1
|
Durhack TC, Thorstensen MJ, Mackey TE, Aminot M, Lawrence MJ, Audet C, Enders EC, Jeffries KM. Behavioural responses to acute warming precede critical shifts in the cellular and physiological thermal stress responses in a salmonid fish (brook trout, Salvelinus fontinalis). J Exp Biol 2025; 228:JEB249964. [PMID: 39774845 DOI: 10.1242/jeb.249964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
From a conservation perspective, it is important to identify when sub-lethal temperatures begin to adversely impact an organism. However, it is unclear whether, during acute exposures, sub-lethal cellular thresholds occur at similar temperatures to other physiological or behavioural changes, or at temperatures associated with common physiological endpoints measured in fishes to estimate thermal tolerance. To test this, we estimated temperature preference (15.1±1.1°C, mean±s.d.) using a shuttle box, agitation temperature (22.0±1.4°C), defined as the point where a fish exhibits a behavioural avoidance response, and the upper thermal limit (CTmax, 28.2±0.4°C) for 1 year old brook trout (Salvelinus fontinalis) acclimated to 10°C. We then acutely exposed a different subset of fish to the mean temperatures associated with the pre-determined physiological endpoints and sampled tissues when they reached the target temperature or after 60 min of recovery at 10°C for transcriptomic analysis. We used qPCR to estimate mRNA transcript levels of genes associated with heat shock proteins, oxidative stress, apoptosis and inducible transcription factors. A major shift in the transcriptome response occurred once the agitation temperature was reached, which may identify a possible link between the cellular stress response and the behavioural avoidance response.
Collapse
Affiliation(s)
- Travis C Durhack
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, Canada, R3T 2N6
| | | | | | | | - Michael J Lawrence
- Fisheries and Oceans Canada, Freshwater Institute, 501 University Crescent, Winnipeg, MB, Canada, R3T 2N6
| | - Céline Audet
- Université du Québec à Rimouski, Rimouski, QC, Canada, G5L 3A1
| | - Eva C Enders
- Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, Quebec, QC, Canada, G1K 9A9
| | | |
Collapse
|
2
|
Miyata K, Inoue Y, Yamane M, Honda H. Fish environmental RNA sequencing sensitively captures accumulative stress responses through short-term aquarium sampling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178182. [PMID: 39719761 DOI: 10.1016/j.scitotenv.2024.178182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
The utility of environmental RNA (eRNA) in capturing biological responses to stresses has been discussed previously; however, the limited number of genes detected remains a significant hindrance to its widespread implementation. Here, we investigated the potential of eRNA to assess the health status of Japanese medaka fish exposed to linear alkylbenzene sulfonate. Analyzing eRNA and organismal RNA (oRNA) in aquarium water within 12 h, we achieved high mapping rates and 10 times more differentially expressed genes than previously reported. This advancement has facilitated the previously unattainable capability of gene ontology (GO) analysis. The GO analysis revealed that eRNA can detect nuclear genes associated with cellular components and reflect cumulative gene expression signatures over time, while oRNA provided short-term gene expression signatures in biological process. Moreover, eRNA exhibited high sensitivity in responding to genes associated with sphingolipid and ceramide biosynthesis, which are involved in inflammatory responses possibly originating from impaired cells. This finding aligns with the observations made in oRNA. In conclusion, eRNA-sequencing (eRNA-seq) using aquarium water emerges as a valuable high sensitivity tool for analyzing physiological stress. The findings of this study lay the foundation for further development of eRNA-seq technologies.
Collapse
Affiliation(s)
- Kaede Miyata
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan.
| | - Yasuaki Inoue
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan.
| | - Masayuki Yamane
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| | - Hiroshi Honda
- R&D Safety Science Research, Kao Corporation, Ichikai-Machi, Haga-Gun, Tochigi 321-3497, Japan
| |
Collapse
|
3
|
Palmer RM, Sandbach A, Buckley BA. Tissue-specific effects of temperature and salinity on the cell cycle and apoptosis in the Nile Tilapia (Oreochromis niloticus). Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111706. [PMID: 39033849 DOI: 10.1016/j.cbpa.2024.111706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 07/23/2024]
Abstract
The Nile Tilapia (Oreochromis niloticus) evolved in warm, freshwater rivers, but possesses a broad physiological tolerance to a range of environmental conditions. Due to this hardiness and resilience, this species has been successfully introduced to regions widely outside of its native range. Here, we examine the impact of temperature and salinity variation on this species at the sub-lethal level. Specifically, Nile Tilapia were exposed to two temperatures (21 °C or 14 °C) and three salinities (0, 16, 34 ppt) for 1-h. Given their native habitat, the 21 °C / 0 ppt exposure was considered the control condition. Both cell cycle arrest and apoptosis represent sub-lethal but deleterious responses to environmental stress. Flow cytometry was used to assess the percentage of cells in a given stage of the cell cycle as a metric of cell cycle arrest in spleen and liver. Percentage of apoptotic cells were also quantified. Spleen was more sensitive to cold stress, demonstrating an increase in cells in the G2/M phase after experimental treatment. Liver, however, was more sensitive to salinity stress, with a significant increase in cells stalled in G2/M phase at higher salinities, which is in keeping with the freshwater evolutionary history of the species. A modest apoptotic signal was observed in liver but not in spleen. Together, these findings demonstrate that even short, acute exposures to cold temperatures and elevated salinity can cause sub-lethal damage in a species that is otherwise tolerant of environmental stress at the whole organism level.
Collapse
Affiliation(s)
- Rachel M Palmer
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland 97207, United States
| | - Arika Sandbach
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland 97207, United States
| | - Bradley A Buckley
- Department of Biology, Center for Life in Extreme Environments, Portland State University, Portland 97207, United States.
| |
Collapse
|
4
|
Yu K, Song X, Zhang J, Chen R, Liu G, Xu X, Lu X, Ning J, Liu B, Zhang X, Wang F, Wang Y, Wang C. Transcriptomic profiling of the thermal tolerance in two subspecies of the bay scallop Argopecten irradians. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 51:101246. [PMID: 38781887 DOI: 10.1016/j.cbd.2024.101246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/08/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The bay scallop is a eurythermal species with high economic value and now represents the most cultured bivalve species in China. Two subspecies of the bay scallop, the northern subspecies Argopecten irradians irradians Korean population (KK) and the southern subspecies Argopecten irradians concentricus (MM), exhibited distinct adaptations to heat stress. However, the molecular mechanism of heat resistance of the two subspecies remains unclear. In this study, we compared the transcriptomic responses of the two subspecies to heat stress and identified the involved differentially expressed genes (DEGs) and pathways. More DEGs were found in the KK than in the MM when exposed to high temperatures, indicating elevated sensitivity to thermal stress in the KK. Enrichment analysis suggests that KK scallops may respond to heat stress more swiftly by regulating GTPase activity. Meanwhile, MM scallops exhibited higher resistance to heat stress mainly by effective activation of their antioxidant system. Chaperone proteins may play different roles in responses to heat stress in the two subspecies. In both subspecies, the expression levels of antioxidants such as GST were significantly increased; the glycolysis process regulated by PC and PCK1 was greatly intensified; and both apoptotic and anti-apoptotic systems were significantly activated. The pathways related to protein translation and hydrolysis, oxidoreductase activity, organic acid metabolism, and cell apoptosis may also play pivotal roles in the responses to heat stress. The results of this study may provide a theoretical basis for marker-assisted breeding of heat-resistant strains.
Collapse
Affiliation(s)
- Kai Yu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xinyu Song
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Jianbai Zhang
- Yantai Marine Economic Research Institute, Yantai 265503, China
| | - Rongjie Chen
- Laizhou Marine Development and Fishery Service Center, Laizhou, Shandong 261400, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed Co., Ltd., Yantai, Shandong 265503, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed Co., Ltd., Yantai, Shandong 265503, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
| | - Bo Liu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xiaotong Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Fukai Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yinchu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; National Basic Science Data Center, Beijing 100190, China.
| | - Chunde Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China.
| |
Collapse
|
5
|
Mikucki EE, O’Leary TS, Lockwood BL. Heat tolerance, oxidative stress response tuning and robust gene activation in early-stage Drosophila melanogaster embryos. Proc Biol Sci 2024; 291:20240973. [PMID: 39163981 PMCID: PMC11335408 DOI: 10.1098/rspb.2024.0973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/11/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
In organisms with complex life cycles, life stages that are most susceptible to environmental stress may determine species persistence in the face of climate change. Early embryos of Drosophila melanogaster are particularly sensitive to acute heat stress, yet tropical embryos have higher heat tolerance than temperate embryos, suggesting adaptive variation in embryonic heat tolerance. We compared transcriptomic responses to heat stress among tropical and temperate embryos to elucidate the gene regulatory basis of divergence in embryonic heat tolerance. The transcriptomes of tropical and temperate embryos differed in both constitutive and heat-stress-induced responses of the expression of relatively few genes, including genes involved in oxidative stress. Most of the transcriptomic response to heat stress was shared among all embryos. Embryos shifted the expression of thousands of genes, including increases in the expression of heat shock genes, suggesting robust zygotic gene activation and demonstrating that, contrary to previous reports, early embryos are not transcriptionally silent. The involvement of oxidative stress genes corroborates recent reports on the critical role of redox homeostasis in coordinating developmental transitions. By characterizing adaptive variation in the transcriptomic basis of embryonic heat tolerance, this study is a novel contribution to the literature on developmental physiology and developmental genetics.
Collapse
Affiliation(s)
- Emily E. Mikucki
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | | | |
Collapse
|
6
|
Li M, Gao F, Zhu L, Li J, Xiang J, Xi Y, Xiang X. Geographic origin shapes the adaptive divergences of Rotaria rotatoria (Rotifera, Bdelloidea) to thermal stress: Insights from ecology and transcriptomics. Ecol Evol 2024; 14:e11307. [PMID: 38665893 PMCID: PMC11043679 DOI: 10.1002/ece3.11307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/25/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Global warming has raised concerns regarding the potential impact on aquatic biosafety and health. To illuminate the adaptive mechanisms of bdelloid rotifers in response to global warming, the ecological and transcriptomic characteristics of two strains (HX and ZJ) of Rotaria rotatoria were investigated at 25°C and 35°C. Our results showed an obvious genetic divergence between the two geographic populations. Thermal stress significantly reduced the average lifespan of R. rotatoria in both strains, but increased the offspring production in the ZJ strain. Furthermore, the expression levels of genes Hsp70 were significantly upregulated in the HX strain, while GSTo1 and Cu/Zn-SOD were on the contrary. In the ZJ strain, the expression levels of genes Hsp70, CAT2, and GSTo1 were upregulated under thermal stress. Conversely, a significant decrease in the expression level of the Mn-SOD gene was observed in the ZJ strain under thermal stress. Transcriptomic profiling analysis revealed a total of 105 and 5288 differentially expressed genes (DEGs) in the HX and ZJ strains under thermal stress, respectively. The PCA results showed clear differences in gene expression pattern between HX and ZJ strains under thermal stress. Interestingly, compared to the HX strain, numerous downregulated DEGs in the ZJ strain were enriched into pathways related to metabolism under thermal stress, suggesting that rotifers from the ZJ strain prioritize resource allocation to reproduction by suppressing costly metabolic processes. This finding is consistent with the life table results. This study provides new insights into the adaptive evolution of aquatic animals in the context of global climate change.
Collapse
Affiliation(s)
- Meng Li
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Fan Gao
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Lingyun Zhu
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Jianan Li
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Jinjin Xiang
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
| | - Yilong Xi
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuAnhuiChina
| | - Xianling Xiang
- School of Ecology and EnvironmentAnhui Normal UniversityWuhuAnhuiChina
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co‐founded by Anhui Province and Ministry of EducationAnhui Normal UniversityWuhuAnhuiChina
| |
Collapse
|
7
|
Ren X, Zhao J, Hu J. Non-concordant epigenetic and transcriptional responses to acute thermal stress in western mosquitofish (Gambusia affinis). Mol Ecol 2024:e17332. [PMID: 38529738 DOI: 10.1111/mec.17332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Climate change is intensifying the frequency and severity of extreme temperatures. Understanding the molecular mechanisms underlying the ability to cope with acute thermal stress is key for predicting species' responses to extreme temperature events. While many studies have focused on the individual roles of gene expression, post-transcriptional processes and epigenetic modifications in response to acute thermal stress, the relative contribution of these molecular mechanisms remains unclear. The wide range of thermal limits of western mosquitofish (Gambusia affinis) provides an opportunity to explore this interplay. Here, we quantified changes in gene expression, alternative splicing, DNA methylation and microRNA (miRNA) expression in muscle tissue dissected from mosquitofish immediately after reaching high (CTmax) or low thermal limit (CTmin). Although the numbers of genes showing expression and splicing changes in response to acute temperature stress were small, we found a possibly larger and non-redundant role of splicing compared to gene expression, with more genes being differentially spliced (DSGs) than differentially expressed (DEGs), and little overlap between DSGs and DEGs. We also identified a small proportion of CpGs showing significant methylation change (i.e. differentially methylated cytosines, DMCs) in fish at thermal limits; however, there was no overlap between DEGs and genes annotated with DMCs in both CTmax and CTmin experiments. The weak interplay between epigenetic modifications and gene expression was further supported by our discoveries of no differentially expressed miRNAs. These findings provide novel insights into the relative role of different molecular mechanisms underlying immediate responses to extreme temperatures and demonstrate non-concordant responses of epigenetic and transcriptional mechanisms to acute temperature stress.
Collapse
Affiliation(s)
- Xingyue Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Junjie Zhao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Juntao Hu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
8
|
Krebs N, Bock C, Tebben J, Mark FC, Lucassen M, Lannig G, Pörtner HO. Evolutionary Adaptation of Protein Turnover in White Muscle of Stenothermal Antarctic Fish: Elevated Cold Compensation at Reduced Thermal Responsiveness. Biomolecules 2023; 13:1507. [PMID: 37892189 PMCID: PMC10605280 DOI: 10.3390/biom13101507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Protein turnover is highly energy consuming and overall relates to an organism's growth performance varying largely between species, e.g., due to pre-adaptation to environmental characteristics such as temperature. Here, we determined protein synthesis rates and capacity of protein degradation in white muscle of the cold stenothermal Antarctic eelpout (Pachycara brachycephalum) and its closely related temperate counterpart, the eurythermal common eelpout (Zoarces viviparus). Both species were exposed to acute warming (P. brachycephalum, 0 °C + 2 °C day-1; Z. viviparus, 4 °C + 3 °C day-1). The in vivo protein synthesis rate (Ks) was monitored after injection of 13C-phenylalanine, and protein degradation capacity was quantified by measuring the activity of cathepsin D in vitro. Untargeted metabolic profiling by nuclear magnetic resonance (NMR) spectroscopy was used to identify the metabolic processes involved. Independent of temperature, the protein synthesis rate was higher in P. brachycephalum (Ks = 0.38-0.614 % day-1) than in Z. viviparus (Ks= 0.148-0.379% day-1). Whereas protein synthesis remained unaffected by temperature in the Antarctic species, protein synthesis in Z. viviparus increased to near the thermal optimum (16 °C) and tended to fall at higher temperatures. Most strikingly, capacities for protein degradation were about ten times higher in the Antarctic compared to the temperate species. These differences are mirrored in the metabolic profiles, with significantly higher levels of complex and essential amino acids in the free cytosolic pool of the Antarctic congener. Together, the results clearly indicate a highly cold-compensated protein turnover in the Antarctic eelpout compared to its temperate confamilial. Constant versus variable environments are mirrored in rigid versus plastic functional responses of the protein synthesis machinery.
Collapse
Affiliation(s)
- Nina Krebs
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Christian Bock
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Jan Tebben
- Department of Ecological Chemistry, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Felix C. Mark
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Magnus Lucassen
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Gisela Lannig
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| | - Hans-Otto Pörtner
- Department of Integrative Ecophysiology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany; (C.B.); (F.C.M.); (M.L.); (G.L.)
| |
Collapse
|
9
|
Jiang G, Li Y, Cheng G, Jiang K, Zhou J, Xu C, Kong L, Yu H, Liu S, Li Q. Transcriptome Analysis of Reciprocal Hybrids Between Crassostrea gigas and C. angulata Reveals the Potential Mechanisms Underlying Thermo-Resistant Heterosis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:235-246. [PMID: 36653591 DOI: 10.1007/s10126-023-10197-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/11/2023] [Indexed: 05/06/2023]
Abstract
Heterosis, also known as hybrid vigor, is widely used in aquaculture, but the molecular causes for this phenomenon remain obscure. Here, we conducted a transcriptome analysis to unveil the gene expression patterns and molecular bases underlying thermo-resistant heterosis in Crassostrea gigas ♀ × Crassostrea angulata ♂ (GA) and C. angulata ♀ × C. gigas ♂ (AG). About 505 million clean reads were obtained, and 38,210 genes were identified, of which 3779 genes were differentially expressed between the reciprocal hybrids and purebreds. The global gene expression levels were toward the C. gigas genome in the reciprocal hybrids. In GA and AG, 95.69% and 92.00% of the differentially expressed genes (DEGs) exhibited a non-additive expression pattern, respectively. We observed all gene expression modes, including additive, partial dominance, high and low dominance, and under- and over-dominance. Of these, 77.52% and 50.00% of the DEGs exhibited under- or over-dominance in GA and AG, respectively. The over-dominance DEGs common to reciprocal hybrids were significantly enriched in protein folding, protein refolding, and intrinsic apoptotic signaling pathway, while the under-dominance DEGs were significantly enriched in cell cycle. As possible candidate genes for thermo-resistant heterosis, GRP78, major egg antigen, BAG, Hsp70, and Hsp27 were over-dominantly expressed, while MCM6 and ANAPC4 were under-dominantly expressed. This study extends our understanding of the thermo-resistant heterosis in oysters.
Collapse
Affiliation(s)
- Gaowei Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yin Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Geng Cheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jianmin Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
10
|
Leung C, Guscelli E, Chabot D, Bourret A, Calosi P, Parent GJ. The lack of genetic variation underlying thermal transcriptomic plasticity suggests limited adaptability of the Northern shrimp, Pandalus borealis. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
IntroductionGenetic variation underlies the populations’ potential to adapt to and persist in a changing environment, while phenotypic plasticity can play a key role in buffering the negative impacts of such change at the individual level.MethodsWe investigated the role of genetic variation in the thermal response of the northern shrimp Pandalus borealis, an ectotherm species distributed in the Arctic and North Atlantic Oceans. More specifically, we estimated the proportion transcriptomic responses explained by genetic variance of female shrimp from three origins after 30 days of exposure to three temperature treatments.ResultsWe characterized the P. borealis transcriptome (170,377 transcripts, of which 27.48% were functionally annotated) and then detected a total of 1,607 and 907 differentially expressed transcripts between temperatures and origins, respectively. Shrimp from different origins displayed high but similar level of transcriptomic plasticity in response to elevated temperatures. Differences in transcript expression among origins were not correlated to population genetic differentiation or diversity but to environmental conditions at origin during sampling.DiscussionThe lack of genetic variation explaining thermal plasticity suggests limited adaptability in this species’ response to future environmental changes. These results together with higher mortality observed at the highest temperature indicate that the thermal niche of P. borealis will likely be restricted to higher latitudes in the future. This prediction concurs with current decreases in abundance observed at the southern edge of this species geographical distribution, as it is for other cold-adapted crustaceans.
Collapse
|
11
|
Lipaeva P, Karkossa I, Bedulina D, Schubert K, Luckenbach T. Cold-adapted amphipod species upon heat stress: Proteomic responses and their correlation with transcriptomic responses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101048. [PMID: 36525778 DOI: 10.1016/j.cbd.2022.101048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The cellular heat shock response (HSR) comprises transcriptomic and proteomic reactions to thermal stress. It was here addressed, how the proteomic, together with the transcriptomic HSR, relate to the thermal sensitivities of three cold-adapted but differently thermo-sensitive freshwater amphipod species. The proteomes of thermosensitive Eulimnogammarus verrucosus and thermotolerant Eulimnogammarus cyaneus, both endemic to Lake Baikal, and of thermotolerant Holarctic Gammarus lacustris were investigated upon 24 h exposure to the species-specific 10 % lethal temperatures (LT10). Furthermore, correlations of heat stress induced changes in proteomes (this study) and transcriptomes (previous study with identical experimental design) were examined. Proteomes indicated that the HSR activated processes encompassed (i) proteostasis maintenance, (ii) maintenance of cell adhesion, (iii) oxygen transport, (iv) antioxidant response, and (v) regulation of protein synthesis. Thermo-sensitive E. verrucosus showed the most pronounced proteomic HSR and the lowest correlation of transcriptomic and proteomic HSRs. For proteins related to translation (ribosomal proteins, elongation factors), transcriptomic and proteomic changes were inconsistent: transcripts were downregulated in many cases, with levels of corresponding proteins remaining unchanged. In the Eulimnogammarus species, levels of hemocyanin protein but not transcript were increased upon heat stress, suggesting a HSR also directed to enhance oxygen transport. Thermosensitive E. verrucosus showed the most pronounced relocation of transcription/translation activity to proteostasis maintenance, which may indicate that the general species-specific stability of protein structure could be a fundamental determinant of thermotolerance. By combining transcriptomic and proteomic response data, this study provides a comprehensive picture of the cellular HSR components in the studied amphipods.
Collapse
Affiliation(s)
- Polina Lipaeva
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.
| | - Isabel Karkossa
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Daria Bedulina
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Till Luckenbach
- Department of Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany
| |
Collapse
|
12
|
Costábile A, Castellano M, Aversa-Marnai M, Quartiani I, Conijeski D, Perretta A, Villarino A, Silva-Álvarez V, Ferreira AM. A different transcriptional landscape sheds light on Russian sturgeon (Acipenser gueldenstaedtii) mechanisms to cope with bacterial infection and chronic heat stress. FISH & SHELLFISH IMMUNOLOGY 2022; 128:505-522. [PMID: 35985628 DOI: 10.1016/j.fsi.2022.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Sturgeons are chondrostean fish of high economic value and critically endangered due to anthropogenic activities, which has led to sturgeon aquaculture development. Russian sturgeon (Acipenser gueldenstaedtii), the second most important species reared for caviar, is successfully farmed in subtropical countries, including Uruguay. However, during the Uruguayan summer, sturgeons face intolerable warmer temperatures that weaken their defences and favour infections by opportunistic pathogens, increasing fish mortality and farm economic losses. Since innate immunity is paramount in fish, for which the liver plays a key role, we used deep RNA sequencing to analyse differentially expressed genes in the liver of Russian sturgeons exposed to chronic heat stress and challenged with Aeromonas hydrophila. We assembled 149.615 unigenes in the Russian sturgeon liver transcriptome and found that metabolism and immune defence pathways are among the top five biological processes taking place in the liver. Chronic heat stress provoked profound effects on liver biological functions, up-regulating genes related to protein folding, heat shock response and lipid and protein metabolism to meet energy demands for coping with heat stress. Besides, long-term exposure to heat stress led to cell damage triggering liver inflammation and diminishing liver ability to mount an innate response to A. hydrophila challenge. Accordingly, the reprogramming of liver metabolism over an extended period had detrimental effects on fish health, resulting in weight loss and mortality, with the latter increasing after A. hydrophila challenge. To our knowledge, this is the first transcriptomic study describing how chronic heat-stressed sturgeons respond to a bacterial challenge, suggesting that liver metabolism alterations have a negative impact on the innate anti-bacterial response.
Collapse
Affiliation(s)
- Alicia Costábile
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Mauricio Castellano
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay; Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Marcio Aversa-Marnai
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay
| | - Ignacio Quartiani
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | | | - Alejandro Perretta
- Unidad de Patología, Biología y Cultivo de Organismos Acuáticos, Departamento de Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad de la República, CP 11300, Montevideo, Uruguay
| | - Andrea Villarino
- Sección Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de la República, CP 11400, Montevideo, Uruguay
| | - Valeria Silva-Álvarez
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| | - Ana María Ferreira
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, CP 11600, Montevideo, Uruguay; Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, CP 11600, Montevideo, Uruguay.
| |
Collapse
|
13
|
Del Vecchio G, Galindo-Sánchez CE, Tripp-Valdez MA, López-Landavery EA, Rosas C, Mascaró M. Transcriptomic response in thermally challenged seahorses Hippocampus erectus: The effect of magnitude and rate of temperature change. Comp Biochem Physiol B Biochem Mol Biol 2022; 262:110771. [PMID: 35691555 DOI: 10.1016/j.cbpb.2022.110771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/17/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
Hippocampus erectus inhabiting the shallow coastal waters of the southern Gulf of Mexico are naturally exposed to marked temperature variations occurring in different temporal scales. Under such heterogeneous conditions, a series of physiological and biochemical adjustments take place to restore and maintain homeostasis. This study investigated the molecular mechanisms involved in the response of H. erectus to increased temperature using transcriptome analysis based on RNA-Seq technology. Data was obtained from seahorses after 0.5-h exposure to combinations of different target temperatures (26 °C: control, and increased to 30 and 33 °C) and rates of thermal increase (abrupt: < 5 min; gradual: 1-1.5 °C every 3 h). The transcriptome of seahorses was assembled de novo using Trinity software to obtain 29,211 genes and 30,479 transcripts comprising 27,520,965 assembled bases. Seahorse exposure to both 30 and 33 °C triggered characteristic processes of the cellular stress response, regardless of the rate of thermal change. The transcriptomic profiles of H. erectus suggest an arrest of muscle development processes, the activation of heat shock proteins, and a switch to anaerobic metabolism within the first 0.5 h of exposure to target temperatures to ensure energy supply. Interestingly, apoptotic processes involving caspase were activated principally in gradual treatments, suggesting that prolonged exposure to even sublethal temperatures results in the accumulation of deleterious effects that may eventually terminate in cellular death. Results herein validate 30 °C and 33 °C as potential upper limits of thermal tolerance for H. erectus at the southernmost boundary of its geographic distribution.
Collapse
Affiliation(s)
- G Del Vecchio
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - C E Galindo-Sánchez
- Departamento de Biotecnología Marina, Laboratorio de Genómica Funcional, CICESE, Ensenada, Baja California, Mexico. https://twitter.com/ClaraGalindo3
| | - M A Tripp-Valdez
- Departamento de Biotecnología Marina, Laboratorio de Genómica Funcional, CICESE, Ensenada, Baja California, Mexico. https://twitter.com/MiguelTripp
| | - E A López-Landavery
- Departamento de Biotecnología Marina, Laboratorio de Genómica Funcional, CICESE, Ensenada, Baja California, Mexico. https://twitter.com/EdgarLo30205255
| | - C Rosas
- Unidad Multidisciplinaria de Docencia e Investigación-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico. https://twitter.com/DrCarlosRosasV
| | - M Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.
| |
Collapse
|
14
|
Paul S, Duhan JS, Jaiswal S, Angadi UB, Sharma R, Raghav N, Gupta OP, Sheoran S, Sharma P, Singh R, Rai A, Singh GP, Kumar D, Iquebal MA, Tiwari R. RNA-Seq Analysis of Developing Grains of Wheat to Intrigue Into the Complex Molecular Mechanism of the Heat Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:904392. [PMID: 35720556 PMCID: PMC9201344 DOI: 10.3389/fpls.2022.904392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Heat stress is one of the significant constraints affecting wheat production worldwide. To ensure food security for ever-increasing world population, improving wheat for heat stress tolerance is needed in the presently drifting climatic conditions. At the molecular level, heat stress tolerance in wheat is governed by a complex interplay of various heat stress-associated genes. We used a comparative transcriptome sequencing approach to study the effect of heat stress (5°C above ambient threshold temperature of 20°C) during grain filling stages in wheat genotype K7903 (Halna). At 7 DPA (days post-anthesis), heat stress treatment was given at four stages: 0, 24, 48, and 120 h. In total, 115,656 wheat genes were identified, including 309 differentially expressed genes (DEGs) involved in many critical processes, such as signal transduction, starch synthetic pathway, antioxidant pathway, and heat stress-responsive conserved and uncharacterized putative genes that play an essential role in maintaining the grain filling rate at the high temperature. A total of 98,412 Simple Sequences Repeats (SSR) were identified from de novo transcriptome assembly of wheat and validated. The miRNA target prediction from differential expressed genes was performed by psRNATarget server against 119 mature miRNA. Further, 107,107 variants including 80,936 Single nucleotide polymorphism (SNPs) and 26,171 insertion/deletion (Indels) were also identified in de novo transcriptome assembly of wheat and wheat genome Ensembl version 31. The present study enriches our understanding of known heat response mechanisms during the grain filling stage supported by discovery of novel transcripts, microsatellite markers, putative miRNA targets, and genetic variant. This enhances gene functions and regulators, paving the way for improved heat tolerance in wheat varieties, making them more suitable for production in the current climate change scenario.
Collapse
Affiliation(s)
- Surinder Paul
- Department of Biotechnology, Chaudhary Devi Lal University, Sirsa, India
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
- ICAR, National Bureau of Agriculturally Important Microorganisms, Kushmaur, Maunath Bhanjan, India
| | | | - Sarika Jaiswal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ulavappa B. Angadi
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ruchika Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Nishu Raghav
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Om Prakash Gupta
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Sonia Sheoran
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Pradeep Sharma
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Rajender Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Rai
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gyanendra Pratap Singh
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| | - Dinesh Kumar
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
- Department of Biotechnology, Central University of Haryana, Gurgaon, India
| | - Mir Asif Iquebal
- Indian Council of Agricultural Research, Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ratan Tiwari
- Indian Council of Agricultural Research, Indian Institute of Wheat and Barley Research, Karnal, India
| |
Collapse
|
15
|
Eaton KM, Hallaj A, Stoeckel JA, Bernal MA. Ocean Warming Leads to Increases in Aerobic Demand and Changes to Gene Expression in the Pinfish (Lagodon rhomboides). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2021.809375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic climate change is causing increases in the frequency, intensity, and duration of marine heatwaves (MHWs). These short-term warming events can last for days to weeks and can produce severe disruptions in marine ecosystems, as many aquatic species are poikilotherms that depend on the conditions of the environment for physiological processes. It is crucial to investigate the effects of these thermal fluctuations on species that play a disproportionate ecological role in marine ecosystems, such as the pinfish (Lagodon rhomboides) in the Gulf of Mexico and western Atlantic. In this study, we exposed pinfish to a simulated MHW in aquaria and examined the impacts of acute warming on two life stages (juvenile and adult), measuring oxygen consumption and gene expression in two relevant tissue types (liver and muscle). We saw significant increases in routine metabolic rate with increasing temperature in both juveniles (24.58 mgO2/kg/h increase per 1°C of warming) and adults (10.01 mgO2/kg/h increase per 1°C of warming). These results indicate that exposure to increased temperatures was more metabolically costly for juveniles than for adults, on a mass-specific basis. This was also observed in the molecular analyses, where the largest number of differentially expressed genes were observed in the juvenile pinfish. The analyses of gene expression suggest warming produces changes to immune function, cell proliferation, muscle contraction, nervous system function, and oxygen transport. These results indicate that this ecologically relevant species will be significantly impacted by projected increases in frequency and magnitude of MHWs, particularly in the juvenile stage.
Collapse
|
16
|
Somero GN. The Goldilocks Principle: A Unifying Perspective on Biochemical Adaptation to Abiotic Stressors in the Sea. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:1-23. [PMID: 34102065 DOI: 10.1146/annurev-marine-022521-102228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability of marine organisms to thrive over wide ranges of environmental stressors that perturb structures of proteins, nucleic acids, and lipids illustrates the effectiveness of adaptation at the biochemical level. A critical role of these adaptations is to achieve a proper balance between structural rigidity, which is necessary for maintaining three-dimensional conformation, and flexibility, which is required to allow changes in conformation during function. The Goldilocks principle refers to this balancing act, wherein structural stability and functional properties are poised at values that are just right for the environment the organism faces. Achieving this balance involves changes in macromolecular sequence and adaptive change in the composition of the aqueous or lipid milieu in which macromolecules function. This article traces the development of the field of biochemical adaptation throughout my career and shows how comparative studies of marine animals from diverse habitats have shed light on fundamental properties of life common to all organisms.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA;
| |
Collapse
|
17
|
Bugg WS, Yoon GR, Brandt C, Earhart ML, Anderson WG, Jeffries KM. The effects of population and thermal acclimation on the growth, condition and cold responsive mRNA expression of age-0 lake sturgeon (Acipenser fulvescens). JOURNAL OF FISH BIOLOGY 2021; 99:1912-1927. [PMID: 34476812 DOI: 10.1111/jfb.14897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
In Manitoba, Canada, wild lake sturgeon (Acipenser fulvescens) populations exist along a latitudinal gradient and are reared in hatcheries to bolster threatened populations. We reared two populations of lake sturgeon, one from each of the northern and southern ends of Manitoba and examined the effects of typical hatchery temperatures (16°C) as well as 60-day acclimation to elevated rearing temperatures (20°C) on mortality, growth and condition throughout early development. Additionally, we examined the cold shock response, which may be induced during stocking, through the hepatic mRNA expression of genes involved in the response to cold stress and homeoviscous adaptation (HSP70, HSP90a, HSP90b, CIRP and SCD). Sturgeon were sampled after 1 day and 1 week following stocking into temperatures of 8, 6 and 4°C in a controlled laboratory environment. The southern population showed lower condition and higher mortality during early life than the northern population while increased rearing temperature impacted the growth and condition of developing northern sturgeon. During the cold shock, HSP70 and HSP90a mRNA expression increased in all sturgeon treatments as stocking temperature decreased, with higher expression observed in the southern population. Expression of HSP90b, CIRP and SCD increased as stocking temperature decreased in northern sturgeon with early acclimation to 20°C. Correlation analyses indicated the strongest molecular relationships were in the expression of HSP90b, CIRP and SCD, across all treatments, with a correlation between HSP90b and body condition in northern sturgeon with early acclimation to 20°C. Together, these observations highlight the importance of population and rearing environment throughout early development and on later cellular responses induced by cold stocking temperatures.
Collapse
Affiliation(s)
- William S Bugg
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Catherine Brandt
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- North/South Consultants Inc., Winnipeg, Manitoba, Canada
| | - Madison L Earhart
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Transcriptome analysis provides the first insight into the molecular basis of temperature plasticity in Banggai cardinalfish, Pterapogon kauderni. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2021; 40:100909. [PMID: 34479169 DOI: 10.1016/j.cbd.2021.100909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 08/22/2021] [Indexed: 01/11/2023]
Abstract
Banggai cardinalfish, Pterapogon kauderni, is a tropical fish listed as an endangered species by IUCN. Its distribution and survival condition are extremely limited, and the changes of living environment caused by global warming may seriously threaten its geographical distribution. In order to understand the survival temperature range and the potential mechanism of temperature plasticity of P. kauderni, transcriptome analysis was performed under five temperature conditions (18 °C, 22 °C, 26 °C, 30 °C and 34 °C). A total of 432,444,497 clean reads were obtained from the mix tissues of whole head, viscera (except intestine), and muscle. All clean data were spliced into 194,832 unigenes. Compared with 26 °C, 57, 107, 187 and 174 differentially expressed genes (DEGs) were obtained at 18 °C, 22 °C, 30 °C and 34 °C, respectively. Gene Ontology (GO) analysis showed the most highly enriched in the DEGs were cellular processes, binding, metabolic processes and biological regulation. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated circadian rhythm, protein processing in endoplasmic reticulum, influenza A and prion disease were significantly enriched. 47 genes that may be related to temperature stress were identified, such as Per1, MLP, IGFBP1, HSP70, HSP90α, HSPA4, DNAJB1, CALR. This is the first RNA-Seq study of P. kauderni. This information should be valuable for further targeted studies on temperature tolerance, thereby assisting the protection and development of P. kauderni.
Collapse
|
19
|
Akbarzadeh A, Selbie DT, Pon LB, Miller KM. Endangered Cultus Lake sockeye salmon exhibit genomic evidence of hypoxic and thermal stresses while rearing in degrading freshwater lacustrine critical habitat. CONSERVATION PHYSIOLOGY 2021; 9:coab089. [PMID: 34858597 PMCID: PMC8633632 DOI: 10.1093/conphys/coab089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Water quality degradation due to lake eutrophication and climate change contributes to the risk of extirpation for the endangered Cultus Lake sockeye salmon. Sockeye salmon juveniles experience both low-oxygen water in profundal lake habitats and elevated temperatures above the thermocline during diel vertical migrations in summer and fall when the lake is thermally stratified. We used a transcriptomic tool (Salmon Fit-Chip) to determine whether salmon were experiencing thermal and/or hypoxic stress during this period. The results showed that over one-third of the fish were responding to either hypoxic (35.5%) or thermal stress (40.9%) during periods when these environmental stressors were pronounced within the lake, but not during periods when profundal dissolved oxygen was elevated and the water column was isothermal and cool. The most consistent signs of hypoxic stress occurred during July (52.2%) and September (44.4%). A total of 25.7% of individual fish sampled during months when both stressors were occurring (July, September, October) showed signatures of both stressors. When a combination of hypoxic and thermal stress biomarkers was applied, 92% of fish showed evidence of one or both stressors; hence, for at least several months of the year, most sockeye salmon juveniles in Cultus Lake are experiencing anthropogenically environmentally induced stress. We also detected the presence of pathogenic ciliate Ichthyoptherius multifiliis in the gill tissue of juveniles, with a higher infection signal in Cultus Lake compared to juveniles from nearby Chilliwack Lake. These data provide powerful new evidence that Cultus Lake sockeye salmon, which experience relatively lower juvenile survival than Chilliwack sockeye salmon, are more compromised by stress and carry a higher level of infection of at least one pathogenic agent. Thus, we hypothesize that the cumulative or synergistic interplay between stressors and diseases, clearly documented to be occurring within Cultus Lake, are contributing to increased mortality of endangered sockeye salmon.
Collapse
Affiliation(s)
- Arash Akbarzadeh
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, British Columbia, V9T 6N7, Canada
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, 9th km of Minab Road, Bandar Abbas, 79161 93145, Iran
| | - Daniel T Selbie
- Fisheries and Oceans Canada, Science Branch, Pacific Region, Cultus Lake Salmon Research Laboratory, 4222 Columbia Valley Hwy, Cultus Lake, British Columbia, V2R 5B6, Canada
| | - Lucas B Pon
- Fisheries and Oceans Canada, Science Branch, Pacific Region, Cultus Lake Salmon Research Laboratory, 4222 Columbia Valley Hwy, Cultus Lake, British Columbia, V2R 5B6, Canada
| | - Kristina M Miller
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, 9th km of Minab Road, Bandar Abbas, 79161 93145, Iran
| |
Collapse
|
20
|
Andersen Ø, Johnsen H, Wittmann AC, Harms L, Thesslund T, Berg RS, Siikavuopio S, Mykles DL. De novo transcriptome assemblies of red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) molting gland and eyestalk ganglia - Temperature effects on expression of molting and growth regulatory genes in adult red king crab. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110678. [PMID: 34655763 DOI: 10.1016/j.cbpb.2021.110678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Red king crab (Paralithodes camtschaticus) and snow crab (Chionoecetes opilio) are deep-sea crustaceans widely distributed in the North Pacific and Northwest Atlantic Oceans. These giant predators have invaded the Barents Sea over the past decades, and climate-driven temperature changes may influence their distribution and abundance in the sub-Arctic region. Molting and growth in crustaceans are strongly affected by temperature, but the underlying molecular mechanisms are little known, particularly in cold-water species. Here, we describe multiple regulatory factors in the two high-latitude crabs by developing de novo transcriptomes from the molting gland (Y-organ or YO) and eye stalk ganglia (ESG), in addition to the hepatopancreas and claw muscle of red king crab. The Halloween genes encoding the ecdysteroidogenic enzymes were expressed in YO, and the ESG contained multiple neuropeptides, including molt-inhibiting hormone (MIH), crustacean hyperglycemic hormone (CHH), and ion-transport peptide (ITP). Both crabs expressed a diversity of growth-related factors, such as mTOR, AKT, Rheb and AMPKα, and stress-responsive factors, including multiple heat shock proteins (HSPs). Temperature effects on the expression of key regulatory genes were quantified by qPCR in adult red king crab males kept at 4 °C or 10 °C for two weeks during intermolt. The Halloween genes tended to be upregulated in YO at high temperature, while the ecdysteroid receptor and several growth regulators showed tissue-specific responses to elevated temperature. Constitutive and heat-inducible HSPs were expressed in an inverse temperature-dependent manner, suggesting that adult red king crabs can acclimate to increased water temperatures.
Collapse
Affiliation(s)
- Øivind Andersen
- Nofima, Tromsø NO-9291, Norway; Department of Animal and Aquacultural Sciences (IHA), Faculty of Life Sciences (BIOVIT), Norwegian University of Life Sciences (NMBU), PO Box 5003, 1433 Ås, Norway.
| | - Hanne Johnsen
- Nofima, Tromsø NO-9291, Norway; Norwegian Polar Institute, 9296 Tromsø, Norway
| | - Astrid C Wittmann
- MARUM - Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Lars Harms
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany
| | | | | | | | - Donald L Mykles
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA; Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA 94923, USA
| |
Collapse
|
21
|
Nguyen HQ, Kim Y, Jang Y. De Novo Transcriptome Analysis Reveals Potential Thermal Adaptation Mechanisms in the Cicada Hyalessa fuscata. Animals (Basel) 2021; 11:ani11102785. [PMID: 34679807 PMCID: PMC8532856 DOI: 10.3390/ani11102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In metropolitan Seoul and its vicinity, cicadas of the species Hyalessa fuscata living in warmer areas could tolerate the heat better than those living in cooler areas, but genetic mechanisms involved in better heat tolerance remained unclear. In this study, we examined differences in gene expression of cicadas living in a warm urban area, a cool urban area and a suburban area in three experimental treatments: no heating, 10 min heating and heating until the cicadas lost their mobility. Cicadas from the warm urban area changed their gene expressions the most. Activated genes were mostly related to heat shock, energy metabolism, and detoxification. These results suggested that under heat stress, cicadas inhabiting warm areas could differentially express genes to increase their thermal tolerance. Abstract In metropolitan Seoul, populations of the cicada Hyalessa fuscata in hotter urban heat islands (“high UHIs”) exhibit higher thermal tolerance than those in cooler UHIs (“low UHIs”). We hypothesized that heat stress may activate the expression of genes that facilitate greater thermal tolerance in high-UHI cicadas than in those from cooler areas. Differences in the transcriptomes of adult female cicadas from high-UHI, low-UHI, and suburban areas were analyzed at the unheated level, after acute heat stress, and after heat torpor. No noticeable differences in unheated gene expression patterns were observed. After 10 min of acute heat stress, however, low-UHI and suburban cicadas expressed more heat shock protein genes than high-UHI counterparts. More specifically, remarkable changes in the gene expression of cicadas across areas were observed after heat torpor stimulus, as represented by a large number of up- and downregulated genes in the heat torpor groups compared with the 10 min acute heat stress and control groups. High-UHI cicadas expressed the most differentially expressed genes, followed by the low-UHI and suburban cicadas. There was a notable increase in the expression of heat shock, metabolism, and detoxification genes; meanwhile, immune-related, signal transduction, and protein turnover genes were downregulated in high-UHI cicadas versus the other cicada groups. These results suggested that under heat stress, cicadas inhabiting high-UHIs could rapidly express genes related to heat shock, energy metabolism, and detoxification to protect cells from stress-induced damage and to increase their thermal tolerance toward heat stress. The downregulation of apoptosis mechanisms in high-UHI cicadas suggested that there was less cellular damage, which likely contributed to their high tolerance of heat stress.
Collapse
Affiliation(s)
- Hoa Quynh Nguyen
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Institute of Chemistry, Vietnam Academy of Science and Technology, No. 18 Hoang Quoc Viet Street, Cau Giay District, Hanoi 10072, Vietnam
| | - Yuseob Kim
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
| | - Yikweon Jang
- Interdisciplinary Program of EcoCreative, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea; (H.Q.N.); (Y.K.)
- Department of Life Sciences and Division of Ecoscience, Ewha Womans University, Ewhayeodaegil-52, Seoul 03760, Korea
- Correspondence:
| |
Collapse
|
22
|
Lopez-Anido RN, Harrington AM, Hamlin HJ. Coping with stress in a warming Gulf: the postlarval American lobster's cellular stress response under future warming scenarios. Cell Stress Chaperones 2021; 26:721-734. [PMID: 34115338 PMCID: PMC8275755 DOI: 10.1007/s12192-021-01217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022] Open
Abstract
The Gulf of the Maine (GoM) is one of the fastest warming bodies of water in the world, posing serious physiological challenges to its marine inhabitants. Marine organisms can cope with the cellular and molecular stresses created by climate change through changes in gene expression. We used transcriptomics to examine how exposure to current summer temperatures (16 °C) or temperature regimes reflective of projected moderate and severe warming conditions (18 °C and 22 °C, respectively) during larval development alters expression of transcripts affiliated with the cellular stress response (CSR) in postlarval American lobsters (Homarus americanus). We identified 26 significantly differentially expressed (DE) transcripts annotated to CSR proteins. Specifically, transcripts for proteins affiliated with heat shock, the ubiquitin family, DNA repair, and apoptosis were significantly over-expressed in lobsters reared at higher temperatures relative to current conditions. Substantial variation in the CSR expression between postlarvae reared at 18 °C and those reared at 22 °C suggests that postlarvae reared under severe warming may have a hindered ability to cope with the physiological and molecular challenges of ocean warming. These results highlight that postlarval American lobsters may experience significant heat stress as rapid warming in the GoM continues, potentially compromising their ability to prevent cellular damage and inhibiting the reallocation of cellular energy towards other physiological functions beyond activation of the CSR. Moreover, this study establishes additional American lobster stress markers and addresses various knowledge gaps in crustacean biology, where sufficient 'omics research is lacking.
Collapse
Affiliation(s)
| | - Amalia M Harrington
- Maine Sea Grant College Program, University of Maine, 5741 Libby Hall, Room 121, Orono, ME, 04469, USA.
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA.
| | - Heather J Hamlin
- School of Marine Sciences, University of Maine, Orono, ME, 04469, USA
- Aquaculture Research Institute, University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
23
|
Lukinović V, Biggar KK. Deconvoluting complex protein interaction networks through reductionist strategies in peptide biochemistry: Modern approaches and research questions. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110616. [PMID: 34000427 DOI: 10.1016/j.cbpb.2021.110616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/06/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Following the decoding of the first human genome, researchers have vastly improved their understanding of cell biology and its regulation. As a result, it has become clear that it is not merely genetic information, but the aberrant changes in the functionality and connectivity of its encoded proteins that drive cell response to periods of stress and external cues. Therefore, proper utilization of refined methods that help to describe protein signalling or regulatory networks (i.e., functional connectivity), can help us understand how change in the signalling landscape effects the cell. However, given the vast complexity in 'how and when' proteins communicate or interact with each other, it is extremely difficult to define, characterize, and understand these interaction networks in a tangible manner. Herein lies the challenge of tackling the functional proteome; its regulation is encoded in multiple layers of interaction, chemical modification and cell compartmentalization. To address and refine simple research questions, modern reductionist strategies in protein biochemistry have successfully used peptide-based experiments; their summation helping to simplify the overall complexity of these protein interaction networks. In this way, peptides are powerful tools used in fundamental research that can be readily applied to comparative biochemical research. Understanding and defining how proteins interact is one of the key aspects towards understanding how the proteome functions. To date, reductionist peptide-based research has helped to address a wide range of proteome-related research questions, including the prediction of enzymes substrates, identification of posttranslational modifications, and the annotation of protein interaction partners. Peptide arrays have been used to identify the binding specificity of reader domains, which are able to recognise the posttranslational modifications; forming dynamic protein interactions that are dependent on modification state. Finally, representing one of the fastest growing classes of inhibitor molecules, peptides are now begin explored as "disruptors" of protein-protein interactions or enzyme activity. Collectively, this review will discuss the use of peptides, peptide arrays, peptide-oriented computational biochemistry as modern reductionist strategies in deconvoluting the functional proteome.
Collapse
Affiliation(s)
- Valentina Lukinović
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Kyle K Biggar
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
| |
Collapse
|
24
|
Yi J, Liu J, Li D, Sun D, Li J, An Y, Wu H. Transcriptome responses to heat and cold stress in prepupae of Trichogramma chilonis. Ecol Evol 2021; 11:4816-4825. [PMID: 33976850 PMCID: PMC8093697 DOI: 10.1002/ece3.7383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Trichogramma is a useful species that is widely applied in biocontrol. Temperature profoundly affects the commercial application of T. chilonis. Different developmental transcriptomes of prepupae and pupae of T. chilonis under 10, 25, and 40°C were obtained from our previous study. In this study, transcriptomic analysis was further conducted to gain a clear understanding of the molecular changes in the prepupae of T. chilonis under different thermal conditions. A total of 37,295 unigenes were identified from 3 libraries of prepupae of T. chilonis, 17,293 of which were annotated. Differential expression analysis showed that 408 and 108 differentially expressed genes (DEGs) were identified after heat and cold treatment, respectively. Under heat stress, the pathway of protein processing in endoplasmic reticulum was found to be active. Most of the genes involved in this pathway were annotated as lethal (2) essential for life [l(2)efl] and heat shock protein genes (hsps), which were both highly upregulated. Nevertheless, most of the genes involved in another significantly enriched pathway of starch and sucrose metabolism were downregulated, including 1 alpha-glucosidase gene and 2 beta-glucuronidase genes. Under cold stress, no significantly enriched pathway was found, and the significantly enriched GO terms were related to the interaction with host and immune defenses. Together, these results provide us with a comprehensive view of the molecular mechanisms of T. chilonis in response to temperature stresses and will provide new insight into the mass rearing and utilization of T. chilonis.
Collapse
Affiliation(s)
- Jiequn Yi
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Jianbai Liu
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Dunsong Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection/Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Donglei Sun
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Jihu Li
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Yuxing An
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| | - Han Wu
- Guangdong Engineering Research Center for Pesticide and FertilizerInstitute of BioengineeringGuangdong Academy of SciencesGuangzhouChina
| |
Collapse
|
25
|
Nielsen MB, Vogensen TK, Thyrring J, Sørensen JG, Sejr MK. Freshening increases the susceptibility to heat stress in intertidal mussels (Mytilus edulis) from the Arctic. J Anim Ecol 2021; 90:1515-1524. [PMID: 33713446 DOI: 10.1111/1365-2656.13472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/25/2021] [Indexed: 12/29/2022]
Abstract
Temperatures in the Arctic are increasing at a faster pace than at lower latitudes resulting in range expansion of boreal species. In Greenland, the warming also drives accelerating melt of the Greenland Ice Sheet resulting in more meltwater entering Greenland fjords in summer. Our aim was to determine if increasing summer temperatures combined with lower salinity can induce the expression of stress-related proteins, for example, heat shock protein, in boreal intertidal mussels in Greenland, and whether low salinity reduces the upper thermal limit at which mortality occurs. We conducted a mortality experiment, using 12 different combinations of salinity and air temperature treatments during a simulated tidal regime, and quantified the change in mRNA levels of five stress-related genes (hsp24, hsp70, hsp90, sod and p38) in surviving mussels to discern the level of sublethal stress. Heat-induced mortality occurred in mussels exposed to an air temperature of 30°C and mortality was higher in treatments with lowered salinity (5 and 15‰), which confirms that low habitat salinity decreases the upper thermal limit of Mytilus edulis. The gene expression analysis supported the mortality results, with the highest gene expression found at combinations of high temperature and low salinity. Combined with seasonal measurements of intertidal temperatures in Greenland, we suggest heat stress occurs in low salinity intertidal area, and that further lowered salinity in coastal water due to increased run-off can make intertidal bivalves more susceptible to summer heat stress. This study thus provides an example of how different impacts of climate warming can work synergistically to stress marine organisms.
Collapse
Affiliation(s)
- Martin B Nielsen
- Department of Biology, Arctic Research Centre, Aarhus University, Aarhus C, Denmark
| | - Trine K Vogensen
- Department of Biology, Arctic Research Centre, Aarhus University, Aarhus C, Denmark
| | - Jakob Thyrring
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Bioscience, Marine Ecology, Aarhus University, Silkeborg, Denmark.,British Antarctic Survey, Natural Environment Research Council, Cambridge, UK.,Homerton College, University of Cambridge, Cambridge, UK
| | - Jesper G Sørensen
- Department of Biology, Section for Genetics, Ecology and Evolution, Aarhus University, Aarhus C, Denmark
| | - Mikael K Sejr
- Department of Biology, Arctic Research Centre, Aarhus University, Aarhus C, Denmark.,Department of Bioscience, Marine Ecology, Aarhus University, Silkeborg, Denmark
| |
Collapse
|
26
|
de Alba G, López-Olmeda JF, Sánchez-Vázquez FJ. Rearing temperature conditions (constant vs. thermocycle) affect daily rhythms of thermal tolerance and sensing in zebrafish. J Therm Biol 2021; 97:102880. [PMID: 33863444 DOI: 10.1016/j.jtherbio.2021.102880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/22/2021] [Accepted: 02/13/2021] [Indexed: 11/25/2022]
Abstract
In the wild, the environment does not remain constant, but periodically oscillates so that temperature rises in the daytime and drops at night, which generates a daily thermocycle. The effects of thermocycles on thermal tolerance have been previously described in fish. However, the impact of thermocycles on daytime-dependent thermal responses and daily rhythms of temperature tolerance and sensing expression mechanisms remain poorly understood. This study investigates the effects of two rearing conditions: constant (26 °C, C) versus a daily thermocycle (28 °C in the daytime; 24 °C at night, T) on the thermal tolerance response in zebrafish. Thermal tolerance (mortality) was assessed in 4dpf (days post fertilization) zebrafish larvae after acute heat shock (39 °C for 1 h) at two time points: middle of the light phase (ML) or middle of the dark phase (MD). Thermal stress responses were evaluated in adult zebrafish after a 37 °C challenge for 1 h at ML or MD to examine the expression of the heat-shock protein (HSP) (hsp70, hsp90ab1, grp94, hsp90aa1, hspb1, hsp47, cirbp) and transient receptor potential (TRP) channels (trpv4, trpm4a, trpm2, trpa1b) in the brain. Finally, the daily rhythms of gene expression of HSPs and TRPs were measured every 4 h for 24 h. The results revealed the larval mortality rates and the expression induction of most HSPs in adult zebrafish brain reached the highest values in fish reared under constant temperature and subjected to thermal shock at MD. The expression of most HSPs and TRPs was mainly synchronized to the light/dark (LD) cycle, regardless of the temperature regime. Most HSPs involved in hyperthermic challenges displayed diurnal rhythms with their acrophases in phase with warm-sensing thermoTRPs acrophases. The cold-sensing trpa1b peaked in the second half of the light period and slightly shifted toward the dark phase anticipating the acrophase of cirpb, which is involved in hypothermic challenges. These findings indicated that: a) thermal shocks are best tolerated in the daytime; b) the implementation of daily thermocycles during larval development reduces mortality and stress-cellular expression of HSPs to an acute thermal stress at MD; c) daily rhythms need to be considered when discussing physiological responses of thermal sensing and thermotolerance in zebrafish.
Collapse
Affiliation(s)
- Gonzalo de Alba
- Department of Physiology, Faculty of Biology, University of Murcia, 30100, Murcia, Spain
| | | | | |
Collapse
|
27
|
Song J, McDowell JR. Comparative transcriptomics of spotted seatrout ( Cynoscion nebulosus) populations to cold and heat stress. Ecol Evol 2021; 11:1352-1367. [PMID: 33598136 PMCID: PMC7863673 DOI: 10.1002/ece3.7138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022] Open
Abstract
Resilience to climate change depends on a species' adaptive potential and phenotypic plasticity. The latter can enhance survival of individual organisms during short periods of extreme environmental perturbations, allowing genetic adaptation to take place over generations. Along the U.S. East Coast, estuarine-dependent spotted seatrout (Cynoscion nebulosus) populations span a steep temperature gradient that provides an ideal opportunity to explore the molecular basis of phenotypic plasticity. Genetically distinct spotted seatrout sampled from a northern and a southern population were exposed to acute cold and heat stress (5 biological replicates in each treatment and control group), and their transcriptomic responses were compared using RNA-sequencing (RNA-seq). The southern population showed a larger transcriptomic response to acute cold stress, whereas the northern population showed a larger transcriptomic response to acute heat stress compared with their respective population controls. Shared transcripts showing significant differences in expression levels were predominantly enriched in pathways that included metabolism, transcriptional regulation, and immune response. In response to heat stress, only the northern population significantly upregulated genes in the apoptosis pathway, which could suggest greater vulnerability to future heat waves in this population as compared to the southern population. Genes showing population-specific patterns of expression, including hpt, acot, hspa5, and hsc71, are candidates for future studies aiming to monitor intraspecific differences in temperature stress responses in spotted seatrout. Our findings contribute to the current understanding of phenotypic plasticity and provide a basis for predicting the response of a eurythermal fish species to future extreme temperatures.
Collapse
Affiliation(s)
- Jingwei Song
- Virginia Institute of Marine Science (VIMS)College of William and MaryGloucester PointVAUSA
| | - Jan R. McDowell
- Virginia Institute of Marine Science (VIMS)College of William and MaryGloucester PointVAUSA
| |
Collapse
|
28
|
Komoroske LM, Jeffries KM, Whitehead A, Roach JL, Britton M, Connon RE, Verhille C, Brander SM, Fangue NA. Transcriptional flexibility during thermal challenge corresponds with expanded thermal tolerance in an invasive compared to native fish. Evol Appl 2020. [DOI: 10.1111/eva.13172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lisa M. Komoroske
- Department of Environmental Conservation University of Massachusetts Amherst Amherst MA USA
- Department of Wildlife, Fish & Conservation Biology University of California, Davis Davis CA USA
| | - Ken M. Jeffries
- Department of Biological Sciences University of Manitoba Winnipeg MB Canada
| | - Andrew Whitehead
- Department of Environmental Toxicology University of California, Davis Davis CA USA
| | - Jennifer L. Roach
- Department of Environmental Toxicology University of California, Davis Davis CA USA
| | - Monica Britton
- Bioinformatics Core Facility, Genome Center University of California, Davis Davis CA USA
| | - Richard E. Connon
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine University of California, Davis Davis CA USA
| | | | - Susanne M. Brander
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station Oregon State University Corvallis OR USA
| | - Nann A. Fangue
- Department of Wildlife, Fish & Conservation Biology University of California, Davis Davis CA USA
| |
Collapse
|
29
|
Ramsøe A, Clark MS, Sleight VA. Gene network analyses support subfunctionalization hypothesis for duplicated hsp70 genes in the Antarctic clam. Cell Stress Chaperones 2020; 25:1111-1116. [PMID: 32436134 PMCID: PMC7591643 DOI: 10.1007/s12192-020-01118-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 12/01/2022] Open
Abstract
A computationally predicted gene regulatory network (GRN), generated from mantle-specific gene expression profiles in the Antarctic clam Laternula elliptica, was interrogated to test the regulation and interaction of duplicated inducible hsp70 paralogues. hsp70A and hsp70B were identified in the GRN with each paralogue falling into unique submodules that were linked together by a single shared second neighbour. Annotations associated with the clusters in each submodule suggested that hsp70A primarily shares regulatory relationships with genes encoding ribosomal proteins, where it may have a role in protecting the ribosome under stress. hsp70B, on the other hand, interacted with a suite of genes involved in signalling pathways, including four transcription factors, cellular response to stress and the cytoskeleton. Given the contrasting submodules and associated annotations of the two hsp70 paralogues, the GRN analysis suggests that each gene is carrying out additional separate functions, as well as being involved in the traditional chaperone heat stress response, and therefore supports the hypothesis that subfunctionalization has occurred after gene duplication. The GRN was specifically produced from experiments investigating biomineralization; however, this study shows the utility of such data for investigating multiple questions concerning gene duplications, interactions and putative functions in a non-model species.
Collapse
Affiliation(s)
- Abigail Ramsøe
- BioArCh, Department of Archaeology, University of York, York, YO1 7EP, UK
- Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Melody S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - Victoria A Sleight
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
30
|
Bugg WS, Yoon GR, Schoen AN, Laluk A, Brandt C, Anderson WG, Jeffries KM. Effects of acclimation temperature on the thermal physiology in two geographically distinct populations of lake sturgeon ( Acipenser fulvescens). CONSERVATION PHYSIOLOGY 2020; 8:coaa087. [PMID: 34603733 PMCID: PMC7526614 DOI: 10.1093/conphys/coaa087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 05/31/2023]
Abstract
Temperature is one of the most important abiotic factors regulating development and biological processes in ectotherms. By 2050, climate change may result in temperature increases of 2.1-3.4°C in Manitoba, Canada. Lake sturgeon, Acipenser fulvescens, from both northern and southern populations in Manitoba were acclimated to 16, 20 and 24°C for 30 days, after which critical thermal maximum (CTmax) trials were conducted to investigate their thermal plasticity. We also examined the effects of temperature on morphological and physiological indices. Acclimation temperature significantly influenced the CTmax, body mass, hepatosomatic index, metabolic rate and the mRNA expression of transcripts involved in the cellular response to heat shock and hypoxia (HSP70, HSP90a, HSP90b, HIF-1α) in the gill of lake sturgeon. Population significantly affected the above phenotypes, as well as the mRNA expression of Na+/K+ ATPase-α1 and the hepatic glutathione peroxidase enzyme activity. The southern population had an average CTmax that was 0.71 and 0.45°C higher than the northern population at 20 and 24°C, respectively. Immediately following CTmax trials, mRNA expression of HSP90a and HIF-1α was positively correlated with individual CTmax of lake sturgeon across acclimation treatments and populations (r = 0.7, r = 0.62, respectively; P < 0.0001). Lake sturgeon acclimated to 20 and 24°C had decreased hepatosomatic indices (93 and 244% reduction, respectively; P < 0.0001) and metabolic suppression (27.7 and 42.1% reduction, respectively; P < 0.05) when compared to sturgeon acclimated to 16°C, regardless of population. Glutathione peroxidase activity and mRNA expression Na+/K+ ATPase-α1 were elevated in the northern relative to the southern population. Acclimation to 24°C also induced mortality in both populations when compared to sturgeon acclimated to 16 and 20°C. Thus, increased temperatures have wide-ranging population-specific physiological consequences for lake sturgeon across biological levels of organization.
Collapse
Affiliation(s)
- William S Bugg
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gwangseok R Yoon
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | - Andrew Laluk
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Catherine Brandt
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ken M Jeffries
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
31
|
The synergistic interaction of thermal stress coupled with overstocking strongly modulates the transcriptomic activity and immune capacity of rainbow trout (Oncorhynchus mykiss). Sci Rep 2020; 10:14913. [PMID: 32913268 PMCID: PMC7483466 DOI: 10.1038/s41598-020-71852-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/24/2020] [Indexed: 12/30/2022] Open
Abstract
The objective of the present study is to identify and evaluate informative indicators for the welfare of rainbow trout exposed to (A) a water temperature of 27 °C and (B) a stocking density of 100 kg/m3 combined with a temperature of 27 °C. The spleen-somatic and condition index, haematocrit and the concentrations of haemoglobin, plasma cortisol and glucose revealed non-significant differences between the two stress groups and the reference group 8 days after the onset of the experiments. The transcript abundance of almost 1,500 genes was modulated at least twofold in in the spleen of rainbow trout exposed to a critical temperature alone or a critical temperature combined with crowding as compared to the reference fish. The number of differentially expressed genes was four times higher in trout that were simultaneously challenged with high temperature and crowding, compared to trout challenged with high temperature alone. Based on these sets of differentially expressed genes, we identified unique and common tissue- and stress type-specific pathways. Furthermore, our subsequent immunologic analyses revealed reduced bactericidal and inflammatory activity and a significantly altered blood-cell composition in challenged versus non-challenged rainbow trout. Altogether, our data demonstrate that heat and overstocking exert synergistic effects on the rainbow trout’s physiology, especially on the immune system.
Collapse
|
32
|
Feidantsis K, Giantsis IA, Vratsistas A, Makri S, Pappa AZ, Drosopoulou E, Anestis A, Mavridou E, Exadactylos A, Vafidis D, Michaelidis B. Correlation between intermediary metabolism, Hsp gene expression, and oxidative stress-related proteins in long-term thermal-stressed Mytilus galloprovincialis. Am J Physiol Regul Integr Comp Physiol 2020; 319:R264-R281. [DOI: 10.1152/ajpregu.00066.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Long-term exposure of Mytilus galloprovincialis to temperatures beyond 26°C triggers mussel mortality. The present study aimed to integratively illustrate the correlation between intermediary metabolism, hsp gene expression, and oxidative stress-related proteins in long-term thermally stressed Mytilus galloprovincialis and whether they are affected by thermal stress magnitude and duration. We accordingly evaluated the gene expression profiles, in the posterior adductor muscle (PAM) and the mantle, concerning heat shock protein 70 and 90 ( hsp70 and hsp90), and the antioxidant defense indicators Mn-SOD, Cu/Zn-SOD, catalase, glutathione S-transferase, and the metallothioneins mt-10 and mt-20. Moreover, we determined antioxidant enzyme activities, oxidative stress through lipid peroxidation, and activities of intermediary metabolism enzymes. The pattern of changes in relative mRNA expression levels indicate that mussels are able to sense thermal stress even when exposed to 22°C and before mussel mortality is initiated. Data indicate a close correlation between the magnitude and duration of thermal stress with lipid peroxidation levels and changes in the activity of antioxidant enzymes and the enzymes of intermediary metabolism. The gene expression and increase in the activities of antioxidant enzymes support a scenario, according to which exposure to 24°C might trigger reactive oxygen species (ROS) production, which is closely correlated with anaerobic metabolism under hypometabolic conditions. Increase and maintenance of oxidative stress in conjunction with energy balance disturbance seem to trigger mussel mortality after long-term exposure at temperatures beyond 26°C. Eventually, in the context of preparation for oxidative stress, certain hypotheses and models are suggested, integrating the several steps of cellular stress response.
Collapse
Affiliation(s)
- Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis A. Giantsis
- Department of Animal Science, Faculty of Agricultural Sciences, University of Western Macedonia, Florina, Greece
| | - Andreas Vratsistas
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavroula Makri
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasia-Zoi Pappa
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Elena Drosopoulou
- Department of Genetics, Development and Molecular Biology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Anestis
- Laboratory of Hygiene, Division of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Mavridou
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Exadactylos
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Dimitrios Vafidis
- Department of Ichthyology and Aquatic Environment, University of Thessaly, Volos, Greece
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, Faculty of Sciences, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
33
|
Pérez‐Portela R, Riesgo A, Wangensteen OS, Palacín C, Turon X. Enjoying the warming Mediterranean: Transcriptomic responses to temperature changes of a thermophilous keystone species in benthic communities. Mol Ecol 2020; 29:3299-3315. [DOI: 10.1111/mec.15564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 07/08/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Rocío Pérez‐Portela
- Department of Evolutionary Biology, Ecology and Environmental Sciences University of Barcelona, and Research Institute of Biodiversity (IRBIO) Barcelona Spain
- Center for Advanced Studies of Blanes (CEAB, CSIC) Girona Spain
| | - Ana Riesgo
- Department of Life Sciences The Natural History Museum London UK
| | - Owen S. Wangensteen
- Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
| | - Cruz Palacín
- Department of Evolutionary Biology, Ecology and Environmental Sciences University of Barcelona, and Research Institute of Biodiversity (IRBIO) Barcelona Spain
| | - Xavier Turon
- Center for Advanced Studies of Blanes (CEAB, CSIC) Girona Spain
| |
Collapse
|
34
|
Chu T, Liu F, Qin G, Zhan W, Wang M, Lou B. Transcriptome analysis of the Larimichthys polyactis under heat and cold stress. Cryobiology 2020; 96:175-183. [PMID: 32781044 DOI: 10.1016/j.cryobiol.2020.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/29/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023]
Abstract
The small yellow croaker (Larimichthys polyactis) is an economically important marine fish that is widely distributed in the East Sea, Yellow Sea and Bohai of China. However, the wild populations of L. polyactis are severely depleted, and there is currently a developing large-scale artificial propagation of this fish for aquaculture. However, the current variety of L. polyactis that is cultivated is not capable to coping with large fluctuations in temperature. Therefore, it is important to understand the molecular mechanisms that are activated in response to temperature stress in the L. polyactis. Here, we conducted transcriptomic analysis of the liver of L. polyactis under heat and cold stress. A total of 270,844,888, 265,727,006 and 259,666,218 clean reads were generated from high temperature group, low temperature group and control group, respectively, and comparing expression of genes in these transcriptomes, 10,878 unigenes that were differential expressed were identified. Seventeen of the differentially expressed unigenes were validated by qRT-PCR. Pathway enrichment analysis identified that the ER pathway, immune signaling pathway and metabolic response pathway were affected by temperature stress. The results of this study provide a comprehensive overview of temperature stress-induced transcriptional patterns in liver tissues of the L. polyactis. In addition, these results can guide future molecular studies of heat and cold stress response in this species for improving the stock used for aquaculture.
Collapse
Affiliation(s)
- Tianqi Chu
- School of Fishery of Zhejiang Ocean University, Zhoushan, 316022, China
| | - Feng Liu
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Gaochan Qin
- School of Fishery of Zhejiang Ocean University, Zhoushan, 316022, China
| | - Wei Zhan
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Mengjie Wang
- School of Fishery of Zhejiang Ocean University, Zhoushan, 316022, China
| | - Bao Lou
- Institute of Hydrobiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| |
Collapse
|
35
|
Temperature-dependent life history and transcriptomic responses in heat-tolerant versus heat-sensitive Brachionus rotifers. Sci Rep 2020; 10:13281. [PMID: 32764662 PMCID: PMC7411042 DOI: 10.1038/s41598-020-70173-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023] Open
Abstract
Thermal stress response is an essential physiological trait that determines occurrence and temporal succession in nature, including response to climate change. We compared temperature-related demography in closely related heat-tolerant and heat-sensitive Brachionus rotifer species. We found significant differences in heat response, with the heat-sensitive species adopting a strategy of long survival and low population growth, while the heat-tolerant followed the opposite strategy. In both species, we examined the genetic basis of physiological variation by comparing gene expression across increasing temperatures. Comparative transcriptomic analyses identified shared and opposing responses to heat. Interestingly, expression of heat shock proteins (hsps) was strikingly different in the two species and mirrored differences in population growth rates, showing that hsp genes are likely a key component of a species' adaptation to different temperatures. Temperature induction caused opposing patterns of expression in further functional categories including energy, carbohydrate and lipid metabolism, and in genes related to ribosomal proteins. In the heat-sensitive species, elevated temperatures caused up-regulation of genes related to meiosis induction and post-translational histone modifications. This work demonstrates the sweeping reorganizations of biological functions that accompany temperature adaptation in these two species and reveals potential molecular mechanisms that might be activated for adaptation to global warming.
Collapse
|
36
|
Pastorino P, Elia AC, Caldaroni B, Menconi V, Abete MC, Brizio P, Bertoli M, Zaccaroni A, Gabriele M, Dörr AJM, Pizzul E, Prearo M. Oxidative stress ecology in brook trout (Salvelinus fontinalis) from a high-mountain lake (Cottian Alps). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136946. [PMID: 32007898 DOI: 10.1016/j.scitotenv.2020.136946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
High-mountain lakes are pristine ecosystems characterized by extreme environmental conditions. The atmospheric transport of pollutants from lowlands may add further stress to organisms inhabiting these environments. We investigated the environmental stress pressure on brook trout (Salvelinus fontinalis) from a high-mountain lake in the Cottian Alps (Piedmont, northwest Italy). To do this, males and females of brook trout were sampled from Balma Lake in summer (August) and autumn (October) 2017 in order to assess the influence of trace elements accumulation and environmental parameters (physicochemical parameters and nutrient characteristics of water) on oxidative stress biomarkers. Bioaccumulation of Al, As, Cd, Cr, Cu, Fe, Hg, Pb, Ni, Se, and Zn and metallothionein levels were measured in muscle tissue of males and females. Liver, gills, kidney, and spleen tissue samples were analyzed for superoxide dismutase, catalase, total glutathione peroxidase, selenium-dependent glutathione peroxidase, glutathione reductase, and glutathione S-transferase activity. Analysis of environmental parameters showed changes in biomarker levels with seasonal variations. Water temperature was significantly higher in summer than autumn (Wilcoxon test; p = .0078), while pH was significantly higher in autumn than in summer (Wilcoxon test; p = .0078). Sex-related differences in oxidative stress biomarkers in tissues were unremarkable, whereas seasonal variability of oxidative stress biomarkers was observed, with major differences occurred for liver in summer and for gills, kidney, spleen and muscle in autumn. Positive correlations between environmental parameters and biomarkers were noted. Major fluctuations in water temperature, pH, Cu, Pb and Hg produced changes in biomarker levels; however, increased food intake during the ice-free season was probably the main factor that influenced changes in oxidative stress biomarker levels in brook trout in this extreme ecosystem.
Collapse
Affiliation(s)
- Paolo Pastorino
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy; The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy.
| | - Antonia Concetta Elia
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Barbara Caldaroni
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Vasco Menconi
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Maria Cesarina Abete
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Paola Brizio
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| | - Marco Bertoli
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - Annalisa Zaccaroni
- Department of Veterinary Medical Science, University of Bologna, viale Vespucci 2, 47042 Cesenatico (FC), Italy
| | - Magara Gabriele
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Ambrosius Josef Martin Dörr
- Department of Chemistry Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Elisabetta Pizzul
- Department of Life Sciences, University of Trieste, via Giorgieri 10, 34127 Trieste, Italy
| | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d'Aosta, via Bologna 148, 10154 Torino, Italy
| |
Collapse
|
37
|
Chakravarti LJ, Buerger P, Levin RA, van Oppen MJH. Gene regulation underpinning increased thermal tolerance in a laboratory-evolved coral photosymbiont. Mol Ecol 2020; 29:1684-1703. [PMID: 32268445 DOI: 10.1111/mec.15432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 03/07/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Small increases in ocean temperature can disrupt the obligate symbiosis between corals and dinoflagellate microalgae, resulting in coral bleaching. Little is known about the genes that drive the physiological and bleaching response of algal symbionts to elevated temperature. Moreover, many studies to-date have compared highly divergent strains, making it challenging to accredit specific genes to contrasting traits. Here, we compare transcriptional responses at ambient (27°C) and bleaching-relevant (31°C) temperatures in a monoclonal, wild-type (WT) strain of Symbiodiniaceae to those of a selected-strain (SS), derived from the same monoclonal culture and experimentally evolved to elevated temperature over 80 generations (2.5 years). Thousands of genes were differentially expressed at a log fold-change of >8 between the WT and SS over a 35 days temperature treatment period. At 31°C, WT cells exhibited a temporally unstable transcriptomic response upregulating genes involved in the universal stress response such as molecular chaperoning, protein repair, protein degradation and DNA repair. Comparatively, SS cells exhibited a temporally stable transcriptomic response and downregulated many stress response genes that were upregulated by the WT. Among the most highly upregulated genes in the SS at 31°C were algal transcription factors and a gene probably of bacterial origin that encodes a type II secretion system protein, suggesting interactions with bacteria may contribute to the increased thermal tolerance of the SS. Genes and functional pathways conferring thermal tolerance in the SS could be targeted in future genetic engineering experiments designed to develop thermally resilient algal symbionts for use in coral restoration and conservation.
Collapse
Affiliation(s)
- Leela J Chakravarti
- Australian Institute of Marine Science, Townsville MC, Qld, Australia.,AIMS@JCU, Australian Institute of Marine Science, College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, Australia.,College of Marine and Environmental Sciences, James Cook University, Townsville, Qld, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Qld, Australia
| | - Patrick Buerger
- CSIRO, Land & Water, Canberra, ACT, Australia.,School of BioSciences, University of Melbourne, Parkville, Vic, Australia
| | | | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville MC, Qld, Australia.,School of BioSciences, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
38
|
Somero GN. The cellular stress response and temperature: Function, regulation, and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:379-397. [PMID: 31944627 DOI: 10.1002/jez.2344] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/11/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023]
Abstract
The cellular stress response (CSR) is critical for enabling organisms to cope with thermal damage to proteins, nucleic acids, and membranes. It is a graded response whose properties vary with the degree of cellular damage. Molecular damage has positive, as well as negative, function-perturbing effects. Positive effects include crucial regulatory interactions that orchestrate involvement of the different components of the CSR. Thermally unfolded proteins signal for rapid initiation of transcription of genes encoding heat shock proteins (HSPs), central elements of the heat shock response (HSR). Thermal disruption of messenger RNA (mRNA) secondary structures in untranslated regions leads to the culling of the mRNA pool: thermally labile mRNAs for housekeeping proteins are degraded by exonucleases; heat-resistant mRNAs for stress proteins like HSPs then can monopolize the translational apparatus. Thus, proteins and RNA function as "cellular thermometers," and evolved differences in their thermal stabilities enable rapid initiation of the CSR whenever cell temperature rises significantly above the normal thermal range of a species. Covalent DNA damage, which may result from increased production of reactive oxygen species, is temperature-dependent; its extent may determine cellular survival. High levels of stress that exceed capacities for molecular repair can lead to proteolysis, inhibition of cell division, and programmed cell death (apoptosis). Onset of these processes may occur later in the stress period, after initiation of the HSR, to allow HSPs opportunity to restore protein homeostasis. Delay of these energy costly processes may also result from shortfalls in availability of adenosine triphosphate and reducing power during times of peak stress.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| |
Collapse
|
39
|
Mottola G, Nikinmaa M, Anttila K. Hsp70s transcription-translation relationship depends on the heat shock temperature in zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2019; 240:110629. [PMID: 31790806 DOI: 10.1016/j.cbpa.2019.110629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022]
Abstract
Virtually all organisms respond to heat shock by transcription of genes encoding for heat shock proteins (HSPs), but the mechanisms behind post-transcriptional regulation are not known in detail. When we exposed zebrafish to 5 and 7 °C above normal rearing temperature for 30 min, hsp70 mRNA expression was 28 and 150 -fold higher than in control, respectively. Protein expression, on the other hand, showed no significant change at the +5 °C and a 2-fold increase at the +7 °C exposure. This suggests that the transcription of hsp70 gene does not immediately correspond to translation to related proteins under certain stress temperatures, but, when the temperature is higher, and potentially detrimental, transcription and translation are intimately coupled. Those results confirm that temperature is an important abiotic factor involved in heat shock post-transcriptional regulation mechanisms in fish. However, further studies are needed to determine the relationship between this environmental factor and post-transcriptional regulation mechanisms. Earlier, the coupling/uncoupling of hsp transcription and translation has only been studied using cold-water fish, or zebrafish embryos. With current findings, we suggest this mechanism might be present even in adult warm water fish like the zebrafish.
Collapse
Affiliation(s)
- Giovanna Mottola
- Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland..
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| | - Katja Anttila
- Department of Biology, University of Turku, Vesilinnantie 5, 20500 Turku, Finland
| |
Collapse
|
40
|
Levesque KD, Wright PA, Bernier NJ. Cross Talk without Cross Tolerance: Effect of Rearing Temperature on the Hypoxia Response of Embryonic Zebrafish. Physiol Biochem Zool 2019; 92:349-364. [DOI: 10.1086/703178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Tripp-Valdez MA, Harms L, Pörtner HO, Sicard MT, Lucassen M. De novo transcriptome assembly and gene expression profile of thermally challenged green abalone (Haliotis fulgens: Gastropoda) under acute hypoxia and hypercapnia. Mar Genomics 2019; 45:48-56. [DOI: 10.1016/j.margen.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 12/19/2022]
|
42
|
Allais L, Zhao C, Fu M, Hu J, Qin JG, Qiu L, Ma Z. Nutrition and water temperature regulate the expression of heat-shock proteins in golden pompano larvae (Trachinotus ovata, Limmaeus 1758). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:485-497. [PMID: 30397841 DOI: 10.1007/s10695-018-0578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Understanding fish larval development is of a great interest for aquaculture production efficiency. Identifying possible indicators of fish larvae stress could improve the production and limit the mortality rate that larval stage is subjected to. Heat-shock proteins (HSPs) and heat-shock factors (HSFs) are well known as indicators of response to many kinds of stressor (e.g., environmental, morphological, or pathological changes). In this study, golden pompano larvae were raised at different temperatures (23 °C, 26 °C, and 29 °C), as well as three different diets (Artemia nauplii unenriched, Artemia nauplii enriched with Nannochloropsis sp., and Artemia nauplii enriched with Algamac 3080), and the expression of HSP60, HSP70, HSF1, HSP2, and GRP94 were monitored. While stress genes were widely expressed in the larval tissues, HSP60 and HSP70 were principally from the gills and heart; HSF1 principally from the muscle, brain, and heart; and GRP94 principally from the head kidney and spleen. Golden pompano larvae were found to be more sensitive to thermal changes at later larval stage, and 29 °C was showed to likely be the best condition for golden pompano larval development. Nannochloropsis sp.-enriched Artemia nauplii treatment was found to be the most appropriate feed type with moderate relative expressions of HSP60, HSP70, HSF1, HSF2, and GRP94.
Collapse
Affiliation(s)
- Laetitia Allais
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Chao Zhao
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Mingjun Fu
- College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Jing Hu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Lihua Qiu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China.
| |
Collapse
|
43
|
Ishihara A, Sapon MA, Yamauchi K. Seasonal acclimatization and thermal acclimation induce global histone epigenetic changes in liver of bullfrog (Lithobates catesbeianus) tadpole. Comp Biochem Physiol A Mol Integr Physiol 2019; 230:39-48. [DOI: 10.1016/j.cbpa.2018.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
|
44
|
Transcriptome Analysis of Yamame ( Oncorhynchus masou) in Normal Conditions after Heat Stress. BIOLOGY 2019; 8:biology8020021. [PMID: 30934851 PMCID: PMC6628215 DOI: 10.3390/biology8020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Understanding the mechanism of high-temperature tolerance in cold-freshwater fish is crucial for predicting how certain species will cope with global warming. In this study, we investigated temperature tolerance in masu salmon (Oncorhynchus masou, known in Japan as ‘yamame’), an important aquaculture species. By selective breeding, we developed a group of yamame (F2) with high-temperature tolerance. This group was subjected to a high-temperature tolerance test and divided into two groups: High-temperature tolerant (HT) and non-high-temperature tolerant (NT). RNA was extracted from the gill and adipose fin tissues of each group, and the mRNA expression profiles were analyzed using RNA sequencing. A total of 2893 differentially expressed genes (DEGs) from the gill and 836 from the adipose fin were identified by comparing the HT and NT groups. Functional analyses were then performed to identify associated gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The HT group showed a high expression of heat shock protein 70 (HSP70) gene and enriched gene expression in the extracellular matrix (ECM), cell junction, and adhesion pathways in gill tissues compared to the NT group. The HT group also exhibited highly expressed genes in glycolysis and showed lower expression of the genes in the p53 signaling pathway in adipose fin tissues. Taken together, the difference of expression of some genes in the normal condition may be responsible for the difference in heat tolerance between the HT and NT yamame in the heat stress condition.
Collapse
|
45
|
Healy TM, Schulte PM. Patterns of alternative splicing in response to cold acclimation in fish. ACTA ACUST UNITED AC 2019; 222:jeb.193516. [PMID: 30692167 DOI: 10.1242/jeb.193516] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Phenotypic plasticity is an important aspect of an organism's response to environmental change that often requires the modulation of gene expression. These changes in gene expression can be quantitative, as a result of increases or decreases in the amounts of specific transcripts, or qualitative, as a result of the expression of alternative transcripts from the same gene (e.g. via alternative splicing of pre-mRNAs). Although the role of quantitative changes in gene expression in phenotypic plasticity is well known, relatively few studies have examined the role of qualitative changes. Here, we use skeletal muscle RNA-seq data from Atlantic killifish (Fundulus heteroclitus), threespine stickleback (Gasterosteus aculeatus) and zebrafish (Danio rerio) to investigate the extent of qualitative changes in gene expression in response to cold acclimation. Fewer genes demonstrated alternative splicing than differential expression as a result of cold acclimation; however, differences in splicing were detected for 426 to 866 genes depending on species, indicating that large numbers of qualitative changes in gene expression are associated with cold acclimation. Many of these alternatively spliced genes were also differentially expressed, and there was functional enrichment for involvement in muscle contraction among the genes demonstrating qualitative changes in response to cold acclimation. Additionally, there was a common group of 29 genes with cold-acclimation-mediated changes in splicing in all three species, suggesting that there may be a set of genes with expression patterns that respond qualitatively to prolonged exposure to cold temperatures across fishes.
Collapse
Affiliation(s)
- Timothy M Healy
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia M Schulte
- The University of British Columbia, Department of Zoology, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
46
|
Shi KP, Dong SL, Zhou YG, Li Y, Gao QF, Sun DJ. RNA-seq reveals temporal differences in the transcriptome response to acute heat stress in the Atlantic salmon (Salmo salar). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:169-178. [PMID: 30861459 DOI: 10.1016/j.cbd.2018.12.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/01/2023]
Abstract
Acute heat stress is common in aquaculture and can affect diverse physiological processes in fish; however, different species of fish have various mechanisms for heat stress adaptation. In this study, we profiled the transcriptome responses of the Atlantic salmon (Salmo salar) to heat stress at 23 °C for 6 or 24 h, compared with that of fish at a normal temperature of 13 °C. The liver was selected as the target tissue for this analysis. A total of 243 and 88 genes were differentially expressed after 6 and 24 h of heat stress, respectively. Of these, only 22 were common to both time points, and most of these common genes were molecular chaperones such as heat shock cognate 71 kDa protein and heat shock protein 90-alpha. Genes such as activating transcription factor 6, calreticulin, protein disulfide isomerase A3, and protein kinase R-like endoplasmic reticulum kinase-eukaryotic initiation factor 2-alpha were only up-regulated after 6 h of heat stress; most of these genes are involved in the endoplasmic reticulum stress pathway. Indeed, endoplasmic reticulum stress was identified at 6 h but not at 24 h, suggesting that stress response plays an important role in the adaptation of Atlantic salmon to acute heat stress. Other up-regulated genes at 6 h were related to the insulin and nucleotide oligomerization domain-like receptor signaling pathways, which directly eliminate misfolded proteins and sustain sugar and lipid homeostasis. At 24 h, heat stress influenced the expression of steroid and terpenoid backbone biosynthesis, which may influence the sexual development and differentiation of Atlantic salmon. Overall, our results elucidate the transcriptome mechanisms that contribute to short-term heat tolerance in the liver of Atlantic salmon.
Collapse
Affiliation(s)
- Kun-Peng Shi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shuang-Lin Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Yan-Gen Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qin-Feng Gao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Da-Jiang Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
47
|
Teske PR, Sandoval-Castillo J, Golla TR, Emami-Khoyi A, Tine M, von der Heyden S, Beheregaray LB. Thermal selection as a driver of marine ecological speciation. Proc Biol Sci 2019; 286:20182023. [PMID: 30963923 PMCID: PMC6408613 DOI: 10.1098/rspb.2018.2023] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Intraspecific genetic structure in widely distributed marine species often mirrors the boundaries between temperature-defined bioregions. This suggests that the same thermal gradients that maintain distinct species assemblages also drive the evolution of new biodiversity. Ecological speciation scenarios are often invoked to explain such patterns, but the fact that adaptation is usually only identified when phylogenetic splits are already evident makes it impossible to rule out the alternative scenario of allopatric speciation with subsequent adaptation. We integrated large-scale genomic and environmental datasets along one of the world's best-defined marine thermal gradients (the South African coastline) to test the hypothesis that incipient ecological speciation is a result of divergence linked to the thermal environment. We identified temperature-associated gene regions in a coastal fish species that is spatially homogeneous throughout several temperature-defined biogeographic regions based on selectively neutral markers. Based on these gene regions, the species is divided into geographically distinct regional populations. Importantly, the ranges of these populations are delimited by the same ecological boundaries that define distinct infraspecific genetic lineages in co-distributed marine species, and biogeographic disjunctions in species assemblages. Our results indicate that temperature-mediated selection represents an early stage of marine ecological speciation in coastal regions that lack physical dispersal barriers.
Collapse
Affiliation(s)
- Peter R. Teske
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| | - Tirupathi Rao Golla
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa
| | - Arsalan Emami-Khoyi
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa
| | - Mbaye Tine
- Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park 2006, South Africa
| | - Sophie von der Heyden
- Evolutionary Genomics Lab, Department of Botany and Zoology, Stellenbosch University, Matieland 7602, South Africa
| | - Luciano B. Beheregaray
- Molecular Ecology Lab, College of Science and Engineering, Flinders University, Adelaide 5001, Australia
| |
Collapse
|
48
|
Liu Y, Liu J, Ye S, Bureau DP, Liu H, Yin J, Mou Z, Lin H, Hao F. Global metabolic responses of the lenok (Brachymystax lenok) to thermal stress. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:308-319. [PMID: 30669055 DOI: 10.1016/j.cbd.2019.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/17/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022]
Abstract
High temperature is a powerful stressor for fish living in natural and artificial environments, especially for cold water species. Understanding the impact of thermal stress on physiological processes of fish is crucial for better cultivation and fisheries management. However, the metabolic mechanism of cold water fish to thermal stress is still not completely clear. In this study, a NMR-based metabonomic strategy in combination with high-throughput RNA-Seq was employed to investigate global metabolic changes of plasma and liver in a typical cold water fish species lenok (Brachymystax lenok) subjected to a sub-lethal high temperature. Our results showed that thermal stress caused multiple dynamic metabolic alterations of the lenok with prolonged stress, including repression of energy metabolism, shifts in lipid metabolism, alterations in amino acid metabolism, changes in choline and nucleotide metabolisms. Specifically, thermal stress induced an activation of glutamate metabolism, indicating that glutamate could be an important biomarker associated with thermal stress. Evidence from Hsp 70 gene expression, blood biochemistry and histology confirmed that high temperature exposure had negative effects on health of the lenok. These findings imply that thermal stress has a severe adverse effect on fish health and demonstrate that the integrated analyses combining NMR-based metabonomics and transcriptome strategy is a powerful approach to enhance our understanding of metabolic mechanisms of fish to thermal stress.
Collapse
Affiliation(s)
- Yang Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Jiashou Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaowen Ye
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dominique P Bureau
- Fish Nutrition Research Laboratory, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hongbai Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Jiasheng Yin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| | - Zhenbo Mou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850002, China
| | - Hong Lin
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuhua Hao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
49
|
Domestication and Temperature Modulate Gene Expression Signatures and Growth in the Australasian Snapper Chrysophrys auratus. G3-GENES GENOMES GENETICS 2019; 9:105-116. [PMID: 30591433 PMCID: PMC6325909 DOI: 10.1534/g3.118.200647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Identifying genes and pathways involved in domestication is critical to understand how species change in response to human-induced selection pressures, such as increased temperatures. Given the profound influence of temperature on fish metabolism and organismal performance, a comparison of how temperature affects wild and domestic strains of snapper is an important question to address. We experimentally manipulated temperature conditions for F1-hatchery and wild Australasian snapper (Chrysophrys auratus) for 18 days to mimic seasonal extremes and measured differences in growth, white muscle RNA transcription and hematological parameters. Over 2.2 Gb paired-end reads were assembled de novo for a total set of 33,017 transcripts (N50 = 2,804). We found pronounced growth and gene expression differences between wild and domesticated individuals related to global developmental and immune pathways. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signaling. This study is the first step toward gaining an understanding of the changes occurring in the early stages of domestication, and the mechanisms underlying thermal adaptation and associated growth in poikilothermic vertebrates. Our study further provides the first transcriptome resources for studying biological questions in this non-model fish species.
Collapse
|
50
|
Li B, Sun S, Zhu J, Yanli S, Wuxiao Z, Ge X. Transcriptome profiling and histology changes in juvenile blunt snout bream (Megalobrama amblycephala) liver tissue in response to acute thermal stress. Genomics 2018; 111:242-250. [PMID: 30458273 DOI: 10.1016/j.ygeno.2018.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 09/21/2018] [Accepted: 11/11/2018] [Indexed: 10/27/2022]
Abstract
To understand the precise mechanism and the pathways activated by thermal stress in fish, we sampled livers from juvenile Megalobrama amblycephala exposed to control (25 °C) and test (35 °C) conditions, and performed short read (100 bp) next-generation RNA sequencing (RNA-seq). Using reads from different temperature, expression analysis identified a total of 440 differentially-expressed genes. These genes were related to oxidative stress, apoptosis, immune responses and so on. We used quantitative real-time reverse transcriptase PCR to assess the differential mRNA expression of selected genes that encode antioxidant enzymes and heat shock proteins in response to thermal stress. Fish exposed to thermal stress also showed liver damage associated with serum biochemical parameter changes. The set of genes identified showed regulatory modulation at different temperatures, and therefore could be further studied to determine how thermal stress damages M. amblycephala livers and the possible roles of reactive oxygen species in this process.
Collapse
Affiliation(s)
- Bing Li
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Shengming Sun
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Su Yanli
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Zhang Wuxiao
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Xianping Ge
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China.
| |
Collapse
|