1
|
Le MP, Burggren W, Martinez-Bautista G. Development and sex affect respiratory responses to temperature and dissolved oxygen in the air-breathing fishes Betta splendens and Trichopodus trichopterus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:27. [PMID: 39680326 DOI: 10.1007/s10695-024-01411-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Ventilation frequencies of the gills (fG) and the air-breathing organ (fABO) were measured in juveniles and adults of the air-breathing betta (Betta splendens) and the blue gourami (Trichopodus trichopterus) in response to temperature and hypoxia. Ventilatory rates were evaluated after 1 h of exposure to 27 °C (control), 23 and 31 °C (PO2 = 21.0 kPa), after acute temperature changes (ATC) from 23 to 27, and 27 to 31 °C, and under progressive hypoxia (PH; PO2 = ~ 21 to 2.5 kPa). Complex, multi-phased ventilatory alterations were evident across species and experimental groups revealing different stress responses and shock reactions (e.g., changes in temperature sensitivity (Q10) of fG between 1-h exposure and ACT in both species). Female and male gourami showed differences in Q10 over the temperature range 23-31 °C. No such Q10 differences occurred in betta. Juveniles of both species showed higher Q10 for fABO (~ 3.7) than fG (~ 2.2). Adult fish exhibited variable Q10s for fG (~ 1.5 to ~ 4.3) and fABO (~ 0.8 to ~ 15.5) as a function of temperature, suggesting a switch from aquatic towards aerial ventilation in response to thermal stress. During PH, juveniles from both species showed higher fG than adults at all oxygen levels. Females from both species showed higher fG compared with males. Collectively, our results suggest that environmental cues modulate ventilatory responses in both species throughout ontogeny, but the actual responses reflect species-specific differences in natural habitat and ecology. Finally, we strongly suggest assessing physiological differences between male and female fish to avoid masking relevant findings and to facilitate results interpretation.
Collapse
Affiliation(s)
- My Phuong Le
- Department of Agriculture, Bac Lieu University, Bac Lieu, Vietnam
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Warren Burggren
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | | |
Collapse
|
2
|
Sjodin BMF, Russello MA. Comparative genomics reveals putative evidence for high-elevation adaptation in the American pika ( Ochotona princeps). G3 GENES|GENOMES|GENETICS 2022; 12:6695220. [PMID: 36087005 PMCID: PMC9635661 DOI: 10.1093/g3journal/jkac241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
High-elevation environments have lower atmospheric oxygen content, reduced temperatures, and higher levels of UV radiation than found at lower elevations. As such, species living at high elevations must overcome these challenges to survive, grow, and reproduce. American pikas (Ochotona princeps) are alpine lagomorphs that are habitat specialists typically found at elevations >2,000 m. Previous research has shown putative evidence for high-elevation adaptation; however, investigations to date have been limited to a fraction of the genome. Here, we took a comparative genomics approach to identify putative regions under selection using a chromosomal reference genome assembly for the American pika relative to 8 other mammalian species targeted based on phylogenetic relatedness and (dis)similarity in ecology. We first identified orthologous gene groups across species and then extracted groups containing only American pika genes as well as unclustered pika genes to inform functional enrichment analyses; among these, we found 141 enriched terms with many related to hypoxia, metabolism, mitochondrial function/development, and DNA repair. We identified 15 significantly expanded gene families within the American pika across all orthologous gene groups that displayed functionally enriched terms associated with hypoxia adaptation. We further detected 196 positively selected genes, 41 of which have been associated with putative adaptation to hypoxia, cold tolerance, and response to UV following a literature review. In particular, OXNAD1, NRDC, and those genes critical in DNA repair represent important targets for future research to examine their functional implications in the American pika, especially as they may relate to adaptation to rapidly changing environments.
Collapse
Affiliation(s)
- Bryson M F Sjodin
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna, V1V 1V7 BC, Canada
| | - Michael A Russello
- Department of Biology, University of British Columbia, Okanagan Campus , Kelowna, V1V 1V7 BC, Canada
| |
Collapse
|
3
|
Root L, Campo A, MacNiven L, Con P, Cnaani A, Kültz D. Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate epithelial cell turnover. Genomics 2021; 113:3235-3249. [PMID: 34298068 DOI: 10.1016/j.ygeno.2021.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 12/27/2022]
Abstract
A data-independent acquisition (DIA) assay library for targeted quantitation of thousands of Oreochromis niloticus gill proteins using a label- and gel-free workflow was generated and used to compare protein and mRNA abundances. This approach generated complimentary rather than redundant data for 1899 unique genes in gills of tilapia acclimated to freshwater and brackish water. Functional enrichment analyses identified mitochondrial energy metabolism, serine protease and immunity-related functions, and cytoskeleton/ extracellular matrix organization as major processes controlled by salinity in O. niloticus gills. Non-linearity in salinity-dependent transcriptome versus proteome regulation was revealed for specific functional groups of genes. The relationship was more linear for other molecular functions/ cellular processes, suggesting that the salinity-dependent regulation of O. niloticus gill function relies on post-transcriptional mechanisms for some functions/ processes more than others. This integrative systems biology approach can be adopted for other tissues and organisms to study cellular dynamics for many changing ecological contexts.
Collapse
Affiliation(s)
- Larken Root
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Aurora Campo
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Leah MacNiven
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA
| | - Pazit Con
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Avner Cnaani
- Department of Poultry and Aquaculture, Institute of Animal Sciences, Agricultural Research Organization, Volcani Center, P.O. Box 15159, Rishon LeZion 7528809, Israel
| | - Dietmar Kültz
- Department of Animal Sciences, University of California Davis, Meyer Hall, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Jackson HJ, Larsson J, Davison A. Quantitative measures and 3D shell models reveal interactions between bands and their position on growing snail shells. Ecol Evol 2021; 11:6634-6648. [PMID: 34141246 PMCID: PMC8207382 DOI: 10.1002/ece3.7517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
The nature of shell growth in gastropods is useful because it preserves the ontogeny of shape, colour, and banding patterns, making them an ideal system for understanding how inherited variation develops, is established and maintained within a population. However, qualitative scoring of inherited shell characters means there is a lack of knowledge regarding the mechanisms that control fine variation. Here, we combine empirical measures of quantitative variation and 3D modeling of shells to understand how bands are placed and interact. By comparing five-banded Cepaea individuals to shells lacking individual bands, we show that individual band absence has minor but significant impacts upon the position of remaining bands, implying that the locus controlling band presence/absence mainly acts after position is established. Then, we show that the shell grows at a similar rate, except for the region below the lowermost band. This demonstrates that wider bands of Cepaea are not an artifact of greater shell growth on the lower shell; they begin wider and grow at the same rate as other bands. Finally, we show that 3D models of shell shape and banding pattern, inferred from 2D photos using ShellShaper software, are congruent with empirical measures. This work therefore establishes a method that may be used for comparative studies of quantitative banding variation in snail shells, extraction of growth parameters, and morphometrics. In the future, studies that link the banding phenotype to the network of shell matrix proteins involved in biomineralization and patterning may ultimately aid in understanding the diversity of shell forms found in molluscs.
Collapse
Affiliation(s)
| | - Jenny Larsson
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Angus Davison
- School of Life SciencesUniversity of NottinghamNottinghamUK
| |
Collapse
|
5
|
Trade-Offs Underwater: Physiological Plasticity of Rainbow Trout (Oncorhynchus mykiss) Confronted by Multiple Stressors. FISHES 2018. [DOI: 10.3390/fishes3040049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Organisms have evolved mechanisms to partition the available resources between fitness-relevant physiological functions. Organisms possess phenotypic plasticity to acclimate to changing environmental conditions. However, this comes at a cost that can cause negative correlations or “trade-offs”, whereby increasing investments in one function lead to decreased investments in another function. The aim of the present study was to investigate the prioritization of resource allocation between growth, pathogen defense, and contaminant response in juvenile rainbow trout (Oncorhynchus mykiss) exposed to changes of resource income or expenditure. We performed a multifactorial experiment with three resource-impacting stressors—limited food availability, a parasitic infection, exposure to a vitellogenesis-inducing contaminant—and combinations thereof. Treatment with the individual stressors evoked the expected responses in the respective physiological target systems—body growth, immune system, and hepatic vitellogenin transcription—but we found little evidence for significant negative relations (trade-offs) between the three systems. This also applied to fish exposed to combinations of the stressors. This high phenotypic flexibility of trout in their resource allocation suggests that linear resource allocations as mechanisms of phenotypic plasticity may be too simplistic, but it also may point to a greater capacity of ectothermic than endothermic vertebrates to maintain key physiological processes under competing resource needs due to lower maintenance costs.
Collapse
|
6
|
Hildebrandt JP, Wiesenthal AA, Müller C. Phenotypic Plasticity in Animals Exposed to Osmotic Stress - Is it Always Adaptive? Bioessays 2018; 40:e1800069. [PMID: 30160800 DOI: 10.1002/bies.201800069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/03/2018] [Indexed: 01/03/2023]
Abstract
Hyperplasia and hypertrophy are elements of phenotypic plasticity adjusting organ size and function. Because they are costly, we assume that they are beneficial. In this review, the authors discuss examples of tissue and organ systems that respond with plastic changes to osmotic stress to raise awareness that we do not always have sufficient experimental evidence to conclude that such processes provide fitness advantages. Changes in hydranth architecture in the hydroid Cordylophora caspia or variations in size in the anal papillae of insect larvae upon changes in medium salinity may be adaptive or not. The restructuring of salt glands in ducklings upon salt-loading is an example of phenotypic plasticity which indeed seems beneficial. As the genomes of model species are recently sequenced and the animals are easy to rear, these species are suitable study objects to investigate the biological significance of phenotypic plasticity and to study potential epigenetic and other mechanisms underlying phenotypic changes.
Collapse
Affiliation(s)
- Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Amanda A Wiesenthal
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| |
Collapse
|
7
|
Adaptive Transcriptome Profiling of Subterranean Zokor, Myospalax baileyi, to High- Altitude Stresses in Tibet. Sci Rep 2018; 8:4671. [PMID: 29549310 PMCID: PMC5856782 DOI: 10.1038/s41598-018-22483-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 01/30/2018] [Indexed: 11/20/2022] Open
Abstract
Animals living at high altitudes have evolved distinct phenotypic and genotypic adaptations against stressful environments. We studied the adaptive patterns of altitudinal stresses on transcriptome turnover in subterranean plateau zokors (Myospalax baileyi) in the high-altitude Qinghai-Tibetan Plateau. Transcriptomes of zokors from three populations with distinct altitudes and ecologies (Low: 2846 m, Middle: 3282 m, High: 3,714 m) were sequenced and compared. Phylogenetic and principal component analyses classified them into three divergent altitudinal population clusters. Genetic polymorphisms showed that the population at H, approaching the uppermost species boundary, harbors the highest genetic polymorphism. Moreover, 1056 highly up-regulated UniGenes were identified from M to H. Gene ontologies reveal genes like EPAS1 and COX1 were overexpressed under hypoxia conditions. EPAS1, EGLN1, and COX1 were convergent in high-altitude adaptation against stresses in other species. The fixation indices (FST and GST)-based outlier analysis identified 191 and 211 genes, highly differentiated among L, M, and H. We observed adaptive transcriptome changes in Myospalax baileyi, across a few hundred meters, near the uppermost species boundary, regardless of their relatively stable underground burrows’ microclimate. The highly variant genes identified in Myospalax were involved in hypoxia tolerance, hypercapnia tolerance, ATP-pathway energetics, and temperature changes.
Collapse
|
8
|
Eissa N, Wang HP, Yao H, Shen ZG, Shaheen AA, Abou-ElGheit EN. Expression of Hsp70, Igf1, and Three Oxidative Stress Biomarkers in Response to Handling and Salt Treatment at Different Water Temperatures in Yellow Perch, Perca flavescens. Front Physiol 2017; 8:683. [PMID: 28955246 PMCID: PMC5601044 DOI: 10.3389/fphys.2017.00683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/25/2017] [Indexed: 11/13/2022] Open
Abstract
Stress is a major factor that causes diseases and mortality in the aquaculture industry. The goal was to analyze the expression of stress-related biomarkers in response to different stressors in yellow perch, which is an important aquaculture candidate in North America and highly sensitive to handling in captivity. Three fish groups were established, each having four replicates, and subjected to water temperatures of 14, 20, and 26°C and acute handling stress was performed followed by a salt treatment for 144h at a salinity of 5 ppt. Serum and hepatic mRNA levels of heat shock protein (hsp70), insulin-like growth factor 1 (Igf1), glutathione peroxidase (Gpx), superoxide dismutase 1 (Sod1), and glutathione reductase (Gsr) were quantified at seven times interval over 144 h using ELISA and RT-qPCR. Handling stress caused a significant down-regulation in Hsp70, Gpx, Sod1, and Gsr at a water temperature of 20°C compared to 14 and 26°C. Igf1 was significantly upregulated at 20°C and down-regulated at 14 and 26°C. Salt treatment had a transient reverse effect on the targeted biomarkers in all groups at 72 h, then caused an upregulation after 144 h, compared to the control groups. The data showed a negative strong regulatory linear relationship between igf1 with hsp70 and anti-oxidative gene expressions. These findings could provide valuable new insights into the stress responses that affect fish health and could be used to monitor the stress.
Collapse
Affiliation(s)
- Nour Eissa
- Aquaculture Genetics and Breeding Laboratory, Ohio State UniversityPiketon, OH, United States.,Department of Immunology, College of Medicine, University of ManitobaWinnipeg, MB, Canada
| | - Han-Ping Wang
- Aquaculture Genetics and Breeding Laboratory, Ohio State UniversityPiketon, OH, United States
| | - Hong Yao
- Aquaculture Genetics and Breeding Laboratory, Ohio State UniversityPiketon, OH, United States
| | - Zhi-Gang Shen
- Aquaculture Genetics and Breeding Laboratory, Ohio State UniversityPiketon, OH, United States
| | - Adel A Shaheen
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Benha UniversityToukh, Egypt
| | - Elsayed N Abou-ElGheit
- Aquatic Diseases Laboratory, Aquaculture Division, National Institute of Oceanography and FisheriesCairo, Egypt
| |
Collapse
|
9
|
Rey S, Ribas L, Morera Capdevila D, Callol A, Huntingford FA, Pilarczyk M, Kadri S, MacKenzie S. Differential responses to environmental challenge by common carp Cyprinus carpio highlight the importance of coping style in integrative physiology. JOURNAL OF FISH BIOLOGY 2016; 88:1056-69. [PMID: 26762295 DOI: 10.1111/jfb.12877] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/17/2015] [Indexed: 05/18/2023]
Abstract
Common carp Cyprinus carpio displaying proactive or reactive stress coping styles were acclimated to two environmental regimes (low oxygen and low temperature), and selected groups were tested for response to an inflammatory challenge (Escherichia coli lipopolysaccharide, LPS). Plasma glucose and lactate levels were measured, as were selected C. carpio-specific messenger (m)RNA transcript abundance, including cortisol receptor (CR), enolase (ENO), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and interleukin-1-beta (IL1β) was measured in individual whole brain samples. Basal levels (in sham injected fish held in normoxic conditions at 25° C) of plasma lactate and glucose differed between coping styles, being significantly lower in proactive individuals. Both variables increased in response to LPS challenge, with the exception of plasma glucose in reactive fish held in hypoxia. Baseline levels of gene expression under control conditions were significantly different for GAPDH between behavioural phenotypes. The responses to experimental challenge were sometimes diametrically opposed between stress-coping styles in a transcript-specific manner. For CR and GAPDH, for example, the response to LPS injection in hypoxia were opposite between proactive and reactive animals. Proactive fish showed decreased CR and increased GAPDH, whereas reactive showed the opposite response. These results further highlight that screening for stress-coping styles prior to experiments in adaptive physiology can significantly affect the interpretation of data obtained. Further, this leads to a more finely tuned analytical output providing an improved understanding of variation in individual responses to both environmental and inflammatory challenge.
Collapse
Affiliation(s)
- S Rey
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire, FK9 4LA, U.K
| | - L Ribas
- Institut de Ciencies del Mar, Renewable Marine Resources Department, E-08003, Barcelona, Spain
| | - D Morera Capdevila
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
| | - A Callol
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
| | - F A Huntingford
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - M Pilarczyk
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture, Zaborze ul. Kalinowa2, 43-520, Chybie, Poland
| | - S Kadri
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - S MacKenzie
- Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), 08193, Spain
- Institute of Aquaculture, University of Stirling, Stirling, Stirlingshire, FK9 4LA, U.K
| |
Collapse
|
10
|
Metzger DCH, Schulte PM. Epigenomics in marine fishes. Mar Genomics 2016; 30:43-54. [PMID: 26833273 DOI: 10.1016/j.margen.2016.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/31/2022]
Abstract
Epigenetic mechanisms are an underappreciated and often ignored component of an organism's response to environmental change and may underlie many types of phenotypic plasticity. Recent technological advances in methods for detecting epigenetic marks at a whole-genome scale have launched new opportunities for studying epigenomics in ecologically relevant non-model systems. The study of ecological epigenomics holds great promise to better understand the linkages between genotype, phenotype, and the environment and to explore mechanisms of phenotypic plasticity. The many attributes of marine fish species, including their high diversity, variable life histories, high fecundity, impressive plasticity, and economic value provide unique opportunities for studying epigenetic mechanisms in an environmental context. To provide a primer on epigenomic research for fish biologists, we start by describing fundamental aspects of epigenetics, focusing on the most widely studied and most well understood of the epigenetic marks: DNA methylation. We then describe the techniques that have been used to investigate DNA methylation in marine fishes to date and highlight some new techniques that hold great promise for future studies. Epigenomic research in marine fishes is in its early stages, so we first briefly discuss what has been learned about the establishment, maintenance, and function of DNA methylation in fishes from studies in zebrafish and then summarize the studies demonstrating the pervasive effects of the environment on the epigenomes of marine fishes. We conclude by highlighting the potential for ongoing research on the epigenomics of marine fishes to reveal critical aspects of the interaction between organisms and their environments.
Collapse
Affiliation(s)
- David C H Metzger
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Patricia M Schulte
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
11
|
Díaz N, Piferrer F. Lasting effects of early exposure to temperature on the gonadal transcriptome at the time of sex differentiation in the European sea bass, a fish with mixed genetic and environmental sex determination. BMC Genomics 2015; 16:679. [PMID: 26338702 PMCID: PMC4560065 DOI: 10.1186/s12864-015-1862-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/18/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Sex in fish is plastic and in several species can be influenced by environmental factors. In sensitive species, elevated temperatures have a masculinizing effect. Previous studies on the effects of temperature on gene expression have been restricted to a few cognate genes, mostly related to testis or ovarian development, and analyzed in gonads once they had completed the process of sex differentiation. However, studies on the effect of temperature at the whole gonadal transcriptomic level are scarce in fish and, in addition, temperature effects at the time of sex differentiation at the transcriptomic level are also unknown. Here, we used the European sea bass, a gonochoristic teleost with a polygenic sex determination system influenced by temperature, and exposed larvae to elevated temperature during the period of early gonad formation. Transcriptomic analysis of the gonads was carried out about three months after the end of temperature exposure, shortly after the beginning of the process of sex differentiation. RESULTS Elevated temperature doubled the number of males with respect to untreated controls. Transcriptomic analysis of early differentiating female gonads showed how heat caused: 1) an up-regulation of genes related to cholesterol transport (star), the stress response (nr3c1) and testis differentiation (amh, dmrt, etc.), 2) a decrease in the expression of genes related to ovarian differentiation such as cyp19a1a, and 3) an increase in the expression of several genes related to epigenetic regulatory mechanisms (hdac11, dicer1, ehmt2, jarid2a, pcgf2, suz12, mettl22). CONCLUSIONS Taken together, the results of this study contribute to the understanding of how the early environment sets permanent changes that result in long-lasting consequences, in this case in the sexual phenotype. Results also show the usefulness of comparing the effects of heat on the behavior of cognate genes related to sex differentiation as well as that of genes involved in establishing and maintaining cell identity through epigenetic mechanisms.
Collapse
Affiliation(s)
- Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003, Barcelona, Spain.,Present address: Max Planck Institute for Molecular Biomedicine, 48149, Münster, Germany
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim, 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
12
|
Rowley SJ, Pochon X, Watling L. Environmental influences on the Indo-Pacific octocoral Isis hippuris Linnaeus 1758 (Alcyonacea: Isididae): genetic fixation or phenotypic plasticity? PeerJ 2015; 3:e1128. [PMID: 26312170 PMCID: PMC4548502 DOI: 10.7717/peerj.1128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/05/2015] [Indexed: 01/28/2023] Open
Abstract
As conspicuous modular components of benthic marine habitats, gorgonian (sea fan) octocorals have perplexed taxonomists for centuries through their shear diversity, particularly throughout the Indo–Pacific. Phenotypic incongruence within and between seemingly unitary lineages across contrasting environments can provide the raw material to investigate processes of disruptive selection. Two distinct phenotypes of the Isidid Isis hippurisLinnaeus, 1758 partition between differing reef environments: long-branched bushy colonies on degraded reefs, and short-branched multi/planar colonies on healthy reefs within the Wakatobi Marine National Park (WMNP), Indonesia. Multivariate analyses reveal phenotypic traits between morphotypes were likely integrated primarily at the colony level with increased polyp density and consistently smaller sclerite dimensions at the degraded site. Sediment load and turbidity, hence light availability, primarily influenced phenotypic differences between the two sites. This distinct morphological dissimilarity between the two sites is a reliable indicator of reef health; selection primarily acting on colony morphology, porosity through branching structure, as well as sclerite diversity and size. ITS2 sequence and predicted RNA secondary structure further revealed intraspecific variation between I. hippuris morphotypes relative to such environments (ΦST = 0.7683, P < 0.001). This evidence suggests—but does not confirm—that I. hippuris morphotypes within the WMNP are two separate species; however, to what extent and taxonomic assignment requires further investigation across its full geographic distribution. Incongruence between colonies present in the WMNP with tenuously described Isis alternatives (Isis reticulataNutting, 1910, Isis minorbrachyblastaZou, Huang & Wang, 1991), questions the validity of such assignments. Furthermore, phylogenetic analyses confirm early taxonomic suggestion that the characteristic jointed axis of the Isididae is in fact a convergent trait. Thus the polyphyletic nature of the Isididae lies in its type species I. hippuris, being unrelated to the rest of its family members.
Collapse
Affiliation(s)
- Sonia J Rowley
- Department of Geology and Geophysics, University of Hawai'i at Mānoa , Honolulu, HI , USA ; Department of Natural Sciences, Bernice Pauahi Bishop Museum , HI , USA
| | - Xavier Pochon
- Coastal and Freshwater Group, Cawthron Institute , Nelson , New Zealand ; Institute of Marine Science, University of Auckland , Auckland , New Zealand
| | - Les Watling
- Department of Biology, University of Hawai'i at Mānoa , Honolulu, HI , USA ; Darling Marine Center, University of Maine , Walpole, ME , USA
| |
Collapse
|
13
|
Transcriptome Analysis to Identify Cold-Responsive Genes in Amur Carp (Cyprinus carpio haematopterus). PLoS One 2015; 10:e0130526. [PMID: 26098567 PMCID: PMC4476670 DOI: 10.1371/journal.pone.0130526] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/21/2015] [Indexed: 11/19/2022] Open
Abstract
The adaptation of fish to low temperatures is the result of long-term evolution. Amur carp (Cyprinus carpio haematopterus) survives low temperatures (0-4°C) for six months per year. Therefore, we chose this fish as a model organism to study the mechanisms of cold-adaptive responses using high-throughput sequencing technology. This system provided an excellent model for exploring the relationship between evolutionary genomic changes and environmental adaptations. The Amur carp transcriptome was sequenced using the Illumina platform and was assembled into 163,121 cDNA contigs, with an average read length of 594 bp and an N50 length of 913 bp. A total of 162,339 coding sequences (CDSs) were identified and of 32,730 unique CDSs were annotated. Gene Ontology (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to classify all CDSs into different functional categories. A large number of cold-responsive genes were detected in different tissues at different temperatures. A total of 9,427 microsatellites were identified and classified, with 1952 identifying in cold-responsive genes. Based on GO enrichment analysis of the cold-induced genes, “protein localization” and “protein transport” were the most highly represented biological processes. “Circadian rhythm,” “protein processing in endoplasmic reticulum,” “endocytosis,” “insulin signaling pathway,” and “lysosome” were the most highly enriched pathways for the genes induced by cold stress. Our data greatly contribute to the common carp (C. carpio) transcriptome resource, and the identification of cold-responsive genes in different tissues at different temperatures will aid in deciphering the genetic basis of ecological and environmental adaptations in this species. Based on our results, the Amur carp has evolved special strategies to survive low temperatures, and these strategies include the system-wide or tissue-specific induction of gene expression during their six-month overwintering period.
Collapse
|
14
|
Evans TG. Considerations for the use of transcriptomics in identifying the ‘genes that matter’ for environmental adaptation. J Exp Biol 2015; 218:1925-35. [DOI: 10.1242/jeb.114306] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ABSTRACT
Transcriptomics has emerged as a powerful approach for exploring physiological responses to the environment. However, like any other experimental approach, transcriptomics has its limitations. Transcriptomics has been criticized as an inappropriate method to identify genes with large impacts on adaptive responses to the environment because: (1) genes with large impacts on fitness are rare; (2) a large change in gene expression does not necessarily equate to a large effect on fitness; and (3) protein activity is most relevant to fitness, and mRNA abundance is an unreliable indicator of protein activity. In this review, these criticisms are re-evaluated in the context of recent systems-level experiments that provide new insight into the relationship between gene expression and fitness during environmental stress. In general, these criticisms remain valid today, and indicate that exclusively using transcriptomics to screen for genes that underlie environmental adaptation will overlook constitutively expressed regulatory genes that play major roles in setting tolerance limits. Standard practices in transcriptomic data analysis pipelines may also be limiting insight by prioritizing highly differentially expressed and conserved genes over those genes that undergo moderate fold-changes and cannot be annotated. While these data certainly do not undermine the continued and widespread use of transcriptomics within environmental physiology, they do highlight the types of research questions for which transcriptomics is best suited and the need for more gene functional analyses. Such information is pertinent at a time when transcriptomics has become increasingly tractable and many researchers may be contemplating integrating transcriptomics into their research programs.
Collapse
|
15
|
Dayan DI, Crawford DL, Oleksiak MF. Phenotypic plasticity in gene expression contributes to divergence of locally adapted populations ofFundulus heteroclitus. Mol Ecol 2015; 24:3345-59. [DOI: 10.1111/mec.13188] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 03/13/2015] [Accepted: 03/19/2015] [Indexed: 01/08/2023]
Affiliation(s)
- David I. Dayan
- Marine Biology and Fisheries; Rosenstiel School of Marine and Atmospheric Sciences; University of Miami; 4600 Rickenbacker Causeway Miami FL 33149 USA
| | - Douglas L. Crawford
- Marine Biology and Fisheries; Rosenstiel School of Marine and Atmospheric Sciences; University of Miami; 4600 Rickenbacker Causeway Miami FL 33149 USA
| | - Marjorie F. Oleksiak
- Marine Biology and Fisheries; Rosenstiel School of Marine and Atmospheric Sciences; University of Miami; 4600 Rickenbacker Causeway Miami FL 33149 USA
| |
Collapse
|
16
|
Evans TG, Padilla-Gamiño JL, Kelly MW, Pespeni MH, Chan F, Menge BA, Gaylord B, Hill TM, Russell AD, Palumbi SR, Sanford E, Hofmann GE. Ocean acidification research in the 'post-genomic' era: Roadmaps from the purple sea urchin Strongylocentrotus purpuratus. Comp Biochem Physiol A Mol Integr Physiol 2015; 185:33-42. [PMID: 25773301 DOI: 10.1016/j.cbpa.2015.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/07/2015] [Accepted: 03/08/2015] [Indexed: 01/26/2023]
Abstract
Advances in nucleic acid sequencing technology are removing obstacles that historically prevented use of genomics within ocean change biology. As one of the first marine calcifiers to have its genome sequenced, purple sea urchins (Strongylocentrotus purpuratus) have been the subject of early research exploring genomic responses to ocean acidification, work that points to future experiments and illustrates the value of expanding genomic resources to other marine organisms in this new 'post-genomic' era. This review presents case studies of S. purpuratus demonstrating the ability of genomic experiments to address major knowledge gaps within ocean acidification. Ocean acidification research has focused largely on species vulnerability, and studies exploring mechanistic bases of tolerance toward low pH seawater are comparatively few. Transcriptomic responses to high pCO₂ seawater in a population of urchins already encountering low pH conditions have cast light on traits required for success in future oceans. Secondly, there is relatively little information on whether marine organisms possess the capacity to adapt to oceans progressively decreasing in pH. Genomics offers powerful methods to investigate evolutionary responses to ocean acidification and recent work in S. purpuratus has identified genes under selection in acidified seawater. Finally, relatively few ocean acidification experiments investigate how shifts in seawater pH combine with other environmental factors to influence organism performance. In S. purpuratus, transcriptomics has provided insight into physiological responses of urchins exposed simultaneously to warmer and more acidic seawater. Collectively, these data support that similar breakthroughs will occur as genomic resources are developed for other marine species.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Biological Sciences, California State University East Bay, Hayward, CA 94542, USA.
| | | | - Morgan W Kelly
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Melissa H Pespeni
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - Francis Chan
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331-2914, USA
| | - Bruce A Menge
- Department of Integrative Biology, Oregon State University, Corvallis, OR 97331-2914, USA
| | - Brian Gaylord
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Tessa M Hill
- Department of Geology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Ann D Russell
- Department of Geology, University of California Davis, Davis, CA 95616, USA
| | - Stephen R Palumbi
- Department of Biology, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950, USA
| | - Eric Sanford
- Department of Evolution and Ecology and Bodega Marine Laboratory, University of California Davis, Bodega Bay, CA 94923, USA
| | - Gretchen E Hofmann
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA
| |
Collapse
|
17
|
Ebert TA, Hernández JC, Clemente S. Annual reversible plasticity of feeding structures: cyclical changes of jaw allometry in a sea urchin. Proc Biol Sci 2014; 281:20132284. [PMID: 24500161 DOI: 10.1098/rspb.2013.2284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A wide variety of organisms show morphologically plastic responses to environmental stressors but in general these changes are not reversible. Though less common, reversible morphological structures are shown by a range of species in response to changes in predators, competitors or food. Theoretical analysis indicates that reversible plasticity increases fitness if organisms are long-lived relative to the frequency of changes in the stressor and morphological changes are rapid. Many sea urchin species show differences in the sizes of jaws (demi-pyramids) of the feeding apparatus, Aristotle's lantern, relative to overall body size, and these differences have been correlated with available food. The question addressed here is whether reversible changes of relative jaw size occur in the field as available food changes with season. Monthly samples of the North American Pacific coast sea urchin Strongylocentrotus purpuratus were collected from Gregory Point on the Oregon (USA) coast and showed an annual cycle of relative jaw size together with a linear trend from 2007 to 2009. Strongylocentrotus purpuratus is a long-lived species and under field conditions individuals experience multiple episodes of changes in food resources both seasonally and from year to year. Their rapid and reversible jaw plasticity fits well with theoretical expectations.
Collapse
Affiliation(s)
- Thomas A Ebert
- Department of Zoology, Oregon State University, , Corvallis, OR 97331, USA, Department of Biology, Villanova University, , Villanova, PA 19085, USA
| | | | | |
Collapse
|
18
|
Doherty MK, Owen MAG, Davies SJ, Young IS, Whitfield PD. Assessment of Global Proteome Dynamics in Carp: A Model for Investigating Environmental Stress. J Proteome Res 2013; 12:5246-52. [DOI: 10.1021/pr4006475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mary K. Doherty
- Proteome Analysis
Facility, University of the Highlands and Islands, Inverness, IV2 3JH, United Kingdom
| | - Matthew A. G. Owen
- Fish Nutrition
and Health Research Group, School of Biological and Biomedical Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - Simon J. Davies
- Fish Nutrition
and Health Research Group, School of Biological and Biomedical Sciences, University of Plymouth, Plymouth, PL4 8AA, United Kingdom
| | - Iain S. Young
- Institute of Integrative
Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - Phillip D. Whitfield
- Proteome Analysis
Facility, University of the Highlands and Islands, Inverness, IV2 3JH, United Kingdom
| |
Collapse
|
19
|
Imbrogno S. The eel heart: multilevel insights into functional organ plasticity. J Exp Biol 2013; 216:3575-86. [DOI: 10.1242/jeb.089292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Summary
The remarkable functional homogeneity of the heart as an organ requires a well-coordinated myocardial heterogeneity. An example is represented by the selective sensitivity of the different cardiac cells to physical (i.e. shear stress and/or stretch) or chemical stimuli (e.g. catecholamines, angiotensin II, natriuretic peptides, etc.), and the cell-specific synthesis and release of these substances. The biological significance of the cardiac heterogeneity has recently received great attention in attempts to dissect the complexity of the mechanisms that control the cardiac form and function. A useful approach in this regard is to identify natural models of cardiac plasticity. Among fishes, eels (genus Anguilla), for their adaptive and acclimatory abilities, represent a group of animals so far largely used to explore the structural and ultrastructural myoarchitecture organization, as well as the complex molecular networks involved in the modulation of the heart function, such as those converting environmental signals into physiological responses. However, an overview on the existing current knowledge of eel cardiac form and function is not yet available. In this context, this review will illustrate major features of eel cardiac organization and pumping performance. Aspects of autocrine–paracrine modulation and the influence of factors such as body growth, exercise, hypoxia and temperature will highlight the power of the eel heart as an experimental model useful to decipher how the cardiac morpho-functional heterogeneities may support the uniformity of the whole-organ mechanics.
Collapse
Affiliation(s)
- Sandra Imbrogno
- Department of Biology, Ecology and Earth Sciences (BEST), University of Calabria, Italy
| |
Collapse
|
20
|
Nagasawa K, Tanizaki Y, Okui T, Watarai A, Ueda S, Kato T. Significant modulation of the hepatic proteome induced by exposure to low temperature in Xenopus laevis. Biol Open 2013; 2:1057-69. [PMID: 24167716 PMCID: PMC3798189 DOI: 10.1242/bio.20136106] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 07/22/2013] [Indexed: 01/24/2023] Open
Abstract
The African clawed frog, Xenopus laevis, is an ectothermic vertebrate that can survive at low environmental temperatures. To gain insight into the molecular events induced by low body temperature, liver proteins were evaluated at the standard laboratory rearing temperature (22°C, control) and a low environmental temperature (5°C, cold exposure). Using nano-flow liquid chromatography coupled with tandem mass spectrometry, we identified 58 proteins that differed in abundance. A subsequent Gene Ontology analysis revealed that the tyrosine and phenylalanine catabolic processes were modulated by cold exposure, which resulted in decreases in hepatic tyrosine and phenylalanine, respectively. Similarly, levels of pyruvate kinase and enolase, which are involved in glycolysis and glycogen synthesis, were also decreased, whereas levels of glycogen phosphorylase, which participates in glycogenolysis, were increased. Therefore, we measured metabolites in the respective pathways and found that levels of hepatic glycogen and glucose were decreased. Although the liver was under oxidative stress because of iron accumulation caused by hepatic erythrocyte destruction, the hepatic NADPH/NADP ratio was not changed. Thus, glycogen is probably utilized mainly for NADPH supply rather than for energy or glucose production. In conclusion, X. laevis responds to low body temperature by modulating its hepatic proteome, which results in altered carbohydrate metabolism.
Collapse
Affiliation(s)
- Kazumichi Nagasawa
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering, Center for Advanced Life and Medical Science, Waseda University , TWIns Building, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480 , Japan
| | | | | | | | | | | |
Collapse
|
21
|
Dunlap WC, Starcevic A, Baranasic D, Diminic J, Zucko J, Gacesa R, van Oppen MJH, Hranueli D, Cullum J, Long PF. KEGG orthology-based annotation of the predicted proteome of Acropora digitifera: ZoophyteBase - an open access and searchable database of a coral genome. BMC Genomics 2013; 14:509. [PMID: 23889801 PMCID: PMC3750612 DOI: 10.1186/1471-2164-14-509] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Contemporary coral reef research has firmly established that a genomic approach is urgently needed to better understand the effects of anthropogenic environmental stress and global climate change on coral holobiont interactions. Here we present KEGG orthology-based annotation of the complete genome sequence of the scleractinian coral Acropora digitifera and provide the first comprehensive view of the genome of a reef-building coral by applying advanced bioinformatics. DESCRIPTION Sequences from the KEGG database of protein function were used to construct hidden Markov models. These models were used to search the predicted proteome of A. digitifera to establish complete genomic annotation. The annotated dataset is published in ZoophyteBase, an open access format with different options for searching the data. A particularly useful feature is the ability to use a Google-like search engine that links query words to protein attributes. We present features of the annotation that underpin the molecular structure of key processes of coral physiology that include (1) regulatory proteins of symbiosis, (2) planula and early developmental proteins, (3) neural messengers, receptors and sensory proteins, (4) calcification and Ca2+-signalling proteins, (5) plant-derived proteins, (6) proteins of nitrogen metabolism, (7) DNA repair proteins, (8) stress response proteins, (9) antioxidant and redox-protective proteins, (10) proteins of cellular apoptosis, (11) microbial symbioses and pathogenicity proteins, (12) proteins of viral pathogenicity, (13) toxins and venom, (14) proteins of the chemical defensome and (15) coral epigenetics. CONCLUSIONS We advocate that providing annotation in an open-access searchable database available to the public domain will give an unprecedented foundation to interrogate the fundamental molecular structure and interactions of coral symbiosis and allow critical questions to be addressed at the genomic level based on combined aspects of evolutionary, developmental, metabolic, and environmental perspectives.
Collapse
Affiliation(s)
- Walter C Dunlap
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Antonio Starcevic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Damir Baranasic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Janko Diminic
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Jurica Zucko
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Ranko Gacesa
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Madeleine JH van Oppen
- Centre for Marine Microbiology and Genetics, Australian Institute of Marine Science, PMB No. 3 Townsville MC, Townsville 4810, Queensland, Australia
| | - Daslav Hranueli
- Section for Bioinformatics, Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| | - John Cullum
- Department of Genetics, University of Kaiserslautern, Postfach 3049, 67653 Kaiserslautern, Germany
| | - Paul F Long
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
- Department of Chemistry King’s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
22
|
Bay LK, Guérécheau A, Andreakis N, Ulstrup KE, Matz MV. Gene expression signatures of energetic acclimatisation in the reef building coral Acropora millepora. PLoS One 2013; 8:e61736. [PMID: 23671571 PMCID: PMC3650039 DOI: 10.1371/journal.pone.0061736] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/13/2013] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Understanding the mechanisms by which natural populations cope with environmental stress is paramount to predict their persistence in the face of escalating anthropogenic impacts. Reef-building corals are increasingly exposed to local and global stressors that alter nutritional status causing reduced fitness and mortality, however, these responses can vary considerably across species and populations. METHODOLOGY/PRINCIPAL FINDINGS We compare the expression of 22 coral host genes in individuals from an inshore and an offshore reef location using quantitative Reverse Transcription-PCR (qRT-PCR) over the course of 26 days following translocation into a shaded, filtered seawater environment. Declines in lipid content and PSII activity of the algal endosymbionts (Symbiodinium ITS-1 type C2) over the course of the experiment indicated that heterotrophic uptake and photosynthesis were limited, creating nutritional deprivation conditions. Regulation of coral host genes involved in metabolism, CO2 transport and oxidative stress could be detected already after five days, whereas PSII activity took twice as long to respond. Opposing expression trajectories of Tgl, which releases fatty acids from the triacylglycerol storage, and Dgat1, which catalyses the formation of triglycerides, indicate that the decline in lipid content can be attributed, at least in part, by mobilisation of triacylglycerol stores. Corals from the inshore location had initially higher lipid content and showed consistently elevated expression levels of two genes involved in metabolism (aldehyde dehydrogenase) and calcification (carbonic anhydrase). CONCLUSIONS/SIGNIFICANCE Coral host gene expression adjusts rapidly upon change in nutritional conditions, and therefore can serve as an early signature of imminent coral stress. Consistent gene expression differences between populations indicate that corals acclimatize and/or adapt to local environments. Our results set the stage for analysis of these processes in natural coral populations, to better understand the responses of coral communities to global climate change and to develop more efficient management strategies.
Collapse
Affiliation(s)
- Line K Bay
- Climate Change and Ocean Acidification Team, Australian Institute of Marine Science, Townsville, Queensland, Australia.
| | | | | | | | | |
Collapse
|
23
|
Wertheim B, Beukeboom L, van de Zande L. Polyploidy in Animals: Effects of Gene Expression on Sex Determination, Evolution and Ecology. Cytogenet Genome Res 2013; 140:256-69. [DOI: 10.1159/000351998] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
24
|
Robinson N, Sahoo PK, Baranski M, Das Mahapatra K, Saha JN, Das S, Mishra Y, Das P, Barman HK, Eknath AE. Expressed sequences and polymorphisms in rohu carp (Labeo rohita, Hamilton) revealed by mRNA-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:620-33. [PMID: 22298294 DOI: 10.1007/s10126-012-9433-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 12/23/2011] [Indexed: 05/31/2023]
Abstract
Expressed genes and polymorphisms were identified in lines of rohu Labeo rohita selected for resistance or susceptibility to Aeromonas hydrophila, an important bacterial pathogen causing aeromoniasis. All animals were grown in a common environment and RNA from ten individuals from each line pooled for Illumina mRNA-seq. De novo transcriptome assembly produced 137,629 contigs with 40× average coverage.Forty-four percent of the assembled sequences were annotated with gene names and ontology terms. Of these, 3,419 were assigned biological process terms related to "stress response" and 1,939 "immune system". Twenty-six contigs containing 38 single nucleotide polymorphisms (SNPs) were found to map to the Cyprinus carpio mitochondrial genome and over 26,000 putative SNPs and 1,700 microsatellite loci were detected. Seventeen percent of the 100 transcripts with coverage data most indicative of higher-fold expression(>5.6 fold) in the resistant line pool showed homology to major histocompatibility (MH), heat shock proteins (HSP)30, 70 and 90, glycoproteins or serum lectin genes with putative functions affecting immune response. Forty-one percent of these 100 transcripts showed no or low homology to known genes. Of the SNPs identified, 96 showing the highest allele frequency differences between susceptible and resistant line fish included transcripts with homology to MH class I and galactoside-binding soluble lectin, also with putative functions affecting innate and acquired immune response. A comprehensive sequence resource for L. rohita, including annotated microsatellites and SNPs from a mixture of A. hydrophila-susceptible and -resistant individuals, was created for subsequent experiments aiming to identify genes associated with A. hydrophila resistance.
Collapse
|
25
|
Reynolds JA, Poelchau MF, Rahman Z, Armbruster PA, Denlinger DL. Transcript profiling reveals mechanisms for lipid conservation during diapause in the mosquito, Aedes albopictus. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:966-73. [PMID: 22579567 PMCID: PMC3389261 DOI: 10.1016/j.jinsphys.2012.04.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 05/20/2023]
Abstract
The Asian tiger mosquito, Aedes albopictus, is a medically important invasive species whose geographic distribution has expanded dramatically during the past 20 years, and one of the key elements of its success is its capacity to survive long distance transport as a diapausing pharate first instar larva, encased within the chorion of the egg. We report that pharate larvae entering diapause are larger and contain 30% more lipid than their nondiapausing counterparts. To improve our understanding of the molecular regulation of lipid metabolism during diapause, we assessed the relative mRNA abundance of 21 genes using qRT-PCR. Elevated expression of lipid storage droplet protein 2 during embryonic development likely contributes to the higher amounts of lipid we noted in diapausing individuals. The conservation of lipids during diapause is reflected in downregulation of genes involved in lipid catabolism, including lipase 2, lipase 3, lipase 4, acyl-CoA dehydrogenase 4, and isovaleryl-CoA dehydrogenase. Two genes involved in fatty acid synthesis and modification, Δ(9)-desaturase, and fatty acyl-CoA elongase, were both upregulated in diapausing pharate larvae, suggesting roles for their gene products in generating unsaturated fatty acids to enhance membrane fluidity at low temperatures and generating precursors to the surface hydrocarbons needed to resist desiccation, respectively. Together, the results point to substantial distinctions in lipid metabolism within the embryo as a consequence of the diapause program, and these differences occur both before the actual onset of diapause as well as during the diapause state.
Collapse
Affiliation(s)
- Julie A Reynolds
- Department of Entomology, The Ohio State University, Columbus, OH, USA.
| | | | | | | | | |
Collapse
|
26
|
Evans TG, Hofmann GE. Defining the limits of physiological plasticity: how gene expression can assess and predict the consequences of ocean change. Philos Trans R Soc Lond B Biol Sci 2012; 367:1733-45. [PMID: 22566679 PMCID: PMC3350660 DOI: 10.1098/rstb.2012.0019] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Anthropogenic stressors, such as climate change, are driving fundamental shifts in the abiotic characteristics of marine ecosystems. As the environmental aspects of our world's oceans deviate from evolved norms, of major concern is whether extant marine species possess the capacity to cope with such rapid change. In what many scientists consider the post-genomic era, tools that exploit the availability of DNA sequence information are being increasingly recognized as relevant to questions surrounding ocean change and marine conservation. In this review, we highlight the application of high-throughput gene-expression profiling, primarily transcriptomics, to the field of marine conservation physiology. Through the use of case studies, we illustrate how gene expression can be used to standardize metrics of sub-lethal stress, track organism condition in natural environments and bypass phylogenetic barriers that hinder the application of other physiological techniques to conservation. When coupled with fine-scale monitoring of environmental variables, gene-expression profiling provides a powerful approach to conservation capable of informing diverse issues related to ocean change, from coral bleaching to the spread of invasive species. Integrating novel approaches capable of improving existing conservation strategies, including gene-expression profiling, will be critical to ensuring the ecological and economic health of the global ocean.
Collapse
Affiliation(s)
- Tyler G Evans
- Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA.
| | | |
Collapse
|
27
|
Kelly SA, Panhuis TM, Stoehr AM. Phenotypic Plasticity: Molecular Mechanisms and Adaptive Significance. Compr Physiol 2012; 2:1417-39. [DOI: 10.1002/cphy.c110008] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
28
|
Tine M, Guinand B, Durand JD. Variation in gene expression along a salinity gradient in wild populations of the euryhaline black-chinned tilapia Sarotherodon melanotheron. JOURNAL OF FISH BIOLOGY 2012; 80:785-801. [PMID: 22471799 DOI: 10.1111/j.1095-8649.2012.03220.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study evaluated variation in expression of 11 genes within and among six wild populations of the black-chinned tilapia Sarotherodon melanotheron distributed along a salinity gradient from 0 to 100. Previous laboratory studies had shown that expression of these genes was sensitive to water salinity; the current study confirmed that a number of them also varied in expression in wild populations along the salinity gradient. Principal component analysis (PCA) first distinguished two, not mutually exclusive, sets of genes: trade-off genes that were highly expressed at one or other extreme of the salinity gradient and stress genes that were up-regulated at the two salinity extremes (i.e. a U-shaped expression pattern). The PCA clearly partitioned the populations into three groups based on their gene expression patterns and their position along the salinity gradient: a freshwater (GL; 0) population, four brackish and seawater (GB, HB, SM, SF; ranging from 20 to 50) populations and a hypersaline (SK, 100) population. Individual variation in gene expression was significantly greater within the populations at the extreme compared to intermediate salinities. These results reveal phenotypically plastic regulation of gene expression in S. melanotheron, and greater osmoregulatory and plasticity costs at extreme salinities, where fitness-related traits are known to be altered.
Collapse
Affiliation(s)
- M Tine
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, D-14195 Berlin, Germany.
| | | | | |
Collapse
|
29
|
Prunet P, Øverli Ø, Douxfils J, Bernardini G, Kestemont P, Baron D. Fish welfare and genomics. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:43-60. [PMID: 21671026 DOI: 10.1007/s10695-011-9522-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/31/2011] [Indexed: 05/30/2023]
Abstract
There is a considerable public and scientific debate concerning welfare of fish in aquaculture. In this review, we will consider fish welfare as an integration of physiological, behavioral, and cognitive/emotional responses, all of which are essentially adaptative responses to stressful situations. An overview of fish welfare in this context suggests that understanding will rely on knowledge of all components of allostatic responses to stress and environmental perturbations. The development of genomic technologies provides new approaches to this task, exemplified by how genome-wide analysis of genetic structures and corresponding expression patterns can lead to the discovery of new aspects of adaptative responses. We will illustrate how the genomic approach may give rise to new biomarkers for fish welfare and also increase our understanding of the interaction between physiological, behavioral, and emotional responses. In a first part, we present data on expression of candidate genes selected a priori. This is a common avenue to develop molecular biomarkers capable of diagnosing a stress condition at its earliest onset, in order to allow quick corrective intervention in an aquaculture setting. However, most of these studies address isolated physiological functions and stress responses that may not be truly indicative of animal welfare, and there is only rudimentary understanding of genes related to possible cognitive and emotional responses in fish. We also present an overview on transcriptomic analysis related to the effect of aquaculture stressors, environmental changes (temperature, salinity, hypoxia), or concerning specific behavioral patterns. These studies illustrate the potential of genomic approaches to characterize the complexity of the molecular mechanisms which underlies not only physiological but also behavioral responses in relation to fish welfare. Thirdly, we address proteomic studies on biological responses to stressors such as salinity change and hypoxia. We will also consider proteomic studies developed in mammals in relation to anxiety and depressive status which may lead to new potential candidates in fish. Finally, in the conclusion, we will suggest new developments to facilitate an integrated view of fish welfare. This includes use of laser microdissection in the transcriptomic/proteomic studies, development of meta-analysis methods for extracting information from genomic data sets, and implementation of technological advances for high-throughput proteomic studies. Development of these new approaches should be as productive for our understanding of the biological processes underlying fish welfare as it has been for the progress of pathophysiological research.
Collapse
Affiliation(s)
- P Prunet
- UR1037 SCRIBE, IFR140, INRA, Campus de Beaulieu, Rennes, France.
| | | | | | | | | | | |
Collapse
|
30
|
Giordano D, Russo R, di Prisco G, Verde C. Molecular adaptations in Antarctic fish and marine microorganisms. Mar Genomics 2011; 6:1-6. [PMID: 22578653 DOI: 10.1016/j.margen.2011.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/01/2011] [Accepted: 09/07/2011] [Indexed: 01/10/2023]
Abstract
The Antarctic marine environment is one of the most extreme on Earth due to its stably low temperature and high oxygen content. Here we discuss various aspects of the molecular adaptations evolved by Antarctic fish and marine microorganisms living in this environment. This review will in particular focus on: (i) the genetic/genomic bases of adaptation in Antarctic notothenioid fish; (ii) the role of neuroglobin recently identified in the brain of Antarctic icefish; (iii) the structural and functional features of globins of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Protein Biochemistry, CNR, Via Pietro Castellino 111, I-80131 Naples, Italy
| | | | | | | |
Collapse
|
31
|
The evolutionary functions of cardiac NOS/NO in vertebrates tracked by fish and amphibian paradigms. Nitric Oxide 2011; 25:1-10. [DOI: 10.1016/j.niox.2011.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/15/2011] [Accepted: 05/01/2011] [Indexed: 11/23/2022]
|
32
|
Tota B, Angelone T, Mancardi D, Cerra MC. Hypoxia and anoxia tolerance of vertebrate hearts: an evolutionary perspective. Antioxid Redox Signal 2011; 14:851-62. [PMID: 20518703 DOI: 10.1089/ars.2010.3310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Extreme changes in environmental oxygen (O(2)) is a constant issue that ectotherm vertebrates have to deal with, whereas for endotherms severe hypoxia and reoxygenation are usually related to a pathological state. The physiological mechanisms of hypoxia tolerance in ectotherms are based on biochemical evolutionary adaptations and may serve in understanding endogenous phenomena of protection against diminished O(2) availability in the heart. In this review, we will, therefore, describe different species of fish, amphibian, and reptile that are well-known examples of cardiac tolerance to O(2) deficiency. We will then focus on a subset of Antarctic fishes which have lost physiological transporters of O(2) such as hemoglobin and myoglobin (Mb) and that have reached a surprising adaptation to this extreme environment. Moreover, we will concentrate on the cardio-protective effects of the interaction between Mb and nitric oxide with particular emphasis on the nitrite-reductase function of Mb. Finally, the role of a recently described gasotransmitter, the free diffusible hydrogen sulfide, will be briefly discussed in relation to hypoxia. This evolutionary and comparative perspective may provide a useful and heuristic stimulus for medically oriented research aimed at elucidating the environmental and genetic risk factors underlying the vulnerability of the human heart.
Collapse
Affiliation(s)
- Bruno Tota
- Laboratory of Cardiovascular Physiology, Department of Cell Biology, University of Calabria, Arcavacata di Rende, Italy.
| | | | | | | |
Collapse
|
33
|
Larsen PF, Schulte PM, Nielsen EE. Gene expression analysis for the identification of selection and local adaptation in fishes. JOURNAL OF FISH BIOLOGY 2011; 78:1-22. [PMID: 21235543 DOI: 10.1111/j.1095-8649.2010.02834.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In recent years, variation in gene expression has been recognized as an important component of environmental adaptation in multiple model species, including a few fish species. There is, however, still little known about the genetic basis of adaptation in gene expression resulting from variation in the aquatic environment (e.g. temperature, salinity and oxygen) and the physiological effect and costs of such differences in gene expression. This review presents and discusses progress and pitfalls of applying gene expression analyses to fishes and suggests simple frameworks to get started with gene expression analysis. It is emphasized that well-planned gene expression studies can serve as an important tool for the identification of selection in local populations of fishes, even for non-traditional model species where limited genomic information is available. Recent studies focusing on gene expression variation among natural fish populations are reviewed, highlighting the latest applications that combine genetic evidence from neutral markers and gene expression data.
Collapse
Affiliation(s)
- P F Larsen
- Department of Biological Sciences, Aarhus Universit, Ny Munkegade, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
34
|
Aerobic and anaerobic metabolism for the zebrafish, Danio rerio, reared under normoxic and hypoxic conditions and exposed to acute hypoxia during development. BRAZ J BIOL 2010; 70:425-34. [PMID: 20549070 DOI: 10.1590/s1519-69842010000200027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 05/06/2009] [Indexed: 11/22/2022] Open
Abstract
In order to verify the influence of chronic and acute ambient oxygen levels from egg to adult stage of the zebrafish, in vivo oxygen consumption (MO2), critical tensions of oxygen (Pcrit), heart rate (fH) and total body lactate concentration (Lc) were determined for Danio rerio (Hamilton, 1822) raised at 28 degrees C under normoxic (7.5 mgO2.L-1 or 80 mm.Hg-1) and hypoxic conditions (4.3 mgO2.L-1) and exposed to acute hypoxia during different developmental stages. Our findings confirmed that very early stages do not respond effectively to ambient acute hypoxia. However, after the stage corresponding to the age of 30 days, D. rerio was able to respond to acute hypoxia through effective physiological mechanisms involving aerobic and anaerobic metabolism. Such responses were more efficient for the fishes reared under hypoxia which showed that D. rerio survival capability increased during acclimation to mild hypoxia. Measurements of body mass and length showed that moderate hypoxia did not affect growth significantly until the fish reached the stage of 60 days. Moreover, a growth delay was verified for the hypoxic-reared animals. Also, the D. rerio eggs-to-larvae survival varied from 87.7 to 62.4% in animals reared under normoxia and mild hypoxia, respectively. However, the surviving animals raised under moderated hypoxia showed a better aptitude to regulate aerobic and anaerobic capacities when exposed to acute hypoxia.
Collapse
|
35
|
Tota B, Cerra MC, Gattuso A. Catecholamines, cardiac natriuretic peptides and chromogranin A: evolution and physiopathology of a 'whip-brake' system of the endocrine heart. ACTA ACUST UNITED AC 2010; 213:3081-103. [PMID: 20802109 DOI: 10.1242/jeb.027391] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past 50 years, extensive evidence has shown the ability of vertebrate cardiac non-neuronal cells to synthesize and release catecholamines (CA). This formed the mindset behind the search for the intrinsic endocrine heart properties, culminating in 1981 with the discovery of the natriuretic peptides (NP). CA and NP, co-existing in the endocrine secretion granules and acting as major cardiovascular regulators in health and disease, have become of great biomedical relevance for their potent diagnostic and therapeutic use. The concept of the endocrine heart was later enriched by the identification of a growing number of cardiac hormonal substances involved in organ modulation under normal and stress-induced conditions. Recently, chromogranin A (CgA), a major constituent of the secretory granules, and its derived cardio-suppressive and antiadrenergic peptides, vasostatin-1 and catestatin, were shown as new players in this framework, functioning as cardiac counter-regulators in 'zero steady-state error' homeostasis, particularly under intense excitatory stimuli, e.g. CA-induced myocardial stress. Here, we present evidence for the hypothesis that is gaining support, particularly among human cardiologists. The actions of CA, NP and CgA, we argue, may be viewed as a hallmark of the cardiac capacity to organize 'whip-brake' connection-integration processes in spatio-temporal networks. The involvement of the nitric oxide synthase (NOS)/nitric oxide (NO) system in this configuration is discussed. The use of fish and amphibian paradigms will illustrate the ways that incipient endocrine-humoral agents have evolved as components of cardiac molecular loops and important intermediates during evolutionary transitions, or in a distinct phylogenetic lineage, or under stress challenges. This may help to grasp the old evolutionary roots of these intracardiac endocrine/paracrine networks and how they have evolved from relatively less complicated designs. The latter can also be used as an intellectual tool to disentangle the experimental complexity of the mammalian and human endocrine hearts, suggesting future investigational avenues.
Collapse
Affiliation(s)
- Bruno Tota
- Department of Cell Biology, University of Calabria, 87030, Arcavacata di Rende, Italy.
| | | | | |
Collapse
|
36
|
WERTHEIM BREGJE, KRAAIJEVELD ALEXR, HOPKINS MEIRIONG, WALTHER BOER MARK, GODFRAY HCHARLESJ. Functional genomics of the evolution of increased resistance to parasitism in Drosophila. Mol Ecol 2010; 20:932-49. [DOI: 10.1111/j.1365-294x.2010.04911.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Richards RC, Short CE, Driedzic WR, Ewart KV. Seasonal changes in hepatic gene expression reveal modulation of multiple processes in rainbow smelt (Osmerus mordax). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:650-663. [PMID: 20107851 DOI: 10.1007/s10126-009-9252-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 11/23/2009] [Indexed: 05/28/2023]
Abstract
Rainbow smelt (Osmerus mordax) are freeze-resistant fish that accumulate glycerol and produce an antifreeze protein during winter. Quantitative reverse transcription PCR (qPCR) and subtractive hybridization studies have previously revealed five genes in rainbow smelt liver to be differentially regulated in winter in comparison with the fall when water temperatures are warmer. In order to further define the suite of processes that are regulated seasonally, we undertook a large-scale analysis of gene expression by hybridization of smelt cDNA to the salmonid 16K cGRASP microarray. In total, 69 genes were identified as up-regulated and 14 genes as down-regulated under winter conditions. A subset of these genes was examined for differential regulation by qPCR in the individual cDNA samples that were pooled for microarray analysis. Ten of the 15 genes tested showed significant change in the same direction as microarray results, whereas one showed significant change in the opposite direction. Fructose-bisphosphate aldolase B and the cytosolic NAD-dependent glycerol-3-phosphate dehydrogenase were among the most highly up-regulated genes, a result supporting a metabolic focus on glycerol synthesis during winter. Modulation of other processes, including endoplasmic reticulum stress, lipid metabolism and transport, and protein synthesis, was also suggested by the qPCR analysis of array-identified genes. The 15 genes were subsequently examined by qPCR for seasonal variation in expression over five sampling times between October and March, and ten showed significant variation in expression over the sampling period. Taken together, these results provide new understanding of the biochemical adaptations of vertebrates to an extremely low seasonal temperature.
Collapse
Affiliation(s)
- Robert C Richards
- Institute for Marine Biosciences, National Research Council, Halifax, NS, Canada
| | | | | | | |
Collapse
|
38
|
Araya I, Nardocci G, Morales J, Vera M, Molina A, Alvarez M. MacroH2A subtypes contribute antagonistically to the transcriptional regulation of the ribosomal cistron during seasonal acclimatization of the carp fish. Epigenetics Chromatin 2010; 3:14. [PMID: 20670405 PMCID: PMC2919529 DOI: 10.1186/1756-8935-3-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 07/29/2010] [Indexed: 11/18/2022] Open
Abstract
Background Incorporation of histone variants into chromatin is one of the epigenetic mechanisms used for regulation of gene expression. Macro (m)H2A is a histone variant that has two different subtypes in vertebrates: mH2A1 and mH2A2. It is known that mH2A is associated with gene silencing, but recent studies indicate that these mH2A subtypes could contribute more widely to transcriptional regulation. We have previously demonstrated that the gene-reprogramming response mediates adaptation of the carp fish to its environment, and that ribosomal gene transcription is seasonally regulated in carp. However, there have been few studies investigating how epigenetic mechanisms contribute to environmental adaptation and, in particular, to ribosomal cistron regulation. Results In this paper, we report the occurrence of differential incorporation of mH2A subtypes into chromatin during seasonal adaptation in the carp, an event that concurs with opposing transcriptional states. Moreover, we observed that enrichment of mH2A1 in the ribosomal cistron during winter, and conversely, enrichment of mH2A2 during summer. mH2A1 consistently colocalizes with a heterochromatin marker (H3K27me2; histone H3 trimethylated at lysine 27) and mH2A2 with a euchromatin marker (H3K4me3; histone H3 trimethylated at lysine 4). Similar results were found for the L41gene, with enrichment of mH2A in the promoter region. Conclusions We have characterized both mH2A subtypes from carp fish, and evaluated their participation in the regulation of the ribosomal cistron. Our findings indicate that differential incorporation of mH2A subtypes into the ribosome could regulate gene expression during the acclimatization process in carp. Our results reveal differential chromatin incorporation of the mH2A subtypes during the environmental adaptation process, correlating wtih antagonistic transcriptional states in the carp ribosomal cistron.
Collapse
Affiliation(s)
- I Araya
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Avenida República 217, MIFAB, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
39
|
Vergauwen L, Benoot D, Blust R, Knapen D. Long-term warm or cold acclimation elicits a specific transcriptional response and affects energy metabolism in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:149-57. [PMID: 20541617 DOI: 10.1016/j.cbpa.2010.06.160] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/03/2010] [Accepted: 06/03/2010] [Indexed: 12/29/2022]
Abstract
Organisms are often forced to acclimate to changing environmental temperature. Temperature compensation mechanisms have been reported, which enable organisms to minimize some of the temperature related effects. To investigate this process, zebrafish (Danio rerio) were acclimated to a control (26 degrees C), an increased (34 degrees C) or a decreased (18 degrees C) temperature for 4, 14 and 28 days. In general, warm acclimation depleted energy stores and decreased the condition factor, while cold acclimation increased both. The energy parameters as well as the transcriptional responses (investigated using printed 15k microarrays and real time PCR) indicated that warm acclimation was particularly stressful. However, after 28 days of warm acclimation, energy stores had recovered from the initial depletion. This could have been facilitated by the observed downregulation of transcripts involved in catabolic processes. Transcriptional regulation seemed to be an important means of coordinating the temperature compensation process. We could distinguish an early response which was independent of the direction of the temperature change and a direction specific long-term response. The early response was characterized by the upregulation of defence mechanisms, tissue regeneration and hemopoiesis. In the long-term response there was a strong emphasis on compensating for the altered metabolic rate as well as cell structure and replacement.
Collapse
|
40
|
Mykles DL, Ghalambor CK, Stillman JH, Tomanek L. Grand Challenges in Comparative Physiology: Integration Across Disciplines and Across Levels of Biological Organization. Integr Comp Biol 2010; 50:6-16. [DOI: 10.1093/icb/icq015] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
41
|
The significance of genome-wide transcriptional regulation in the evolution of stress tolerance. Evol Ecol 2010. [DOI: 10.1007/s10682-009-9345-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Reynolds JA, Hand SC. Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius. ACTA ACUST UNITED AC 2009; 212:2075-84. [PMID: 19525434 DOI: 10.1242/jeb.027367] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Embryos of the ground cricket, Allonemobius socius, enter diapause 4-5 days post-oviposition and overwinter in this dormant state that is characterized by developmental arrest. Suppressive subtractive hybridization and quantitative real-time PCR reveal eight candidate genes in pre-diapause embryos that show promise as regulators of diapause entry, when compared with embryos not destined for diapause. Identifications are based both on the magnitude/consistency of differential mRNA abundances and the predicted functions of their products when placed in context of the physiological and biochemical events of diapause characterized in our companion paper. The proteins CYP450, AKR and RACK1 (associated with ecdysteroid synthesis and signaling) are consistently upregulated in pre-diapause, followed by major downregulation later in diapause. The pattern suggests that elevated ecdysone may facilitate onset of diapause in A. socius. Upregulation seen for the transcription factors Reptin and TFDp2 may serve to depress transcription and cell cycle progression. Cathpesin B-like protease, ACLY and MSP are three downregulated genes associated with yolk mobilization and/or metabolism that we predict may promote lipid sparing. Finally, embryos that have been in diapause for 10 days show a substantially different pattern of mRNA expression compared with either pre-diapause or embryos not destined for diapause, with the majority of mRNAs examined being downregulated. These transcript levels in later diapause suggest that a number of upregulated genes in pre-diapause are transiently expressed and are less essential as diapause progresses.
Collapse
Affiliation(s)
- Julie A Reynolds
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
43
|
Aubin-Horth N, Renn SCP. Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol 2009; 18:3763-80. [PMID: 19732339 DOI: 10.1111/j.1365-294x.2009.04313.x] [Citation(s) in RCA: 234] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenotypic plasticity is the development of different phenotypes from a single genotype, depending on the environment. Such plasticity is a pervasive feature of life, is observed for various traits and is often argued to be the result of natural selection. A thorough study of phenotypic plasticity should thus include an ecological and an evolutionary perspective. Recent advances in large-scale gene expression technology make it possible to also study plasticity from a molecular perspective, and the addition of these data will help answer long-standing questions about this widespread phenomenon. In this review, we present examples of integrative studies that illustrate the molecular and cellular mechanisms underlying plastic traits, and show how new techniques will grow in importance in the study of these plastic molecular processes. These techniques include: (i) heterologous hybridization to DNA microarrays; (ii) next generation sequencing technologies applied to transcriptomics; (iii) techniques for studying the function of noncoding small RNAs; and (iv) proteomic tools. We also present recent studies on genetic model systems that uncover how environmental cues triggering different plastic responses are sensed and integrated by the organism. Finally, we describe recent work on changes in gene expression in response to an environmental cue that persist after the cue is removed. Such long-term responses are made possible by epigenetic molecular mechanisms, including DNA methylation. The results of these current studies help us outline future avenues for the study of plasticity.
Collapse
Affiliation(s)
- Nadia Aubin-Horth
- Département de Sciences biologiques, Université de Montréal, Québec, Canada.
| | | |
Collapse
|
44
|
Bay LK, Ulstrup KE, Nielsen HB, Jarmer H, Goffard N, Willis BL, Miller DJ, Van Oppen MJH. Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora. Mol Ecol 2009; 18:3062-75. [PMID: 19538339 DOI: 10.1111/j.1365-294x.2009.04257.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We investigated variation in transcript abundance in the scleractinian coral, Acropora millepora, within and between populations characteristically exposed to different turbidity regimes and hence different levels of light and suspended particulate matter. We examined phenotypic plasticity by comparing levels of gene expression between source populations and following 10 days of acclimatization to a laboratory environment. Analyses of variance revealed that 0.05% of genes were differentially expressed between source populations, 1.32% following translocation into a common laboratory and 0.07% in the interaction (source population-dependent responses to translocation). Functional analyses identified an over-representation of differentially expressed genes associated with metabolism and fluorescence categories (primarily downregulated), and environmental information processing (primarily upregulated) following translocation to a lower light and turbidity environment. Such metabolic downregulation may indicate nonoxidative stress, hibernation or caloric restriction associated with the changed environmental conditions. Green fluorescent protein-related genes were the most differentially expressed and were exclusively downregulated; however, green fluorescent protein levels remained unchanged following translocation. Photophysiological responses of corals from both locations were characterized by a decline when introduced to the common laboratory environment but remained healthy (F(v)/F(m) > 0.6). Declines in total lipid content following translocation were the greatest for inshore corals, suggesting that turbid water corals have a strong reliance on heterotrophic feeding.
Collapse
Affiliation(s)
- Line K Bay
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld 4811, Australia
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Garofalo F, Pellegrino D, Amelio D, Tota B. The Antarctic hemoglobinless icefish, fifty five years later: a unique cardiocirculatory interplay of disaptation and phenotypic plasticity. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:10-28. [PMID: 19401238 DOI: 10.1016/j.cbpa.2009.04.621] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/17/2009] [Accepted: 04/18/2009] [Indexed: 11/18/2022]
Abstract
The teleostean Channichthyidae (icefish), endemic stenotherms of the Antarctic waters, perennially at or near freezing, represent a unique example of disaptation among adult vertebrates for their loss of functional traits, particularly hemoglobin (Hb) and, in some species, cardiac myoglobin (Mb), once considered to be essential-life oxygen-binding chromoproteins. Conceivably, this stably frigid, oxygen-rich habitat has permitted high tolerance of disaptation, followed by subsequent adaptive recovery based on gene expression reprogramming and compensatory responses, including an alternative cardio-circulatory design, Hb-free blood and Mb-free cardiac muscle. This review revisits the functional significance of the multilevel cardio-circulatory compensations (hypervolemia, near-zero hematocrit and low blood viscosity, large bore capillaries, increased vascularity with great capacitance, cardiomegaly with very large cardiac output, high blood flow with low systemic pressure and systemic resistance) that counteract the challenge of hypoxemic hypoxia by increasing peripheral oxygen transcellular movement for aerobic tissues, including the myocardium. Reconsidered in the context of recent knowledge on both polar cold adaptation and the new questions related to the advent of nitric oxide (NO) biology, these compensations can be interpreted either according to the "loss-without-penalty" alternative, or in the context of an excessive environmental oxygen supply at low cellular cost and oxygen requirement in the cold. Therefore, rather than reflecting oxygen limitation, several traits may indicate structural overcompensation of oxygen supply reductions at cell/tissue levels. At the multilevel cardio-circulatory adjustments, NO is revealing itself as a major integrator, compensating disaptation with functional phenotypic plasticity, as illustrated by the heart paradigm. Beside NOS-dependent NO generation, recent knowledge concerning Hb/Mb interplay with NO and nitrite has revealed unexpected functions in addition to the classical respiratory role of these proteins. In fact, nitrite, a major biologic reservoir of NO, generates it through deohyHb- and deoxyMb-dependent nitrite reduction, thereby regulating hypoxic vasodilation, cellular respiration and signalling. We suggest that both Hb and Mb are involved as nitrite reductases under hypoxic conditions in a number of cardiocirculatory processes. On the whole, this opens new horizons in environmental and evolutionary physiology.
Collapse
Affiliation(s)
- F Garofalo
- Ponte Pietro Bucci cubo 6c, Department of Cellular Biology, University of Calabria, 87030, Arcavacata di Rende, CS, Italy.
| | | | | | | |
Collapse
|
46
|
Kassahn KS, Crozier RH, Pörtner HO, Caley MJ. Animal performance and stress: responses and tolerance limits at different levels of biological organisation. Biol Rev Camb Philos Soc 2009; 84:277-92. [PMID: 19344429 DOI: 10.1111/j.1469-185x.2008.00073.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent advances in molecular biology and the use of DNA microarrays for gene expression profiling are providing new insights into the animal stress response, particularly the effects of stress on gene regulation. However, interpretation of the complex transcriptional changes that occur during stress still poses many challenges because the relationship between changes at the transcriptional level and other levels of biological organisation is not well understood. To confront these challenges, a conceptual model linking physiological and transcriptional responses to stress would be helpful. Here, we provide the basis for one such model by synthesising data from organismal, endocrine, cellular, molecular, and genomic studies. We show using available examples from ectothermic vertebrates that reduced oxygen levels and oxidative stress are common to many stress conditions and that the responses to different types of stress, such as environmental, handling and confinement stress, often converge at the challenge of dealing with oxygen imbalance and oxidative stress. As a result, a common set of stress responses exists that is largely independent of the type of stressor applied. These common responses include the repair of DNA and protein damage, cell cycle arrest or apoptosis, changes in cellular metabolism that reflect the transition from a state of cellular growth to one of cellular repair, the release of stress hormones, changes in mitochondrial densities and properties, changes in oxygen transport capacities and changes in cardio-respiratory function. Changes at the transcriptional level recapitulate these common responses, with many stress-responsive genes functioning in cell cycle control, regulation of transcription, protein turnover, metabolism, and cellular repair. These common transcriptional responses to stress appear coordinated by only a limited number of stress-inducible and redox-sensitive transcription factors and signal transduction pathways, such as the immediate early genes c-fos and c-jun, the transcription factors NFkappaB and HIF-1alpha, and the JNK and p38 kinase signalling pathways. As an example of environmental stress responses, we present temperature response curves at organismal, cellular and molecular levels. Acclimation and physiological adjustments that can shift the threshold temperatures for the onset of these responses are discussed and include, for example, adjustments of the oxygen delivery system, the heat shock response, cellular repair system, and transcriptome. Ultimately, however, an organism's ability to cope with environmental change is largely determined by its ability to maintain aerobic scope and to prevent loss in performance. These systemic constraints can determine an organism's long-term survival well before cellular and molecular functions are disturbed. The conceptual model we propose here discusses some of the crosslinks between responses at different levels of biological organisation and the central role of oxygen balance and oxidative stress in eliciting these responses with the aim to help the interpretation of environmental genomic data in the context of organismal function and performance.
Collapse
Affiliation(s)
- Karin S Kassahn
- School of Marine and Tropical Biology, James Cook University, Townsville, QLD 4811, Australia.
| | | | | | | |
Collapse
|
47
|
Seasonal expressed sequence tags of rainbow smelt (Osmerus mordax) revealed by subtractive hybridization and the identification of two genes up-regulated during winter. Gene 2008; 424:56-62. [DOI: 10.1016/j.gene.2008.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 07/16/2008] [Accepted: 08/05/2008] [Indexed: 10/21/2022]
|
48
|
Prunet P, Cairns MT, Winberg S, Pottinger TG. Functional Genomics of Stress Responses in Fish. ACTA ACUST UNITED AC 2008. [DOI: 10.1080/10641260802341838] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Hardman RC, Kullman SW, Hinton DE. Non invasive in vivo investigation of hepatobiliary structure and function in STII medaka (Oryzias latipes): methodology and applications. COMPARATIVE HEPATOLOGY 2008; 7:7. [PMID: 18838008 PMCID: PMC2586619 DOI: 10.1186/1476-5926-7-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 10/06/2008] [Indexed: 01/13/2023]
Abstract
Background A novel transparent stock of medaka (Oryzias latipes; STII), recessive for all pigments found in chromatophores, permits transcutaneous imaging of internal organs and tissues in living individuals. Findings presented describe the development of methodologies for non invasive in vivo investigation in STII medaka, and the successful application of these methodologies to in vivo study of hepatobiliary structure, function, and xenobiotic response, in both 2 and 3 dimensions. Results Using brightfield, and widefield and confocal fluorescence microscopy, coupled with the in vivo application of fluorescent probes, structural and functional features of the hepatobiliary system, and xenobiotic induced toxicity, were imaged at the cellular level, with high resolution (< 1 μm), in living individuals. The findings presented demonstrate; (1) phenotypic response to xenobiotic exposure can be investigated/imaged in vivo with high resolution (< 1 μm), (2) hepatobiliary transport of solutes from blood to bile can be qualitatively and quantitatively studied/imaged in vivo, (3) hepatobiliary architecture in this lower vertebrate liver can be studied in 3 dimensions, and (4) non invasive in vivo imaging/description of hepatobiliary development in this model can be investigated. Conclusion The non-invasive in vivo methodologies described are a unique means by which to investigate biological structure, function and xenobiotic response with high resolution in STII medaka. In vivo methodologies also provide the future opportunity to integrate molecular mechanisms (e.g., genomic, proteomic) of disease and toxicity with phenotypic changes at the cellular and system levels of biological organization. While our focus has been the hepatobiliary system, other organ systems are equally amenable to in vivo study, and we consider the potential for discovery, within the context of in vivo investigation in STII medaka, as significant.
Collapse
Affiliation(s)
- Ron C Hardman
- Duke University, Environmental Sciences and Policy Division, Nicholas School of the Environment and Earth Sciences, LSRC A333, Durham, NC, USA.
| | | | | |
Collapse
|
50
|
Paterson S. Zoologists learning to love molecules An introduction to molecular ecology 2nd edition. (2008). by Trevor Beebee and Graham Rowe Oxford University Press. Oxford: 384 pp. ISBN 978-0-19-929205-9. Bioessays 2008. [DOI: 10.1002/bies.20818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|