams JF, Surovtsev I, King MC, Mochrie SGJ. Effect of loops on the mean-square displacement of Rouse-model chromatin. Phys Rev E 2024; 109:044502. [PMID: 38755928 DOI: 10.1103/physreve.109.044502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/16/2024] [Indexed: 05/18/2024]
Abstract
Chromatin polymer dynamics are commonly described using the classical Rouse model. The subsequent discovery, however, of intermediate-scale chromatin organization known as topologically associating domains (TADs) in experimental Hi-C contact maps for chromosomes across the tree of life, together with the success of loop extrusion factor (LEF) model in explaining TAD formation, motivates efforts to understand the effect of loops and loop extrusion on chromatin dynamics. This paper seeks to fulfill this need by combining LEF-model simulations with extended Rouse-model polymer simulations to investigate the dynamics of chromatin with loops and dynamic loop extrusion. We show that loops significantly suppress the averaged mean-square displacement (MSD) of a gene locus, consistent with recent experiments that track fluorescently labeled chromatin loci. We also find that loops reduce the MSD's stretching exponent from the classical Rouse-model value of 1/2 to a loop-density-dependent value in the 0.45-0.40 range. Remarkably, stretching exponent values in this range have also been observed in recent experiments [Weber et al., Phys. Rev. Lett. 104, 238102 (2010)0031-900710.1103/PhysRevLett.104.238102; Bailey et al., Mol. Biol. Cell 34, ar78 (2023)1059-152410.1091/mbc.E23-04-0119]. We also show that the dynamics of loop extrusion itself negligibly affects chromatin mobility. By studying static "rosette" loop configurations, we also demonstrate that chromatin MSDs and stretching exponents depend on the location of the locus in question relative to the position of the loops and on the local friction environment.
Collapse
Affiliation(s)
- Tianyu Yuan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Hao Yan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Mary Lou P Bailey
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Megan C King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Simon G J Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
17
|
Nicchitta CV. An emerging role for the endoplasmic reticulum in stress granule biogenesis. Semin Cell Dev Biol 2024; 156:160-166. [PMID: 36202692 PMCID: PMC10208384 DOI: 10.1016/j.semcdb.2022.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022]
Abstract
Stress granules (SGs), structurally dynamic, optically resolvable, macromolecular assemblies of mRNAs, RNA binding proteins (RBPs), translation factors, ribosomal subunits, as well as other interacting proteins, assemble in response to cell stress conditions that elicit phosphorylation of eukaryotic initiation factor 2α (eIF2α) and consequently, the inactivation of translation initiation. SG biology is conserved throughout eukaryotes and has recently been linked to the pathological sequelae of neurodegenerative disorders, cancer biology, and viral infection. Substantial insights into mechanisms of SG biogenesis, and more broadly the phenomenon of biological liquid-liquid phase separation (LLPS), have been aided by detailed proteomic and transcriptomic studies as well as in vitro reconstitution approaches. A particularly interesting and largely unexplored element of SG biology is the cell biological context of SG biogenesis, including its subcellular organization and more recently, evidence that the endoplasmic reticulum (ER) membrane may serve important functions in RNA granule biology generally and SG biogenesis specifically. A central role for the ER in SG biogenesis is discussed and a hypothesis linking SG formation on the ER to the trafficking, localization and de novo translation of newly exported mRNAs is presented.
Collapse
|
18
|
Murphy SE, Boettiger AN. Polycomb repression of Hox genes involves spatial feedback but not domain compaction or phase transition. Nat Genet 2024; 56:493-504. [PMID: 38361032 DOI: 10.1038/s41588-024-01661-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/10/2024] [Indexed: 02/17/2024]
Abstract
Polycomb group proteins have a critical role in silencing transcription during development. It is commonly proposed that Polycomb-dependent changes in genome folding, which compact chromatin, contribute directly to repression by blocking the binding of activating complexes. Recently, it has also been argued that liquid-liquid demixing of Polycomb proteins facilitates this compaction and repression by phase-separating target genes into a membraneless compartment. To test these models, we used Optical Reconstruction of Chromatin Architecture to trace the Hoxa gene cluster, a canonical Polycomb target, in thousands of single cells. Across multiple cell types, we find that Polycomb-bound chromatin frequently explores decompact states and partial mixing with neighboring chromatin, while remaining uniformly repressed, challenging the repression-by-compaction or phase-separation models. Using polymer simulations, we show that these observed flexible ensembles can be explained by 'spatial feedback'-transient contacts that contribute to the propagation of the epigenetic state (epigenetic memory), without inducing a globular organization.
Collapse
Affiliation(s)
- Sedona Eve Murphy
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | | |
Collapse
|
19
|
Sárkány Z, Figueiredo F, Macedo-Ribeiro S, Martins PM. NAGPKin: Nucleation-and-growth parameters from the kinetics of protein phase separation. Mol Biol Cell 2024; 35:mr1. [PMID: 38117593 PMCID: PMC10916857 DOI: 10.1091/mbc.e23-07-0289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/22/2023] Open
Abstract
The assembly of biomolecular condensate in eukaryotic cells and the accumulation of amyloid deposits in neurons are processes involving the nucleation and growth (NAG) of new protein phases. To therapeutically target protein phase separation, drug candidates are tested in in vitro assays that monitor the increase in the mass or size of the new phase. Limited mechanistic insight is, however, provided if empirical or untestable kinetic models are fitted to these progress curves. Here we present the web server NAGPKin that quantifies NAG rates using mass-based or size-based progress curves as the input data. A report is generated containing the fitted NAG parameters and elucidating the phase separation mechanisms at play. The NAG parameters can be used to predict particle size distributions of, for example, protein droplets formed by liquid-liquid phase separation (LLPS) or amyloid fibrils formed by protein aggregation. Because minimal intervention is required from the user, NAGPKin is a good platform for standardized reporting of LLPS and protein self-assembly data. NAGPKin is useful for drug discovery as well as for fundamental studies on protein phase separation. NAGPKin is freely available (no login required) at https://nagpkin.i3s.up.pt.
Collapse
Affiliation(s)
- Zsuzsa Sárkány
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| | - Francisco Figueiredo
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| | - Sandra Macedo-Ribeiro
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| | - Pedro M. Martins
- Biomolecular Structure and Function Group, IBMC – Instituto de Biologia Molecular e Celular, Porto 4200-135, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
20
|
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR, Ayala YM. RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention. PLoS Biol 2024; 22:e3002527. [PMID: 38422113 DOI: 10.1371/journal.pbio.3002527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Patricia M Dos Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Erandika H Hemamali
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lohany D Mamede
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lindsey R Hayes
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yuna M Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
21
|
Seelbinder B, Wagner S, Jain M, Erben E, Klykov S, Stoev ID, Krishnaswamy VR, Kreysing M. Probe-free optical chromatin deformation and measurement of differential mechanical properties in the nucleus. eLife 2024; 13:e76421. [PMID: 38214505 PMCID: PMC10786458 DOI: 10.7554/elife.76421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The nucleus is highly organized to facilitate coordinated gene transcription. Measuring the rheological properties of the nucleus and its sub-compartments will be crucial to understand the principles underlying nuclear organization. Here, we show that strongly localized temperature gradients (approaching 1°C/µm) can lead to substantial intra-nuclear chromatin displacements (>1 µm), while nuclear area and lamina shape remain unaffected. Using particle image velocimetry (PIV), intra-nuclear displacement fields can be calculated and converted into spatio-temporally resolved maps of various strain components. Using this approach, we show that chromatin displacements are highly reversible, indicating that elastic contributions are dominant in maintaining nuclear organization on the time scale of seconds. In genetically inverted nuclei, centrally compacted heterochromatin displays high resistance to deformation, giving a rigid, solid-like appearance. Correlating spatially resolved strain maps with fluorescent reporters in conventional interphase nuclei reveals that various nuclear compartments possess distinct mechanical identities. Surprisingly, both densely and loosely packed chromatin showed high resistance to deformation, compared to medium dense chromatin. Equally, nucleoli display particularly high resistance and strong local anchoring to heterochromatin. Our results establish how localized temperature gradients can be used to drive nuclear compartments out of mechanical equilibrium to obtain spatial maps of their material responses.
Collapse
Affiliation(s)
- Benjamin Seelbinder
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Susan Wagner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Manavi Jain
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Elena Erben
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Sergei Klykov
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Iliya Dimitrov Stoev
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | | | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| |
Collapse
|
22
|
Verdikt R, Thienpont B. Epigenetic remodelling under hypoxia. Semin Cancer Biol 2024; 98:1-10. [PMID: 38029868 DOI: 10.1016/j.semcancer.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Hypoxia is intrinsic to tumours and contributes to malignancy and metastasis while hindering the efficiency of existing treatments. Epigenetic mechanisms play a crucial role in the regulation of hypoxic cancer cell programs, both in the initial phases of sensing the decrease in oxygen levels and during adaptation to chronic lack of oxygen. During the latter, the epigenetic regulation of tumour biology intersects with hypoxia-sensitive transcription factors in a complex network of gene regulation that also involves metabolic reprogramming. Here, we review the current literature on the epigenetic control of gene programs in hypoxic cancer cells. We highlight common themes and features of such epigenetic remodelling and discuss their relevance for the development of therapeutic strategies.
Collapse
Affiliation(s)
- Roxane Verdikt
- Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Bernard Thienpont
- Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium; KU Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium.
| |
Collapse
|
23
|
Liu J, Fan H, Liang X, Chen Y. Polycomb repressor complex: Its function in human cancer and therapeutic target strategy. Biomed Pharmacother 2023; 169:115897. [PMID: 37981459 DOI: 10.1016/j.biopha.2023.115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/21/2023] Open
Abstract
The Polycomb Repressor Complex (PRC) plays a pivotal role in gene regulation during development and disease, with dysregulation contributing significantly to various human cancers. The intricate interplay between PRC and cellular signaling pathways sheds light on cancer complexity. PRC presents promising therapeutic opportunities, with inhibitors undergoing rigorous evaluation in preclinical and clinical studies. In this review, we emphasize the critical role of PRC complex in gene regulation, particularly PcG proteins mediated chromatin compaction through phase separation. We also highlight the pathological implications of PRC complex dysregulation in various tumors, elucidating underlying mechanisms driving cancer progression. The burgeoning field of therapeutic strategies targeting PRC complexes, notably EZH2 inhibitors, has advanced significantly. However, we explore the need for combination therapies to enhance PRC targeted treatments efficacy, providing a glimpse into the future of cancer therapeutics.
Collapse
Affiliation(s)
- Jingrong Liu
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Hongjie Fan
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Xinmiao Liang
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Yang Chen
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
24
|
Abstract
The HIV-1 capsid, composed of approximately 1,200 copies of the capsid protein, encases genomic RNA alongside viral nucleocapsid, reverse transcriptase, and integrase proteins. After cell entry, the capsid interacts with a myriad of host factors to traverse the cell cytoplasm, pass through the nuclear pore complex (NPC), and then traffic to chromosomal sites for viral DNA integration. Integration may very well require the dissolution of the capsid, but where and when this uncoating event occurs remains hotly debated. Based on size constraints, a long-prevailing view was that uncoating preceded nuclear transport, but recent research has indicated that the capsid may remain largely intact during nuclear import, with perhaps some structural remodeling required for NPC traversal. Completion of reverse transcription in the nucleus may further aid capsid uncoating. One canonical type of host factor, typified by CPSF6, leverages a Phe-Gly (FG) motif to bind capsid. Recent research has shown these peptides reside amid prion-like domains (PrLDs), which are stretches of protein sequence devoid of charged residues. Intermolecular PrLD interactions along the exterior of the capsid shell impart avid host factor binding for productive HIV-1 infection. Herein we overview capsid-host interactions implicated in HIV-1 ingress and discuss important research questions moving forward. Highlighting clinical relevance, the long-acting ultrapotent inhibitor lenacapavir, which engages the same capsid binding pocket as FG host factors, was recently approved to treat people living with HIV.
Collapse
Affiliation(s)
- Sooin Jang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Parra AS, Johnston CA. Phase Separation as a Driver of Stem Cell Organization and Function during Development. J Dev Biol 2023; 11:45. [PMID: 38132713 PMCID: PMC10743522 DOI: 10.3390/jdb11040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
A properly organized subcellular composition is essential to cell function. The canonical organizing principle within eukaryotic cells involves membrane-bound organelles; yet, such structures do not fully explain cellular complexity. Furthermore, discrete non-membrane-bound structures have been known for over a century. Liquid-liquid phase separation (LLPS) has emerged as a ubiquitous mode of cellular organization without the need for formal lipid membranes, with an ever-expanding and diverse list of cellular functions that appear to be regulated by this process. In comparison to traditional organelles, LLPS can occur across wider spatial and temporal scales and involves more distinct protein and RNA complexes. In this review, we discuss the impacts of LLPS on the organization of stem cells and their function during development. Specifically, the roles of LLPS in developmental signaling pathways, chromatin organization, and gene expression will be detailed, as well as its impacts on essential processes of asymmetric cell division. We will also discuss how the dynamic and regulated nature of LLPS may afford stem cells an adaptable mode of organization throughout the developmental time to control cell fate. Finally, we will discuss how aberrant LLPS in these processes may contribute to developmental defects and disease.
Collapse
|
26
|
Ramšak M, Ramirez DA, Hough LE, Shirts MR, Vidmar S, Eleršič Filipič K, Anderluh G, Jerala R. Programmable de novo designed coiled coil-mediated phase separation in mammalian cells. Nat Commun 2023; 14:7973. [PMID: 38042897 PMCID: PMC10693550 DOI: 10.1038/s41467-023-43742-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023] Open
Abstract
Membraneless liquid compartments based on phase-separating biopolymers have been observed in diverse cell types and attributed to weak multivalent interactions predominantly based on intrinsically disordered domains. The design of liquid-liquid phase separated (LLPS) condensates based on de novo designed tunable modules that interact in a well-understood, controllable manner could improve our understanding of this phenomenon and enable the introduction of new features. Here we report the construction of CC-LLPS in mammalian cells, based on designed coiled-coil (CC) dimer-forming modules, where the stability of CC pairs, their number, linkers, and sequential arrangement govern the transition between diffuse, liquid and immobile condensates and are corroborated by coarse-grained molecular simulations. Through modular design, we achieve multiple coexisting condensates, chemical regulation of LLPS, condensate fusion, formation from either one or two polypeptide components or LLPS regulation by a third polypeptide chain. These findings provide further insights into the principles underlying LLPS formation and a design platform for controlling biological processes.
Collapse
Affiliation(s)
- Maruša Ramšak
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dominique A Ramirez
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Loren E Hough
- Department of Physics and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Michael R Shirts
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Sara Vidmar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Interdisciplinary doctoral study of biomedicine, Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Kristina Eleršič Filipič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
| |
Collapse
|
27
|
Schibler U. How the circadian nuclear orphan receptor REV-ERBα represses transcription: Temporal and spatial phase separation combined. Mol Cell 2023; 83:3399-3401. [PMID: 37802021 DOI: 10.1016/j.molcel.2023.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/08/2023]
Abstract
In this issue of Molecular Cell, Zhu et al.1 demonstrate that REV-ERBα and its co-repressor NCOR1 are assembled into daytime-dependent liquid droplets that constitute hubs in which the transcription of multiple REV-ERBα target genes is simultaneously repressed.
Collapse
Affiliation(s)
- Ueli Schibler
- Department of Molecular and Cellular Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
28
|
Xin D, Gai X, Ma Y, Li Z, Li Q, Yu X. Pre-rRNA Facilitates TopBP1-Mediated DNA Double-Strand Break Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206931. [PMID: 37582658 PMCID: PMC10558638 DOI: 10.1002/advs.202206931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/28/2023] [Indexed: 08/17/2023]
Abstract
In response to genotoxic stress-induced DNA damage, TopBP1 mediates ATR activation for signaling transduction and DNA damage repair. However, the detailed molecular mechanism remains elusive. Here, using unbiased protein affinity purification and RNA sequencing, it is found that TopBP1 is associated with pre-ribosomal RNA (pre-rRNA). Pre-rRNA co-localized with TopBP1 at DNA double-strand breaks (DSBs). Similar to pre-rRNA, ribosomal proteins also colocalize with TopBP1 at DSBs. The recruitment of TopBP1 to DSBs is suppressed when cells are transiently treated with RNA polymerase I inhibitor (Pol I-i) to suppress pre-rRNA biogenesis but not protein translation. Moreover, the BRCT4-5 of TopBP1 recognizes pre-rRNA and forms liquid-liquid phase separation (LLPS) with pre-rRNA, which may be the molecular basis of DSB-induced foci of TopBP1. Finally, Pol I-i treatment impairs TopBP1-associated cell cycle checkpoint activation and homologous recombination repair. Collectively, this study reveals that pre-rRNA plays a key role in the TopBP1-dependent DNA damage response.
Collapse
Affiliation(s)
- Di Xin
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic DiseaseThe First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Xiaochen Gai
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Yidi Ma
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Zexing Li
- School of Life SciencesTianjin UniversityTianjin300072China
| | - Qilin Li
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| | - Xiaochun Yu
- School of Life SciencesWestlake UniversityHangzhouZhejiang310024China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouZhejiang310024China
- Institute of Basic Medical SciencesWestlake Institute for Advanced StudyHangzhouZhejiang310024China
| |
Collapse
|
29
|
Gaskill MM, Soluri IV, Branks AE, Boka AP, Stadler MR, Vietor K, Huang HYS, Gibson TJ, Mukherjee A, Mir M, Blythe SA, Harrison MM. Localization of the Drosophila pioneer factor GAF to subnuclear foci is driven by DNA binding and required to silence satellite repeat expression. Dev Cell 2023; 58:1610-1624.e8. [PMID: 37478844 PMCID: PMC10528433 DOI: 10.1016/j.devcel.2023.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/19/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023]
Abstract
The eukaryotic genome is organized to enable the precise regulation of gene expression. This organization is established as the embryo transitions from a fertilized gamete to a totipotent zygote. To understand the factors and processes that drive genomic organization, we focused on the pioneer factor GAGA factor (GAF) that is required for early development in Drosophila. GAF transcriptionally activates the zygotic genome and is localized to subnuclear foci. This non-uniform distribution is driven by binding to highly abundant GA repeats. At GA repeats, GAF is necessary to form heterochromatin and silence transcription. Thus, GAF is required to establish both active and silent regions. We propose that foci formation enables GAF to have opposing transcriptional roles within a single nucleus. Our data support a model in which the subnuclear concentration of transcription factors acts to organize the nucleus into functionally distinct domains essential for the robust regulation of gene expression.
Collapse
Affiliation(s)
- Marissa M Gaskill
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Isabella V Soluri
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Annemarie E Branks
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Alan P Boka
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael R Stadler
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Katherine Vietor
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hao-Yu S Huang
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Apratim Mukherjee
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Institute for Regenerative, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shelby A Blythe
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
30
|
Iannucci LF, D'Erchia AM, Picardi E, Bettio D, Conca F, Surdo NC, Di Benedetto G, Musso D, Arrigoni C, Lolicato M, Vismara M, Grisan F, Salviati L, Milanesi L, Pesole G, Lefkimmiatis K. Cyclic AMP induces reversible EPAC1 condensates that regulate histone transcription. Nat Commun 2023; 14:5521. [PMID: 37684224 PMCID: PMC10491619 DOI: 10.1038/s41467-023-41088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The second messenger cyclic AMP regulates many nuclear processes including transcription, pre-mRNA splicing and mitosis. While most functions are attributed to protein kinase A, accumulating evidence suggests that not all nuclear cyclic AMP-dependent effects are mediated by this kinase, implying that other effectors may be involved. Here we explore the nuclear roles of Exchange Protein Activated by cyclic AMP 1. We find that it enters the nucleus where forms reversible biomolecular condensates in response to cyclic AMP. This phenomenon depends on intrinsically disordered regions present at its amino-terminus and is independent of protein kinase A. Finally, we demonstrate that nuclear Exchange Protein Activated by cyclic AMP 1 condensates assemble at genomic loci on chromosome 6 in the proximity of Histone Locus Bodies and promote the transcription of a histone gene cluster. Collectively, our data reveal an unexpected mechanism through which cyclic AMP contributes to nuclear spatial compartmentalization and promotes the transcription of specific genes.
Collapse
Affiliation(s)
- Liliana Felicia Iannucci
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Anna Maria D'Erchia
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Ernesto Picardi
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Daniela Bettio
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Filippo Conca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | - Nicoletta Concetta Surdo
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Giulietta Di Benedetto
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy
| | - Deborah Musso
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Marco Lolicato
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mauro Vismara
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy
| | | | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, Italy
- Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
| | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Konstantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.
- Veneto Institute of Molecular Medicine, 35129, Padova, Italy.
- Institute of Neuroscience (IN-CNR), National Research Council of Italy, Padova, Italy.
| |
Collapse
|
31
|
Ayala YM. Uncovering Critical Roles for RNA in Neurodegeneration. MISSOURI MEDICINE 2023; 120:374-380. [PMID: 37841575 PMCID: PMC10569393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
RNA-binding proteins, in particular TDP-43, are key players in neurodegenerative disorders, mainly amyotrophic lateral sclerosis and frontotemporal dementia. We aim to elucidate how TDP-43 dysfunction alters cell metabolism and to identify mechanisms linked to aberrant behavior. We find that RNA binding plays a key role in maintaining TDP-43 homeostasis and in controlling cellular organization, two processes of essential importance to TDP-43 pathology. This research will provide insight into pathogenesis and help develop therapeutic interventions.
Collapse
Affiliation(s)
- Yuna M Ayala
- Edward A. Doisy Department of Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
32
|
Enders L, Siklos M, Borggräfe J, Gaussmann S, Koren A, Malik M, Tomek T, Schuster M, Reiniš J, Hahn E, Rukavina A, Reicher A, Casteels T, Bock C, Winter GE, Hannich JT, Sattler M, Kubicek S. Pharmacological perturbation of the phase-separating protein SMNDC1. Nat Commun 2023; 14:4504. [PMID: 37587144 PMCID: PMC10432564 DOI: 10.1038/s41467-023-40124-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 07/13/2023] [Indexed: 08/18/2023] Open
Abstract
SMNDC1 is a Tudor domain protein that recognizes di-methylated arginines and controls gene expression as an essential splicing factor. Here, we study the specific contributions of the SMNDC1 Tudor domain to protein-protein interactions, subcellular localization, and molecular function. To perturb the protein function in cells, we develop small molecule inhibitors targeting the dimethylarginine binding pocket of the SMNDC1 Tudor domain. We find that SMNDC1 localizes to phase-separated membraneless organelles that partially overlap with nuclear speckles. This condensation behavior is driven by the unstructured C-terminal region of SMNDC1, depends on RNA interaction and can be recapitulated in vitro. Inhibitors of the protein's Tudor domain drastically alter protein-protein interactions and subcellular localization, causing splicing changes for SMNDC1-dependent genes. These compounds will enable further pharmacological studies on the role of SMNDC1 in the regulation of nuclear condensates, gene regulation and cell identity.
Collapse
Affiliation(s)
- Lennart Enders
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Marton Siklos
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jan Borggräfe
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Gaussmann
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Anna Koren
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Monika Malik
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tatjana Tomek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Schuster
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Jiří Reiniš
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Elisa Hahn
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andrea Rukavina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Andreas Reicher
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Tamara Casteels
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Sloan Kettering Institute, 1275 York Avenue, New York, NY, 10065, USA
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
- Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, Währinger Straße 25a, 1090, Vienna, Austria
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, München, Germany
- Technical University of Munich, TUM School of Natural Sciences, Department of Bioscience, Bavarian NMR Center, Garching, 85748, München, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, 1090, Vienna, Austria.
| |
Collapse
|
33
|
Zhang X, Zheng R, Li Z, Ma J. Liquid-liquid Phase Separation in Viral Function. J Mol Biol 2023; 435:167955. [PMID: 36642156 DOI: 10.1016/j.jmb.2023.167955] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
An emerging set of results suggests that liquid-liquid phase separation (LLPS) is the basis for the formation of membrane-less compartments in cells. Evidence is now mounting that various types of virus-induced membrane-less compartments and organelles are also assembled via LLPS. Specifically, viruses appear to use intracellular phase transitions to form subcellular microenvironments known as viral factories, inclusion bodies, or viroplasms. These compartments - collectively referred to as viral biomolecular condensates - can be used to concentrate replicase proteins, viral genomes, and host proteins that are required for virus replication. They can also be used to subvert or avoid the intracellular immune response. This review examines how certain DNA or RNA viruses drive the formation of viral condensates, the possible biological functions of those condensates, and the biophysical and biochemical basis for their assembly.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Run Zheng
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Zhengshuo Li
- Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China
| | - Jian Ma
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
34
|
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR, Ayala YM. RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552215. [PMID: 37609278 PMCID: PMC10441353 DOI: 10.1101/2023.08.06.552215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.
Collapse
|
35
|
Spicer MFD, Gerlich DW. The material properties of mitotic chromosomes. Curr Opin Struct Biol 2023; 81:102617. [PMID: 37279615 PMCID: PMC10448380 DOI: 10.1016/j.sbi.2023.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/28/2023] [Accepted: 05/04/2023] [Indexed: 06/08/2023]
Abstract
Chromosomes transform during the cell cycle, allowing transcription and replication during interphase and chromosome segregation during mitosis. Morphological changes are thought to be driven by the combined effects of DNA loop extrusion and a chromatin solubility phase transition. By extruding the chromatin fibre into loops, condensins enrich at an axial core and provide resistance to spindle pulling forces. Mitotic chromosomes are further compacted by deacetylation of histone tails, rendering chromatin insoluble and resistant to penetration by microtubules. Regulation of surface properties by Ki-67 allows independent chromosome movement in early mitosis and clustering during mitotic exit. Recent progress has provided insight into how the extraordinary material properties of chromatin emerge from these activities, and how these properties facilitate faithful chromosome segregation.
Collapse
Affiliation(s)
- Maximilian F D Spicer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria. https://twitter.com/Spicer__Max
| | - Daniel W Gerlich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
36
|
Guan WL, Jiang LL, Yin XF, Hu HY. PABPN1 aggregation is driven by Ala expansion and poly(A)-RNA binding, leading to CFIm25 sequestration that impairs alternative polyadenylation. J Biol Chem 2023; 299:105019. [PMID: 37422193 PMCID: PMC10403730 DOI: 10.1016/j.jbc.2023.105019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Poly(A)-binding protein nuclear 1 (PABPN1) is an RNA-binding protein localized in nuclear speckles, while its alanine (Ala)-expanded variants accumulate as intranuclear aggregates in oculopharyngeal muscular dystrophy. The factors that drive PABPN1 aggregation and its cellular consequences remain largely unknown. Here, we investigated the roles of Ala stretch and poly(A) RNA in the phase transition of PABPN1 using biochemical and molecular cell biology methods. We have revealed that the Ala stretch controls its mobility in nuclear speckles, and Ala expansion leads to aggregation from the dynamic speckles. Poly(A) nucleotide is essential to the early-stage condensation that thereby facilitates speckle formation and transition to solid-like aggregates. Moreover, the PABPN1 aggregates can sequester CFIm25, a component of the pre-mRNA 3'-UTR processing complex, in an mRNA-dependent manner and consequently impair the function of CFIm25 in alternative polyadenylation. In conclusion, our study elucidates a molecular mechanism underlying PABPN1 aggregation and sequestration, which will be beneficial for understanding PABPN1 proteinopathy.
Collapse
Affiliation(s)
- Wen-Liang Guan
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lei-Lei Jiang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Fang Yin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
37
|
Conte M, Matteuzzi T, Esposito A, Chiariello AM, Bianco S, Vercellone F, Nicodemi M. Phase separation of ecDNA aggregates establishes in-trans contact domains boosting selective MYC regulatory interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.17.549291. [PMID: 37503084 PMCID: PMC10370113 DOI: 10.1101/2023.07.17.549291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Extrachromosomal DNAs (ecDNAs) are found in the nucleus of an array of human cancer cells where they can form clusters that were associated to oncogene overexpression, as they carry genes and cis-regulatory elements. Yet, the mechanisms of aggregation and gene amplification beyond copy-number effects remain mostly unclear. Here, we investigate, at the single molecule level, MYC-harboring ecDNAs of COLO320-DM colorectal cancer cells by use of a minimal polymer model of the interactions of ecDNA BRD4 binding sites and BRD4 molecules. We find that BRD4 induces ecDNAs phase separation, resulting in the self-assembly of clusters whose predicted structure is validated against HiChIP data (Hung et al., 2021). Clusters establish in-trans associated contact domains (I-TADs) enriched, beyond copy number, in regulatory contacts among specific ecDNA regions, encompassing its PVT1-MYC fusions but not its other canonical MYC copy. That explains why the fusions originate most of ecDNA MYC transcripts (Hung et al., 2021), and shows that ecDNA clustering per se is important but not sufficient to amplify oncogene expression beyond copy-number, reconciling opposite views on the role of clusters (Hung et al., 2021; Zhu et al., 2021; Purshouse et al. 2022). Regulatory contacts become strongly enriched as soon as half a dozen ecDNAs aggregate, then saturate because of steric hindrance, highlighting that even cells with few ecDNAs can experience pathogenic MYC upregulations. To help drug design and therapeutic applications, with the model we dissect the effects of JQ1, a BET inhibitor. We find that JQ1 reverses ecDNA phase separation hence abolishing I-TADs and extra regulatory contacts, explaining how in COLO320-DM cells it reduces MYC transcription (Hung et al., 2021).
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Tommaso Matteuzzi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Francesca Vercellone
- DIETI, Università di Napoli Federico II, Via Claudio 21, 80125 Naples, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
38
|
Elias RD, Zhu Y, Su Q, Ghirlando R, Zhang J, Deshmukh L. Reversible phase separation of ESCRT protein ALIX through tyrosine phosphorylation. SCIENCE ADVANCES 2023; 9:eadg3913. [PMID: 37450591 PMCID: PMC10348681 DOI: 10.1126/sciadv.adg3913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Cytokinetic abscission, the last step of cell division, is regulated by the ESCRT machinery. In response to mitotic errors, ESCRT proteins, namely, ALIX, CHMP4B, and CHMP4C, accumulate in the cytosolic compartments termed "abscission checkpoint bodies" (ACBs) to delay abscission and prevent tumorigenesis. ALIX contributes to the biogenesis and stability of ACBs via an unknown mechanism. We show that ALIX phase separates into nondynamic condensates in vitro and in vivo, mediated by the amyloidogenic portion of its proline-rich domain. ALIX condensates confined CHMP4 paralogs in vitro. These condensates dissolved and reformed upon reversible tyrosine phosphorylation of ALIX, mediated by Src kinase and PTP1B, and sequestration of CHMP4C altered their Src-mediated dissolution. NMR analysis revealed how ALIX triggers the activation of CHMP4 proteins, which is required for successful abscission. These results implicate ALIX's phase separation in the modulation of ACBs. This study also highlights how posttranslational modifications can control protein phase separation.
Collapse
Affiliation(s)
- Ruben D. Elias
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yingqi Zhu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qi Su
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lalit Deshmukh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
39
|
Dai S, Liu S, Zhou C, Yu F, Zhu G, Zhang W, Deng H, Burlingame A, Yu W, Wang T, Li N. Capturing the hierarchically assorted modules of protein-protein interactions in the organized nucleome. MOLECULAR PLANT 2023; 16:930-961. [PMID: 36960533 DOI: 10.1016/j.molp.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/16/2023] [Accepted: 03/21/2023] [Indexed: 05/04/2023]
Abstract
Nuclear proteins are major constituents and key regulators of nucleome topological organization and manipulators of nuclear events. To decipher the global connectivity of nuclear proteins and the hierarchically organized modules of their interactions, we conducted two rounds of cross-linking mass spectrometry (XL-MS) analysis, one of which followed a quantitative double chemical cross-linking mass spectrometry (in vivoqXL-MS) workflow, and identified 24,140 unique crosslinks in total from the nuclei of soybean seedlings. This in vivo quantitative interactomics enabled the identification of 5340 crosslinks that can be converted into 1297 nuclear protein-protein interactions (PPIs), 1220 (94%) of which were non-confirmative (or novel) nuclear PPIs compared with those in repositories. There were 250 and 26 novel interactors of histones and the nucleolar box C/D small nucleolar ribonucleoprotein complex, respectively. Modulomic analysis of orthologous Arabidopsis PPIs produced 27 and 24 master nuclear PPI modules (NPIMs) that contain the condensate-forming protein(s) and the intrinsically disordered region-containing proteins, respectively. These NPIMs successfully captured previously reported nuclear protein complexes and nuclear bodies in the nucleus. Surprisingly, these NPIMs were hierarchically assorted into four higher-order communities in a nucleomic graph, including genome and nucleolus communities. This combinatorial pipeline of 4C quantitative interactomics and PPI network modularization revealed 17 ethylene-specific module variants that participate in a broad range of nuclear events. The pipeline was able to capture both nuclear protein complexes and nuclear bodies, construct the topological architectures of PPI modules and module variants in the nucleome, and probably map the protein compositions of biomolecular condensates.
Collapse
Affiliation(s)
- Shuaijian Dai
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shichang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chen Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Fengchao Yu
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Wenhao Zhang
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haiteng Deng
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China
| | - Al Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Weichuan Yu
- The HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518057, China; Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Tingliang Wang
- Tsinghua-Peking Joint Centre for Life Sciences, Centre for Structural Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing 100084, China.
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China; The HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
40
|
Gromova T, Gehred ND, Vondriska TM. Single-cell transcriptomes in the heart: when every epigenome counts. Cardiovasc Res 2023; 119:64-78. [PMID: 35325060 PMCID: PMC10233279 DOI: 10.1093/cvr/cvac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
The response of an organ to stimuli emerges from the actions of individual cells. Recent cardiac single-cell RNA-sequencing studies of development, injury, and reprogramming have uncovered heterogeneous populations even among previously well-defined cell types, raising questions about what level of experimental resolution corresponds to disease-relevant, tissue-level phenotypes. In this review, we explore the biological meaning behind this cellular heterogeneity by undertaking an exhaustive analysis of single-cell transcriptomics in the heart (including a comprehensive, annotated compendium of studies published to date) and evaluating new models for the cardiac function that have emerged from these studies (including discussion and schematics that depict new hypotheses in the field). We evaluate the evidence to support the biological actions of newly identified cell populations and debate questions related to the role of cell-to-cell variability in development and disease. Finally, we present emerging epigenomic approaches that, when combined with single-cell RNA-sequencing, can resolve basic mechanisms of gene regulation and variability in cell phenotype.
Collapse
Affiliation(s)
- Tatiana Gromova
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Natalie D Gehred
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Medicine/Cardiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
41
|
Boeynaems S, Chong S, Gsponer J, Holt L, Milovanovic D, Mitrea DM, Mueller-Cajar O, Portz B, Reilly JF, Reinkemeier CD, Sabari BR, Sanulli S, Shorter J, Sontag E, Strader L, Stachowiak J, Weber SC, White M, Zhang H, Zweckstetter M, Elbaum-Garfinkle S, Kriwacki R. Phase Separation in Biology and Disease; Current Perspectives and Open Questions. J Mol Biol 2023; 435:167971. [PMID: 36690068 PMCID: PMC9970028 DOI: 10.1016/j.jmb.2023.167971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/22/2023]
Abstract
In the past almost 15 years, we witnessed the birth of a new scientific field focused on the existence, formation, biological functions, and disease associations of membraneless bodies in cells, now referred to as biomolecular condensates. Pioneering studies from several laboratories [reviewed in1-3] supported a model wherein biomolecular condensates associated with diverse biological processes form through the process of phase separation. These and other findings that followed have revolutionized our understanding of how biomolecules are organized in space and time within cells to perform myriad biological functions, including cell fate determination, signal transduction, endocytosis, regulation of gene expression and protein translation, and regulation of RNA metabolism. Further, condensates formed through aberrant phase transitions have been associated with numerous human diseases, prominently including neurodegeneration and cancer. While in some cases, rigorous evidence supports links between formation of biomolecular condensates through phase separation and biological functions, in many others such links are less robustly supported, which has led to rightful scrutiny of the generality of the roles of phase separation in biology and disease.4-7 During a week-long workshop in March 2022 at the Telluride Science Research Center (TSRC) in Telluride, Colorado, ∼25 scientists addressed key questions surrounding the biomolecular condensates field. Herein, we present insights gained through these discussions, addressing topics including, roles of condensates in diverse biological processes and systems, and normal and disease cell states, their applications to synthetic biology, and the potential for therapeutically targeting biomolecular condensates.
Collapse
Affiliation(s)
- Steven Boeynaems
- Department of Molecular and Human Genetics, Therapeutic Innovation Center (THINC), Center for Alzheimer’s and Neurodegenerative Diseases (CAND), Dan L Duncan Comprehensive Cancer Center (DLDCCC), Baylor College of Medicine, Houston, TX 77030, USA and Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Jörg Gsponer
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Liam Holt
- New York University School of Medicine, Institute for Systems Genetics, New York, NY 10016
| | - Drago Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | | | - Oliver Mueller-Cajar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | | | | | | | - Benjamin R. Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX
| | - Serena Sanulli
- Department of Genetics, Stanford University, Palo Alto, CA 94304
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Sontag
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| | - Lucia Strader
- Department of Biology, Duke University, Durham, NC 27708 USA
| | - Jeanne Stachowiak
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, USA
| | | | | | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany; Max Planck Institute for Multidisciplinary Sciences, Department of NMR-based Structural Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Shana Elbaum-Garfinkle
- Department of Biochemistry, The Graduate Center of the City University of New York, New York, NY and Structural Biology Initiative, Advanced Science Research Center, City University of New York, New York, NY
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee and Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, Tennessee
| |
Collapse
|
42
|
Kim S, Wysocka J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol Cell 2023; 83:373-392. [PMID: 36693380 PMCID: PMC9898153 DOI: 10.1016/j.molcel.2022.12.032] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/24/2023]
Abstract
Uncovering the cis-regulatory code that governs when and how much each gene is transcribed in a given genome and cellular state remains a central goal of biology. Here, we discuss major layers of regulation that influence how transcriptional outputs are encoded by DNA sequence and cellular context. We first discuss how transcription factors bind specific DNA sequences in a dosage-dependent and cooperative manner and then proceed to the cofactors that facilitate transcription factor function and mediate the activity of modular cis-regulatory elements such as enhancers, silencers, and promoters. We then consider the complex and poorly understood interplay of these diverse elements within regulatory landscapes and its relationships with chromatin states and nuclear organization. We propose that a mechanistically informed, quantitative model of transcriptional regulation that integrates these multiple regulatory layers will be the key to ultimately cracking the cis-regulatory code.
Collapse
Affiliation(s)
- Seungsoo Kim
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
43
|
Lyons H, Veettil RT, Pradhan P, Fornero C, De La Cruz N, Ito K, Eppert M, Roeder RG, Sabari BR. Functional partitioning of transcriptional regulators by patterned charge blocks. Cell 2023; 186:327-345.e28. [PMID: 36603581 PMCID: PMC9910284 DOI: 10.1016/j.cell.2022.12.013] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 12/07/2022] [Indexed: 01/05/2023]
Abstract
Components of transcriptional machinery are selectively partitioned into specific condensates, often mediated by protein disorder, yet we know little about how this specificity is achieved. Here, we show that condensates composed of the intrinsically disordered region (IDR) of MED1 selectively partition RNA polymerase II together with its positive allosteric regulators while excluding negative regulators. This selective compartmentalization is sufficient to activate transcription and is required for gene activation during a cell-state transition. The IDRs of partitioned proteins are necessary and sufficient for selective compartmentalization and require alternating blocks of charged amino acids. Disrupting this charge pattern prevents partitioning, whereas adding the pattern to proteins promotes partitioning with functional consequences for gene activation. IDRs with similar patterned charge blocks show similar partitioning and function. These findings demonstrate that disorder-mediated interactions can selectively compartmentalize specific functionally related proteins from a complex mixture of biomolecules, leading to regulation of a biochemical pathway.
Collapse
Affiliation(s)
- Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christy Fornero
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, the Rockefeller University, New York, NY 10065, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
44
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
45
|
Bhat P, Chow A, Emert B, Ettlin O, Quinodoz SA, Takei Y, Huang W, Blanco MR, Guttman M. 3D genome organization around nuclear speckles drives mRNA splicing efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522632. [PMID: 36711853 PMCID: PMC9881923 DOI: 10.1101/2023.01.04.522632] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The nucleus is highly organized such that factors involved in transcription and processing of distinct classes of RNA are organized within specific nuclear bodies. One such nuclear body is the nuclear speckle, which is defined by high concentrations of protein and non-coding RNA regulators of pre-mRNA splicing. What functional role, if any, speckles might play in the process of mRNA splicing remains unknown. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs, and higher co-transcriptional splicing levels relative to genes that are located farther from nuclear speckles. We show that directed recruitment of a pre-mRNA to nuclear speckles is sufficient to drive increased mRNA splicing levels. Finally, we show that gene organization around nuclear speckles is highly dynamic with differential localization between cell types corresponding to differences in Pol II occupancy. Together, our results integrate the longstanding observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a critical role for dynamic 3D spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.
Collapse
|
46
|
Zhu H, Narita M, Joseph JA, Krainer G, Arter WE, Olan I, Saar KL, Ermann N, Espinosa JR, Shen Y, Kuri MA, Qi R, Welsh TJ, Collepardo‐Guevara R, Narita M, Knowles TPJ. The Chromatin Regulator HMGA1a Undergoes Phase Separation in the Nucleus. Chembiochem 2023; 24:e202200450. [PMID: 36336658 PMCID: PMC10098602 DOI: 10.1002/cbic.202200450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/20/2022] [Indexed: 11/09/2022]
Abstract
The protein high mobility group A1 (HMGA1) is an important regulator of chromatin organization and function. However, the mechanisms by which it exerts its biological function are not fully understood. Here, we report that the HMGA isoform, HMGA1a, nucleates into foci that display liquid-like properties in the nucleus, and that the protein readily undergoes phase separation to form liquid condensates in vitro. By bringing together machine-leaning modelling, cellular and biophysical experiments and multiscale simulations, we demonstrate that phase separation of HMGA1a is promoted by protein-DNA interactions, and has the potential to be modulated by post-transcriptional effects such as phosphorylation. We further show that the intrinsically disordered C-terminal tail of HMGA1a significantly contributes to its phase separation through electrostatic interactions via AT hooks 2 and 3. Our work sheds light on HMGA1 phase separation as an emergent biophysical factor in regulating chromatin structure.
Collapse
Affiliation(s)
- Hongjia Zhu
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Masako Narita
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Jerelle A. Joseph
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Georg Krainer
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - William E. Arter
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- Transition Bio Ltd., Maxwell CentreJJ Thomson AvenueCambridgeUK
| | - Ioana Olan
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Kadi L. Saar
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- Transition Bio Ltd., Maxwell CentreJJ Thomson AvenueCambridgeUK
| | - Niklas Ermann
- Transition Bio Ltd., Maxwell CentreJJ Thomson AvenueCambridgeUK
| | - Jorge R. Espinosa
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeUK
| | - Yi Shen
- School of Chemical and Biomolecular EngineeringThe University of SydneySydneyAustralia
| | - Masami Ando Kuri
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Runzhang Qi
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Timothy J. Welsh
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Rosana Collepardo‐Guevara
- Department of GeneticsUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
| | - Masashi Narita
- Cancer Research UK Cambridge InstituteLi Ka Shing CentreUniversity of CambridgeCambridgeUK
| | - Tuomas P. J. Knowles
- Centre for Misfolding DiseasesYusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJJ Thomson AvenueCambridgeUK
| |
Collapse
|
47
|
Abstract
In animals, the sequences for controlling gene expression do not concentrate just at the transcription start site of genes, but are frequently thousands to millions of base pairs distal to it. The interaction of these sequences with one another and their transcription start sites is regulated by factors that shape the three-dimensional (3D) organization of the genome within the nucleus. Over the past decade, indirect tools exploiting high-throughput DNA sequencing have helped to map this 3D organization, have identified multiple key regulators of its structure and, in the process, have substantially reshaped our view of how 3D genome architecture regulates transcription. Now, new tools for high-throughput super-resolution imaging of chromatin have directly visualized the 3D chromatin organization, settling some debates left unresolved by earlier indirect methods, challenging some earlier models of regulatory specificity and creating hypotheses about the role of chromatin structure in transcriptional regulation.
Collapse
|
48
|
Beckinghausen M, Spakowitz AJ. Interplay of Polymer Structure, Solvent Ordering, and Charge Fluctuations in Polyelectrolyte Solution Thermodynamics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Michael Beckinghausen
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
| | - Andrew J. Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California94305, United States
- Department of Applied Physics, Stanford University, Stanford, California94305, United States
- Biophysics Program, Stanford University, Stanford, California94305, United States
| |
Collapse
|
49
|
Purshouse K, Friman ET, Boyle S, Dewari PS, Grant V, Hamdan A, Morrison GM, Brennan PM, Beentjes SV, Pollard SM, Bickmore WA. Oncogene expression from extrachromosomal DNA is driven by copy number amplification and does not require spatial clustering in glioblastoma stem cells. eLife 2022; 11:e80207. [PMID: 36476408 PMCID: PMC9728993 DOI: 10.7554/elife.80207] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/21/2022] [Indexed: 12/12/2022] Open
Abstract
Extrachromosomal DNA (ecDNA) are frequently observed in human cancers and are responsible for high levels of oncogene expression. In glioblastoma (GBM), ecDNA copy number correlates with poor prognosis. It is hypothesized that their copy number, size, and chromatin accessibility facilitate clustering of ecDNA and colocalization with transcriptional hubs, and that this underpins their elevated transcriptional activity. Here, we use super-resolution imaging and quantitative image analysis to evaluate GBM stem cells harbouring distinct ecDNA species (EGFR, CDK4, PDGFRA). We find no evidence that ecDNA routinely cluster with one another or closely interact with transcriptional hubs. Cells with EGFR-containing ecDNA have increased EGFR transcriptional output, but transcription per gene copy is similar in ecDNA compared to the endogenous chromosomal locus. These data suggest that it is the increased copy number of oncogene-harbouring ecDNA that primarily drives high levels of oncogene transcription, rather than specific interactions of ecDNA with each other or with high concentrations of the transcriptional machinery.
Collapse
Affiliation(s)
- Karin Purshouse
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
| | - Shelagh Boyle
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
| | - Pooran Singh Dewari
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Vivien Grant
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Alhafidz Hamdan
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Gillian M Morrison
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Paul M Brennan
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
- Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Sjoerd V Beentjes
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
- School of Mathematics, University of EdinburghEdinburghUnited Kingdom
| | - Steven M Pollard
- Centre for Regenerative Medicine and Cancer Research UK Edinburgh Centre, Institute for Regeneration and Repair, The University of EdinburghEdinburghUnited Kingdom
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, The University of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
50
|
Chromatin localization of nucleophosmin organizes ribosome biogenesis. Mol Cell 2022; 82:4443-4457.e9. [PMID: 36423630 PMCID: PMC9949351 DOI: 10.1016/j.molcel.2022.10.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 11/24/2022]
Abstract
Ribosome biogenesis takes place in the nucleolus, a nuclear membrane-less organelle. Although well studied, it remains unknown how nascent ribosomal subunits separate from the central chromatin compartment and move to the outer granular component, where maturation occurs. We find that the Schizosaccharomyces pombe nucleophosmin-like protein Fkbp39 localizes to rDNA sites encoding the 60S subunit rRNA, and this localization contributes to its specific association with nascent 60S subunits. Fkbp39 dissociates from chromatin to bind nascent 60S subunits, causing the latter to partition away from chromatin and from nascent 40S subunits through liquid-liquid phase separation. In vivo, Fkbp39 binding directs the translocation of nascent 60S subunits toward the nucleophosmin-rich granular component. This process increases the efficiency of 60S subunit assembly, facilitating the incorporation of 60S RNA domain III. Thus, chromatin localization determines the specificity of nucleophosmin in sorting nascent ribosomal subunits and coordinates their movement into specialized assembly compartments within the nucleolus.
Collapse
|