1
|
Zhang L, Teng PC, Cavassani KA, Wang J, Grasso C, Watson J, Chen Z, Tu KH, Salumbides B, Rohena-Rivera K, Gevorkian L, Kim M, You S, Di Vizio D, Sandler HM, Daskivich T, Bhowmick NA, Freeman MR, Tseng HR, Chen JF, Posadas EM. Emerin Dysregulation Drives the Very-Small-Nuclear Phenotype and Lineage Plasticity That Associate with a Clinically Aggressive Subtype of Prostate Cancer. Clin Cancer Res 2025; 31:2034-2045. [PMID: 40063516 PMCID: PMC12079098 DOI: 10.1158/1078-0432.ccr-24-3660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/23/2025] [Accepted: 03/06/2025] [Indexed: 05/16/2025]
Abstract
PURPOSE Circulating tumor cells (CTC) with a very-small-nuclear phenotype (vsnCTC) in prostate cancer are characterized by nuclei smaller than 8.5 μm. Our previous studies established an association between vsnCTCs and visceral metastasis. Reduction of emerin (EMD), a nuclear envelope protein, contributes to prostate cancer metastasis and nuclear shape instability. In this study, we investigated the correlation between EMD expression and the vsnCTC phenotype and its clinical impact. EXPERIMENTAL DESIGN We analyzed CTCs from 93 patients with metastatic castration-resistant prostate cancer and categorized them as either vsnCTC+ or vsnCTC- and compared overall survival and progression-free survival. C4-2B, 22Rv1, and DU145 with EMD knockdown were developed and characterized by nuclear size and gene expression by gene set enrichment analysis. Abiraterone- and enzalutamide-resistant C4-2B cells were also characterized by nuclear size and EMD expression. RESULTS Patients who were vsnCTC+ had significantly worse overall survival and progression-free survival compared with patients who were vsnCTC-. EMD expression was markedly reduced in CTCs from patients who were vsnCTC+ compared with patients who were vsnCTC-, with a significant positive correlation between EMD expression and CTC nuclear size. EMD knockdown in prostate cancer cells resulted in smaller nuclei, enhanced invasion, and the upregulation of genes associated with lineage plasticity. Additionally, abiraterone- and enzalutamide-resistant C4-2B cells had smaller nuclei and lower EMD expression. vsnCTC+ cells also showed enhanced platinum sensitivity. CONCLUSIONS The presence of vsnCTCs represents a novel hallmark of an aggressive subtype of metastatic castration-resistant prostate cancer closely linked to EMD loss and lineage plasticity. These findings highlight the importance of EMD dysregulation in the vsn phenotype, disease progression, and therapeutic resistance in patients with prostate cancer.
Collapse
MESH Headings
- Humans
- Male
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/mortality
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Neoplastic Cells, Circulating/pathology
- Neoplastic Cells, Circulating/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phenotype
- Cell Line, Tumor
- Gene Expression Regulation, Neoplastic
- Cell Nucleus/pathology
- Cell Nucleus/genetics
- Aged
- Middle Aged
- Biomarkers, Tumor/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
- Nitriles
- Benzamides
- Prognosis
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Cell Lineage/genetics
- Drug Resistance, Neoplasm/genetics
Collapse
Affiliation(s)
- Le Zhang
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Pai-Chi Teng
- Division of Urology, Department of Surgery, Cardinal Tien Hospital, Fu Jen Catholic University, Taipei, Taiwan
| | - Karen A. Cavassani
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jasmine Wang
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Catherine Grasso
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Joshua Watson
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zijing Chen
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kai-Han Tu
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brenda Salumbides
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Krizia Rohena-Rivera
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Lilit Gevorkian
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Minhyung Kim
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sungyong You
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Dolores Di Vizio
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Howard M. Sandler
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Timothy Daskivich
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Neil A. Bhowmick
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael R. Freeman
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, California NanoSystems Institute, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, California
| | - Jie-Fu Chen
- Department of Pathology, Memorial-Sloan Kettering Cancer Center, New York, Ney York
| | - Edwin M. Posadas
- Center for Uro-Oncology Research Excellence, Cedars-Sinai Cancer, Los Angeles, California
- Division of Medical Oncology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, California
- Cancer Therapeutics Program, Cedars-Sinai Cancer, Los Angeles, California
| |
Collapse
|
2
|
Kar N, Caruso AP, Prokopiou N, Abrenica A, Logue JS. The activation of INF2 by Piezo1/Ca 2+ is required for mesenchymal-to-amoeboid transition in confined environments. Curr Biol 2025; 35:1791-1804.e5. [PMID: 40120583 PMCID: PMC12014357 DOI: 10.1016/j.cub.2025.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/09/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025]
Abstract
To invade tissues, cells may undergo a mesenchymal-to-amoeboid transition (MAT). However, the mechanisms regulating this transition are poorly defined. In melanoma cells, we demonstrate that intracellular [Ca2+] increases with the degree of confinement in a Piezo1-dependent fashion. Moreover, Piezo1/Ca2+ is found to drive amoeboid and not mesenchymal migration in confined environments. Consistent with a model in which Piezo1 senses tension at the plasma membrane, the percentage of cells using amoeboid migration is further increased in undulating microchannels. Surprisingly, amoeboid migration was not promoted by myosin light-chain kinase (MLCK), which is sensitive to intracellular [Ca2+]. Instead, we report that Piezo1/Ca2+ activates inverted formin-2 (INF2) to induce widespread actin cytoskeletal remodeling. Strikingly, the activation of INF2 promotes de-adhesion, which in turn facilitates migration across micropatterned surfaces. Thus, we reveal a novel Piezo1/Ca2+/INF2 signaling cascade that regulates MAT, enabling cancer cells to adapt their migration mode in response to varying mechanochemical environments.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Alexa P Caruso
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Nicos Prokopiou
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Alleah Abrenica
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Jeremy S Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
3
|
Robertson TF, Schrope J, Zwick Z, Rindy J, Horn A, Hou Y, Huttenlocher A. Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration. Development 2025; 152:dev204351. [PMID: 40114648 PMCID: PMC12070063 DOI: 10.1242/dev.204351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Amoeboid cells such as leukocytes can enter and migrate in diverse tissues, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to determine whether cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with F-actin-rich, leading-edge pseudopods, matching how they migrate in vitro. T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of F-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro, and we found that the stratified keratinocyte layers of the epidermis also impose planar-like confinement on leukocytes in vivo. Collectively, our data indicate that immune cells adapt their migration strategy to navigate different tissue geometries in vivo.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Jon Schrope
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Zoe Zwick
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Julie Rindy
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Adam Horn
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Yiran Hou
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI 53792, USA
| |
Collapse
|
4
|
Paganelli F, Poli A, Truocchio S, Martelli AM, Palumbo C, Lattanzi G, Chiarini F. At the nucleus of cancer: how the nuclear envelope controls tumor progression. MedComm (Beijing) 2025; 6:e70073. [PMID: 39866838 PMCID: PMC11758262 DOI: 10.1002/mco2.70073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025] Open
Abstract
Historically considered downstream effects of tumorigenesis-arising from changes in DNA content or chromatin organization-nuclear alterations have long been seen as mere prognostic markers within a genome-centric model of cancer. However, recent findings have placed the nuclear envelope (NE) at the forefront of tumor progression, highlighting its active role in mediating cellular responses to mechanical forces. Despite significant progress, the precise interplay between NE components and cancer progression remains under debate. In this review, we provide a comprehensive and up-to-date overview of how changes in NE composition affect nuclear mechanics and facilitate malignant transformation, grounded in the latest molecular and functional studies. We also review recent research that uses advanced technologies, including artificial intelligence, to predict malignancy risk and treatment outcomes by analyzing nuclear morphology. Finally, we discuss how progress in understanding nuclear mechanics has paved the way for mechanotherapy-a promising cancer treatment approach that exploits the mechanical differences between cancerous and healthy cells. Shifting the perspective on NE alterations from mere diagnostic markers to potential therapeutic targets, this review calls for further investigation into the evolving role of the NE in cancer, highlighting the potential for innovative strategies to transform conventional cancer therapies.
Collapse
Affiliation(s)
- Francesca Paganelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alessandro Poli
- IFOM ETS ‐ The AIRC Institute of Molecular OncologyMilanItaly
| | - Serena Truocchio
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesAlma Mater StudiorumUniversity of BolognaBolognaItaly
| | - Carla Palumbo
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi Luca Cavalli‐Sforza”Unit of BolognaBolognaItaly
- IRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Francesca Chiarini
- Department of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| |
Collapse
|
5
|
Amiri S, Bos I, Reyssat E, Sykes C. The nuclear lamin network passively responds to both active or passive cell movement through confinements. SOFT MATTER 2025; 21:893-902. [PMID: 39801443 DOI: 10.1039/d4sm01137f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Physical models of cell motility rely mostly on cytoskeletal dynamical assembly. However, when cells move through the complex 3D environment of living tissues, they have to squeeze their nucleus that is stiffer than the rest of the cell. The lamin network, organised as a shell right underneath the nuclear membrane, contributes to the nuclear integrity and stiffness. Yet, its response during squeezed cell motility has never been fully characterised. As a result, up to now, the interpretations on the lamin response mechanism are mainly speculative. Here, we quantitatively map the lamin A/C distribution in both a microfluidic migration device and a microfluidic aspiration device. In the first case, the cell is actively involved in translocating the nucleus through the constriction, while in the second case, the cell behaves as a passive object that is pushed through the constriction by an external pressure. Using a quantitative description of the lamin shell response based on mass conservation arguments applied on the fluorescence signal of lamin, we show that in both cases of migration and aspiration, the response of the lamin network is passive. In this way, our results not only further elucidate the lamin response mechanism, but also allow to characterise that this deformation is passive even when the cell is actively migrating, thus paving the way to further investigate which active nuclear responses may occur when cells migrate in confinement.
Collapse
Affiliation(s)
- Sirine Amiri
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France.
| | - Inge Bos
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France.
| | - Etienne Reyssat
- CNRS, ESPCI-Paris, Université PSL, Sorbonne Université and Université Paris Cité, Paris, France
| | - Cécile Sykes
- Laboratoire de Physique de l'École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris Cité, F-75005 Paris, France.
- Institut Curie, Paris, France
| |
Collapse
|
6
|
Cera MR, Bastianello G, Purushothaman D, Andronache A, Ascione F, Robusto M, Fagà G, Pasi M, Meroni G, Li Q, Choudhary R, Varasi M, Foiani M, Mercurio C. A multiparametric screen uncovers FDA-approved small molecules that potentiate the nuclear mechano-dysfunctions in ATR-defective cells. Sci Rep 2024; 14:30786. [PMID: 39730498 DOI: 10.1038/s41598-024-80837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/21/2024] [Indexed: 12/29/2024] Open
Abstract
Targeting nuclear mechanics is emerging as a promising therapeutic strategy for sensitizing cancer cells to immunotherapy. Inhibition of the mechano-sensory kinase ATR leads to mechanical vulnerability of cancer cells, causing nuclear envelope softness and collapse and activation of the cGAS-STING-mediated innate immune response. Finding novel compounds that interfere with the non-canonical role of ATR in controlling nuclear mechanics presents an intriguing therapeutic opportunity. We carried out a multiparametric high-content screen to identify small molecules that affect nuclear envelope shape and to uncover novel players that could either ameliorate or further compromise the nuclear mechanical abnormalities of ATR-defective cells. The screen was performed in HeLa cells genetically depleted for ATR. Candidate hits were also tested in combination with the chemical inhibition of ATR by AZD6738, and their efficacy was further validated in the triple-negative breast cancer cell lines BT549 and HCC1937. We show that those compounds enhancing the abnormal nuclear shape of ATR-defective cells also synergize with AZD6738 to boost the expression of interferon-stimulated genes, highlighting the power of multiparametric screens to identify novel combined therapeutic interventions targeting nuclear mechanics for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Giulia Bastianello
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Divya Purushothaman
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, India
| | | | - Flora Ascione
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Michela Robusto
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Giovanni Fagà
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Human Technopole, Milan, Italy
| | - Maurizio Pasi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Fondazione I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Giuseppe Meroni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Recordati S.P.A, Milan, Italy
| | - Qingsen Li
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ramveer Choudhary
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Mario Varasi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Marco Foiani
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
- Istituto di Genetica Molecolare, CNR, Pavia, Italy.
- Cancer Science Institute, National University of Singapore, Singapore, Singapore.
| | - Ciro Mercurio
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy.
| |
Collapse
|
7
|
Petrini S, Bagnato G, Piccione M, D’Oria V, Apollonio V, Cappa M, Castiglioni C, Santorelli FM, Rizza T, Carrozzo R, Bertini ES, Peruzzi B. Imaging-Based Molecular Interaction Between Src and Lamin A/C Mechanosensitive Proteins in the Nucleus of Laminopathic Cells. Int J Mol Sci 2024; 25:13365. [PMID: 39769130 PMCID: PMC11678420 DOI: 10.3390/ijms252413365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed light on the nuclear partners cooperating with altered lamins, we focused on Src tyrosine kinase, known to phosphorylate proteins of the nuclear lamina. Here, we demonstrated a tight relationship between lamin A/C and Src in skin fibroblasts from two laminopathic patients, assessed by advanced imaging-based microscopy techniques. With confocal laser scanning and Stimulated Emission Depletion (STED) microscopy, a statistically significant higher co-distribution between the two proteins was observed in patients' fibroblasts. Furthermore, the time-domain fluorescence lifetime imaging microscopy, combined with Förster resonance energy transfer detection, demonstrated a decreased lifetime value of Src (as donor fluorophore) in the presence of lamin A/C (as acceptor dye) in double-stained fibroblast nuclei in both healthy cells and patients' cells, thereby indicating a molecular interaction that resulted significantly higher in laminopathic cells. All these results demonstrate a molecular interaction between Src and lamin A/C in healthy fibroblasts and their aberrant interaction in laminopathic nuclei, thus creating the possibilities of new diagnostic and therapeutic approaches for patients.
Collapse
Affiliation(s)
- Stefania Petrini
- Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.P.); (V.D.); (V.A.)
| | - Giulia Bagnato
- Bone Pathophysiology Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
- DAHFMO–Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Michela Piccione
- Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.P.); (V.D.); (V.A.)
| | - Valentina D’Oria
- Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.P.); (V.D.); (V.A.)
| | - Valentina Apollonio
- Microscopy Core Facility, Research Center, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (S.P.); (M.P.); (V.D.); (V.A.)
| | - Marco Cappa
- Research Unit for Innovative Therapies in Endocrinopathies, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Claudia Castiglioni
- Department of Neurology, Clínica Meds and National Rehabilitation Institute Pedro Aguirre Cerda, Santiago 8460000, Chile;
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, Fondazione Stella Maris, IRCCS, 56128 Pisa, Italy;
| | - Teresa Rizza
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (T.R.); (R.C.)
| | - Rosalba Carrozzo
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy; (T.R.); (R.C.)
| | - Enrico Silvio Bertini
- Research Unit of Muscular and Neurodegenerative Disorders, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Barbara Peruzzi
- Bone Pathophysiology Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
- Istituto di Istologia ed Embriologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
8
|
Keith WC, Hemmati F, Vaghasiya RS, Amiri F, Mistriotis P. Differential Effects of Confinement-Induced ROS Accumulation on Highly Motile Cancerous and Non-Cancerous Cells. AIChE J 2024; 70:e18598. [PMID: 40099227 PMCID: PMC11913314 DOI: 10.1002/aic.18598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/20/2024] [Indexed: 03/19/2025]
Abstract
In vivo, migrating cells often encounter microenvironments that impose spatial constraints, leading to cell and nuclear deformation. As confinement-induced DNA damage has been linked to the accumulation of reactive oxygen species (ROS), we sought to investigate the impact of oxidative stress on cell behavior within confined spaces. Using microchannel devices that enable control of the degree and duration of cell confinement, we demonstrate that confined migration increases ROS levels in both HT-1080 fibrosarcoma cells and human dermal fibroblasts. Treatment with the antioxidant N-Acetyl-L-cysteine (NAC) counteracts confinement-induced ROS accumulation, suppressing p53 activation and supporting cell survival in both cell lines. This intervention preferentially reduces dorsal perinuclear actin fibers in confined cancer cells. Loss of these fibers is associated with reduced nuclear rupture frequency and increased confined migration. Collectively, this work provides insights into the differential effects of ROS on cancerous and non-cancerous cells and suggests that antioxidants may support tumor progression.
Collapse
Affiliation(s)
| | - Farnaz Hemmati
- Department of Chemical Engineering, Auburn University, Auburn AL, 36849, USA
| | | | - Farshad Amiri
- Department of Chemical Engineering, Auburn University, Auburn AL, 36849, USA
| | | |
Collapse
|
9
|
Wang Y, Chen Z, Yang G, Yuan G. Unveiling the roles of LEMD proteins in cellular processes. Life Sci 2024; 357:123116. [PMID: 39374771 DOI: 10.1016/j.lfs.2024.123116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
Proteins localized in the inner nuclear membrane (INM) engage in various fundamental cellular processes via their interactions with outer nuclear membrane (ONM) proteins and nuclear lamina. LAP2-emerin-MAN1 domain (LEMD) family proteins, predominantly positioned in the INM, participate in the maintenance of INM functions, including the reconstruction of the nuclear envelope during mitosis, mechanotransduction, and gene transcriptional modulation. Malfunction of LEMD proteins leads to severe tissue-restricted diseases, which may manifest as fatal deformities and defects. In this review, we summarize the significant roles of LEMD proteins in cellular processes, explains the mechanisms of LEMD protein-related diseases, and puts forward questions in less-explored areas like details in tissue-restricted phenotypes. It intends to sort out previous works about LEMD proteins and pave way for future researchers who might discover deeper mechanisms of and better treatment strategies for LEMD protein-related diseases.
Collapse
Affiliation(s)
- Yiyun Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
10
|
Caruso AP, Logue JS. The biophysics of cell motility through mechanochemically challenging environments. Curr Opin Cell Biol 2024; 90:102404. [PMID: 39053178 PMCID: PMC11392632 DOI: 10.1016/j.ceb.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Challenging mechanochemical environments (i.e., with varied mechanical and adhesive properties) are now known to induce a wide range of adaptive phenomena in motile cells. For instance, confinement and low adhesion may trigger a phenotypic transition to fast amoeboid (leader bleb-based) migration. The molecular mechanisms that underly these phenomena are beginning to be understood. Due to its size, the mechanical properties of the nucleus have been shown to limit and facilitate cell migration. Additionally, the activity of various transient receptor potential (TRP) channels is now known to be integral to cell migration in response to a multitude of biophysical stimuli. How cells integrate signals from the nucleus and plasma membrane, however, is unclear. The development of therapeutics that suppress cancer or enhance immune cell migration for immuno-oncology applications, etc., will require additional work to completely understand the molecular mechanisms that enable cells to navigate mechanochemically challenging environments.
Collapse
Affiliation(s)
- Alexa P Caruso
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Jeremy S Logue
- Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208, USA.
| |
Collapse
|
11
|
Mistriotis P, Wisniewski EO, Si BR, Kalab P, Konstantopoulos K. Coordinated in confined migration: crosstalk between the nucleus and ion channel-mediated mechanosensation. Trends Cell Biol 2024; 34:809-825. [PMID: 38290913 PMCID: PMC11284253 DOI: 10.1016/j.tcb.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Cell surface and intracellular mechanosensors enable cells to perceive different geometric, topographical, and physical cues. Mechanosensitive ion channels (MICs) localized at the cell surface and on the nuclear envelope (NE) are among the first to sense and transduce these signals. Beyond compartmentalizing the genome of the cell and its transcription, the nucleus also serves as a mechanical gauge of different physical and topographical features of the tissue microenvironment. In this review, we delve into the intricate mechanisms by which the nucleus and different ion channels regulate cell migration in confinement. We review evidence suggesting an interplay between macromolecular nuclear-cytoplasmic transport (NCT) and ionic transport across the cell membrane during confined migration. We also discuss the roles of the nucleus and ion channel-mediated mechanosensation, whether acting independently or in tandem, in orchestrating migratory mechanoresponses. Understanding nuclear and ion channel sensing, and their crosstalk, is critical to advancing our knowledge of cell migration in health and disease.
Collapse
Affiliation(s)
| | - Emily O Wisniewski
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Bishwa R Si
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Petr Kalab
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, The Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Popęda M, Kowalski K, Wenta T, Beznoussenko GV, Rychłowski M, Mironov A, Lavagnino Z, Barozzi S, Richert J, Bertolio R, Myszczyński K, Szade J, Bieńkowski M, Miszewski K, Matuszewski M, Żaczek AJ, Braga L, Del Sal G, Bednarz-Knoll N, Maiuri P, Nastały P. Emerin mislocalization during chromatin bridge resolution can drive prostate cancer cell invasiveness in a collagen-rich microenvironment. Exp Mol Med 2024; 56:2016-2032. [PMID: 39218980 PMCID: PMC11446916 DOI: 10.1038/s12276-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Micronuclei (MN) can form through many mechanisms, including the breakage of aberrant cytokinetic chromatin bridges. The frequent observation of MN in tumors suggests that they might not merely be passive elements but could instead play active roles in tumor progression. Here, we propose a mechanism through which the presence of micronuclei could induce specific phenotypic and functional changes in cells and increase the invasive potential of cancer cells. Through the integration of diverse in vitro imaging and molecular techniques supported by clinical samples from patients with prostate cancer (PCa) defined as high-risk by the D'Amico classification, we demonstrate that the resolution of chromosome bridges can result in the accumulation of Emerin and the formation of Emerin-rich MN. These structures are negative for Lamin A/C and positive for the Lamin-B receptor and Sec61β. MN can act as a protein sinks and result in the pauperization of Emerin from the nuclear envelope. The Emerin mislocalization phenotype is associated with a molecular signature that is correlated with a poor prognosis in PCa patients and is enriched in metastatic samples. Emerin mislocalization corresponds with increases in the migratory and invasive potential of tumor cells, especially in a collagen-rich microenvironment. Our study demonstrates that the mislocalization of Emerin to MN results in increased cell invasiveness, thereby worsening patient prognosis.
Collapse
Affiliation(s)
- Marta Popęda
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kamil Kowalski
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Zeno Lavagnino
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Julia Richert
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rebecca Bertolio
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kevin Miszewski
- Department of Urology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna J Żaczek
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Giannino Del Sal
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Natalia Bednarz-Knoll
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paulina Nastały
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
13
|
Hansen E, Rolling C, Wang M, Holaska JM. Emerin deficiency drives MCF7 cells to an invasive phenotype. Sci Rep 2024; 14:19998. [PMID: 39198511 PMCID: PMC11358522 DOI: 10.1038/s41598-024-70752-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
During metastasis, cancer cells traverse the vasculature by squeezing through very small gaps in the endothelium. Thus, nuclei in metastatic cancer cells must become more malleable to move through these gaps. Our lab showed invasive breast cancer cells have 50% less emerin protein resulting in smaller, misshapen nuclei, and higher metastasis rates than non-cancerous controls. Thus, emerin deficiency was predicted to cause increased nuclear compliance, cell migration, and metastasis. We tested this hypothesis by downregulating emerin in noninvasive MCF7 cells and found emerin knockdown causes smaller, dysmorphic nuclei, resulting in increased impeded cell migration. Emerin reduction in invasive breast cancer cells showed similar results. Supporting the clinical relevance of emerin reduction in cancer progression, our analysis of 192 breast cancer patient samples showed emerin expression inversely correlates with cancer invasiveness. We conclude emerin loss is an important driver of invasive transformation and has utility as a biomarker for tumor progression.
Collapse
Affiliation(s)
- Emily Hansen
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, MEB 534, 401 South Broadway, Camden, NJ, 08103, USA
- Molecular and Cell Biology and Neuroscience Program, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, 08084, USA
| | - Christal Rolling
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, MEB 534, 401 South Broadway, Camden, NJ, 08103, USA
- Molecular and Cell Biology and Neuroscience Program, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, 08084, USA
| | - Matthew Wang
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, MEB 534, 401 South Broadway, Camden, NJ, 08103, USA
- Rowan-Virtua School of Osteopathic Medicine, Stratford, NJ, 08084, USA
| | - James M Holaska
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, MEB 534, 401 South Broadway, Camden, NJ, 08103, USA.
- Molecular and Cell Biology and Neuroscience Program, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ, 08084, USA.
| |
Collapse
|
14
|
Robertson TF, Schrope J, Zwick Z, Rindy JK, Horn A, Huttenlocher A. Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607647. [PMID: 39211200 PMCID: PMC11360923 DOI: 10.1101/2024.08.14.607647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amoeboid cells like leukocytes can enter and migrate within virtually every tissue of the body, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to ask if cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with f-actin-rich leading-edge pseudopods, matching how they migrate in vitro . T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of f-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro , and we correspondingly found the stratified keratinocyte layers of the epidermis impose planar-like confinement on leukocytes in vivo . By imaging the same cell type across the body, our data collectively indicates that cells adapt their migration strategy to navigate different tissue geometries in vivo .
Collapse
|
15
|
Hansen E, Rolling C, Wang M, Holaska JM. Emerin deficiency drives MCF7 cells to an invasive phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581379. [PMID: 38712242 PMCID: PMC11071294 DOI: 10.1101/2024.02.21.581379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
During metastasis, cancer cells traverse the vasculature by squeezing through very small gaps in the endothelium. Thus, nuclei in metastatic cancer cells must become more malleable to move through these gaps. Our lab showed invasive breast cancer cells have 50% less emerin protein resulting in smaller, misshapen nuclei, and higher metastasis rates than non-cancerous controls. Thus, emerin deficiency was predicted to cause increased nuclear compliance, cell migration, and metastasis. We tested this hypothesis by downregulating emerin in noninvasive MCF7 cells and found emerin knockdown causes smaller, dysmorphic nuclei, resulting in increased impeded cell migration. Emerin reduction in invasive breast cancer cells showed similar results. Supporting the clinical relevance of emerin reduction in cancer progression, our analysis of 192 breast cancer patient samples showed emerin expression inversely correlates with cancer invasiveness. We conclude emerin loss is an important driver of invasive transformation and has utility as a biomarker for tumor progression.
Collapse
Affiliation(s)
- Emily Hansen
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ
- Molecular and Cell Biology and Neuroscience Program, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ
| | - Christal Rolling
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ
- Molecular and Cell Biology and Neuroscience Program, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ
| | - Matthew Wang
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ
- Rowan-Virtua School of Osteopathic Medicine
| | - James M. Holaska
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ
- Molecular and Cell Biology and Neuroscience Program, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Stratford, NJ
| |
Collapse
|
16
|
Yang T, Wang L, Ma H, Li K, Wang Y, Tang W, Wang Z, An M, Gao X, Xu L, Guo Y, Guo J, Liu Y, Wang H, Liu Y, Zhang Q. Role of Emerin in regulating fibroblast differentiation and migration at the substrate of stiffness coupled topology. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1387-1400. [PMID: 38978507 PMCID: PMC11532208 DOI: 10.3724/abbs.2024094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 07/10/2024] Open
Abstract
In hypertrophic scars, the differentiation and migration of fibroblasts are influenced by the extracellular matrix microenvironment, which includes factors such as stiffness, restraint, and tensile force. These mechanical stresses incite alterations in cell behavior, accompanied by cytoskeletal protein reorganization. However, the role of nucleo-skeletal proteins in this context remains underexplored. In this study, we use a polyacrylamide hydrogel (PAA) to simulate the mechanical stress experienced by cells in scar tissue and investigate the impact of Emerin on cell behavior. We utilize atomic force microscopy (AFM) and RNA interference technology to analyze cell differentiation, migration, and stiffness. Our findings reveal that rigid substrates and cellular restriction elevate Emerin expression and diminish differentiation. Conversely, reducing Emerin expression leads to attenuated cell differentiation, where stiffness and constraining factors exert no notable influence. Furthermore, a softening of cells and an enhanced migration rate are also markedly observed. These observations indicate that variations in nuclear skeletal proteins, prompted by diverse matrix microenvironments, play a pivotal role in the pathogenesis of hypertrophic scars (HSs). This research offers novel insights and a reference point for understanding scar fibrosis formation mechanisms and preventing fibrosis.
Collapse
Affiliation(s)
- Tiantian Yang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Li Wang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Haiyang Ma
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Kailun Li
- Trauma CenterTrauma OrthopaedicsZhouKou Orthopaedic HospitalZhoukou466000China
| | - Yajing Wang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Wenjie Tang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Zichen Wang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Meiwen An
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiang Gao
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Ludan Xu
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Yunyun Guo
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Jiqiang Guo
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
- Shanxi Bethune Hospitalthe Third Hospital of Shanxi Medical UniversityTaiyuan030053China
| | - Yong Liu
- Dermatology DepartmentShanxi Bethune HospitalShanxi Academy of Medical SciencesTaiyuan030032China
| | - Hugen Wang
- Orthopaedics departmentthe First People’s Hospital of JinzhongJinzhong030600China
| | - Yang Liu
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
- Department of Nuclear Medicinethe First Hospital of Shanxi Medical UniversityTaiyuan030012China
| | - Quanyou Zhang
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
- Department of OrthopaedicsShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
17
|
Akinpelu A, Akinsipe T, Avila LA, Arnold RD, Mistriotis P. The impact of tumor microenvironment: unraveling the role of physical cues in breast cancer progression. Cancer Metastasis Rev 2024; 43:823-844. [PMID: 38238542 PMCID: PMC11156564 DOI: 10.1007/s10555-024-10166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
Metastasis accounts for the vast majority of breast cancer-related fatalities. Although the contribution of genetic and epigenetic modifications to breast cancer progression has been widely acknowledged, emerging evidence underscores the pivotal role of physical stimuli in driving breast cancer metastasis. In this review, we summarize the changes in the mechanics of the breast cancer microenvironment and describe the various forces that impact migrating and circulating tumor cells throughout the metastatic process. We also discuss the mechanosensing and mechanotransducing molecules responsible for promoting the malignant phenotype in breast cancer cells. Gaining a comprehensive understanding of the mechanobiology of breast cancer carries substantial potential to propel progress in prognosis, diagnosis, and patient treatment.
Collapse
Affiliation(s)
- Ayuba Akinpelu
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Tosin Akinsipe
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - L Adriana Avila
- Department of Biological Sciences, College of Science and Mathematics, Auburn University, Auburn, AL, 36849, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Panagiotis Mistriotis
- Department of Chemical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
18
|
Kar N, Caruso AP, Prokopiou N, Logue JS. The activation of INF2 by Piezo1/Ca 2+ is required for mesenchymal to amoeboid transition in confined environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546346. [PMID: 37745412 PMCID: PMC10515767 DOI: 10.1101/2023.06.23.546346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
To invade heterogenous tissues, transformed cells may undergo a mesenchymal to amoeboid transition (MAT). However, the molecular mechanisms regulating this transition are poorly defined. In invasive melanoma cells, we demonstrate that intracellular [Ca2+] increases with the degree of confinement in a Piezo1 dependent fashion. Moreover, Piezo1/Ca2+ is found to drive amoeboid and not mesenchymal migration in confined environments. Consistent with a model in which Piezo1 senses tension at the plasma membrane, the percentage of cells using amoeboid migration is further increased in undulating microchannels. Surprisingly, amoeboid migration was not promoted by myosin light chain kinase (MLCK), which is sensitive to intracellular [Ca2+]. Instead, we report that Piezo1/Ca2+ activates inverted formin-2 (INF2) to induce widespread actin cytoskeletal remodeling. Strikingly, the activation of INF2 is found to promote de-adhesion, which in turn facilitates MAT. Using micropatterned surfaces, we demonstrate that cells require INF2 to effectively migrate in environments with challenging mechanochemical properties.
Collapse
Affiliation(s)
- Neelakshi Kar
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Alexa P. Caruso
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Nicos Prokopiou
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| | - Jeremy S. Logue
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Ave, Albany, NY 12208
| |
Collapse
|
19
|
Jin Q, Pandey D, Thompson CB, Lewis S, Sung HW, Nguyen TD, Kuo S, Wilson KL, Gracias DH, Romer LH. Acute downregulation of emerin alters actomyosin cytoskeleton connectivity and function. Biophys J 2023; 122:3690-3703. [PMID: 37254483 PMCID: PMC10541481 DOI: 10.1016/j.bpj.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/30/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Fetal lung fibroblasts contribute dynamic infrastructure for the developing lung. These cells undergo dynamic mechanical transitions, including cyclic stretch and spreading, which are integral to lung growth in utero. We investigated the role of the nuclear envelope protein emerin in cellular responses to these dynamic mechanical transitions. In contrast to control cells, which briskly realigned their nuclei, actin cytoskeleton, and extracellular matrices in response to cyclic stretch, fibroblasts that were acutely downregulated for emerin showed incomplete reorientation of both nuclei and actin cytoskeleton. Emerin-downregulated fibroblasts were also aberrantly circular in contrast to the spindle-shaped controls and exhibited an altered pattern of filamentous actin organization that was disconnected from the nucleus. Emerin knockdown was also associated with reduced myosin light chain phosphorylation during cell spreading. Interestingly, emerin-downregulated fibroblasts also demonstrated reduced fibronectin fibrillogenesis and production. These findings indicate that nuclear-cytoskeletal coupling serves a role in the dynamic regulation of cytoskeletal structure and function and may also impact the transmission of traction force to the extracellular matrix microenvironment.
Collapse
Affiliation(s)
- Qianru Jin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Deepesh Pandey
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Carol B Thompson
- Biostatistics Center, Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Shawna Lewis
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Hyun Woo Sung
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Thao D Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Scot Kuo
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland; Microscope Facility, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Katherine L Wilson
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - David H Gracias
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland; Center for MicroPhysiological Systems, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Chemistry, Johns Hopkins University, Baltimore, Maryland; Laboratory for Computational Sensing and Robotics, Johns Hopkins University, Baltimore, Maryland
| | - Lewis H Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
20
|
Hansen E, Holaska JM. The nuclear envelope and metastasis. Oncotarget 2023; 14:317-320. [PMID: 37057891 PMCID: PMC10103595 DOI: 10.18632/oncotarget.28375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Indexed: 04/15/2023] Open
Affiliation(s)
| | - James M. Holaska
- Correspondence to:James M. Holaska, Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA; Rowan University Graduate School of Biomedical Sciences, Stratford, NJ 08084, USA email
| |
Collapse
|
21
|
Stark M, Levin M, Ulitsky I, Assaraf YG. Folylpolyglutamate synthetase mRNA G-quadruplexes regulate its cell protrusion localization and enhance a cancer cell invasive phenotype upon folate repletion. BMC Biol 2023; 21:13. [PMID: 36721160 PMCID: PMC9889130 DOI: 10.1186/s12915-023-01525-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/23/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Folates are crucial for the biosynthesis of nucleotides and amino acids, essential for cell proliferation and development. Folate deficiency induces DNA damage, developmental defects, and tumorigenicity. The obligatory enzyme folylpolyglutamate synthetase (FPGS) mediates intracellular folate retention via cytosolic and mitochondrial folate polyglutamylation. Our previous paper demonstrated the association of the cytosolic FPGS (cFPGS) with the cytoskeleton and various cell protrusion proteins. Based on these recent findings, the aim of the current study was to investigate the potential role of cFPGS at cell protrusions. RESULTS Here we uncovered a central role for two G-quadruplex (GQ) motifs in the 3'UTR of FPGS mediating the localization of cFPGS mRNA and protein at cell protrusions. Using the MBSV6-loop reporter system and fluorescence microscopy, we demonstrate that following folate deprivation, cFPGS mRNA is retained in the endoplasmic reticulum, whereas upon 15 min of folate repletion, this mRNA is rapidly translocated to cell protrusions in a 3'UTR- and actin-dependent manner. The actin dependency of this folate-induced mRNA translocation is shown by treatment with Latrunculin B and inhibitors of the Ras homolog family member A (RhoA) pathway. Upon folate repletion, the FPGS 3'UTR GQs induce an amoeboid/mesenchymal hybrid cell phenotype during migration and invasion through a collagen gel matrix. Targeted disruption of the 3'UTR GQ motifs by introducing point mutations or masking them by antisense oligonucleotides abrogated cell protrusion targeting of cFPGS mRNA. CONCLUSIONS Collectively, the GQ motifs within the 3'UTR of FPGS regulate its transcript and protein localization at cell protrusions in response to a folate cue, inducing cancer cell invasive phenotype. These novel findings suggest that the 3'UTR GQ motifs of FPGS constitute an attractive druggable target aimed at inhibition of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Michal Stark
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| | - May Levin
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel ,grid.507132.2Present address: May Levin, MeMed Diagnostics Ltd, Tirat Carmel, Israel
| | - Igor Ulitsky
- grid.13992.300000 0004 0604 7563Department of Immunology and Regenerative Biology and Department of Molecular Neuroscience, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yehuda G. Assaraf
- grid.6451.60000000121102151The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, 3200003 Haifa, Israel
| |
Collapse
|
22
|
Gridina M, Fishman V. Multilevel view on chromatin architecture alterations in cancer. Front Genet 2022; 13:1059617. [PMID: 36468037 PMCID: PMC9715599 DOI: 10.3389/fgene.2022.1059617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/31/2022] [Indexed: 12/25/2023] Open
Abstract
Chromosomes inside the nucleus are not located in the form of linear molecules. Instead, there is a complex multilevel genome folding that includes nucleosomes packaging, formation of chromatin loops, domains, compartments, and finally, chromosomal territories. Proper spatial organization play an essential role for the correct functioning of the genome, and is therefore dynamically changed during development or disease. Here we discuss how the organization of the cancer cell genome differs from the healthy genome at various levels. A better understanding of how malignization affects genome organization and long-range gene regulation will help to reveal the molecular mechanisms underlying cancer development and evolution.
Collapse
Affiliation(s)
- Maria Gridina
- The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | |
Collapse
|
23
|
Alexandrova A, Lomakina M. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers. Front Pharmacol 2022; 13:962652. [PMID: 36278174 PMCID: PMC9582651 DOI: 10.3389/fphar.2022.962652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor shrinkage as a result of antitumor therapy is not the only and sufficient indicator of treatment success. Cancer progression leads to dissemination of tumor cells and formation of metastases - secondary tumor lesions in distant organs. Metastasis is associated with acquisition of mobile phenotype by tumor cells as a result of epithelial-to-mesenchymal transition and further cell migration based on cytoskeleton reorganization. The main mechanisms of individual cell migration are either mesenchymal, which depends on the activity of small GTPase Rac, actin polymerization, formation of adhesions with extracellular matrix and activity of proteolytic enzymes or amoeboid, which is based on the increase in intracellular pressure caused by the enhancement of actin cortex contractility regulated by Rho-ROCK-MLCKII pathway, and does not depend on the formation of adhesive structures with the matrix, nor on the activity of proteases. The ability of tumor cells to switch from one motility mode to another depending on cell context and environmental conditions, termed migratory plasticity, contributes to the efficiency of dissemination and often allows the cells to avoid the applied treatment. The search for new therapeutic targets among cytoskeletal proteins offers an opportunity to directly influence cell migration. For successful treatment it is important to assess the likelihood of migratory plasticity in a particular tumor. Therefore, the search for specific markers that can indicate a high probability of migratory plasticity is very important.
Collapse
|
24
|
Wang M, Ivanovska I, Vashisth M, Discher DE. Nuclear mechanoprotection: From tissue atlases as blueprints to distinctive regulation of nuclear lamins. APL Bioeng 2022; 6:021504. [PMID: 35719698 PMCID: PMC9203124 DOI: 10.1063/5.0080392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Two meters of DNA in each of our cells must be protected against many types of damage. Mechanoprotection is increasingly understood to be conferred by the nuclear lamina of intermediate filament proteins, but very different patterns of expression and regulation between different cells and tissues remain a challenge to comprehend and translate into applications. We begin with a tutorial style presentation of "tissue blueprints" of lamin expression including single-cell RNA sequencing in major public datasets. Lamin-A, C profiles appear strikingly similar to those for the mechanosensitive factors Vinculin, Yap1, and Piezo1, whereas datasets for lamin-B1 align with and predict regulation by the cell cycle transcription factor, FOXM1, and further predict poor survival across multiple cancers. Various experiments support the distinction between the lamin types and add mechanistic insight into the mechano-regulation of lamin-A, C by both matrix elasticity and externally imposed tissue strain. Both A- and B-type lamins, nonetheless, protect the nucleus from rupture and damage. Ultimately, for mechanically active tissue constructs and organoids as well as cell therapies, lamin levels require particular attention as they help minimize nuclear damage and defects in a cell cycle.
Collapse
|