1
|
Trzeciak AJ, Liu ZL, Gatie M, Krebs AS, Saitz Rojas W, O'Neal AJ, Baako AK, Wang Z, Nelson J, Miranda IC, Uddin J, Lipshutz A, Xie J, Huang CL, Saavedra PHV, Hadjantonakis AK, Overholtzer M, Glickman MS, Subramanya AR, Vierbuchen T, Etchegaray JI, Lucas CD, Parkhurst CN, Perry JSA. WNK1 mediates M-CSF-induced macropinocytosis to enforce macrophage lineage fidelity. Nat Commun 2025; 16:4945. [PMID: 40436823 PMCID: PMC12120055 DOI: 10.1038/s41467-025-59901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/09/2025] [Indexed: 06/01/2025] Open
Abstract
Tissue-resident macrophages (TRM) are critical for mammalian organismal development and homeostasis. Here we report that with-no-lysine 1 (WNK1) controls myeloid progenitor fate, with Csf1riCre-mediated Wnk1 deletion in mice (WNK1-deficient mice) resulting in loss of TRMs and causing perinatal mortality. Mechanistically, absence of WNK1 or inhibition of WNK kinase activity disrupts macrophage colony-stimulating factor (M-CSF)-stimulated macropinocytosis, thereby blocking mouse and human progenitor and monocyte differentiation into macrophages and skewing progenitor differentiation into neutrophils. Treatment with PMA rescues macropinocytosis but not macrophage differentiation of WNK-inhibited progenitors, implicating that M-CSF-stimulated, macropinocytosis-induced activation of WNK1 is required for macrophage differentiation. Finally, M-CSF-stimulated macropinocytosis triggers WNK1 nuclear translocation and concomitant increased protein expression of interferon regulatory factor (IRF)8, whereas inhibition of macropinocytosis or WNK kinase activity suppresses IRF8 expression. Our results thus suggest that WNK1 and downstream IRF8-regulated genes are important for M-CSF/macropinocytosis-mediated regulation of myeloid cell lineage commitment during TRM development and homeostasis.
Collapse
Affiliation(s)
- Alissa J Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Zong-Lin Liu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohamed Gatie
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Adam S Krebs
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
| | - Waleska Saitz Rojas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anya J O'Neal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ann K Baako
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
| | - Zhaoquan Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
| | - Justin Nelson
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabella C Miranda
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jazib Uddin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Allie Lipshutz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Anna-Katerina Hadjantonakis
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Michael Overholtzer
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arohan R Subramanya
- Dept of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas Vierbuchen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jon Iker Etchegaray
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christopher D Lucas
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, BioQuarter, UK
- Institute for Regeneration and Repair, Edinburgh, BioQuarter, UK
| | | | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Demko J, Saha B, Takagi E, Manis A, Weber R, Koepsell H, Pearce D. Coordinated Regulation of Renal Glucose Reabsorption and Gluconeogenesis by mTORC2 and Potassium. J Am Soc Nephrol 2025:00001751-990000000-00621. [PMID: 40208690 DOI: 10.1681/asn.0000000703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 04/03/2025] [Indexed: 04/11/2025] Open
Abstract
Key Points
The insulin-regulated kinase, mammalian target of rapamycin complex 2 (mTORC2), coordinates regulation of sodium-glucose cotransport and gluconeogenesis in the kidney proximal tubule.Dietary potassium can bypass mTORC2 to regulate sodium-glucose cotransport and gluconeogenesis in mTORC2 knockout mice.The transcription factor forkhead box O4 may have an unexpected role in mediating mTORC2 effects on renal tubule glucose homeostasis.
Background
The kidney is uniquely responsible for reabsorption of filtered glucose and gluconeogenesis. Insulin stimulates glucose transport and suppresses gluconeogenesis in the proximal tubule; however, the signaling mechanisms and coordinated regulation of these processes are poorly understood. The kinase complex mammalian target of rapamycin complex 2 (mTORC2) is critical for regulation of growth, metabolism, solute transport, and electrolyte homeostasis in response to a wide array of inputs. In this study, we examined its role in the regulation of renal glucose reabsorption and gluconeogenesis.
Methods
Rictor, an essential component of mTORC2, was knocked out using the Pax8-LC1 system to generate inducible tubule–specific Rictor knockout (KO) mice. A second Rictor KO model was generated using Cre-loxP technology and a proximal tubule–specific promoter. Animals were fasted and refed on normal- or high-potassium (K+) diets. Metabolic parameters, including glucose homeostasis and kidney function, were assessed. Kidneys and livers were harvested for molecular analysis of gluconeogenic enzymes, glucose transporters, and mTORC2-regulated signaling targets.
Results
On a normal-K+ diet, mTORC2 KO mice had marked glycosuria despite normal blood glucose. Immunofluorescence microscopy and immunostaining of plasma membrane protein fractions showed lower proximal tubule apical membrane sodium-glucose cotransporter 2 and sodium-glucose cotransporter 1 in the fed state of KO mice. Metabolic testing showed elevated fasting insulin, impaired pyruvate tolerance, and elevated hemoglobin A1c. In addition, renal gluconeogenic enzymes were increased, consistent with abnormal renal gluconeogenesis in KO mice. These effects correlated with reduced downstream phosphorylation of Akt and the transcription factor forkhead box O4, identifying a novel role of forkhead box O4 in the kidney tubules. Interestingly, high dietary K+ rapidly lowered glycosuria and gluconeogenesis, despite persistent reduction in mTORC2 substrate phosphorylation.
Conclusions
Renal tubule mTORC2 is critical for coordinated regulation of sodium-glucose cotransporter membrane localization and renal gluconeogenesis. In the absence of mTORC2, dietary K+ promotes glucose reabsorption and suppresses gluconeogenesis independent of insulin signaling.
Collapse
Affiliation(s)
- John Demko
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Bidisha Saha
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Enzo Takagi
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Anna Manis
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Robert Weber
- Division of Endocrinology, Department of Medicine, University of California at San Francisco, San Francisco, California
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology, University of Würzberg, Würzberg, Germany
| | - David Pearce
- Division of Nephrology, Department of Medicine, University of California at San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
3
|
Fidaleo AM, Bach MD, Orbeta S, Abdullaev IF, Martino N, Adam AP, Boulos MA, Dulin NO, Paul AR, Kuo YH, Mongin AA. LRRC8A-containing anion channels promote glioblastoma proliferation via a WNK1/mTORC2-dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636139. [PMID: 39975357 PMCID: PMC11838495 DOI: 10.1101/2025.02.02.636139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Leucine-rich repeat-containing protein 8A (LRRC8A) is the essential subunit of ubiquitous volume-regulated anion channels (VRACs). LRCC8A is overexpressed in several cancers and promotes negative survival outcomes via a poorly defined mechanism. Here, we explored the role of LRRC8A and VRACs in the progression of glioblastoma (GBM), the most common and deadly primary brain tumor. We found that, as compared to healthy controls, LRRC8A mRNA was strongly upregulated in surgical GBM specimens, patient-derived GBM cell lines, and GBM datasets from The Cancer Genome Atlas (TCGA). Our in-silico analysis indicated that patients belonging to the lowest LRRC8A expression quartile demonstrated a trend for extended life expectancy. In patient-derived GBM cultures, siRNA-driven LRRC8A knockdown reduced cell proliferation and additionally decreased intracellular chloride levels and inhibited activity of mTOR complex 2. The antiproliferative effect of LRRC8A downregulation was recapitulated with a pharmacological inhibitor of VRAC. Our ensuing biochemical and molecular biology analyses established that the LRRC8A-containing VRACs facilitate GBM proliferation via a new mechanism involving non-enzymatic actions of the chloride-sensitive protein kinase WNK1. Accordingly, the chloride-bound WNK1 stimulates mTORC2 and the mTORC2-dependent protein kinases AKT and SGK, which promote proliferation. These findings establish the new mTORC2-centric axis for VRAC dependent regulation of cellular functions and uncover potential targets for GBM intervention.
Collapse
Affiliation(s)
- Antonio M Fidaleo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Martin D Bach
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Shaina Orbeta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Iskandar F Abdullaev
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Mateo A Boulos
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Nickolai O Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexandra R Paul
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | - Yu-Hung Kuo
- Neurosurgery, Luminis Health Anne Arundel Medical Center, Annapolis, MD, USA
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
4
|
Bakouh N, Castaño-Martín R, Metais A, Dan EL, Balducci E, Chhuon C, Lepicka J, Barcia G, Losito E, Lourdel S, Planelles G, Muresan RC, Moca VV, Kaminska A, Bourgeois M, Chemaly N, Rguez Y, Auvin S, Huberfeld G, Varlet P, Asnafi V, Guerrera IC, Kabashi E, Nabbout R, Ciura S, Blauwblomme T. Chloride deregulation and GABA depolarization in MTOR-related malformations of cortical development. Brain 2025; 148:549-563. [PMID: 39106285 PMCID: PMC11788215 DOI: 10.1093/brain/awae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/15/2024] [Accepted: 07/19/2024] [Indexed: 08/09/2024] Open
Abstract
Focal cortical dysplasia, hemimegalencephaly and cortical tubers are paediatric epileptogenic malformations of cortical development (MCDs) frequently pharmacoresistant and mostly treated surgically by the resection of epileptic cortex. Availability of cortical resection samples has allowed significant mechanistic discoveries directly from human material. Causal brain somatic or germline mutations in the AKT/PI3K/DEPDC5/MTOR genes have been identified. GABAA-mediated paradoxical depolarization, related to altered chloride (Cl-) homeostasis, has been shown to participate to ictogenesis in human paediatric MCDs. However, the link between genomic alterations and neuronal hyperexcitability is unclear. Here, we studied the post-translational interactions between the mTOR pathway and the regulation of cation-chloride cotransporters (CCCs), KCC2 and NKCC1, that are largely responsible for controlling intracellular Cl- and, ultimately, GABAergic transmission. For this study, 35 children (25 MTORopathies and 10 pseudo-controls, diagnosed by histology plus genetic profiling) were operated for drug-resistant epilepsy. Postoperative cortical tissues were recorded on a multi-electrode array to map epileptic activities. CCC expression level and phosphorylation status of the WNK1/SPAK-OSR1 pathway was measured during basal conditions and after pharmacological modulation. Direct interactions between mTOR and WNK1 pathway components were investigated by immunoprecipitation. Membranous incorporation of MCD samples in Xenopus laevis oocytes enabled measurement of the Cl- conductance and equilibrium potential for GABA. Of the 25 clinical cases, half harboured a somatic mutation in the mTOR pathway, and pS6 expression was increased in all MCD samples. Spontaneous interictal discharges were recorded in 65% of the slices. CCC expression was altered in MCDs, with a reduced KCC2/NKCC1 ratio and decreased KCC2 membranous expression. CCC expression was regulated by the WNK1/SPAK-OSR1 kinases through direct phosphorylation of Thr906 on KCC2, which was reversed by WNK1 and SPAK antagonists (N-ethylmaleimide and staurosporine). The mSIN1 subunit of MTORC2 was found to interact with SPAK-OSR1 and WNK1. Interactions between these key epileptogenic pathways could be reversed by the mTOR-specific antagonist rapamycin, leading to a dephosphorylation of CCCs and recovery of the KCC2/NKCC1 ratio. The functional effect of such recovery was validated by the restoration of the depolarizing shift in the equilibrium potential for GABA by rapamycin, measured after incorporation of MCD membranes into X. laevis oocytes, in line with a re-establishment of normal Cl- reversal potential. Our study deciphers a protein interaction network through a phosphorylation cascade between MTOR and WNK1/SPAK-OSR1 leading to deregulation of chloride cotransporters, increased neuronal Cl- levels and GABAA dysfunction in malformations of cortical development, linking genomic defects and functional effects and paving the way to target epilepsy therapy.
Collapse
Affiliation(s)
- Naziha Bakouh
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
| | - Reyes Castaño-Martín
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
| | - Alice Metais
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, 75014 Paris, France
- Service de Neuropathologie, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | | | - Estelle Balducci
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Cerina Chhuon
- INSERM US24, Proteomic platform, SFR Necker, 75015 Paris, France
| | - Joanna Lepicka
- INSERM US24, Proteomic platform, SFR Necker, 75015 Paris, France
| | - Giulia Barcia
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Emma Losito
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Stéphane Lourdel
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, 75006 Paris, France
- CNRS EMR 8228—Laboratory of Renal Physiology and Tubulopathies, Université de Paris Cité, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Gabrielle Planelles
- Cordeliers Research Center, INSERM, Sorbonne University, Paris Cité University, 75006 Paris, France
- CNRS EMR 8228—Laboratory of Renal Physiology and Tubulopathies, Université de Paris Cité, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Raul C Muresan
- STAR-UBB Institute, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Vasile Vlad Moca
- STAR-UBB Institute, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Anna Kaminska
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Marie Bourgeois
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Nicole Chemaly
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Yasmine Rguez
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, 75014 Paris, France
| | - Stéphane Auvin
- Hôpital Robert Debré, Assistance Publique Hôpitaux de Paris, 75019 Paris, France
| | - Gilles Huberfeld
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, 75014 Paris, France
| | - Pascale Varlet
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, 75014 Paris, France
- Service de Neuropathologie, GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, F-75014 Paris, France
| | - Vahid Asnafi
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | | | - Edor Kabashi
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
| | - Rima Nabbout
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| | - Sorana Ciura
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
| | - Thomas Blauwblomme
- Translational Research in Neuroscience Lab, Institut Imagine, Université Paris Cité, INSERM U1163, 75015 Paris, France
- Department of Pediatric Neurosurgery Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
- Department of Pediatric Neurology, Hôpital Necker, Assistance Publique Hôpitaux de Paris, 75015 Paris, France
| |
Collapse
|
5
|
Cornelius RJ, Maeoka Y, Shinde U, McCormick JA. Familial Hyperkalemic Hypertension. Compr Physiol 2024; 14:5839-5874. [PMID: 39699086 DOI: 10.1002/cphy.c240004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The rare disease Familial Hyperkalemic Hypertension (FHHt) is caused by mutations in the genes encoding Cullin 3 (CUL3), Kelch-Like 3 (KLHL3), and two members of the With-No-Lysine [K] (WNK) kinase family, WNK1 and WNK4. In the kidney, these mutations ultimately cause hyperactivation of NCC along the renal distal convoluted tubule. Hypertension results from increased NaCl retention, and hyperkalemia by impaired K + secretion by downstream nephron segments. CUL3 and KLHL3 are now known to form a ubiquitin ligase complex that promotes proteasomal degradation of WNK kinases, which activate downstream kinases that phosphorylate and thus activate NCC. For CUL3, potent effects on the vasculature that contribute to the more severe hypertensive phenotype have also been identified. Here we outline the in vitro and in vivo studies that led to the discovery of the molecular pathways regulating NCC and vascular tone, and how FHHt-causing mutations disrupt these pathways. Potential mechanisms for variability in disease severity related to differential effects of each mutation on the kidney and vasculature are described, and other possible effects of the mutant proteins beyond the kidney and vasculature are explored. © 2024 American Physiological Society. Compr Physiol 14:5839-5874, 2024.
Collapse
Affiliation(s)
- Ryan J Cornelius
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Yujiro Maeoka
- Department of Nephrology, Hiroshima University Hospital, Hiroshima, Japan
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, USA
| | - James A McCormick
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
6
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
7
|
Boyd-Shiwarski CR, Shiwarski DJ, Subramanya AR. A New Phase for WNK Kinase Signaling Complexes as Biomolecular Condensates. Physiology (Bethesda) 2024; 39:0. [PMID: 38624245 PMCID: PMC11460533 DOI: 10.1152/physiol.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The purpose of this review is to highlight transformative advances that have been made in the field of biomolecular condensates, with special emphasis on condensate material properties, physiology, and kinases, using the With-No-Lysine (WNK) kinases as a prototypical example. To convey how WNK kinases illustrate important concepts for biomolecular condensates, we start with a brief history, focus on defining features of biomolecular condensates, and delve into some examples of how condensates are implicated in cellular physiology (and pathophysiology). We then highlight how WNK kinases, through the action of "WNK droplets" that ubiquitously regulate intracellular volume and kidney-specific "WNK bodies" that are implicated in distal tubule salt reabsorption and potassium homeostasis, exemplify many of the defining features of condensates. Finally, this review addresses the controversies within this emerging field and questions to address.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Daniel J Shiwarski
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
8
|
Demko J, Weber R, Pearce D, Saha B. Aldosterone-independent regulation of K + secretion in the distal nephron. Curr Opin Nephrol Hypertens 2024; 33:526-534. [PMID: 38888034 PMCID: PMC11290980 DOI: 10.1097/mnh.0000000000001006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
PURPOSE OF REVIEW Maintenance of plasma K + concentration within a narrow range is critical to all cellular functions. The kidneys are the central organ for K + excretion, and robust renal excretory responses to dietary K + loads are essential for survival. Recent advances in the field have challenged the view that aldosterone is at the center of K + regulation. This review will examine recent findings and propose a new mechanism for regulating K + secretion. RECENT FINDINGS Local aldosterone-independent response systems in the distal nephron are increasingly recognized as key components of the rapid response to an acute K + load, as well as playing an essential role in sustained responses to increased dietary K + . The master kinase mTOR, best known for its role in mediating the effects of growth factors and insulin on growth and cellular metabolism, is central to these aldosterone-independent responses. Recent studies have shown that mTOR, particularly in the context of the "type 2" complex (mTORC2), is regulated by K + in a cell-autonomous fashion. SUMMARY New concepts related to cell-autonomous K + signaling and how it interfaces with aldosterone-dependent regulation are emerging. The underlying signaling pathways and effectors of regulated K + secretion, as well as implications for the aldosterone paradox and disease pathogenesis are discussed.
Collapse
Affiliation(s)
- John Demko
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, CA, USA
| | - Robert Weber
- Division of Endocrinology, University of California at San Francisco, San Francisco, CA, USA
| | - David Pearce
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, CA, USA
| | - Bidisha Saha
- Department of Medicine, Division of Nephrology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Xiao YX, Lee SY, Aguilera-Uribe M, Samson R, Au A, Khanna Y, Liu Z, Cheng R, Aulakh K, Wei J, Farias AG, Reilly T, Birkadze S, Habsid A, Brown KR, Chan K, Mero P, Huang JQ, Billmann M, Rahman M, Myers C, Andrews BJ, Youn JY, Yip CM, Rotin D, Derry WB, Forman-Kay JD, Moses AM, Pritišanac I, Gingras AC, Moffat J. The TSC22D, WNK, and NRBP gene families exhibit functional buffering and evolved with Metazoa for cell volume regulation. Cell Rep 2024; 43:114417. [PMID: 38980795 DOI: 10.1016/j.celrep.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.
Collapse
Affiliation(s)
- Yu-Xi Xiao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Seon Yong Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Magali Aguilera-Uribe
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Reuben Samson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Aaron Au
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Yukti Khanna
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstrabe 6, 8010, Graz, Austria
| | - Zetao Liu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kamaldeep Aulakh
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiarun Wei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Taylor Reilly
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Saba Birkadze
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrea Habsid
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin R Brown
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Chan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patricia Mero
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maximilian Billmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Mahfuzur Rahman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brenda J Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christopher M Yip
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Iva Pritišanac
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstrabe 6, 8010, Graz, Austria
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Demko J, Saha B, Takagi E, Mannis A, Weber R, Pearce D. Coordinated Regulation of Renal Glucose Reabsorption and Gluconeogenesis by mTORC2 and Potassium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600201. [PMID: 38979219 PMCID: PMC11230149 DOI: 10.1101/2024.06.22.600201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background The kidney proximal tubule is uniquely responsible for reabsorption of filtered glucose and gluconeogenesis (GNG). Insulin stimulates glucose transport and suppresses GNG in the proximal tubule, however, the signaling mechanisms and coordinated regulation of these processes remain poorly understood. The kinase complex mTORC2 is critical for regulation of growth, metabolism, solute transport, and electrolyte homeostasis in response to a wide array of inputs. Here we examined its role in the regulation of renal glucose reabsorption and GNG. Methods Rictor, an essential component of mTORC2, was knocked out using the Pax8-LC1 system to generate inducible tubule specific Rictor knockout (TRKO) mice. These animals were subjected to fasting, refeeding, and variation in dietary K + . Metabolic parameters including glucose homeostasis and renal function were assessed in balance cages. Kidneys and livers were also harvested for molecular analysis of gluconeogenic enzymes, mTORC2-regulated targets, and plasma membrane glucose transporters. Results On a normal chow diet, TRKO mice had marked glycosuria despite indistinguishable blood glucose relative to WT controls. Kidney plasma membrane showed lower SGLT2 and SGLT1 in the fed state, supporting reduced renal glucose reabsorption. Additional metabolic testing provided evidence for renal insulin resistance with elevated fasting insulin, impaired pyruvate tolerance, elevated hemoglobin A1c, and increased renal gluconeogenic enzymes in the fasted and fed states. These effects were correlated with reduced downstream phosphorylation of Akt and the transcription factor FOXO4, identifying a novel role of FOXO4 in the kidney. Interestingly, high dietary K + prevented glycosuria and excessive GNG in TRKO mice, despite persistent reduction in mTORC2 substrate phosphorylation. Conclusion Renal tubule mTORC2 is critical for coordinated regulation of sodium-glucose cotransport by SGLT2 and SGLT1 as well as renal GNG. Dietary K + promotes glucose reabsorption and suppresses GNG independently of insulin signaling and mTORC2, potentially providing an alternative signaling mechanism in states of insulin resistance. SIGNIFICANCE STATEMENT The kidney contributes to regulation of blood glucose through reabsorption of filtered glucose and gluconeogenesis. This study shows that mTORC2 and dietary potassium coordinate the regulation of sodium-glucose cotransport and glucose production in the kidney via independent mechanisms. New insights into the regulation of these processes in the kidney offer promising implications for diabetes mellitus management and treatment.
Collapse
|
11
|
Zhang Y, Bock F, Ferdaus M, Arroyo JP, L Rose K, Patel P, Denton JS, Delpire E, Weinstein AM, Zhang MZ, Harris RC, Terker AS. Low potassium activation of proximal mTOR/AKT signaling is mediated by Kir4.2. Nat Commun 2024; 15:5144. [PMID: 38886379 PMCID: PMC11183202 DOI: 10.1038/s41467-024-49562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
The renal epithelium is sensitive to changes in blood potassium (K+). We identify the basolateral K+ channel, Kir4.2, as a mediator of the proximal tubule response to K+ deficiency. Mice lacking Kir4.2 have a compensated baseline phenotype whereby they increase their distal transport burden to maintain homeostasis. Upon dietary K+ depletion, knockout animals decompensate as evidenced by increased urinary K+ excretion and development of a proximal renal tubular acidosis. Potassium wasting is not proximal in origin but is caused by higher ENaC activity and depends upon increased distal sodium delivery. Three-dimensional imaging reveals Kir4.2 knockouts fail to undergo proximal tubule expansion, while the distal convoluted tubule response is exaggerated. AKT signaling mediates the dietary K+ response, which is blunted in Kir4.2 knockouts. Lastly, we demonstrate in isolated tubules that AKT phosphorylation in response to low K+ depends upon mTORC2 activation by secondary changes in Cl- transport. Data support a proximal role for cell Cl- which, as it does along the distal nephron, responds to K+ changes to activate kinase signaling.
Collapse
Affiliation(s)
- Yahua Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Fabian Bock
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Mohammed Ferdaus
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Juan Pablo Arroyo
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Kristie L Rose
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Purvi Patel
- Mass Spectrometry Research Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan M Weinstein
- Department of Physiology and Biophysics, Weil Medical College, New York, NY, USA
| | - Ming-Zhi Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Andrew S Terker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA.
| |
Collapse
|
12
|
Wu W, Sun J, Zhang J, Zhao H, Qiu S, Li C, Shi C, Xu Y. Phosphoproteomics reveals a novel mechanism underlying the proarrhythmic effects of nilotinib, vandetanib, and mobocertinib. Toxicology 2024; 505:153830. [PMID: 38754619 DOI: 10.1016/j.tox.2024.153830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The use of tyrosine kinase inhibitors (TKIs) has resulted in significant occurrence of arrhythmias. However, the precise mechanism of the proarrhythmic effect is not fully understood. In this study, we found that nilotinib (NIL), vandetanib (VAN), and mobocertinib (MOB) induced the development of "cellrhythmia" (arrhythmia-like events) in a concentration-dependent manner in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Continuous administration of NIL, VAN, or MOB in animals significantly prolonged the action potential durations (APD) and increased susceptibility to arrhythmias. Using phosphoproteomic analysis, we identified proteins with altered phosphorylation levels after treatment with 3 μM NIL, VAN, and MOB for 1.5 h. Using these identified proteins as substrates, we performed kinase-substrate enrichment analysis to identify the kinases driving the changes in phosphorylation levels of these proteins. MAPK and WNK were both inhibited by NIL, VAN, and MOB. A selective inhibitor of WNK1, WNK-IN-11, induced concentration- and time-dependent cellrhythmias and prolonged field potential duration (FPD) in hiPSC-CMs in vitro; furthermore, administration in guinea pigs confirmed that WNK-IN-11 prolonged ventricular repolarization and increased susceptibility to arrhythmias. Fingding indicated that WNK1 inhibition had an in vivo and in vitro arrhythmogenic phenotype similar to TKIs. Additionally,three of TKIs reduced hERG and KCNQ1 expression at protein level, not at transcription level. Similarly, the knockdown of WNK1 decreased hERG and KCNQ1 protein expression in hiPSC-CMs. Collectively, our data suggest that the proarrhythmic effects of NIL, VAN, and MOB occur through a kinase inhibition mechanism. NIL, VAN, and MOB inhibit WNK1 kinase, leading to a decrease in hERG and KCNQ1 protein expression, thereby prolonging action potential repolarization and consequently cause arrhythmias.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Haining Zhao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Suhua Qiu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Congxin Li
- Department of Pharmacy, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
13
|
Yu Y, Hu D, Liu J, Wu C, Sun Y, Lang M, Han X, Kang D, Min JZ, Cui H, Zheng M. Constituents of Chimaphila japonica and Their Diuretic Activity. Molecules 2024; 29:1092. [PMID: 38474601 DOI: 10.3390/molecules29051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Three new phenols (1-3), one new cyclohexanol (4), two known phenols (5-6), and six known flavonoids (7-12) were isolated from the n-butanol of the 75% ethanol extract of all plants of Chimaphila japonica Miq. Among them, compound 5 was named and described in its entirety for the first time, and compounds 9 and 10 were reported in C. japonica for the first time. The structures of all compounds were confirmed using a comprehensive analysis of 1D and 2D NMR and HRESIMS data. Biological results show that compounds 4, 7, and 11 exhibited potent diuretic activity. The modes of interaction between the selected compounds and the target diuretic-related WNK1 kinase were investigated in a preliminary molecular docking study. These results provided insight into the chemodiversity and potential diuretic activities of metabolites in C. japonica.
Collapse
Affiliation(s)
- Yue Yu
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China
| | - Deri Hu
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China
| | - Jinze Liu
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China
| | - Chenghao Wu
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China
| | - Yuhong Sun
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China
| | - Mingyue Lang
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China
| | - Xuan Han
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Dongzhou Kang
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China
| | - Jun Zhe Min
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China
| | - Hong Cui
- Center of Medical Functional Experiment, Yanbian University College of Medicine, Yanji 133000, China
| | - Mingshan Zheng
- School of Pharmaceutical Sciences, Yanbian University, Yanji 133000, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133000, China
| |
Collapse
|
14
|
Reed EB, Orbeta S, Miao BA, Sitikov A, Chen B, Levitan I, Solway J, Mutlu GM, Fang Y, Mongin AA, Dulin NO. Anoctamin-1 is induced by TGF-β and contributes to lung myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L111-L123. [PMID: 38084409 PMCID: PMC11279757 DOI: 10.1152/ajplung.00155.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-β (TGF-β) is one of the most established drivers of fibrotic processes. TGF-β promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-β robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-β-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-β signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-β treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-β-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-β-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-β; and 2) ANO1 mediates TGF-β-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-β (TGF-β) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.
Collapse
Affiliation(s)
- Eleanor B Reed
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Shaina Orbeta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States
| | - Bernadette A Miao
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Albert Sitikov
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Julian Solway
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States
| | - Nickolai O Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
15
|
Marunaka Y. Physiological roles of chloride ions in bodily and cellular functions. J Physiol Sci 2023; 73:31. [PMID: 37968609 PMCID: PMC10717538 DOI: 10.1186/s12576-023-00889-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Physiological roles of Cl-, a major anion in the body, are not well known compared with those of cations. This review article introduces: (1) roles of Cl- in bodily and cellular functions; (2) the range of cytosolic Cl- concentration ([Cl-]c); (3) whether [Cl-]c could change with cell volume change under an isosmotic condition; (4) whether [Cl-]c could change under conditions where multiple Cl- transporters and channels contribute to Cl- influx and efflux in an isosmotic state; (5) whether the change in [Cl-]c could be large enough to act as signals; (6) effects of Cl- on cytoskeletal tubulin polymerization through inhibition of GTPase activity and tubulin polymerization-dependent biological activity; (7) roles of cytosolic Cl- in cell proliferation; (8) Cl--regulatory mechanisms of ciliary motility; (9) roles of Cl- in sweet/umami taste receptors; (10) Cl--regulatory mechanisms of with-no-lysine kinase (WNK); (11) roles of Cl- in regulation of epithelial Na+ transport; (12) relationship between roles of Cl- and H+ in body functions.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, General Incorporated Foundation, 67 Kitatsuboi-Cho, Nishinokyo, Nakagyo-Ku, Kyoto, 604-8472, Japan.
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
16
|
Kettritz R, Loffing J. Potassium homeostasis - Physiology and pharmacology in a clinical context. Pharmacol Ther 2023; 249:108489. [PMID: 37454737 DOI: 10.1016/j.pharmthera.2023.108489] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Membrane voltage controls the function of excitable cells and is mainly a consequence of the ratio between the extra- and intracellular potassium concentration. Potassium homeostasis is safeguarded by balancing the extra-/intracellular distribution and systemic elimination of potassium to the dietary potassium intake. These processes adjust the plasma potassium concentration between 3.5 and 4.5 mmol/L. Several genetic and acquired diseases but also pharmacological interventions cause dyskalemias that are associated with increased morbidity and mortality. The thresholds at which serum K+ not only associates but also causes increased mortality are hotly debated. We discuss physiologic, pathophysiologic, and pharmacologic aspects of potassium regulation and provide informative case vignettes. Our aim is to help clinicians, epidemiologists, and pharmacologists to understand the complexity of the potassium homeostasis in health and disease and to initiate appropriate treatment strategies in dyskalemic patients.
Collapse
Affiliation(s)
- Ralph Kettritz
- Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Germany.
| | | |
Collapse
|
17
|
Chen Y, Yu X, Yan Z, Zhang S, Zhang J, Guo W. Role of epithelial sodium channel-related inflammation in human diseases. Front Immunol 2023; 14:1178410. [PMID: 37559717 PMCID: PMC10407551 DOI: 10.3389/fimmu.2023.1178410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/29/2023] [Indexed: 08/11/2023] Open
Abstract
The epithelial sodium channel (ENaC) is a heterotrimer and is widely distributed throughout the kidneys, blood vessels, lungs, colons, and many other organs. The basic role of the ENaC is to mediate the entry of Na+ into cells; the ENaC also has an important regulatory function in blood pressure, airway surface liquid (ASL), and endothelial cell function. Aldosterone, serum/glucocorticoid kinase 1 (SGK1), shear stress, and posttranslational modifications can regulate the activity of the ENaC; some ion channels also interact with the ENaC. In recent years, it has been found that the ENaC can lead to immune cell activation, endothelial cell dysfunction, aggravated inflammation involved in high salt-induced hypertension, cystic fibrosis, pseudohypoaldosteronism (PHA), and tumors; some inflammatory cytokines have been reported to have a regulatory role on the ENaC. The ENaC hyperfunction mediates the increase of intracellular Na+, and the elevated exchange of Na+ with Ca2+ leads to an intracellular calcium overload, which is an important mechanism for ENaC-related inflammation. Some of the research on the ENaC is controversial or unclear; we therefore reviewed the progress of studies on the role of ENaC-related inflammation in human diseases and their mechanisms.
Collapse
Affiliation(s)
- Yabin Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- National Organ Transplantation (Liver &Kidney Transplantation) Physician Training Centre, Zhengzhou, China
- National Regional Medical Treatment Centre of Henan Organ Transplantation, Zhengzhou, China
| | - Zhiping Yan
- Henan Organ Transplantation Centre, Zhengzhou, China
- Henan Engineering and Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, China
| | - Shuijun Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China
| | - Jiacheng Zhang
- Henan Key Laboratory for Digestive Organ Transplantation, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory for Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
| |
Collapse
|
18
|
Saha B, Shabbir W, Takagi E, Duan XP, Leite Dellova DCA, Demko J, Manis A, Loffing-Cueni D, Loffing J, Sørensen MV, Wang WH, Pearce D. Potassium Activates mTORC2-dependent SGK1 Phosphorylation to Stimulate Epithelial Sodium Channel: Role in Rapid Renal Responses to Dietary Potassium. J Am Soc Nephrol 2023; 34:1019-1038. [PMID: 36890646 PMCID: PMC10278851 DOI: 10.1681/asn.0000000000000109] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/10/2023] Open
Abstract
SIGNIFICANCE STATEMENT Rapid renal responses to ingested potassium are essential to prevent hyperkalemia and also play a central role in blood pressure regulation. Although local extracellular K + concentration in kidney tissue is increasingly recognized as an important regulator of K + secretion, the underlying mechanisms that are relevant in vivo remain controversial. To assess the role of the signaling kinase mTOR complex-2 (mTORC2), the authors compared the effects of K + administered by gavage in wild-type mice and knockout mice with kidney tubule-specific inactivation of mTORC2. They found that mTORC2 is rapidly activated to trigger K + secretion and maintain electrolyte homeostasis. Downstream targets of mTORC2 implicated in epithelial sodium channel regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. These findings offer insight into electrolyte physiologic and regulatory mechanisms. BACKGROUND Increasing evidence implicates the signaling kinase mTOR complex-2 (mTORC2) in rapid renal responses to changes in plasma potassium concentration [K + ]. However, the underlying cellular and molecular mechanisms that are relevant in vivo for these responses remain controversial. METHODS We used Cre-Lox-mediated knockout of rapamycin-insensitive companion of TOR (Rictor) to inactivate mTORC2 in kidney tubule cells of mice. In a series of time-course experiments in wild-type and knockout mice, we assessed urinary and blood parameters and renal expression and activity of signaling molecules and transport proteins after a K + load by gavage. RESULTS A K + load rapidly stimulated epithelial sodium channel (ENaC) processing, plasma membrane localization, and activity in wild-type, but not in knockout, mice. Downstream targets of mTORC2 implicated in ENaC regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. We observed differences in urine electrolytes within 60 minutes, and plasma [K + ] was greater in knockout mice within 3 hours of gavage. Renal outer medullary potassium (ROMK) channels were not acutely stimulated in wild-type or knockout mice, nor were phosphorylation of other mTORC2 substrates (PKC and Akt). CONCLUSIONS The mTORC2-SGK1-Nedd4-2-ENaC signaling axis is a key mediator of rapid tubule cell responses to increased plasma [K + ] in vivo . The effects of K + on this signaling module are specific, in that other downstream mTORC2 targets, such as PKC and Akt, are not acutely affected, and ROMK and Large-conductance K + (BK) channels are not activated. These findings provide new insight into the signaling network and ion transport systems that underlie renal responses to K +in vivo .
Collapse
Affiliation(s)
- Bidisha Saha
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Waheed Shabbir
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Enzo Takagi
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Xin-Peng Duan
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - Deise Carla Almeida Leite Dellova
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
- Current address: Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo, Brazil
| | - John Demko
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | - Anna Manis
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| | | | | | - Mads Vaarby Sørensen
- Department of Biomedicine, Unit of Physiology, Aarhus University, Aarhus, Denmark
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York
| | - David Pearce
- Department of Medicine, Division of Nephrology, Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California
| |
Collapse
|
19
|
Blazer-Yost BL. Consideration of Kinase Inhibitors for the Treatment of Hydrocephalus. Int J Mol Sci 2023; 24:ijms24076673. [PMID: 37047646 PMCID: PMC10094860 DOI: 10.3390/ijms24076673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
Hydrocephalus is a devastating condition characterized by excess cerebrospinal fluid (CSF) in the brain. Currently, the only effective treatment is surgical intervention, usually involving shunt placement, a procedure prone to malfunction, blockage, and infection that requires additional, often repetitive, surgeries. There are no long-term pharmaceutical treatments for hydrocephalus. To initiate an intelligent drug design, it is necessary to understand the biochemical changes underlying the pathology of this chronic condition. One potential commonality in the various forms of hydrocephalus is an imbalance in fluid–electrolyte homeostasis. The choroid plexus, a complex tissue found in the brain ventricles, is one of the most secretory tissues in the body, producing approximately 500 mL of CSF per day in an adult human. In this manuscript, two key transport proteins of the choroid plexus epithelial cells, transient receptor potential vanilloid 4 and sodium, potassium, 2 chloride co-transporter 1, will be considered. Both appear to play key roles in CSF production, and their inhibition or genetic manipulation has been shown to affect CSF volume. As with most transporters, these proteins are regulated by kinases. Therefore, specific kinase inhibitors are also potential targets for the development of pharmaceuticals to treat hydrocephalus.
Collapse
Affiliation(s)
- Bonnie L. Blazer-Yost
- Biology Department, Indiana University—Purdue University, 723 West Michigan Street, Indianapolis, IN 46202, USA
| |
Collapse
|