1
|
Lee R, Kim G, Black ER, Kim S. Co-activation of selective nicotinic acetylcholine receptor subtypes is required to reverse hippocampal network dysfunction, fear memory loss, and amyloid pathology in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.08.602576. [PMID: 39026693 PMCID: PMC11257460 DOI: 10.1101/2024.07.08.602576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with no known cause and cure. Research suggests that a reduction of GABAergic inhibitory interneurons' activity in the hippocampus by beta-amyloid peptide (Aβ) is a crucial trigger for amyloid pathology and cognitive impairment in AD via hyperexcitability. Therefore, enhancing hippocampal inhibition is thought to be protective against AD. However, hippocampal inhibitory cells are highly diverse, and these distinct interneuron subtypes differentially regulate hippocampal inhibitory circuits and cognitive processes. Moreover, Aβ unlikely affects all subtypes of inhibitory interneurons in the hippocampus equally. Hence, identifying the affected interneuron subtypes in AD to enhance hippocampal inhibition optimally is conceptually and practically challenging. We have previously found that Aβ selectively binds to two of the three major hippocampal nicotinic acetylcholine receptor (nAChR) subtypes, α7- and α4β2-nAChRs, but not α3β4-nAChRs, and inhibits these two receptors in cultured hippocampal inhibitory interneurons to decrease their activity, leading to hyperexcitation in excitatory neurons. We have also revealed that co-activation of α7- and α4β2-nAChRs is required to reverse the Aβ-induced adverse effects in hippocampal excitatory neurons. Here, we discover that α7- and α4β2-nAChRs predominantly control the nicotinic cholinergic signaling and neuronal activity in hippocampal parvalbumin-positive (PV+) and somatostatin-positive (SST+) inhibitory interneurons, respectively. Furthermore, we reveal that co-activation of these receptors is necessary to reverse hippocampal network dysfunction, amyloid pathology, and fear memory loss in the amyloid pathology model mice. This suggests that co-activation of PV+ and SST+ cells via stimulating α7- and α4β2-nAChRs together is a novel strategy for neuroprotection against AD.
Collapse
|
2
|
Edlund E, Domarecka E, Olze H, Szczepek A. A Scoping Review of Corticosterone-Induced Changes in Ionotropic Glutamate Receptor Levels and Localization in the Rodent Brain: Implications for the Auditory System. Brain Sci 2025; 15:110. [PMID: 40002443 PMCID: PMC11852854 DOI: 10.3390/brainsci15020110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The ionotropic glutamate receptor AMPA (AMPAR) mediates fast excitatory synaptic transmission and regulates synaptic strength in various parts of the CNS. Emotional challenges can affect these processes by influencing AMPAR levels and localization via stress hormones, resulting, e.g., in behavioral changes. AMPARs are essential for auditory processing, but their response to stress hormones in the central or peripheral auditory system remains poorly understood. Therefore, this scoping review examines the effects of corticosterone (CORT), a primary stress hormone in rodents, on AMPA receptor levels and localization in the rodent nervous system and considers potential implications for the auditory system. METHODS We systematically searched PubMed, Web of Science, and OVID EMBASE using MeSH terms related to AMPA receptors and corticosterone. Studies were screened based on predefined inclusion criteria, including original research published in English that focused on AMPA receptor subunits (e.g., GluR1-4, GluA1-4, Gria1-4). Of 288 articles screened, 17 met the criteria for final analysis. RESULTS No reports were found regarding CORT action in the auditory system. Three main experimental models used in the included research were identified: neuronal cultures, isolated tissue cultures, and animal models. Generally, short-term CORT exposure increases AMPAR surface localization and mobility in neuronal cultures, especially in the hippocampus and prefrontal cortex. However, results from animal models were inconsistent due to variations in experimental design and other factors. The isolated tissue study did not provide sufficient data for clear conclusions. CONCLUSIONS Variability in experimental models limits our ability to draw definitive conclusions about the effects of CORT on AMPARs across different regions of the nervous system. The differences in live animal studies highlight the need for standardized methods and reporting. Since AMPARs play a crucial role in auditory processing, CORT-induced changes in neuronal cultures may occur in the auditory system. Further research is needed to explore the specific responses of AMPAR subunits and how stress hormones may influence auditory disorders, which could help identify potential treatment strategies.
Collapse
Affiliation(s)
- Elsa Edlund
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.E.); (E.D.); (H.O.)
| | - Ewa Domarecka
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.E.); (E.D.); (H.O.)
| | - Heidi Olze
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.E.); (E.D.); (H.O.)
| | - Agnieszka Szczepek
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (E.E.); (E.D.); (H.O.)
- Faculty of Medicine and Health Sciences, University of Zielona Góra, 65-046 Zielona Góra, Poland
| |
Collapse
|
3
|
da Silva J, de Souza LO, Severo MPA, Rodrigues SLC, Molz P, Schonhofen P, Herlinger AL, Schröder N. Effects of the AMPAR Antagonist, Perampanel, on Cognitive Function in Rats Exposed to Neonatal Iron Overload. Mol Neurobiol 2024; 61:10083-10096. [PMID: 38696064 DOI: 10.1007/s12035-024-04180-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/12/2024] [Indexed: 11/24/2024]
Abstract
Iron accumulation has been associated with the pathogenesis of neurodegenerative diseases and memory decline. As previously described by our research group, iron overload in the neonatal period induces persistent memory deficits and increases oxidative stress and apoptotic markers. The neuronal insult caused by iron excess generates an energetic imbalance that can alter glutamate concentrations and thus trigger excitotoxicity. Drugs that block glutamatergic receptor eligibly mitigate neurotoxicity; among them is perampanel (PER), a reversible AMPA receptor (AMPAR) antagonist. In the present study, we sought to investigate the neuroprotective effects of PER in rats subjected to iron overload in the neonatal period. Recognition and aversive memory were evaluated, AMPAR subunit phosphorylation, as well as the relative expression of genes such as GRIA1, GRIA2, DLG4, and CAC, which code proteins involved in AMPAR anchoring. Male rats received vehicle or carbonyl iron (30 mg/kg) from the 12th to the 14th postnatal day and were treated with vehicle or PER (2 mg/kg) for 21 days in adulthood. The excess of iron caused recognition memory deficits and impaired emotional memory, and PER was able to improve the rodents' memory. Iron increased the phosphorylation of GLUA1 subunit, which was reversed by PER. Furthermore, iron overload increased the expression of the GRIA1 gene and decreased the expression of the DLG4 gene, demonstrating the influence of metal accumulation on the metabolism of AMPAR. These results suggest that iron can interfere with AMPAR functionality, through altered phosphorylation of its subunits, and the expression of genes that code for proteins critically involved in the assembly and anchoring of AMPAR. The blockade of AMPAR with PER is capable of partially reversing the cognitive deficits caused by iron overload.
Collapse
Affiliation(s)
- José da Silva
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Lariza Oliveira de Souza
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Maria Paula Arakaki Severo
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Sarah Luize Camargo Rodrigues
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patrícia Molz
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
| | - Patrícia Schonhofen
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasilia, Brazil
| | - Alice Laschuk Herlinger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande Do Sul, Porto Alegre, Brazil
- National Science and Technology Institute for Children's Cancer Biology and Pediatric Oncology-INCT BioOncoPed, Porto Alegre, Brazil
| | - Nadja Schröder
- Laboratory of Memory Dysfunctions, Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, Brazil.
- National Institute of Science and Technology for Translational Medicine (INCT-TM), Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brasilia, Brazil.
| |
Collapse
|
4
|
Aguado C, Badesso S, Martínez-Hernández J, Martín-Belmonte A, Alfaro-Ruiz R, Fernández M, Moreno-Martínez AE, Cuadrado-Tejedor M, García-Osta A, Luján R. Resilience to structural and molecular changes in excitatory synapses in the hippocampus contributes to cognitive function recovery in Tg2576 mice. Neural Regen Res 2024; 19:2068-2074. [PMID: 38227537 DOI: 10.4103/1673-5374.390963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/18/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00040/figure1/v/2024-01-16T170235Z/r/image-tiff Plaques of amyloid-β (Aβ) and neurofibrillary tangles are the main pathological characteristics of Alzheimer's disease (AD). However, some older adult people with AD pathological hallmarks can retain cognitive function. Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets. Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels, which may underlie healthy cognitive performance in aged AD animals. Utilizing the Morris Water Maze test, we selected resilient (asymptomatic) and cognitively impaired aged Tg2576 mice. While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups, western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction. To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice, we employed stereological and electron microscopic methods. Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls. Intriguingly, through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice, we uncovered differences in the subcellular localization of glutamate receptors. Specifically, the density of GluA1, GluA2/3, and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls. Notably, the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice. These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.
Collapse
Affiliation(s)
- Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Sara Badesso
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - José Martínez-Hernández
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Alejandro Martín-Belmonte
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Rocío Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Miriam Fernández
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Mar Cuadrado-Tejedor
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Ana García-Osta
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| |
Collapse
|
5
|
Peterson L, Nguyen J, Ghani N, Rodriguez-Echemendia P, Qiao H, Guwn SY, Man HY, Kantak KM. Molecular mechanisms underlying sex and treatment-dependent differences in an animal model of cue-exposure therapy for cocaine relapse prevention. Front Neurosci 2024; 18:1425447. [PMID: 39176383 PMCID: PMC11339646 DOI: 10.3389/fnins.2024.1425447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Environmental enrichment combined with the glycine transporter-1 inhibitor Org24598 (EE+ORG) during cocaine-cue extinction (EXT) inhibited reacquisition of 1.0 mg/kg cocaine self-administration in male but not female rats in a previous investigation. In this investigation, we determined if this treatment benefit in males required EXT training and ascertained the molecular basis for the observed sex difference in treatment efficacy. Nine groups of male rats trained to self-administer 1.0 mg/kg cocaine or receiving yoked-saline underwent EXT or NoEXT with or without EE and/or ORG. Next, they underwent reacquisition of cocaine self-administration or were sacrificed for molecular analysis of 9 protein targets indicative of neuroplasticity in four brain regions. Two groups of female rats trained to self-administer 1.0 mg/kg cocaine also underwent EXT with or without EE + ORG and were sacrificed for molecular analysis, as above. EE + ORG facilitated the rate of EXT learning in both sexes, and importantly, the therapeutic benefit of EE + ORG for inhibiting cocaine relapse required EXT training. Males were more sensitive than females to neuroplasticity-inducing effects of EE + ORG, which prevented reductions in total GluA1 and PSD95 proteins selectively in basolateral amygdala of male rats trained to self-administer cocaine and receiving EXT. Females were deficient in expression of multiple protein targets, especially after EE + ORG. These included total GluA1 and PSD95 proteins in basolateral amygdala, and total TrkB protein in basolateral amygdala, dorsal hippocampus, and ventromedial prefrontal cortex. Together, these results support the clinical view that sex-specific pharmacological and behavioral treatment approaches may be needed during cue exposure therapy to inhibit cocaine relapse.
Collapse
Affiliation(s)
- Lucy Peterson
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biology, Boston University, Boston, MA, United States
| | - Jonathan Nguyen
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| | - Naveed Ghani
- Department of Biology, Boston University, Boston, MA, United States
| | | | - Hui Qiao
- Department of Biology, Boston University, Boston, MA, United States
| | - Sun Young Guwn
- Department of Biology, Boston University, Boston, MA, United States
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA, United States
| | - Kathleen M. Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
6
|
Roh SH, Mendez-Vazquez H, Sathler MF, Doolittle MJ, Zaytseva A, Brown H, Sainsbury M, Kim S. Prenatal exposure to valproic acid reduces synaptic δ-catenin levels and disrupts ultrasonic vocalization in neonates. Neuropharmacology 2024; 253:109963. [PMID: 38657945 PMCID: PMC11127754 DOI: 10.1016/j.neuropharm.2024.109963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Valproic acid (VPA) is an effective and commonly prescribed drug for epilepsy and bipolar disorder. However, children born from mothers treated with VPA during pregnancy exhibit an increased incidence of autism spectrum disorder (ASD). Although VPA may impair brain development at the cellular level, the mechanism of VPA-induced ASD has not been completely addressed. A previous study has found that VPA treatment strongly reduces δ-catenin mRNA levels in cultured human neurons. δ-catenin is important for the control of glutamatergic synapses and is strongly associated with ASD. VPA inhibits dendritic morphogenesis in developing neurons, an effect that is also found in neurons lacking δ-catenin expression. We thus hypothesize that prenatal exposure to VPA significantly reduces δ-catenin levels in the brain, which impairs glutamatergic synapses to cause ASD. Here, we found that prenatal exposure to VPA markedly reduced δ-catenin levels in the brain of mouse pups. VPA treatment also impaired dendritic branching in developing mouse cortical neurons, which was partially reversed by elevating δ-catenin expression. Prenatal VPA exposure significantly reduced synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor levels and postsynaptic density 95 (PSD95) in the brain of mouse pups, indicating dysfunctions in glutamatergic synaptic transmission. VPA exposure also significantly altered ultrasonic vocalization (USV) in newly born pups when they were isolated from their nest. Moreover, VPA-exposed pups show impaired hypothalamic response to isolation, which is required to produce animals' USVs following isolation from the nest. Therefore, these results suggest that VPA-induced ASD pathology can be mediated by the loss of δ-catenin functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Morgan Sainsbury
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, USA; Molecular, Cellular and Integrative Neurosciences Program, USA.
| |
Collapse
|
7
|
Kusumi A, Tsunoyama TA, Suzuki KGN, Fujiwara TK, Aladag A. Transient, nano-scale, liquid-like molecular assemblies coming of age. Curr Opin Cell Biol 2024; 89:102394. [PMID: 38963953 DOI: 10.1016/j.ceb.2024.102394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
This review examines the dynamic mechanisms underlying cellular signaling, communication, and adhesion via transient, nano-scale, liquid-like molecular assemblies on the plasma membrane (PM). Traditional views posit that stable, solid-like molecular complexes perform these functions. However, advanced imaging reveals that many signaling and scaffolding proteins only briefly reside in these molecular complexes and that micron-scale protein assemblies on the PM, including cell adhesion structures and synapses, are likely made of archipelagoes of nanoliquid protein islands. Borrowing the concept of liquid-liquid phase separation to form micron-scale biocondensates, we propose that these nano-scale oligomers and assemblies are enabled by multiple weak but specific molecular interactions often involving intrinsically disordered regions. The signals from individual nanoliquid signaling complexes would occur as pulses. Single-molecule imaging emerges as a crucial technique for characterizing these transient nanoliquid assemblies on the PM, suggesting a shift toward a model where the fluidity of interactions underpins signal regulation and integration.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan.
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Amine Aladag
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
8
|
Stetak AL, Grenal T, Lenninger Z, Knight KM, Doser RL, Hoerndli FJ. A Necessary Role for PKC-2 and TPA-1 in Olfactory Memory and Synaptic AMPAR Trafficking in Caenorhabditis elegans. J Neurosci 2024; 44:e1120232024. [PMID: 38238075 PMCID: PMC10919255 DOI: 10.1523/jneurosci.1120-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024] Open
Abstract
Protein kinase C (PKC) functions are essential for synaptic plasticity, learning, and memory. However, the roles of specific members of the PKC family in synaptic function, learning, and memory are poorly understood. Here, we investigated the role of individual PKC homologs for synaptic plasticity in Caenorhabditis elegans and found a differential role for pkc-2 and tpa-1, but not pkc-1 and pkc-3 in associative olfactory learning and memory. More specifically we show that PKC-2 is essential for associative learning and TPA-1 for short-term associative memory (STAM). Using endogenous labeling and cell-specific rescues, we show that TPA-1 and PKC-2 are required in AVA for their functions. Previous studies demonstrated that olfactory learning and memory in C. elegans are tied to proper synaptic content and trafficking of AMPA-type ionotropic glutamate receptor homolog GLR-1 in the AVA command interneurons. Therefore, we quantified synaptic content, transport, and delivery of GLR-1 in AVA and showed that loss of pkc-2 and tpa-1 leads to decreased transport and delivery but only a subtle decrease in GLR-1 levels at synapses. AVA-specific expression of both PKC-2 and TPA-1 rescued these defects. Finally, genetic epistasis showed that PKC-2 and TPA-1 likely act in the same pathway to control GLR-1 transport and delivery, while regulating different aspects of olfactory learning and STAM. Thus, our data tie together cell-specific functions of 2 PKCs to neuronal and behavioral outcomes in C. elegans, enabling comparative approaches to understand the evolutionarily conserved role of PKC in synaptic plasticity, learning, and memory.
Collapse
Affiliation(s)
- Attila L Stetak
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
- University Psychiatric Clinics, University of Basel, 4002 Basel, Switzerland
| | - Thomas Grenal
- Division of Molecular Neuroscience, Department of Biomedicine, University of Basel, 4055 Basel, Switzerland
| | - Zephyr Lenninger
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Kaz M Knight
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Rachel L Doser
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
- Health and Exercise Sciences, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Departments of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
9
|
Yang J, Ma RN, Dong JM, Hu SQ, Liu Y, Yan JZ. Phosphorylation of 4.1N by CaMKII Regulates the Trafficking of GluA1-containing AMPA Receptors During Long-term Potentiation in Acute Rat Hippocampal Brain Slices. Neuroscience 2024; 536:131-142. [PMID: 37993087 DOI: 10.1016/j.neuroscience.2023.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
OBJECTIVE GluA1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPARs) inserted into postsynaptic membranes are key to the process of long-term potentiation (LTP). Some evidence has shown that 4.1N plays a critical role in the membrane trafficking of AMPARs. However, the underlying mechanism behind this is still unclear. We investigated the role of 4.1N-mediated membrane trafficking of AMPARs during theta-burst stimulation long-term potentiation (TBS-LTP), to illustrate the molecular mechanism behind LTP. METHODS LTP was induced by TBS in rat hippocampal CA1 neuron. Tat-GluA1 (MPR), which disrupts the association of 4.1N-GluA1, and autocamtide-2-inhibitory peptide, myristoylated (Myr-AIP), a CaMKII antagonist, were used to explore the role of 4.1N in the AMPARs trafficking during TBS-induced LTP. Immunoprecipitation (IP) and immunoblotting (IB)were used to detect protein expression, phosphorylation, and the interaction of p-CaMKII-4.1N-GluA1. RESULTS We found that Myr-AIP attenuated increases of p-CaMKII (T286), p-GluA1 (ser831), and 4.1N phosphorylation after TBS-LTP, and decreased the association of p-CaMKII-4.1N-GluA1, along with the expression of GluA1, at postsynaptic densities during TBS-LTP. We also designed interfering peptides to disrupt the interaction between 4.1N and GluA1, which showed that Tat-GluA1 (MPR) or Myr-AIP inhibited TBS-LTP and attenuated increases of GluA1 at postsynaptic sites, while Tat-GluA1 (MPR) or Myr-AIP had no effects on miniature excitatory postsynaptic currents (mEPSCs) in non-stimulated hippocampal CA1 neurons. CONCLUSION Active CaMKII enhanced the phosphorylation of 4.1N and facilitated the association of p-CaMKII with 4.1N-GluA1, which in turn resulted in GluA1 trafficking during TBS-LTP. The association of 4.1N-GluA1 is required for LTP, but not for basal synaptic transmission.
Collapse
Affiliation(s)
- Jun Yang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Rui-Ning Ma
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Jia-Min Dong
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Shu-Qun Hu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Yong Liu
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China
| | - Jing-Zhi Yan
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Jiangsu 221004, China.
| |
Collapse
|
10
|
Li LF, Gao Y, Xu Y, Su DJ, Yang Q, Liu A, Wang SY, Tang XL, Zhao J, Luo L, Yan T, Wu YM, Liu SB, Zhao MG, Yang L. Praeruptorin C alleviates cognitive impairment in type 2 diabetic mice through restoring PI3K/AKT/GSK3β pathway. Phytother Res 2023; 37:4838-4850. [PMID: 37458182 DOI: 10.1002/ptr.7949] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 10/18/2023]
Abstract
Diabetic encephalopathy is a common consequence of diabetes mellitus that causes cognitive dysfunction and neuropsychiatric disorders. Praeruptorin C (Pra-C) from the traditional Chinese medicinal herb Peucedanum praeruptorum Dunn. is a potential antioxidant and neuroprotective agent. This study was conducted to investigate the molecular mechanisms underlying the effect of Pra-C on diabetic cognitive impairment. A novel object recognition test and the Morris water maze test were performed to assess the behavioral performance of mice. Electrophysiological recordings were made to monitor synaptic plasticity in the hippocampus. A protein-protein interaction network of putative Pra-C targets was constructed, and molecular docking simulations were performed to predict the potential mechanisms of the action of Pra-C. Protein expression levels were detected by western blotting. Pra-C administration significantly lowered body weight and fasting blood glucose levels and alleviated learning and memory deficits in type 2 diabetic mice. Network pharmacology and molecular docking results suggested that Pra-C affects the PI3K/AKT/GSK3β signaling pathway. Western blot analysis confirmed significant increases in phosphorylated PI3K, AKT, and GSK3β levels in vivo and in vitro upon Pra-C administration. Pra-C alleviated cognitive impairment in type 2 diabetic mice by activating PI3K/AKT/GSK3β pathway.
Collapse
Affiliation(s)
- Long-Fei Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Ying Gao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yuan Xu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Dan-Jie Su
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Sai-Ying Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xiu-Ling Tang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jun Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Li Luo
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Tao Yan
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| |
Collapse
|
11
|
Nagao M, Hatae A, Mine K, Tsutsumi S, Omori H, Hirata M, Arimatsu M, Taniguchi C, Watanabe T, Kubota K, Katsurabayashi S, Iwasaki K. The Effects of Ninjinyoeito on Impaired Spatial Memory and Prefrontal Cortical Synaptic Plasticity through α-Amino-3-hydroxy-5-4-isoxazole Propionic Acid Receptor Subunit in a Rat Model with Cerebral Ischemia and β-Amyloid Injection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6035589. [PMID: 37808130 PMCID: PMC10560115 DOI: 10.1155/2023/6035589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 08/05/2023] [Accepted: 09/02/2023] [Indexed: 10/10/2023]
Abstract
Ninjinyoeito (NYT), a traditional Japanese medicine, is effective for improving physical strength and treating fatigue and anorexia. Recently, a clinical report revealed that NYT ameliorates cognitive dysfunction in Alzheimer's disease (AD) patients, although the mechanisms remain unclear. AD is a neurodegenerative disorder accompanied by a progressive deficit in memory. Current therapeutic agents are largely ineffective in treating cognitive dysfunction in AD patients. In this study, we investigated the effects of NYT on spatial memory impairment in a rat model of dementia. Rats were prepared with transient cerebral ischemia and intraventricular injection of β-amyloid1-42 for 7 days (CI + Aβ). NYT was orally administered for 7 days after cerebral ischemia. We evaluated spatial memory using the Morris water maze and investigated the expression of α-amino-3-hydroxy-5-4-isoxazole propionic acid receptor subunits, the phosphorylation level of glutamate receptor A (GluA)1 at serine sites S831 and S845, and the Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the hippocampus and prefrontal cortex of CI + Aβ rats. In the CI + Aβ rats, NYT treatment shortened the extended time to reach the platform. However, NYT did not restore the decrease in the hippocampal GluA1, GluA2, or CaMKII expression but increased prefrontal cortical phosphorylation levels of S845-GluA1 and CaMKII. Therefore, NYT may alleviate spatial memory impairment by promoting glutamatergic transmission involved in the phosphorylation of S845-GluA1 and CaMKII in the prefrontal cortex of CI + Aβ rats. Our results suggest that NYT is a valuable treatment for AD patients.
Collapse
Affiliation(s)
- Masaki Nagao
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Akinobu Hatae
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuma Mine
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Soichiro Tsutsumi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Hiroya Omori
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Marika Hirata
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Maaya Arimatsu
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Chise Taniguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Takuya Watanabe
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kaori Kubota
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Shutaro Katsurabayashi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| | - Katsunori Iwasaki
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka 814-0180, Japan
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
12
|
Zaytseva A, Bouckova E, Wiles MJ, Wustrau MH, Schmidt IG, Mendez-Vazquez H, Khatri L, Kim S. Ketamine's rapid antidepressant effects are mediated by Ca 2+-permeable AMPA receptors. eLife 2023; 12:e86022. [PMID: 37358072 PMCID: PMC10319435 DOI: 10.7554/elife.86022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023] Open
Abstract
Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca2+-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.
Collapse
Affiliation(s)
- Anastasiya Zaytseva
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Evelina Bouckova
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - McKennon J Wiles
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | - Madison H Wustrau
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| | - Isabella G Schmidt
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
| | | | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of MedicineNew YorkUnited States
| | - Seonil Kim
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State UniversityFort CollinsUnited States
- Department of Biomedical Sciences, Colorado State University,Fort CollinsUnited States
| |
Collapse
|
13
|
Gao J, Zhao L, Li D, Li Y, Wang H. Enriched environment ameliorates postsurgery sleep deprivation-induced cognitive impairments through the AMPA receptor GluA1 subunit. Brain Behav 2023; 13:e2992. [PMID: 37095708 PMCID: PMC10275526 DOI: 10.1002/brb3.2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND As a common postsurgery complication, sleep deprivation (SD) can severely deteriorate the cognitive function of patients. Enriched environment (EE) exposure can increase children's cognitive ability, and whether EE exposure could be utilized to alleviate postsurgery SD-induced cognitive impairments is investigated in this study. METHODS Open inguinal hernia repair surgery without skin/muscle retraction was performed on Sprague-Dawley male rats (9-week-old), which were further exposed to EE or standard environment (SE). Elevated plus maze (EPM), novel object recognition (NOR), object location memory (OLM), and Morris Water Maze assays were utilized to monitor cognitive functions. Cresyl violet acetate staining in the Cornusammonis 3 (CA3) region of rat hippocampus was used to detect neuron loss. The relative expression of brain-derived neurotrophic factor (BDNF) and synaptic glutamate receptor 1 (GluA1) subunits in the hippocampus were detected with quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blots, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. RESULTS EE restored normal levels of time spent in the center, time in distal open arms, open/total arms ratio, and total distance traveled in the EPM test; EE restored normal levels of recognition index in the NOR and OLM test; EE restored normal levels of time in the target quadrant, escape latencies, and platform site crossings in the Morris Water Maze test. EE exposure decreased neuron loss in the CA3 region of the hippocampus with increased BDNF and phosphorylated (p)-GluA1 (ser845) expression. CONCLUSION EE ameliorates postsurgery SD-induced cognitive impairments, which may be mediated by the axis of BDNF/GluA1. EE exposure could be considered as an aid in promoting cognitive function in postsurgery SD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
- Department of AnesthesiologyTianjin Haihe HospitalTianjinChina
| | - Lina Zhao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Dedong Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Yun Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Haiyun Wang
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| |
Collapse
|
14
|
The role of post-translational modifications in synaptic AMPA receptor activity. Biochem Soc Trans 2023; 51:315-330. [PMID: 36629507 DOI: 10.1042/bst20220827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023]
Abstract
AMPA-type receptors for the neurotransmitter glutamate are very dynamic entities, and changes in their synaptic abundance underlie different forms of synaptic plasticity, including long-term synaptic potentiation (LTP), long-term depression (LTD) and homeostatic scaling. The different AMPA receptor subunits (GluA1-GluA4) share a common modular structure and membrane topology, and their intracellular C-terminus tail is responsible for the interaction with intracellular proteins important in receptor trafficking. The latter sequence differs between subunits and contains most sites for post-translational modifications of the receptors, including phosphorylation, O-GlcNAcylation, ubiquitination, acetylation, palmitoylation and nitrosylation, which affect differentially the various subunits. Considering that each single subunit may undergo modifications in multiple sites, and that AMPA receptors may be formed by the assembly of different subunits, this creates multiple layers of regulation of the receptors with impact in synaptic function and plasticity. This review discusses the diversity of mechanisms involved in the post-translational modification of AMPA receptor subunits, and their impact on the subcellular distribution and synaptic activity of the receptors.
Collapse
|
15
|
Mani I, Singh V. An overview of receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:1-18. [PMID: 36631188 DOI: 10.1016/bs.pmbts.2022.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Endocytosis is a cellular process which mediates receptor internalization, nutrient uptake, and the regulation of cell signaling. Microorganisms (many bacteria and viruses) and toxins also use the same process and enter the cells. Generally, endocytosis is considered in the three forms such as phagocytosis (cell eating), pinocytosis (cell drinking), and highly selective receptor-mediated endocytosis (clathrin-dependent and independent). Several endocytic routes exist in an analogous, achieving diverse functions. Most studies on endocytosis have used transformed cells in culture. To visualize the receptor internalization, trafficking, and signaling in subcellular organelles, a green fluorescent protein-tagged receptor has been utilized. It also helps to visualize the endocytosis effects in live-cell imaging. Confocal laser microscopy increases our understanding of receptor endocytosis and signaling. Site-directed mutagenesis studies demonstrated that many short-sequence motifs of the cytoplasmic domain of receptors significantly play a vital role in receptor internalization, subcellular trafficking, and signaling. However, other factors also regulate receptor internalization through clathrin-coated vesicles. Receptor endocytosis can occur through clathrin-dependent and clathrin-independent pathways. This chapter briefly discusses the internalization, trafficking, and signaling of various receptors in normal conditions. In addition, it also highlights the malfunction of the receptor in disease conditions.
Collapse
Affiliation(s)
- Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
16
|
Mendez-Vazquez H, Roach RL, Nip K, Sathler MF, Garver T, Danzman RA, Moseley MC, Roberts JP, Koch ON, Steger AA, Lee R, Arikkath J, Kim S. The autism-associated loss of δ-catenin functions disrupts social behaviors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.12.523372. [PMID: 36711484 PMCID: PMC9882145 DOI: 10.1101/2023.01.12.523372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
δ-catenin is expressed in excitatory synapses and functions as an anchor for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic density. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism spectrum disorder (ASD) patients and induces loss of δ-catenin functions at excitatory synapses, which is presumed to underlie ASD pathogenesis in humans. However, how the G34S mutation causes loss of δ-catenin functions to induce ASD remains unclear. Here, using neuroblastoma cells, we discover that the G34S mutation generates an additional phosphorylation site for glycogen synthase kinase 3β (GSK3β). This promotes δ-catenin degradation and causes the reduction of δ-catenin levels, which likely contributes to the loss of δ-catenin functions. Synaptic δ-catenin and GluA2 levels in the cortex are significantly decreased in mice harboring the δ-catenin G34S mutation. The G34S mutation increases glutamatergic activity in cortical excitatory neurons while it is decreased in inhibitory interneurons, indicating changes in cellular excitation and inhibition. δ-catenin G34S mutant mice also exhibit social dysfunction, a common feature of ASD. Most importantly, inhibition of GSK3β activity reverses the G34S-induced loss of δ-catenin function effects in cells and mice. Finally, using δ-catenin knockout mice, we confirm that δ-catenin is required for GSK3β inhibition-induced restoration of normal social behaviors in δ-catenin G34S mutant animals. Taken together, we reveal that the loss of δ-catenin functions arising from the ASD-associated G34S mutation induces social dysfunction via alterations in glutamatergic activity and that GSK3β inhibition can reverse δ-catenin G34S-induced synaptic and behavioral deficits. Significance Statement δ-catenin is important for the localization and function of glutamatergic AMPA receptors at synapses in many brain regions. The glycine 34 to serine (G34S) mutation in the δ-catenin gene is found in autism patients and results in the loss of δ-catenin functions. δ-catenin expression is also closely linked to other autism-risk genes involved in synaptic structure and function, further implying that it is important for the autism pathophysiology. Importantly, social dysfunction is a key characteristic of autism. Nonetheless, the links between δ-catenin functions and social behaviors are largely unknown. The significance of the current research is thus predicated on filling this gap by discovering the molecular, cellular, and synaptic underpinnings of the role of δ-catenin in social behaviors.
Collapse
|
17
|
Li JB, Hu XY, Chen MW, Xiong CH, Zhao N, Ge YH, Wang H, Gao XL, Xu NJ, Zhao LX, Yu ZH, Chen HZ, Qiu Y. p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer's disease. Transl Neurodegener 2023; 12:1. [PMID: 36624510 PMCID: PMC9827685 DOI: 10.1186/s40035-022-00334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Ribosomal protein S6 kinase 1 (S6K1) is a serine-threonine kinase that has two main isoforms: p70S6K (70-kDa isoform) and p85S6K (85-kDa isoform). p70S6K, with its upstream mammalian target of rapamycin (mTOR), has been shown to be involved in learning and memory and participate in the pathophysiology of Alzheimer's disease (AD). However, the function of p85S6K has long been neglected due to its high similarity to p70S6k. The role of p85S6K in learning and memory is still largely unknown. METHODS We fractionated the postsynaptic densities to illustrate the differential distribution of p85S6K and p70S6K. Coimmunoprecipitation was performed to unveil interactions between p85S6K and the GluA1 subunit of AMPA receptor. The roles of p85S6K in synaptic targeting of GluA1 and learning and memory were evaluated by specific knockdown or overexpression of p85S6K followed by a broad range of methodologies including immunofluorescence, Western blot, in situ proximity ligation assay, morphological staining and behavioral examination. Further, the expression level of p85S6K was measured in brains from AD patients and AD model mice. RESULTS p85S6K, but not p70S6K, was enriched in the postsynaptic densities. Moreover, knockdown of p85S6K resulted in defective spatial and recognition memory. In addition, p85S6K could interact with the GluA1 subunit of AMPA receptor through synapse-associated protein 97 and A-kinase anchoring protein 79/150. Mechanistic studies demonstrated that p85S6K could directly phosphorylate GluA1 at Ser845 and increase the amount of GluA1 in synapses, thus sustaining synaptic function and spine densities. Moreover, p85S6K was found to be specifically decreased in the synaptosomal compartment in the brains of AD patients and AD mice. Overexpression of p85S6K ameliorated the synaptic deficits and cognitive impairment in transgenic AD model mice. CONCLUSIONS These results strongly imply a significant role for p85S6K in maintaining synaptic and cognitive function by interacting with GluA1. The findings provide an insight into the rational targeting of p85S6K as a therapeutic potential for AD.
Collapse
Affiliation(s)
- Jia-Bing Li
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Yu Hu
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Mu-Wen Chen
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Cai-Hong Xiong
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Na Zhao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Yan-Hui Ge
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hao Wang
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xiao-Ling Gao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Nan-Jie Xu
- grid.16821.3c0000 0004 0368 8293Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Lan-Xue Zhao
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Zhi-Hua Yu
- grid.16821.3c0000 0004 0368 8293Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Hong-Zhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Sun J, Jia K, Sun M, Zhang X, Chen J, Zhu G, Li C, Lian B, Du Z, Sun H, Sun L. The GluA1-Related BDNF Pathway Is Involved in PTSD-Induced Cognitive Flexibility Deficit in Attentional Set-Shifting Tasks of Rats. J Clin Med 2022; 11:jcm11226824. [PMID: 36431303 PMCID: PMC9694369 DOI: 10.3390/jcm11226824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Post-Traumatic Stress Disorder (PTSD) is a severe psychological disorder characterized by intrusive thoughts, heightened arousal, avoidance, and flashbacks. Cognitive flexibility dysfunction has been linked with the emergence of PTSD, including response inhibition deficits and impaired attentional switching, which results in difficulties for PTSD patients when disengaging attention from trauma-related stimuli. However, the molecular mechanisms of cognitive flexibility deficits remain unclear. Methods: The animals were exposed to a single prolonged stress and electric foot shock (SPS&S) procedure to induce PTSD-like features. Once the model was established, the changes in cognitive flexibility were assessed using an attentional set-shifting task (ASST) in order to investigate the effects of traumatic stress on cognitive flexibility. Additionally, the molecular alterations of certain proteins (AMPA Receptor 1 (GluA1), brain-derived neurotrophic factor (BDNF), and Postsynaptic density protein 95 (PSD95) in the medial prefrontal cortex (mPFC) were measured using Western blot and immunofluorescence. Results: The SPS&S model exhibited PTSD-like behaviors and induced reversal learning and set-shifting ability deficit in the ASST. These behavioral changes are accompanied by decreased GluA1, BDNF, and PSD95 protein expression in the mPFC. Further analysis showed a correlative relationship between the behavioral and molecular alterations. Conclusions: The SPS&S model induced cognitive flexibility deficits, and the potential underlying mechanism could be mediated by GluA1-related BDNF signaling in the mPFC.
Collapse
Affiliation(s)
- Jiaming Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Keli Jia
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Mingtao Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Xianqiang Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Jinhong Chen
- College of Extended Education, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Guohui Zhu
- Mental Health Centre of Weifang City, Weifang 261071, China
| | - Changjiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Zhongde Du
- Cerebral Center, Sunshine Union Hospital, 9000# Yingqian Street, Weifang 261205, China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| |
Collapse
|
19
|
Postsynaptic Proteins at Excitatory Synapses in the Brain—Relationship with Depressive Disorders. Int J Mol Sci 2022; 23:ijms231911423. [PMID: 36232725 PMCID: PMC9569598 DOI: 10.3390/ijms231911423] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Depressive disorders (DDs) are an increasingly common health problem that affects all age groups. DDs pathogenesis is multifactorial. However, it was proven that stress is one of the most important environmental factors contributing to the development of these conditions. In recent years, there has been growing interest in the role of the glutamatergic system in the context of pharmacotherapy of DDs. Thus, it has become increasingly important to explore the functioning of excitatory synapses in pathogenesis and pharmacological treatment of psychiatric disorders (including DDs). This knowledge may lead to the description of new mechanisms of depression and indicate new potential targets for the pharmacotherapy of illness. An excitatory synapse is a highly complex and very dynamic structure, containing a vast number of proteins. This review aimed to discuss in detail the role of the key postsynaptic proteins (e.g., NMDAR, AMPAR, mGluR5, PSD-95, Homer, NOS etc.) in the excitatory synapse and to systematize the knowledge about changes that occur in the clinical course of depression and after antidepressant treatment. In addition, a discussion on the potential use of ligands and/or modulators of postsynaptic proteins at the excitatory synapse has been presented.
Collapse
|
20
|
Kumari A, Rahaman A, Zeng XA, Farooq MA, Huang Y, Yao R, Ali M, Ishrat R, Ali R. Temporal Cortex Microarray Analysis Revealed Impaired Ribosomal Biogenesis and Hyperactivity of the Glutamatergic System: An Early Signature of Asymptomatic Alzheimer's Disease. Front Neurosci 2022; 16:966877. [PMID: 35958988 PMCID: PMC9359077 DOI: 10.3389/fnins.2022.966877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenic aging is regarded as asymptomatic AD when there is no cognitive deficit except for neuropathology consistent with Alzheimer's disease. These individuals are highly susceptible to developing AD. Braak and Braak's theory specific to tau pathology illustrates that the brain's temporal cortex region is an initiation site for early AD progression. So, the hub gene analysis of this region may reveal early altered biological cascades that may be helpful to alleviate AD in an early stage. Meanwhile, cognitive processing also drags its attention because cognitive impairment is the ultimate result of AD. Therefore, this study aimed to explore changes in gene expression of aged control, asymptomatic AD (AsymAD), and symptomatic AD (symAD) in the temporal cortex region. We used microarray data sets to identify differentially expressed genes (DEGs) with the help of the R programming interface. Further, we constructed the protein-protein interaction (PPI) network by performing the STRING plugin in Cytoscape and determined the hub genes via the CytoHubba plugin. Furthermore, we conducted Gene Ontology (GO) enrichment analysis via Bioconductor's cluster profile package. Resultant, the AsymAD transcriptome revealed the early-stage changes of glutamatergic hyperexcitability. Whereas the connectivity of major hub genes in this network indicates a shift from initially reduced rRNA biosynthesis in the AsymAD group to impaired protein synthesis in the symAD group. Both share the phenomenon of breaking tight junctions and others. In conclusion, this study offers new understandings of the early biological vicissitudes that occur in the brain before the manifestation of symAD and gives new promising therapeutic targets for early AD intervention.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- Abdul Rahaman
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- *Correspondence: Xin-An Zeng
| | - Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Yanyan Huang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Romana Ishrat
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
21
|
Khan S. Endoplasmic Reticulum in Metaplasticity: From Information Processing to Synaptic Proteostasis. Mol Neurobiol 2022; 59:5630-5655. [PMID: 35739409 DOI: 10.1007/s12035-022-02916-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/05/2022] [Indexed: 11/29/2022]
Abstract
The ER (endoplasmic reticulum) is a Ca2+ reservoir and the unique protein-synthesizing machinery which is distributed throughout the neuron and composed of multiple different structural domains. One such domain is called EMC (endoplasmic reticulum membrane protein complex), pleiotropic nature in cellular functions. The ER/EMC position inside the neurons unmasks its contribution to synaptic plasticity via regulating various cellular processes from protein synthesis to Ca2+ signaling. Since presynaptic Ca2+ channels and postsynaptic ionotropic receptors are organized into the nanodomains, thus ER can be a crucial player in establishing TMNCs (transsynaptic molecular nanocolumns) to shape efficient neural communications. This review hypothesized that ER is not only involved in stress-mediated neurodegeneration but also axon regrowth, remyelination, neurotransmitter switching, information processing, and regulation of pre- and post-synaptic functions. Thus ER might not only be a protein-synthesizing and quality control machinery but also orchestrates plasticity of plasticity (metaplasticity) within the neuron to execute higher-order brain functions and neural repair.
Collapse
Affiliation(s)
- Shumsuzzaman Khan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
22
|
Sathler MF, Doolittle MJ, Cockrell JA, Nadalin IR, Hofmann F, VandeWoude S, Kim S. HIV and FIV glycoproteins increase cellular tau pathology via cGMP-dependent kinase II activation. J Cell Sci 2022; 135:jcs259764. [PMID: 35638570 PMCID: PMC9270957 DOI: 10.1242/jcs.259764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
As the development of combination antiretroviral therapy (cART) against human immunodeficiency virus (HIV) drastically improves the lifespan of individuals with HIV, many are now entering the prime age when Alzheimer's disease (AD)-like symptoms begin to manifest. It has been shown that hyperphosphorylated tau, a known AD pathological characteristic, is prematurely increased in the brains of HIV-infected individuals as early as in their 30s and that its levels increase with age. This suggests that HIV infection might lead to accelerated AD phenotypes. However, whether HIV infection causes AD to develop more quickly in the brain is not yet fully determined. Interestingly, we have previously revealed that the viral glycoproteins HIV gp120 and feline immunodeficiency virus (FIV) gp95 induce neuronal hyperexcitation via cGMP-dependent kinase II (cGKII; also known as PRKG2) activation in cultured hippocampal neurons. Here, we use cultured mouse cortical neurons to demonstrate that the presence of HIV gp120 and FIV gp95 are sufficient to increase cellular tau pathology, including intracellular tau hyperphosphorylation and tau release to the extracellular space. We further reveal that viral glycoprotein-induced cellular tau pathology requires cGKII activation. Taken together, HIV infection likely accelerates AD-related tau pathology via cGKII activation.
Collapse
Affiliation(s)
- Matheus F. Sathler
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael J. Doolittle
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| | - James A. Cockrell
- Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO 80523, USA
| | - India R. Nadalin
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
| | - Franz Hofmann
- Technical University of Munich, Arcisstraße 21, D-80333 Munich, Germany
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | - Seonil Kim
- Department of Biomedical Sciences, 1617 Campus Delivery, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neurosciences Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
23
|
Hikima T, Witkovsky P, Khatri L, Chao MV, Rice ME. Synaptotagmins 1 and 7 Play Complementary Roles in Somatodendritic Dopamine Release. J Neurosci 2022; 42:3919-3930. [PMID: 35361702 PMCID: PMC9097777 DOI: 10.1523/jneurosci.2416-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/18/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.
Collapse
Affiliation(s)
- Takuya Hikima
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Paul Witkovsky
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
| | - Latika Khatri
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
| | - Moses V Chao
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York 10016
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| | - Margaret E Rice
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York 10016
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, New York 10016
| |
Collapse
|
24
|
Doser RL, Hoerndli FJ. Decreased Reactive Oxygen Species Signaling Alters Glutamate Receptor Transport to Synapses in C. elegans AVA Neurons. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000528. [PMID: 35622512 PMCID: PMC9007496 DOI: 10.17912/micropub.biology.000528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/02/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) are chemically reactive molecules normally produced during cellular respiration. High ROS levels negatively impact forms of synaptic plasticity that rely on changes in the number of ionotropic glutamate receptors (iGluRs) at synapses. More recently, we have shown that physiological increases in ROS reduce iGluR transport to synapses by acting on activity-dependent calcium signaling. Here, we show that decreasing mitochondria-derived ROS decrease iGluR transport albeit in a calcium-independent manner. These data demonstrate differential regulatory mechanisms by elevated or diminished ROS levels which further support a physiological signaling role for ROS in regulating iGluR transport to synapses.
Collapse
Affiliation(s)
- Rachel L Doser
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
,
Correspondence to: Frederic J Hoerndli (
)
| |
Collapse
|