1
|
Tao YT, Breves JP. Hypersalinity tolerance of mummichogs (Fundulus heteroclitus): A branchial transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101338. [PMID: 39413658 DOI: 10.1016/j.cbd.2024.101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Along the east coast of North America, mummichogs (Fundulus heteroclitus) are subjected to a broad range of salinities in their nearshore habitats. However, there is a paucity of information regarding the molecular and cellular processes that mummichogs (and other highly osmotolerant fishes) engage to survive environmental salinities greater than seawater (SW). To reveal branchial processes underlying their extraordinarily broad salinity tolerance, we performed an RNA-Seq analysis to identify differentially expressed genes (DEGs) in mummichogs residing in 3, 35, and 105 ppt conditions. We identified a series of DEGs previously associated with both freshwater (FW)- and SW-type ionocytes; however, the heightened expression of anoctamin 1a, a Ca2+-activated Cl- channel, in 35 and 105 ppt indicates that an undescribed Cl--secretion pathway may operate within the SW-type ionocytes of mummichogs. Concerning FW-adaptive branchial processes, we identified claudin 5a as a gene whose product may limit the diffusive loss of ions between cellular tight junctions. Further, in response to hypersaline conditions, we identified DEGs linked with myo-inositol synthesis and kinase signaling. This study provides new molecular targets for future physiological investigations that promise to reveal the mechanistic bases for how mummichogs and other euryhaline species tolerate hypersaline conditions.
Collapse
Affiliation(s)
- Yixuan T Tao
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| |
Collapse
|
2
|
Breves JP, Shaughnessy CA. Endocrine control of gill ionocyte function in euryhaline fishes. J Comp Physiol B 2024; 194:663-684. [PMID: 38739280 DOI: 10.1007/s00360-024-01555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/16/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
The endocrine system is an essential regulator of the osmoregulatory organs that enable euryhaline fishes to maintain hydromineral balance in a broad range of environmental salinities. Because branchial ionocytes are the primary site for the active exchange of Na+, Cl-, and Ca2+ with the external environment, their functional regulation is inextricably linked with adaptive responses to changes in salinity. Here, we review the molecular-level processes that connect osmoregulatory hormones with branchial ion transport. We focus on how factors such as prolactin, growth hormone, cortisol, and insulin-like growth-factors operate through their cognate receptors to direct the expression of specific ion transporters/channels, Na+/K+-ATPases, tight-junction proteins, and aquaporins in ion-absorptive (freshwater-type) and ion-secretory (seawater-type) ionocytes. While these connections have historically been deduced in teleost models, more recently, increased attention has been given to understanding the nature of these connections in basal lineages. We conclude our review by proposing areas for future investigation that aim to fill gaps in the collective understanding of how hormonal signaling underlies ionocyte-based processes.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY, 12866, USA.
| | - Ciaran A Shaughnessy
- Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK, 74078, USA
| |
Collapse
|
3
|
Zhao C, Liu Y, Zhang P, Xia X, Yang Y. Alternative splicing plays a nonredundant role in greater amberjack (Seriola dumerili) in acclimation to ambient salinity fluctuations. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106549. [PMID: 38733739 DOI: 10.1016/j.marenvres.2024.106549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism for adaptation of fish to environmental stress. Here, we performed a genome-wide investigation to AS dynamics in greater amberjack (Seriola dumerili), an economical marine teleost, in response to hypo- (10 ppt) and hyper-salinity (40 ppt) stresses. Totally, 2267-2611 differentially spliced events were identified in gills and kidney upon the exposure to undesired salinity regimes. In gills, genes involved in energy metabolism, stimulus response and epithelial cell differentiation were differentially spliced in response to salinity variation, while sodium ion transport and cellular amide metabolism were enhanced in kidney to combat the adverse impacts of salinity changes. Most of these differentially spliced genes were not differentially expressed, and AS was found to regulate different biological processes from differential gene expression, indicative of the functionally nonredundant role of AS in modulating salinity acclimation in greater amberjack. Together, our study highlights the important contribution of post-transcriptional mechanisms to the adaptation of fish to ambient salinity fluctuations and provides theoretical guidance for the conservation of marine fishery resources against increasingly environmental challenges.
Collapse
Affiliation(s)
- Chunyu Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Panpan Zhang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Xinhui Xia
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen Guangdong, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Malintha GHT, Woo DW, Celino-Brady FT, Seale AP. Temperature modulates the osmosensitivity of tilapia prolactin cells. Sci Rep 2023; 13:20217. [PMID: 37980366 PMCID: PMC10657356 DOI: 10.1038/s41598-023-47044-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023] Open
Abstract
In euryhaline fish, prolactin (Prl) plays an essential role in freshwater (FW) acclimation. In the euryhaline and eurythermal Mozambique tilapia, Oreochromis mossambicus, Prl cells are model osmoreceptors, recently described to be thermosensitive. To investigate the effects of temperature on osmoreception, we incubated Prl cells of tilapia acclimated to either FW or seawater (SW) in different combinations of temperatures (20, 26 and 32 °C) and osmolalities (280, 330 and 420 mOsm/kg) for 6 h. Release of both Prl isoforms, Prl188 and Prl177, increased in hyposmotic media and were further augmented with a rise in temperature. Hyposmotically-induced release of Prl188, but not Prl177, was suppressed at 20 °C. In SW fish, mRNA expression of prl188 increased with rising temperatures at lower osmolalities, while and prl177 decreased at 32 °C and higher osmolalities. In Prl cells of SW-acclimated tilapia incubated in hyperosmotic media, the expressions of Prl receptors, prlr1 and prlr2, and the stretch-activated Ca2+ channel, trpv4,decreased at 32 °C, suggesting the presence of a cellular mechanism to compensate for elevated Prl release. Transcription factors, pou1f1, pou2f1b, creb3l1, cebpb, stat3, stat1a and nfat1c, known to regulate prl188 and prl177, were also downregulated at 32 °C. Our findings provide evidence that osmoreception is modulated by temperature, and that both thermal and osmotic responses vary with acclimation salinity.
Collapse
Affiliation(s)
- G H T Malintha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Daniel W Woo
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI, 96822, USA.
| |
Collapse
|
5
|
Malintha GHT, Celino-Brady FT, Stoytcheva ZR, Seale AP. Osmosensitive transcription factors in the prolactin cell of a euryhaline teleost. Comp Biochem Physiol A Mol Integr Physiol 2023; 278:111356. [PMID: 36535574 PMCID: PMC9911408 DOI: 10.1016/j.cbpa.2022.111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
In euryhaline fish, prolactin (Prl) plays a key role in freshwater acclimation. Prl release in the rostral pars distalis (RPD) of the pituitary is directly stimulated by a fall in extracellular osmolality. Recently, we identified several putative transcription factor modules (TFM) predicted to bind to the promoter regions of the two prl isoforms in Mozambique tilapia, Oreochromis mossambicus. We characterized the effects of extracellular osmolality on the activation of these TFMs from RPDs, in vivo and in vitro. OCT1_PIT1 01, CEBP_CEBP 01 and BRNF_RXRF 01 were significantly activated in freshwater (FW)- acclimated tilapia RPDs while SORY_PAX3 02 and SP1F_SP1F 06, SP1F_SP1F 09 were significantly activated in seawater (SW)- counterparts. Short-term incubation of SW- acclimated tilapia RPDs in hyposmotic media (280 mOsm/kg) resulted in activation of CAAT_AP1F 01, OCT1_CEBP 01, AP1F_SMAD 01, GATA_SP1F 01, SORY_PAX6 01 and CREB_EBOX 02, EBOX_AP2F 01, EBOX_MITF 01 while hyperosmotic media (420 mOsm/kg) activated SORY_PAX3 02 and AP1F_SMAD 01 in FW- tilapia. Short-term incubation of dispersed Prl cells from FW- acclimated fish exposed to hyperosmotic conditions decreased pou1f1, pou2f1b, stat3, stat1a and ap1b1 expression, while pou1f1, pou2f1b, and stat3 were inversely related to osmolality in their SW- counterparts. Further, in Prl cells of SW- tilapia, creb3l1 was suppressed in hyposmotic media. Collectively, our results indicate that multiple TFMs are involved in regulating prl transcription at different acclimation salinities and, together, they modulate responses of Prl cells to changes in extracellular osmolality. These responses reflect the complexity of osmosensitive molecular regulation of the osmoreceptive Prl cell of a euryhaline teleost.
Collapse
Affiliation(s)
- G H T Malintha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Zoia R Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
6
|
Nagarajan G, Aruna A, Chang YM, Alkhamis YA, Mathew RT, Chang CF. Effects of Osmotic Stress on the mRNA Expression of prl, prlr, gr, gh, and ghr in the Pituitary and Osmoregulatory Organs of Black Porgy, Acanthopagrus schlegelii. Int J Mol Sci 2023; 24:ijms24065318. [PMID: 36982391 PMCID: PMC10049143 DOI: 10.3390/ijms24065318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In euryhaline teleost black porgy, Acanthopagrus schlegelii, the glucocorticoid receptor (gr), growth hormone receptor (ghr), prolactin (prl)-receptor (prlr), and sodium–potassium ATPase alpha subunit (α-nka) play essential physiological roles in the osmoregulatory organs, including the gill, kidney, and intestine, during osmotic stress. The present study aimed to investigate the impact of pituitary hormones and hormone receptors in the osmoregulatory organs during the transfer from freshwater (FW) to 4 ppt and seawater (SW) and vice versa in black porgy. Quantitative real-time PCR (Q-PCR) was carried out to analyze the transcript levels during salinity and osmoregulatory stress. Increased salinity resulted in decreased transcripts of prl in the pituitary, α-nka and prlr in the gill, and α-nka and prlr in the kidney. Increased salinity caused the increased transcripts of gr in the gill and α-nka in the intestine. Decreased salinity resulted in increased pituitary prl, and increases in α-nka and prlr in the gill, and α-nka, prlr, and ghr in the kidney. Taken together, the present results highlight the involvement of prl, prlr, gh, and ghr in the osmoregulation and osmotic stress in the osmoregulatory organs (gill, intestine, and kidney). Pituitary prl, and gill and intestine prlr are consistently downregulated during the increased salinity stress and vice versa. It is suggested that prl plays a more significant role in osmoregulation than gh in the euryhaline black porgy. Furthermore, the present results highlighted that the gill gr transcript’s role was solely to balance the homeostasis in the black porgy during salinity stress.
Collapse
Affiliation(s)
- Ganesan Nagarajan
- Department of Basic Sciences, PYD, King Faisal University, Al Ahsa 31982, Saudi Arabia
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (G.N.); (C.-F.C.); Tel.: +966-0135896810 (G.N.); +886-2-2462-2192 (ext. 5209) (C.-F.C.)
| | - Adimoolam Aruna
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yu-Ming Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yousef Ahmed Alkhamis
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Hofuf-420, Al-Asha 31982, Saudi Arabia
- Fish Resources Research Center, King Faisal University, Hofuf-420, Al-Asha 31982, Saudi Arabia
| | - Roshmon Thomas Mathew
- Fish Resources Research Center, King Faisal University, Hofuf-420, Al-Asha 31982, Saudi Arabia
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
- Correspondence: (G.N.); (C.-F.C.); Tel.: +966-0135896810 (G.N.); +886-2-2462-2192 (ext. 5209) (C.-F.C.)
| |
Collapse
|
7
|
Hewage TMG, Woo DW, Celino-Brady FT, Seale AP. Temperature modulates the osmosensitivity of tilapia prolactin cells. RESEARCH SQUARE 2023:rs.3.rs-2524830. [PMID: 36909603 PMCID: PMC10002831 DOI: 10.21203/rs.3.rs-2524830/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
In euryhaline fish, prolactin (Prl) plays an essential role in freshwater (FW) acclimation. In the euryhaline and eurythermal Mozambique tilapia, Oreochromis mossambicus, Prl cells are model osmoreceptors, recently described to be thermosensitive. To investigate the effects of temperature on osmoreception, we incubated Prl cells of tilapia acclimated to either FW or seawater (SW) in different temperature (20, 26 and 32°C) and osmolality (280, 330 and 420 mOsm/kg) combinations for 6 h. Release of both Prl isoforms, Prl188 and Prl177, increased in hyposmotic media and were further augmented with a rise in temperature. Hyposmotically-induced release of Prl188 was inhibited at 20°C. In SW fish, mRNA expression of prl188 and prl177 showed direct and inverse relationships with temperature, respectively. In SW-acclimated tilapia Prl cells incubated in hyperosmotic media, Prl receptors, prlr1 and prlr2, and the stretch-activated Ca2+ channel, trpv4, were inhibited at 32°C, suggesting the presence of a cellular mechanism to compensate for elevated Prl release. Transcription factors, pou1f1, pou2f1b, creb3l1, cebpb, stat3, stat1a and nfat1c, known to regulate prl188 and prl177, were also downregulated at 32°C. Our findings provide evidence that osmoreception is modulated by temperature, and that both thermal and osmotic responses vary with acclimation salinity.
Collapse
|
8
|
Taugbøl A, Solbakken MH, Jakobsen KS, Vøllestad LA. Salinity-induced transcriptome profiles in marine and freshwater threespine stickleback after an abrupt 6-hour exposure. Ecol Evol 2022; 12:e9395. [PMID: 36311407 PMCID: PMC9596333 DOI: 10.1002/ece3.9395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Saltwater and freshwater environments have opposing physiological challenges, yet, there are fish species that are able to enter both habitats during short time spans, and as individuals they must therefore adjust quickly to osmoregulatory contrasts. In this study, we conducted an experiment to test for plastic responses to abrupt salinity changes in two populations of threespine stickleback, Gasterosteus aculeatus, representing two ecotypes (freshwater and ancestral saltwater). We exposed both ecotypes to abrupt native (control treatment) and non-native salinities (0‰ and 30‰) and sampled gill tissue for transcriptomic analyses after 6 h of exposure. To investigate genomic responses to salinity, we analyzed four different comparisons; one for each ecotype (in their control and exposure salinity; (1) and (2), one between ecotypes in their control salinity (3), and the fourth comparison included all transcripts identified in (3) that did not show any expressional changes within ecotype in either the control or the exposed salinity (4)). Abrupt salinity transfer affected the expression of 10 and 1530 transcripts for the saltwater and freshwater ecotype, respectively, and 1314 were differentially expressed between the controls, including 502 that were not affected by salinity within ecotype (fixed expression). In total, these results indicate that factors other than genomic expressional plasticity are important for osmoregulation in stickleback, due to the need for opposite physiological pathways to survive the abrupt change in salinity.
Collapse
Affiliation(s)
- Annette Taugbøl
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
- Norwegian Institute for Nature Research (NINA)LillehammerNorway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Kjetill S. Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| | - Leif Asbjørn Vøllestad
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernNorway
| |
Collapse
|
9
|
Seale AP, Breves JP. Endocrine and osmoregulatory responses to tidally-changing salinities in fishes. Gen Comp Endocrinol 2022; 326:114071. [PMID: 35697315 DOI: 10.1016/j.ygcen.2022.114071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 12/15/2022]
Abstract
Salinity is one of the main physical properties that govern the distribution of fishes across aquatic habitats. In order to maintain their body fluids near osmotic set points in the face of salinity changes, euryhaline fishes rely upon tissue-level osmotically-induced responses and systemic endocrine signaling to direct adaptive ion-transport processes in the gill and other critical osmoregulatory organs. Some euryhaline teleosts inhabit tidally influenced waters such as estuaries where salinity can vary between fresh water (FW) and seawater (SW). The physiological adaptations that underlie euryhalinity in teleosts have been traditionally identified in fish held under steady-state conditions or following unidirectional transfers between FW and SW. Far fewer studies have employed salinity regimes that simulate the tidal cycles that some euryhaline fishes may experience in their native habitats. With an emphasis on prolactin (Prl) signaling and branchial ionocytes, this mini-review contrasts the physiological responses between euryhaline fish responding to tidal versus unidirectional changes in salinity. Three patterns that emerged from studying Mozambique tilapia (Oreochromis mossambicus) subjected to tidally-changing salinities include, 1) fish can compensate for continuous and marked changes in external salinity to maintain osmoregulatory parameters within narrow ranges, 2) tilapia maintain branchial ionocyte populations in a fashion similar to SW-acclimated fish, and 3) there is a shift from systemic to local modulation of Prl signaling.
Collapse
Affiliation(s)
- Andre P Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, 1955 East-West Road, Honolulu, HI 96822, USA.
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
10
|
Breves JP, Puterbaugh KM, Bradley SE, Hageman AE, Verspyck AJ, Shaw LH, Danielson EC, Hou Y. Molecular targets of prolactin in mummichogs (Fundulus heteroclitus): Ion transporters/channels, aquaporins, and claudins. Gen Comp Endocrinol 2022; 325:114051. [PMID: 35533740 DOI: 10.1016/j.ygcen.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
Prolactin (Prl) was identified over 60 years ago in mummichogs (Fundulus heteroclitus) as a "freshwater (FW)-adapting hormone", yet the cellular and molecular targets of Prl in this model teleost have remained unknown. Here, we conducted a phylogenetic analysis of two mummichog Prl receptors (Prlrs), designated Prlra and Prlrb, prior to describing the tissue- and salinity-dependent expression of their associated mRNAs. We then administered ovine Prl (oPrl) to mummichogs held in brackish water and characterized the expression of genes associated with FW- and seawater (SW)-type ionocytes. Within FW-type ionocytes, oPrl stimulated the expression of Na+/Cl- cotransporter 2 (ncc2) and aquaporin 3 (aqp3). Alternatively, branchial Na+/H+ exchanger 2 and -3 (nhe2 and -3) expression did not respond to oPrl. Gene transcripts associated with SW-type ionocytes, including Na+/K+/2Cl- cotransporter 1 (nkcc1), cystic fibrosis transmembrane regulator 1 (cftr1), and claudin 10f (cldn10f) were reduced by oPrl. Isolated gill filaments incubated with oPrl in vitro exhibited elevated ncc2 and prlra expression. Given the role of Aqps in supporting gastrointestinal fluid absorption, we assessed whether several intestinal aqp transcripts were responsive to oPrl and found that aqp1a and -8 levels were reduced by oPrl. Our collective data indicate that Prl promotes FW-acclimation in mummichogs by orchestrating the expression of solute transporters/channels, water channels, and tight-junction proteins across multiple osmoregulatory organs.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Katie M Puterbaugh
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Serena E Bradley
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Annie E Hageman
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Adrian J Verspyck
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Lydia H Shaw
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Elizabeth C Danielson
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Yubo Hou
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
11
|
Gill transcriptome of the yellow peacock bass (Cichla ocellaris monoculus) exposed to contrasting physicochemical conditions. CONSERV GENET RESOUR 2022. [DOI: 10.1007/s12686-022-01284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Xue H, Xu J, Wu M, Chen L, Xu L. Identification and sequence analysis of prolactin receptor and its differential expression profile at various developmental stages in striped hamsters. ACTA ACUST UNITED AC 2021; 54:e10274. [PMID: 33729390 PMCID: PMC7959167 DOI: 10.1590/1414-431x202010274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 11/16/2020] [Indexed: 11/22/2022]
Abstract
Prolactin (PRL) plays critical roles in regulation of biological functions with the binding of specific prolactin receptor (PRLR). Revealing the expression patterns of PRLR at different developmental stages is beneficial to better understand the role of PRL and its mechanism of action in striped hamsters. In this study, the cDNA sequence of PRLR (2866-base-pairs) was harvested from the pituitary of mature female striped hamsters (Cricetulus barabensis) that contains an 834-base-pair 5′-untranslated region (1-834 bp), a 1848-base-pair open reading frame (835-2682 bp), and a 184-base-pair 3′-untranslated region (2683-2866). The 1848-base-pair open reading frame encodes a mature prolactin-binding protein of 592 amino acids. In the mature PRLR, two prolactin-binding motifs, 12 cysteines, and five potential Asn-linked glycosylation sites were detected. Our results showed that the PRLR mRNA quantity in the hypothalamus, pituitary, ovaries, or testis was developmental-stage-dependent, with the highest level at sub-adult stage and the lowest level at old stage. We also found that PRLR mRNAs were highest in pituitary, medium level in hypothalamus, and lowest in ovaries or testis. PRLR mRNAs were significantly higher in males than in females, except in the hypothalamus and pituitary from 7-week-old striped hamsters. Moreover, the PRLR mRNAs in the hypothalamus, pituitary, and ovaries or testis were positively correlated with the expression levels of GnRH in the hypothalamus. These results indicated that the PRLR has conserved domain in striped hamster, but also possesses specific character. PRLR has multiple biological functions including positively regulating reproduction in the striped hamster.
Collapse
Affiliation(s)
- Huiliang Xue
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Jinhui Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Ming Wu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Lei Chen
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| | - Laixiang Xu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong, China
| |
Collapse
|
13
|
Seale AP, Malintha GHT, Celino-Brady FT, Head T, Belcaid M, Yamaguchi Y, Lerner DT, Baltzegar DA, Borski RJ, Stoytcheva ZR, Breves JP. Transcriptional regulation of prolactin in a euryhaline teleost: Characterisation of gene promoters through in silico and transcriptome analyses. J Neuroendocrinol 2020; 32:e12905. [PMID: 32996203 PMCID: PMC8612711 DOI: 10.1111/jne.12905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/20/2022]
Abstract
The sensitivity of prolactin (Prl) cells of the Mozambique tilapia (Oreochromis mossambicus) pituitary to variations in extracellular osmolality enables investigations into how osmoreception underlies patterns of hormone secretion. Through the actions of their main secretory products, Prl cells play a key role in supporting hydromineral balance of fishes by controlling the major osmoregulatory organs (ie, gill, intestine and kidney). The release of Prl from isolated cells of the rostral pars distalis (RPD) occurs in direct response to physiologically relevant reductions in extracellular osmolality. Although the particular signal transduction pathways that link osmotic conditions to Prl secretion have been identified, the processes that underlie hyposmotic induction of prl gene expression remain unknown. In this short review, we describe two distinct tilapia gene loci that encode Prl177 and Prl188 . From our in silico analyses of prl177 and prl188 promoter regions (approximately 1000 bp) and a transcriptome analysis of RPDs from fresh water (FW)- and seawater (SW)-acclimated tilapia, we propose a working model for how multiple transcription factors link osmoreceptive processes with adaptive patterns of prl177 and prl188 gene expression. We confirmed via RNA-sequencing and a quantitative polymerase chain reaction that multiple transcription factors emerging as predicted regulators of prl gene expression are expressed in the RPD of tilapia. In particular, gene transcripts encoding pou1f1, stat3, creb3l1, pbxip1a and stat1a were highly expressed; creb3l1, pbxip1a and stat1a were elevated in fish acclimated to SW vs FW. Combined, our in silico and transcriptome analyses set a path for resolving how adaptive patterns of Prl secretion are achieved via the integration of osmoreceptive processes with the control of prl gene transcription.
Collapse
Affiliation(s)
- Andre P. Seale
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | | | - Fritzie T. Celino-Brady
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Tony Head
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Mahdi Belcaid
- Hawai’i Institute of Marine Biology, University of Hawai’i at Mānoa, Kaneohe, HI, USA
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Darren T. Lerner
- University of Hawai’i Sea Grant College Program, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - David A. Baltzegar
- Genomic Sciences Laboratory, Office of Research and Innovation, North Carolina State University, Raleigh, NC, USA
| | - Russell J. Borski
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zoia R. Stoytcheva
- Department of Human Nutrition, Food and Animal Sciences, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Jason P. Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
14
|
Breves JP, Popp EE, Rothenberg EF, Rosenstein CW, Maffett KM, Guertin RR. Osmoregulatory actions of prolactin in the gastrointestinal tract of fishes. Gen Comp Endocrinol 2020; 298:113589. [PMID: 32827513 DOI: 10.1016/j.ygcen.2020.113589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/17/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
In fishes, prolactin (Prl) signaling underlies the homeostatic regulation of hydromineral balance by controlling essential solute and water transporting functions performed by the gill, gastrointestinal tract, kidney, urinary bladder, and integument. Comparative studies spanning over 60 years have firmly established that Prl promotes physiological activities that enable euryhaline and stenohaline teleosts to reside in freshwater environments; nonetheless, the specific molecular and cellular targets of Prl in ion- and water-transporting tissues are still being resolved. In this short review, we discuss how particular targets of Prl (e.g., ion cotransporters, tight-junction proteins, and ion pumps) confer adaptive functions to the esophagus and intestine. Additionally, in some instances, Prl promotes histological and functional transformations within esophageal and intestinal epithelia by regulating cell proliferation. Collectively, the demonstrated actions of Prl in the gastrointestinal tract of teleosts indicate that Prl operates to promote phenotypes supportive of freshwater acclimation and to inhibit phenotypes associated with seawater acclimation. We conclude our review by underscoring that future investigations are warranted to determine how growth hormone/Prl-family signaling evolved in basal fishes to support the gastrointestinal processes underlying hydromineral balance.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA.
| | - Emily E Popp
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Eva F Rothenberg
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Clarence W Rosenstein
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Kaitlyn M Maffett
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Rebecca R Guertin
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| |
Collapse
|
15
|
L'Honoré T, Farcy E, Blondeau-Bidet E, Lorin-Nebel C. Inter-individual variability in freshwater tolerance is related to transcript level differences in gill and posterior kidney of European sea bass. Gene 2020; 741:144547. [PMID: 32165299 DOI: 10.1016/j.gene.2020.144547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/30/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
Acclimation to low salinities is a vital physiological challenge for euryhaline fish as the European sea bass Dicentrarchus labrax. This species undertakes seasonal migrations towards lagoons and estuaries where a wide range of salinity variations occur along the year. We have previously reported intraspecific differences in freshwater tolerance, with an average 30% mortality rate. In this study, we bring new evidence of mechanisms underlying freshwater tolerance in sea bass at gill and kidney levels. In fresh water (FW), intraspecific differences in mRNA expression levels of several ion transporters and prolactin receptors were measured. We showed that the branchial Cl-/HCO3- anion transporter (slc26a6c) was over-expressed in freshwater intolerant fish, probably as a compensatory response to low blood chloride levels and potential metabolic alkalosis. Moreover, prolactin receptor a (prlra) and Na+/Cl- cotransporter (ncc1) but not ncc-2a expression seemed to be slightly increased and highly variable between individuals in freshwater intolerant fish. In the posterior kidney, freshwater intolerant fish exhibited differential expression levels of slc26 anion transporters and Na+/K+/2Cl- cotransporter 1b (nkcc1b). Lower expression levels of prolactin receptors (prlra, prlrb) were measured in posterior kidney which probably contributes to the failure in ion reuptake at the kidney level. Freshwater intolerance seems to be a consequence of renal failure of ion reabsorption, which is not sufficiently compensated at the branchial level.
Collapse
Affiliation(s)
- Thibaut L'Honoré
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), Montpellier, France
| | - Emilie Farcy
- Univ Montpellier, MARBEC (CNRS, IFREMER, IRD, UM), Montpellier, France
| | | | | |
Collapse
|
16
|
Liu Z, Ma A, Zhang J, Yang S, Cui W, Xia D, Qu J. Cloning and molecular characterization of PRL and PRLR from turbot (Scophthalmus maximus) and their expressions in response to short-term and long-term low salt stress. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:501-517. [PMID: 31970604 DOI: 10.1007/s10695-019-00699-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
The pituitary hormone prolactin (PRL) regulates salt and water homeostasis by altering ion retention and water uptake through peripheral osmoregulatory organs. To understand the role of PRL and its receptor (PRLR) in hypoosmoregulation of turbot (Scophthalmus maximus), we characterized the PRL and PRLR gene and analyzed the tissue distribution of the two genes and their gene transcriptional patterns in the main expressed tissues under long-term and short-term low salt stress. The PRL cDNA is 1486 bp in length, incorporating an ORF of 636 bp with a putative primary structure of 211 residues. And the PRLR cDNA is 2849 bp in length, incorporating an ORF of 1944 bp with a putative primary structure of 647 residues. The deduced amino acid sequences of these two genes shared highly conserved structures with those from other teleosts. Quantitative real-time PCR results showed that PRL transcripts were strongly expressed in the pituitary and very weakly in brain, but were hardly expressed in other tissues. PRLR transcripts were most abundant in the kidney, to a lesser extent in the gill, intestine, brain, and spleen, and at low levels in the pituitary and other tissues examined. The expression of PRL in the pituitary increased after short-term or long-term low salt stress, and the highest expression level appeared 12 h after stress (P < 0.05). And there is no significant difference between both low salt group (5 ppt and 10 ppt) at each sampling point. The variation of PRLR expression in gill under short-term low salt stress is similar to that of PRL gene in pituitary, with highest value in 12 h (P < 0.05). However, the expression under long-term low salt stress was significantly higher than control group even than 12 h group under 5 ppt (P < 0.05). The expression of PRLR in the kidney increased first and then decreased after low salt stress, and the highest value also appeared in 12 h after stress and there was no significant difference between the salinity groups. After long-term low salt stress, the expression level also increased significantly (P < 0.05), but it was flat with 24 h, which was lower than 12 h. The variation of PRLR expression in the intestine was basically consistent with that in the kidney. The difference was that the expression level of 24 h after stress in the 5 ppt group was significantly higher than that of the 10 ppt group (P < 0.05). After a comprehensive analysis of the expression levels of the two genes, it can be found that the expression level increased and peaked at 12 h after short-term low salt stress, indicating that this time point is the key point for the regulation of turbot in response to low salt stress. This also provides very important information for studying the osmotic regulation of turbot. In addition, our results also showed that the expression of PRLR was stable in the kidney and intestine after long-term low salt stress, while the expression in the gill was much higher than short-term stress. It suggested that PRL and its receptors mainly exert osmotic regulation function in the gill under long-term low salt stress. At the same time, such a result also brings a hint for the low salt selection of turbot, focusing on the regulation of ion transport in the gill.
Collapse
Affiliation(s)
- Zhifeng Liu
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Aijun Ma
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jinsheng Zhang
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Shuangshuang Yang
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Wenxiao Cui
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Dandan Xia
- Yellow Sea Fisheries Research Institute, Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Chinese Academy of Fishery Sciences, No.106 Nanjing Road, Qingdao, 266071, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Jiangbo Qu
- Yantai Tianyuan Aquatic Limited Corporation, Yantai, 264003, China
| |
Collapse
|
17
|
Seale AP, Pavlosky KK, Celino-Brady FT, Yamaguchi Y, Breves JP, Lerner DT. Systemic versus tissue-level prolactin signaling in a teleost during a tidal cycle. J Comp Physiol B 2019; 189:581-594. [PMID: 31485757 DOI: 10.1007/s00360-019-01233-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/05/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
Euryhaline Mozambique tilapia (Oreochromis mossambicus) are native to estuaries where they encounter tidal fluctuations in environmental salinity. These fluctuations can be dramatic, subjecting individuals to salinities characteristic of fresh water (FW < 0.5‰) and seawater (SW 35‰) within a single tidal cycle. In the current study, we reared tilapia under a tidal regimen that simulated the dynamic conditions of their native habitat. Tilapia were sampled every 3 h over a 24 h period to temporally resolve how prolactin (PRL) signaling is modulated in parallel with genes encoding branchial effectors of osmoregulation. The following parameters were measured: plasma osmolality, plasma PRL177 and PRL188 concentrations, pituitary prl177 and prl188 gene expression, and branchial prl receptor (prlr1 and prlr2), Na+/Cl--cotransporter (ncc2), Na+/K+/2Cl--cotransporter (nkcc1a), Na+/K+-ATPase (nkaα1a and nkaα1b), cystic fibrosis transmembrane regulator (cftr), and aquaporin 3 (aqp3) gene expression. Throughout the 24 h sampling period, plasma osmolality reflected whether tilapia were sampled during the FW or SW phases of the tidal cycle, whereas pituitary prl gene expression and plasma PRL levels remained stable. Branchial patterns of ncc2, nkcc1a, nkaα1a, nkaα1b, cftr, and aqp3 gene expression indicated that fish exposed to tidally changing salinities regulate the expression of these gene transcripts in a similar fashion as fish held under static SW conditions. By contrast, branchial prlr1 and prlr2 levels were highly labile throughout the tidal cycle. We conclude that local (branchial) regulation of endocrine signaling underlies the capacity of euryhaline fishes, such as Mozambique tilapia, to thrive under dynamic salinity conditions.
Collapse
Affiliation(s)
- Andre P Seale
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA.
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kaneohe, HI, 96744, USA.
| | - K Keano Pavlosky
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Shimane, 690-8504, Japan
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY, 12866, USA
| | - Darren T Lerner
- University of Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| |
Collapse
|
18
|
Bollinger RJ, Ellis LV, Bossus MC, Tipsmark CK. Prolactin controls Na +,Cl - cotransporter via Stat5 pathway in the teleost gill. Mol Cell Endocrinol 2018; 477:163-171. [PMID: 29959978 DOI: 10.1016/j.mce.2018.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/11/2018] [Accepted: 06/25/2018] [Indexed: 01/06/2023]
Abstract
In some freshwater fish species, the control of gill Na, Cl cotransporter (Ncc2b) by prolactin appears to be instrumental to ionic homeostasis. This study was carried out to examine the signaling pathways involved in prolactin-mediated salt retention using gill explants from Japanese medaka (Oryzias latipes). Ovine prolactin induced a concentration-dependent stimulation of ncc2b with significant effects of 10, 100 and 1000 ng of hormone per mL media (2-6 fold). To understand the molecular mechanisms mediating prolactin control of gill function, we analyzed effects on signaling pathways known to be involved in the hormones action in other systems, namely Stat5, Akt and Erk1/2. Their activation was examined in a time course and concentration response experiment. Prolactin (1 μg mL-1) induced a rapid phosphorylation (stimulation) of Stat5 (10 min) that reached a plateau after 30 min and was maintained for at least 120 min. The effect of prolactin on Stat5 phosphorylation was concentration-dependent (4-12 fold). No activation of Akt or Erk1/2 was observed in either experiment. The Stat5 activation was further investigated in localization studies that demonstrated strong nuclear expression of phosphorylated Stat5 in prolactin-treated gill ionocytes. Using specific inhibitors, we analyzed the signalling pathways mediating prolactin induction of gill ncc2b. Co-incubation experiments showed that Stat5 inhibition blocked prolactin's stimulation of ncc2b expression, while PI3K-Akt and Mek1/2-Erk1/2 pathway inhibitors had no effect. These findings show that ncc2b expression is dependent on prolactin's downstream activation of Stat5 and its subsequent nuclear translocation within branchial ionocytes.
Collapse
Affiliation(s)
- Rebecca J Bollinger
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Laura V Ellis
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA
| | - Maryline C Bossus
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA; Lyon College, Math and Science Department, 2300 Highland Rd, Batesville, AR, 72501, USA
| | - Christian K Tipsmark
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR, 72701, USA.
| |
Collapse
|
19
|
Pavlosky KK, Yamaguchi Y, Lerner DT, Seale AP. The effects of transfer from steady-state to tidally-changing salinities on plasma and branchial osmoregulatory variables in adult Mozambique tilapia. Comp Biochem Physiol A Mol Integr Physiol 2018; 227:134-145. [PMID: 30315867 DOI: 10.1016/j.cbpa.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/16/2022]
Abstract
The Mozambique tilapia, Oreochromis mossambicus, is a teleost fish native to estuarine waters that vary in salinity between fresh water (FW) and seawater (SW). The neuroendocrine system plays a key role in salinity acclimation by directing ion uptake and extrusion in osmoregulatory tissues such as gill. While most studies with O. mossambicus have focused on acclimation to steady-state salinities, less is known about the ability of adult fish to acclimate to dynamically-changing salinities. Plasma osmolality, prolactin (PRL) levels, and branchial gene expression of PRL receptors (PRLR1 and PRLR2), Na+/Cl- and Na+/K+/2Cl- co-transporters (NCC and NKCC), Na+/K+-ATPase (NKAα1a and NKAα1b), cystic fibrosis transmembrane conductance regulator (CFTR), and aquaporin 3 (AQP3) were measured in fish reared in FW and SW steady-state salinities, in a tidal regimen (TR) where salinities changed between FW and SW every six hours, and in fish transferred from FW or SW to TR. Regardless of rearing regimen, plasma osmolality was higher in fish in SW than in FW fish, while plasma PRL was lower in fish in SW. Furthermore, branchial gene expression of effectors of ion transport in TR fish showed greater similarity to those in steady-state SW fish than in FW fish. By seven days of transfer from steady-state FW or SW to TR, plasma osmolality, plasma PRL and branchial expression of effectors of ion transport were similar to those of fish reared in TR since larval stages. These findings demonstrate the ability of adult tilapia reared in steady-state salinities to successfully acclimate to dynamically-changing salinities. Moreover, the present findings suggest that early exposure to salinity changes does not significantly improve survivability in future challenge with dynamically-changing salinities.
Collapse
Affiliation(s)
- K Keano Pavlosky
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA; Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Yoko Yamaguchi
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA; Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA; University of Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Andre P Seale
- Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA; Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
20
|
Yamaguchi Y, Breves JP, Haws MC, Lerner DT, Grau EG, Seale AP. Acute salinity tolerance and the control of two prolactins and their receptors in the Nile tilapia (Oreochromis niloticus) and Mozambique tilapia (O. mossambicus): A comparative study. Gen Comp Endocrinol 2018; 257:168-176. [PMID: 28652133 PMCID: PMC5742082 DOI: 10.1016/j.ygcen.2017.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 05/16/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
Osmoregulation in vertebrates is largely controlled by the neuroendocrine system. Prolactin (PRL) is critical for the survival of euryhaline teleosts in fresh water by promoting ion retention. In the euryhaline Mozambique tilapia (Oreochromis mossambicus), pituitary PRL cells release two PRL isoforms, PRL188 and PRL177, in response to a fall in extracellular osmolality. Both PRLs function via two PRL receptors (PRLRs) denoted PRLR1 and PRLR2. We conducted a comparative study using the Nile tilapia (O. niloticus), a close relative of Mozambique tilapia that is less tolerant to increases in environmental salinity, to investigate the regulation of PRLs and PRLRs upon acute hyperosmotic challenges in vivo and in vitro. We hypothesized that differences in the regulation of PRLs and PRLRs underlie the variation in salinity tolerance of tilapias within the genus Oreochromis. When transferred from fresh water to brackish water (20‰), Nile tilapia increased plasma osmolality and decreased circulating PRLs, especially PRL177, to a greater extent than Mozambique tilapia. In dispersed PRL cell incubations, the release of both PRLs was less sensitive to variations in medium osmolality in Nile tilapia than in Mozambique tilapia. By contrast, increases in pituitary and branchial prlr2 gene expression in response to a rise in extracellular osmolality were more pronounced in Nile tilapia relative to its congener, both in vitro and in vivo. Together, these results support the conclusion that inter-specific differences in salinity tolerance between the two tilapia congeners are tied, at least in part, to the distinct responses of both PRLs and their receptors to osmotic stimuli.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI 96744, USA; Department of Biological Science, Faculty of Life and Environmental Science, Shimane University, Matsue, Shimane 690-8504, Japan
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, NY 12866, USA
| | - Maria C Haws
- Pacific Aquaculture and Coastal Resources Center, University of Hawai'i at Hilo, Hilo, HI 96720, USA
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI 96744, USA; Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI 96744, USA
| | - Andre P Seale
- Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kaneohe, HI 96744, USA; Department of Human Nutrition, Food and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA.
| |
Collapse
|
21
|
Ocampo Daza D, Larhammar D. Evolution of the receptors for growth hormone, prolactin, erythropoietin and thrombopoietin in relation to the vertebrate tetraploidizations. Gen Comp Endocrinol 2018; 257:143-160. [PMID: 28652136 DOI: 10.1016/j.ygcen.2017.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
Abstract
The receptors for the pituitary hormones growth hormone (GH), prolactin (PRL) and somatolactin (SL), and the hematopoietic hormones erythropoietin (EPO) and thrombopoietin (TPO), comprise a structurally related family in the superfamily of cytokine class-I receptors. GH, PRL and SL receptors have a wide variety of effects in development, osmoregulation, metabolism and stimulation of growth, while EPO and TPO receptors guide the production and differentiation of erythrocytes and thrombocytes, respectively. The evolution of the receptors for GH, PRL and SL has been partially investigated by previous reports suggesting different time points for the hormone and receptor gene duplications. This raises questions about how hormone-receptor partnerships have emerged and evolved. Therefore, we have investigated in detail the expansion of this receptor family, especially in relation to the basal vertebrate (1R, 2R) and teleost (3R) tetraploidizations. Receptor family genes were identified in a broad range of vertebrate genomes and investigated using a combination of sequence-based phylogenetic analyses and comparative genomic analyses of synteny. We found that 1R most likely generated EPOR/TPOR and GHR/PRLR ancestors; following this, 2R resulted in EPOR and TPOR genes. No GHR/PRLR duplicate seems to have survived after 2R. Instead the single GHR/PRLR underwent a local duplication sometime after 2R, generating separate syntenic genes for GHR and PRLR. Subsequently, 3R duplicated the gene pair in teleosts, resulting in two GHR and two PRLR genes, but no EPOR or TPOR duplicates. These analyses help illuminate the evolution of the regulatory mechanisms for somatic growth, metabolism, osmoregulation and hematopoiesis in vertebrates.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden.
| | - Dan Larhammar
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Box 593, SE-75124 Uppsala, Sweden
| |
Collapse
|
22
|
Shu T, Shu Y, Gao Y, Jin X, He J, Zhai G, Yin Z. Depletion of Tissue-Specific Ion Transporters Causes Differential Expression of PRL Targets in Response to Increased Levels of Endogenous PRL. Front Endocrinol (Lausanne) 2018; 9:683. [PMID: 30515132 PMCID: PMC6255821 DOI: 10.3389/fendo.2018.00683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/01/2018] [Indexed: 01/10/2023] Open
Abstract
Prolactin (PRL) has been considered a key regulator of ion uptake in zebrafish. The genes slc12a10.2 and slc12a3, which are Na+ and chloride Cl- co-transporters, have been reported to be regulated by PRL in freshwater fish. The integrative network of PRL signaling dissected from the knockout of tissue-specific downstream PRL ion transporters remains poor. In the present study, zebrafish models with increased endogenous levels of PRL were generated through the knockout of slc12a10.2 or slc12a3, and the developmental consequences were analyzed. The increased levels of pituitary PRL were observed in both slc12a10.2- and slc12a3-deficient fish. Unlike the slc12a3-deficient fish, which could survive to adulthood, the slc12a10.2-deficient fish began to die at 9 days post-fertilization (dpf) and did not survive beyond 17 dpf. This survival defect is a result of defective Cl- uptake in this mutant, indicating that Slc12a10.2 plays an essential role in Cl- uptake. Intriguingly, compared to the levels in control fish, no significant differences in the levels of Na+ in the body were observed in slc12a10.2- or slc12a3-deficient zebrafish. The upregulations of the PRL downstream transporters, slc9a3.2, slc12a10.2, and atp1a1a.5 were observed in slc12a3-deficient fish in both the gills/skin and the pronephric duct. However, this type of response was not observed in the pronephric duct of slc12a10.2-deficient fish, except under Na+-deprived conditions. Our results show that PRL is susceptible to deficiencies in downstream ion transporters. Moreover, both the gills/skin and pronephric duct show differential expression of downstream PRL targets in response to increased levels of pituitary PRL caused by the depletion of tissue-specific ion transporters.
Collapse
Affiliation(s)
- Tingting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqin Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanping Gao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Gang Zhai
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- Zhan Yin
| |
Collapse
|
23
|
Breves JP, Keith PLK, Hunt BL, Pavlosky KK, Inokuchi M, Yamaguchi Y, Lerner DT, Seale AP, Grau EG. clc-2c is regulated by salinity, prolactin and extracellular osmolality in tilapia gill. J Mol Endocrinol 2017; 59:391-402. [PMID: 28974537 PMCID: PMC5660657 DOI: 10.1530/jme-17-0144] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022]
Abstract
Teleosts inhabiting fresh water (FW) depend upon ion-absorptive ionocytes to counteract diffusive ion losses to the external environment. A Clc Cl- channel family member, Clc-2c, was identified as a conduit for basolateral Cl- transport by Na+/Cl- cotransporter 2 (Ncc2)-expressing ionocytes in stenohaline zebrafish (Danio rerio). It is unresolved whether Clc-2c/clc-2c is expressed in euryhaline species and how extrinsic and/or intrinsic factors modulate branchial clc-2c mRNA. Here, we investigated whether environmental salinity, prolactin (Prl) and osmotic conditions modulate clc-2c expression in euryhaline Mozambique tilapia (Oreochromis mossambicus). Branchial clc-2c and ncc2 mRNAs were enhanced in tilapia transferred from seawater (SW) to FW, whereas both mRNAs were attenuated upon transfer from FW to SW. Next, we injected hypophysectomized tilapia with ovine prolactin (oPrl) and observed a marked increase in clc-2c from saline-injected controls. To determine whether Prl regulates clc-2c in a gill-autonomous fashion, we incubated gill filaments in the presence of homologous tilapia Prls (tPrl177 and tPrl188). By 24 h, tPrl188 stimulated clc-2c expression ~5-fold from controls. Finally, filaments incubated in media ranging from 280 to 450 mosmol/kg for 3 and 6 h revealed that extracellular osmolality exerts a local effect on clc-2c expression; clc-2c was diminished by hyperosmotic conditions (450 mosmol/kg) compared with isosmotic controls (330 mosmol/kg). Our collective results suggest that hormonal and osmotic control of branchial clc-2c contributes to the FW adaptability of Mozambique tilapia. Moreover, we identify for the first time a regulatory link between Prl and a Clc Cl- channel in a vertebrate.
Collapse
Affiliation(s)
- Jason P Breves
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Paige L K Keith
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Bethany L Hunt
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - K Keano Pavlosky
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i, Kaneohe, Hawaii, USA
| | - Mayu Inokuchi
- Department of Life SciencesToyo University, Itakura, Gunma, Japan
| | - Yoko Yamaguchi
- Department of Biological ScienceShimane University, Matsue, Shimane, Japan
| | - Darren T Lerner
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i, Kaneohe, Hawaii, USA
- Sea Grant College ProgramUniversity of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Andre P Seale
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i, Kaneohe, Hawaii, USA
- Department of Human NutritionFood and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - E Gordon Grau
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i, Kaneohe, Hawaii, USA
| |
Collapse
|
24
|
Yamaguchi Y, Moriyama S, Lerner DT, Grau EG, Seale AP. Autocrine Positive Feedback Regulation of Prolactin Release From Tilapia Prolactin Cells and Its Modulation by Extracellular Osmolality. Endocrinology 2016; 157:3505-16. [PMID: 27379370 PMCID: PMC6285229 DOI: 10.1210/en.2015-1969] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/27/2016] [Indexed: 12/24/2022]
Abstract
Prolactin (PRL) is a vertebrate hormone with diverse actions in osmoregulation, metabolism, reproduction, and in growth and development. Osmoregulation is fundamental to maintaining the functional structure of the macromolecules that conduct the business of life. In teleost fish, PRL plays a critical role in osmoregulation in fresh water. Appropriately, PRL cells of the tilapia are directly osmosensitive, with PRL secretion increasing as extracellular osmolality falls. Using a model system that employs dispersed PRL cells from the euryhaline teleost fish, Oreochromis mossambicus, we investigated the autocrine regulation of PRL cell function. Unknown was whether these PRL cells might also be sensitive to autocrine feedback and whether possible autocrine regulation might interact with the well-established regulation by physiologically relevant changes in extracellular osmolality. In the cell-perfusion system, ovine PRL and two isoforms of tilapia PRL (tPRL), tPRL177 and tPRL188, stimulated the release of tPRLs from the dispersed PRL cells. These effects were significant within 5-10 minutes and lasted the entire course of exposure, ceasing within 5-10 minutes of removal of tested PRLs from the perifusion medium. The magnitude of response varied between tPRL177 and tPRL188 and was modulated by extracellular osmolality. On the other hand, the gene expression of tPRLs was mainly unchanged or suppressed by static incubations of PRL cells with added PRLs. By demonstrating the regulatory complexity driven by positive autocrine feedback and its interaction with osmotic stimuli, these findings expand upon the knowledge that pituitary PRL cells are regulated complexly through multiple factors and interactions.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Shunsuke Moriyama
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Darren T Lerner
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - E Gordon Grau
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| | - Andre P Seale
- Hawai'i Institute of Marine Biology (Y.Y., D.T.L., E.G.G., A.P.S.), University of Hawai'i at Mānoa, Kāne'ohe, Hawai'i 96744; School of Marine Biosciences (S.M.), Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan; and University of Hawai'i Sea Grant College Program (D.T.L.) and Department of Human Nutrition, Food and Animal Sciences (A.P.S.), University of Hawai'i at Mānoa, Honolulu, Hawai'i 96822
| |
Collapse
|
25
|
Breves JP, Inokuchi M, Yamaguchi Y, Seale AP, Hunt BL, Watanabe S, Lerner DT, Kaneko T, Grau EG. Hormonal regulation of aquaporin 3: opposing actions of prolactin and cortisol in tilapia gill. J Endocrinol 2016; 230:325-37. [PMID: 27402066 DOI: 10.1530/joe-16-0162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
Abstract
Aquaporins (Aqps) are expressed within key osmoregulatory tissues where they mediate the movement of water and selected solutes across cell membranes. We leveraged the functional plasticity of Mozambique tilapia (Oreochromis mossambicus) gill epithelium to examine how Aqp3, an aquaglyceroporin, is regulated in response to osmoregulatory demands. Particular attention was paid to the actions of critical osmoregulatory hormones, namely, prolactin (Prl), growth hormone and cortisol. Branchial aqp3 mRNA levels were modulated following changes in environmental salinity, with enhanced aqp3 mRNA expression upon transfer from seawater to freshwater (FW). Accordingly, extensive Aqp3 immunoreactivity was localized to cell membranes of branchial epithelium in FW-acclimated animals. Upon transferring hypophysectomized tilapia to FW, we identified that a pituitary factor(s) is required for Aqp3 expression in FW. Replacement with ovine Prl (oPrl) was sufficient to stimulate Aqp3 expression in hypophysectomized animals held in FW, an effect blocked by coinjection with cortisol. Both oPrl and native tilapia Prls (tPrl177 and tPrl188) stimulated aqp3 in incubated gill filaments in a concentration-related manner. Consistent with in vivo responses, coincubation with cortisol blocked oPrl-stimulated aqp3 expression in vitro Our data indicate that Prl and cortisol act directly upon branchial epithelium to regulate Aqp3 in tilapia. Thus, within the context of the diverse actions of Prl on hydromineral balance in vertebrates, we define a new role for Prl as a regulator of Aqp expression.
Collapse
Affiliation(s)
- Jason P Breves
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Mayu Inokuchi
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yoko Yamaguchi
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Andre P Seale
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| | - Bethany L Hunt
- Department of BiologySkidmore College, Saratoga Springs, New York, USA
| | - Soichi Watanabe
- Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - Darren T Lerner
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA University of Hawai'i Sea Grant College ProgramUniversity of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Toyoji Kaneko
- Department of Aquatic BioscienceGraduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo, Japan
| | - E Gordon Grau
- Hawai'i Institute of Marine BiologyUniversity of Hawai'i at Mānoa, Kāne'ohe, Hawai'i, USA
| |
Collapse
|
26
|
Wu TS, Yang JJ, Wang YW, Yu FY, Liu BH. Mycotoxin ochratoxin A disrupts renal development via a miR-731/prolactin receptor axis in zebrafish. Toxicol Res (Camb) 2016; 5:519-529. [PMID: 30090366 PMCID: PMC6062247 DOI: 10.1039/c5tx00360a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
Mycotoxin ochratoxin A (OTA) frequently contaminates various food and feed products, including cereals, coffee and wine. While the nephrotoxicity and teratogenicity of OTA have been extensively documented, the molecular mechanisms associated with OTA toxicity remained poorly understood in a developing organism. We showed that zebrafish embryos exposed to OTA demonstrated incorrect heart looping and small heart chambers. OTA also impaired the renal morphology and reduced the glomerular filtration rate of the embryonic zebrafish. The treatment of embryos with OTA attenuated the expression of the prolactin receptor, a gene (PRLRa) that has a key role in organogenesis and osmoregulation in vertebrates. OTA not only inhibited the phosphorylation of STAT5 and AKT, but also down-regulated the level of serpina1 mRNA in a dose-dependent manner. On the other hand, the microRNA profiling based on RNA sequencing revealed the up-regulation of microRNA-731 (miR-731) in the OTA-treated embryos. Further in silico analysis predicted that PRLRa was a target gene of miR-731. AntagomiR-731 restored PRLRa levels that had been reduced by OTA and also recovered the pronephros morphology that was damaged by OTA. These observations suggest that the exposure to OTA adversely affected the organogenesis of zebrafish, and the modulation of miR-731 and the PRLR signaling cascade contributed to the abnormal renal development mediated by OTA.
Collapse
Affiliation(s)
- Ting-Shuan Wu
- Graduate Institute of Toxicology , College of Medicine , National Taiwan University , Taipei , Taiwan . ; ; Tel: +886-2-23123456, ext 88602
| | - Jiann-Jou Yang
- Department of Biomedical Sciences , Chung Shan Medical University , Taiwan .
| | - Yan-Wei Wang
- Department of Biomedical Sciences , Chung Shan Medical University , Taiwan .
| | - Feng-Yih Yu
- Department of Biomedical Sciences , Chung Shan Medical University , Taiwan .
- Department of Medical Research , Chung Shan Medical University Hospital , Taichung , Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology , College of Medicine , National Taiwan University , Taipei , Taiwan . ; ; Tel: +886-2-23123456, ext 88602
| |
Collapse
|
27
|
Inokuchi M, Breves JP, Moriyama S, Watanabe S, Kaneko T, Lerner DT, Grau EG, Seale AP. Prolactin 177, prolactin 188, and extracellular osmolality independently regulate the gene expression of ion transport effectors in gill of Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1251-63. [PMID: 26377558 DOI: 10.1152/ajpregu.00168.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/11/2015] [Indexed: 02/03/2023]
Abstract
This study characterized the local effects of extracellular osmolality and prolactin (PRL) on branchial ionoregulatory function of a euryhaline teleost, Mozambique tilapia (Oreochromis mossambicus). First, gill filaments were dissected from freshwater (FW)-acclimated tilapia and incubated in four different osmolalities, 280, 330, 380, and 450 mosmol/kg H2O. The mRNA expression of Na(+)/K(+)-ATPase α1a (NKA α1a) and Na(+)/Cl(-) cotransporter (NCC) showed higher expression with decreasing media osmolalities, while Na(+)/K(+)/2Cl(-) cotransporter 1a (NKCC1a) and PRL receptor 2 (PRLR2) mRNA levels were upregulated by increases in media osmolality. We then incubated gill filaments in media containing ovine PRL (oPRL) and native tilapia PRLs (tPRL177 and tPRL188). oPRL and the two native tPRLs showed concentration-dependent effects on NCC, NKAα1a, and PRLR1 expression; Na(+)/H(+) exchanger 3 (NHE3) expression was increased by 24 h of incubation with tPRLs. Immunohistochemical observation showed that oPRL and both tPRLs maintained a high density of NCC- and NKA-immunoreactive ionocytes in cultured filaments. Furthermore, we found that tPRL177 and tPRL188 differentially induce expression of these ion transporters, according to incubation time. Together, these results provide evidence that ionocytes of Mozambique tilapia may function as osmoreceptors, as well as directly respond to PRL to modulate branchial ionoregulatory functions.
Collapse
Affiliation(s)
- Mayu Inokuchi
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Jason P Breves
- Department of Biology, Skidmore College, Saratoga Springs, New York
| | - Shunsuke Moriyama
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo, Japan; and
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii
| |
Collapse
|
28
|
Bu G, Liang X, Li J, Wang Y. Extra-pituitary prolactin (PRL) and prolactin-like protein (PRL-L) in chickens and zebrafish. Gen Comp Endocrinol 2015; 220:143-53. [PMID: 25683198 DOI: 10.1016/j.ygcen.2015.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 01/25/2023]
Abstract
It is generally believed that in vertebrates, prolactin (PRL) is predominantly synthesized and released by pituitary lactotrophs and plays important roles in many physiological processes via activation of PRL receptor (PRLR), including water and electrolyte balance, reproduction, growth and development, metabolism, immuno-modulation, and behavior. However, there is increasing evidence showing that PRL and the newly identified 'prolactin-like protein (PRL-L)', a novel ligand of PRL receptor, are also expressed in a variety of extra-pituitary tissues, such as the brain, skin, ovary, and testes in non-mammalian vertebrates. In this brief review, we summarize the recent research progress on the structure, biological activities, and extra-pituitary expression of PRL and PRL-L in chickens (Gallus gallus) and zebrafish (Danio rerio) from our and other laboratories and briefly discuss their potential paracrine/autocrine roles in non-mammalian vertebrates, which may promote us to rethink the broad spectrum of PRL actions previously attributed to pituitary PRL only.
Collapse
Affiliation(s)
- Guixian Bu
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Xiaomeng Liang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Juan Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yajun Wang
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
29
|
Moorman BP, Lerner DT, Grau EG, Seale AP. The effects of acute salinity challenges on osmoregulation in Mozambique tilapia reared in a tidally changing salinity. ACTA ACUST UNITED AC 2015; 218:731-9. [PMID: 25617466 DOI: 10.1242/jeb.112664] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study characterizes the differences in osmoregulatory capacity among Mozambique tilapia, Oreochromis mossambicus, reared in freshwater (FW), in seawater (SW) or under tidally driven changes in salinity. This was addressed through the use of an abrupt exposure to a change in salinity. We measured changes in: (1) plasma osmolality and prolactin (PRL) levels; (2) pituitary expression of prolactin (PRL) and its receptors, PRLR1 and PRLR2; (3) branchial expression of PRLR1, PRLR2, Na(+)/Cl(-) co-transporter (NCC), Na(+)/K(+)/2Cl(-) co-transporter (NKCC), α1a and α1b isoforms of Na(+)/K(+)-ATPase (NKA), cystic fibrosis transmembrane conductance regulator (CFTR), aquaporin 3 (AQP3) and Na(+)/H(+) exchanger 3 (NHE3). Mozambique tilapia reared in a tidal environment successfully adapted to SW while fish reared in FW did not survive a transfer to SW beyond the 6 h sampling. With the exception of CFTR, the change in the expression of ion pumps, transporters and channels was more gradual in fish transferred from tidally changing salinities to SW than in fish transferred from FW to SW. Upon transfer to SW, the increase in CFTR expression was more robust in tidal fish than in FW fish. Tidal and SW fish successfully adapted when transferred to FW. These results suggest that Mozambique tilapia reared in a tidally changing salinity, a condition that more closely represents their natural history, gain an adaptive advantage compared with fish reared in FW when facing a hyperosmotic challenge.
Collapse
Affiliation(s)
- Benjamin P Moorman
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
30
|
Lam SH, Lui EY, Li Z, Cai S, Sung WK, Mathavan S, Lam TJ, Ip YK. Differential transcriptomic analyses revealed genes and signaling pathways involved in iono-osmoregulation and cellular remodeling in the gills of euryhaline Mozambique tilapia, Oreochromis mossambicus. BMC Genomics 2014; 15:921. [PMID: 25342237 PMCID: PMC4213501 DOI: 10.1186/1471-2164-15-921] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The Mozambique tilapia Oreochromis mossambicus has the ability to adapt to a broad range of environmental salinities and has long been used for investigating iono-osmoregulation. However, to date most studies have focused mainly on several key molecules or parameters hence yielding a limited perspective of the versatile iono-osmoregulation in the euryhaline fish. This study aimed to capture transcriptome-wide differences between the freshwater- and seawater-acclimated gills of the Mozambique tilapia. RESULTS We have identified over 5000 annotated gene transcripts with high homology (E-value <1.0E-50) to human genes that were differentially expressed in freshwater- and seawater-acclimated gills of the Mozambique tilapia. These putative human homologs were found to be significantly associated with over 50 canonical signaling pathways that are operating in at least 23 biological processes in relation to branchial iono-osmoregulation and cellular remodeling. The analysis revealed multiple signaling pathways in freshwater-acclimated gills acting in concert to maintain cellular homeostasis under hypo-osmotic environment while seawater-acclimated gills abounded with molecular signals to cope with the higher cellular turn-over rate, energetics and iono-regulatory demands under hyper-osmostic stress. Additionally, over 100 transcripts encoding putative inorganic ion transporters/channels were identified, of which several are well established in gill iono-regulation while the remainder are lesser known. We have also validated the expression profiles of 47 representative genes in freshwater- and seawater-acclimated gills, as well as in hypersaline-acclimated (two-fold salinity of seawater) gills. The findings confirmed that many of these responsive genes retained their expression profiles in hypersaline-acclimated gills as in seawater-acclimated gills, although several genes had changed significantly in their expression level/direction in hypersaline-acclimated gills. CONCLUSIONS This is the first study that has provided an unprecedented transcriptomic-wide perspective of gill iono-osmoregulation since such studies were initiated more than 80 years ago. It has expanded our molecular perspective from a relatively few well-studied molecules to a plethora of gene transcripts and a myriad of canonical signaling pathways driving various biological processes that are operating in gills under hypo-osmotic and hyper-osmotic stresses. These findings would provide insights and resources to fuel future studies on gill iono-osmoregulation and cellular remodeling in response to salinity challenge and acclimation.
Collapse
Affiliation(s)
- Siew Hong Lam
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive, 117411 Singapore, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Moorman BP, Inokuchi M, Yamaguchi Y, Lerner DT, Grau EG, Seale AP. The osmoregulatory effects of rearing Mozambique tilapia in a tidally changing salinity. Gen Comp Endocrinol 2014; 207:94-102. [PMID: 24681189 DOI: 10.1016/j.ygcen.2014.03.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/20/2014] [Accepted: 03/10/2014] [Indexed: 12/14/2022]
Abstract
The native distribution of Mozambique tilapia, Oreochromis mossambicus, is characterized by estuarine areas subject to salinity variations between fresh water (FW) and seawater (SW) with tidal frequency. Osmoregulation in the face of changing environmental salinity is largely mediated through the neuroendocrine system and involves the activation of ion uptake and extrusion mechanisms in osmoregulatory tissues. We compared plasma osmolality, plasma prolactin (PRL), pituitary PRL mRNA, and mRNA of branchial ion pumps, transporters, channels, and PRL receptors in tilapia reared in FW, SW, brackish water (BW) and in tidally-changing salinity, which varied between FW (TF) and SW (TS) every 6h. Plasma PRL was higher in FW tilapia than in SW, BW, TF, and TS tilapia. Unlike tilapia reared in FW or SW, fish in salinities that varied tidally showed no correlation between plasma osmolality and PRL. In FW fish, gene expression of PRL receptor 1 (PRLR1), Na(+)/Cl(-) cotransporter (NCC), aquaporin 3 (AQP3) and two isoforms of Na(+)/K(+)-ATPase (NKA α1a and NKA α1b) was higher than that of SW, BW or tidally-changing salinity fish. Gene expression of the Na(+)/K(+)/2Cl(-) cotransporter (NKCC1a), and the cystic fibrosis transmembrane conductance regulator (CFTR) were higher in fish in SW, BW or a tidally-changing salinity than in FW fish. Immunocytochemistry revealed that ionocytes of fish in tidally-changing salinities resemble ionocytes of SW fish. This study indicated that tilapia reared in a tidally-changing salinity can compensate for large changes in external osmolality while maintaining osmoregulatory parameters within a narrow range closer to that observed in SW-acclimated fish.
Collapse
Affiliation(s)
- Benjamin P Moorman
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Mayu Inokuchi
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Yoko Yamaguchi
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| |
Collapse
|
32
|
Seale AP, Stagg JJ, Yamaguchi Y, Breves JP, Soma S, Watanabe S, Kaneko T, Cnaani A, Harpaz S, Lerner DT, Grau EG. Effects of salinity and prolactin on gene transcript levels of ion transporters, ion pumps and prolactin receptors in Mozambique tilapia intestine. Gen Comp Endocrinol 2014; 206:146-54. [PMID: 25088575 DOI: 10.1016/j.ygcen.2014.07.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 05/23/2014] [Accepted: 07/07/2014] [Indexed: 11/15/2022]
Abstract
Euryhaline teleosts are faced with significant challenges during changes in salinity. Osmoregulatory responses to salinity changes are mediated through the neuroendocrine system which directs osmoregulatory tissues to modulate ion transport. Prolactin (PRL) plays a major role in freshwater (FW) osmoregulation by promoting ion uptake in osmoregulatory tissues, including intestine. We measured mRNA expression of ion pumps, Na(+)/K(+)-ATPase α3-subunit (NKAα3) and vacuolar type H(+)-ATPase A-subunit (V-ATPase A-subunit); ion transporters/channels, Na(+)/K(+)/2Cl(-) co-transporter (NKCC2) and cystic fibrosis transmembrane conductance regulator (CFTR); and the two PRL receptors, PRLR1 and PRLR2 in eleven intestinal segments of Mozambique tilapia (Oreochromis mossambicus) acclimated to FW or seawater (SW). Gene expression levels of NKAα3, V-ATPase A-subunit, and NKCC2 were generally lower in middle segments of the intestine, whereas CFTR mRNA was most highly expressed in anterior intestine of FW-fish. In both FW- and SW-acclimated fish, PRLR1 was most highly expressed in the terminal segment of the intestine, whereas PRLR2 was generally most highly expressed in anterior intestinal segments. While NKCC2, NKAα3 and PRLR2 mRNA expression was higher in the intestinal segments of SW-acclimated fish, CFTR mRNA expression was higher in FW-fish; PRLR1 and V-ATPase A-subunit mRNA expression was similar between FW- and SW-acclimated fish. Next, we characterized the effects of hypophysectomy (Hx) and PRL replacement on the expression of intestinal transcripts. Hypophysectomy reduced both NKCC2 and CFTR expression in particular intestinal segments; however, only NKCC2 expression was restored by PRL replacement. Together, these findings describe how both acclimation salinity and PRL impact transcript levels of effectors of ion transport in tilapia intestine.
Collapse
Affiliation(s)
- Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | - Jacob J Stagg
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Yoko Yamaguchi
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | - Jason P Breves
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Satoshi Soma
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Soichi Watanabe
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Toyoji Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | - Avner Cnaani
- Department of Poultry and Aquaculture, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Sheenan Harpaz
- Department of Poultry and Aquaculture, The Volcani Center, Agricultural Research Organization, Bet Dagan 50250, Israel
| | - Darren T Lerner
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA; University of Hawaii Sea Grant College Program, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - E Gordon Grau
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
33
|
Breves JP, McCormick SD, Karlstrom RO. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia. Gen Comp Endocrinol 2014; 203:21-8. [PMID: 24434597 PMCID: PMC4096611 DOI: 10.1016/j.ygcen.2013.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/29/2013] [Indexed: 11/30/2022]
Abstract
The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the "freshwater-adapting hormone", promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| | - Stephen D McCormick
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA
| | - Rolf O Karlstrom
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
34
|
Breves JP, Seale AP, Moorman BP, Lerner DT, Moriyama S, Hopkins KD, Grau EG. Pituitary control of branchial NCC, NKCC and Na+, K+-ATPase α-subunit gene expression in Nile tilapia, Oreochromis niloticus. J Comp Physiol B 2014; 184:513-23. [DOI: 10.1007/s00360-014-0817-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 10/25/2022]
|
35
|
Sacchi R, Li J, Villarreal F, Gardell AM, Kültz D. Salinity-induced regulation of the myo-inositol biosynthesis pathway in tilapia gill epithelium. ACTA ACUST UNITED AC 2013; 216:4626-38. [PMID: 24072791 DOI: 10.1242/jeb.093823] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The myo-inositol biosynthesis (MIB) pathway converts glucose-6-phosphate to the compatible osmolyte myo-inositol that protects cells from osmotic stress. Using proteomics, the enzymes that constitute the MIB pathway, myo-inositol phosphate synthase (MIPS) and inositol monophosphatase 1 (IMPA1), are identified in tilapia (Oreochromis mossambicus) gill epithelium. Targeted, quantitative, label-free proteomics reveals that they are both upregulated during salinity stress. Upregulation is stronger when fish are exposed to severe (34 ppt acute and 90 ppt gradual) relative to moderate (70 ppt gradual) salinity stress. IMPA1 always responds more strongly than MIPS, suggesting that MIPS is more stable during salinity stress. MIPS is N-terminally acetylated and the corresponding peptide increases proportionally to MIPS protein, while non-acetylated N-terminal peptide is not detectable, indicating that MIPS acetylation is constitutive and may serve to stabilize the protein. Hyperosmotic induction of MIPS and IMPA1 is confirmed using western blot and real-time qPCR and is much higher at the mRNA than at the protein level. Two distinct MIPS mRNA variants are expressed in the gill, but one is more strongly regulated by salinity than the other. A single MIPS gene is encoded in the tilapia genome whereas the zebrafish genome lacks MIPS entirely. The genome of euryhaline tilapia contains four IMPA genes, two of which are expressed, but only one is salinity regulated in gill epithelium. The genome of stenohaline zebrafish contains a single IMPA gene. We conclude that the MIB pathway represents a major salinity stress coping mechanism that is regulated at multiple levels in euryhaline fish but absent in stenohaline zebrafish.
Collapse
Affiliation(s)
- Romina Sacchi
- Physiological Genomics Group, Department of Animal Sciences, University of California, Davis, One Shields Avenue, Meyer Hall, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
36
|
Whittington CM, Wilson AB. The role of prolactin in fish reproduction. Gen Comp Endocrinol 2013; 191:123-36. [PMID: 23791758 DOI: 10.1016/j.ygcen.2013.05.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/14/2013] [Accepted: 05/31/2013] [Indexed: 11/16/2022]
Abstract
Prolactin (PRL) has one of the broadest ranges of functions of any vertebrate hormone, and plays a critical role in regulating aspects of reproduction in widely divergent lineages. However, while PRL structure, mode of action and functions have been well-characterised in mammals, studies of other vertebrate lineages remain incomplete. As the most diverse group of vertebrates, fish offer a particularly valuable model system for the study of the evolution of reproductive endocrine function. Here, we review the current state of knowledge on the role of prolactin in fish reproduction, which extends to migration, reproductive development and cycling, brood care behaviour, pregnancy, and nutrient provisioning to young. We also highlight significant gaps in knowledge and advocate a specific bidirectional research methodology including both observational and manipulative experiments. Focusing research efforts towards the thorough characterisation of a restricted number of reproductively diverse fish models will help to provide the foundation necessary for a more explicitly evolutionary analysis of PRL function.
Collapse
Affiliation(s)
- Camilla M Whittington
- Institute of Evolutionary Biology and Environmental Science, University of Zurich, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| | | |
Collapse
|
37
|
Oldfield RG, Harris RM, Hendrickson DA, Hofmann HA. Arginine vasotocin and androgen pathways are associated with mating system variation in North American cichlid fishes. Horm Behav 2013; 64:44-52. [PMID: 23644171 DOI: 10.1016/j.yhbeh.2013.04.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/09/2013] [Accepted: 04/23/2013] [Indexed: 11/26/2022]
Abstract
Neuroendocrine pathways that regulate social behavior are remarkably conserved across divergent taxa. The neuropeptides arginine vasotocin/vasopressin (AVT/AVP) and their receptor V1a mediate aggression, space use, and mating behavior in male vertebrates. The hormone prolactin (PRL) also regulates social behavior across species, most notably paternal behavior. Both hormone systems may be involved in the evolution of monogamous mating systems. We compared AVT, AVT receptor V1a2, PRL, and PRL receptor PRLR1 gene expression in the brains as well as circulating androgen concentrations of free-living reproductively active males of two closely related North American cichlid species, the monogamous Herichthys cyanoguttatus and the polygynous Herichthys minckleyi. We found that H. cyanoguttatus males bond with a single female and together they cooperatively defend a small territory in which they reproduce. In H. minckleyi, a small number of large males defend large territories in which they mate with several females. Levels of V1a2 mRNA were higher in the hypothalamus of H. minckleyi, and PRLR1 expression was higher in the hypothalamus and telencephalon of H. minckleyi. 11-ketotestosterone levels were higher in H. minckleyi, while testosterone levels were higher in H. cyanoguttatus. Our results indicate that a highly active AVT/V1a2 circuit(s) in the brain is associated with space use and social dominance and that pair bonding is mediated either by a different, less active AVT/V1a2 circuit or by another neuroendocrine system.
Collapse
Affiliation(s)
- Ronald G Oldfield
- Texas Research Institute for Environmental Studies, Sam Houston State University, Huntsville, TX 77341, USA.
| | | | | | | |
Collapse
|
38
|
Breves JP, Serizier SB, Goffin V, McCormick SD, Karlstrom RO. Prolactin regulates transcription of the ion uptake Na+/Cl- cotransporter (ncc) gene in zebrafish gill. Mol Cell Endocrinol 2013; 369:98-106. [PMID: 23395804 PMCID: PMC3664226 DOI: 10.1016/j.mce.2013.01.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 01/04/2013] [Accepted: 01/14/2013] [Indexed: 01/07/2023]
Abstract
Prolactin (PRL) is a well-known regulator of ion and water transport within osmoregulatory tissues across vertebrate species, yet how PRL acts on some of its target tissues remains poorly understood. Using zebrafish as a model, we show that ionocytes in the gill directly respond to systemic PRL to regulate mechanisms of ion uptake. Ion-poor conditions led to increases in the expression of PRL receptor (prlra), Na(+)/Cl(-) cotransporter (ncc; slc12a10.2), Na(+)/H(+) exchanger (nhe3b; slc9a3.2), and epithelial Ca(2+) channel (ecac; trpv6) transcripts within the gill. Intraperitoneal injection of ovine PRL (oPRL) increased ncc and prlra transcripts, but did not affect nhe3b or ecac. Consistent with direct PRL action in the gill, addition of oPRL to cultured gill filaments stimulated ncc in a concentration-dependent manner, an effect blocked by a pure human PRL receptor antagonist (Δ1-9-G129R-hPRL). These results suggest that PRL signaling through PRL receptors in the gill regulates the expression of ncc, thereby linking this pituitary hormone with an effector of Cl(-) uptake in zebrafish for the first time.
Collapse
Affiliation(s)
- Jason P. Breves
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Sandy B. Serizier
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Vincent Goffin
- Inserm, Unit 845, Research Center Growth and Signaling, Prolactin/GH Pathophysiology Laboratory, University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Necker site, Paris F-75015, France
| | - Stephen D. McCormick
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
- USGS, Conte Anadromous Fish Research Center, Turners Falls, MA 01376, USA
| | - Rolf O. Karlstrom
- Department of Biology & Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
- Corresponding author. Phone: +1 413 577 3448; Fax: +1 413 545 3243 (R.O. Karlstrom)
| |
Collapse
|
39
|
Noh GE, Lim HK, Kim JM. Characterization of genes encoding prolactin and prolactin receptors in starry flounder Platichthys stellatus and their expression upon acclimation to freshwater. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:263-275. [PMID: 22843312 DOI: 10.1007/s10695-012-9697-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
This study aims to investigate the genes encoding prolactin (PRL) and prolactin receptors (PRLR) and their tissue-specific expression in starry flounder Platichthys stellatus. Starry flounder PRL gene consisting of five exons encodes an ORF of 212 amino acid residue comprised of a putative signal peptide of 24 amino acids and a mature protein of 188 amino acids. It showed amino acid identities of 73 % with tuna Thunnus thynnus, 71 % with black porgy Acanthopagrus schlegelii, 69 % with Nile tilapia Oreochromis niloticus, 64 % with pufferfish Takifugu rubripes, 63 % with rainbow trout Oncorhynchus mykiss, and 60 % with mangrove rivulus Kryptolebias marmoratus. Phylogenetic analysis of piscine PRLs also demonstrated a similarity between starry flounder and other teleosts but with a broad distinction from non-teleost PRLs. PRLR gene consists of eight exons encoding a protein of 528 amino acid residues. It showed a similarity to the PRLR2 subtype as reflected by amino acid identities of 54 % with A. schlegelii, 48.1 % with K. marmoratus, 46.3 % with tilapia O. mossambicus, and 46.1 % with O. niloticus PRLR2 as compared to PRLR1 isoform having less than 30 % identities. While mRNA transcript corresponding to PRL was detected only from the pituitary, most of PRLR mRNA was detected in the gill, kidney, and intestine, with a small amount in the ovary. The level of PRL transcript progressively increased during 6 days of acclimation to freshwater and then decreased but stayed higher than that of seawater at 60 days of acclimation. An opposite pattern of changes including a decrease at the beginning of the acclimation but a slight increase in the level osmolality was found as adaptation continued. The results support the osmoregulatory role of PRL signaling in starry flounder.
Collapse
Affiliation(s)
- Gyeong Eon Noh
- Department of Fishery Biology, Pukyong National University, Busan 608-737, Republic of Korea
| | | | | |
Collapse
|
40
|
Abstract
Organisms exposed to altered salinity must be able to perceive osmolality change because metabolism has evolved to function optimally at specific intracellular ionic strength and composition. Such osmosensing comprises a complex physiological process involving many elements at organismal and cellular levels of organization. Input from numerous osmosensors is integrated to encode magnitude, direction, and ionic basis of osmolality change. This combinatorial nature of osmosensing is discussed with emphasis on fishes.
Collapse
Affiliation(s)
- Dietmar Kültz
- Department of Animal Science, Physiological Genomics Group, University of California, Davis, Davis, California
| |
Collapse
|
41
|
Ferlazzo A, Carvalho ESM, Gregorio SF, Power DM, Canario AVM, Trischitta F, Fuentes J. Prolactin regulates luminal bicarbonate secretion in the intestine of the sea bream (Sparus aurata L.). ACTA ACUST UNITED AC 2012; 215:3836-44. [PMID: 22855618 DOI: 10.1242/jeb.074906] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pituitary hormone prolactin is a pleiotropic endocrine factor that plays a major role in the regulation of ion balance in fish, with demonstrated actions mainly in the gills and kidney. The role of prolactin in intestinal ion transport remains little studied. In marine fish, which have high drinking rates, epithelial bicarbonate secretion in the intestine produces luminal carbonate aggregates believed to play a key role in water and ion homeostasis. The present study was designed to establish the putative role of prolactin in the regulation of intestinal bicarbonate secretion in a marine fish. Basolateral addition of prolactin to the anterior intestine of sea bream mounted in Ussing chambers caused a rapid (<20 min) decrease of bicarbonate secretion measured by pH-stat. A clear inhibitory dose-response curve was obtained, with a maximal inhibition of 60-65% of basal bicarbonate secretion. The threshold concentration of prolactin for a significant effect on bicarbonate secretion was 10 ng ml(-1), which is comparable with putative plasma levels in seawater fish. The effect of prolactin on apical bicarbonate secretion was independent of the generation route for bicarbonate, as shown in a preparation devoid of basolateral HCO(3)(-)/CO(2) buffer. Specific inhibitors of JAK2 (AG-490, 50 μmol l(-1)), PI3K (LY-294002, 75 μmol l(-1)) or MEK (U-012610, 10 μmol l(-1)) caused a 50-70% reduction in the effect of prolactin on bicarbonate secretion, and demonstrated the involvement of prolactin receptors. In addition to rapid effects, prolactin has actions at the genomic level. Incubation of intestinal explants of anterior intestine of the sea bream in vitro for 3 h demonstrated a specific effect of prolactin on the expression of the Slc4a4A Na(+)-HCO(3)(-) co-transporter, but not on the Slc26a6A or Slc26a3B Cl(-)/HCO(3)(-) exchanger. We propose a new role for prolactin in the regulation of bicarbonate secretion, an essential function for ion/water homeostasis in the intestine of marine fish.
Collapse
Affiliation(s)
- A Ferlazzo
- Center of Marine Sciences, CIMAR-LA, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
42
|
Weatheritt RJ, Gibson TJ. Linear motifs: lost in (pre)translation. Trends Biochem Sci 2012; 37:333-41. [PMID: 22705166 DOI: 10.1016/j.tibs.2012.05.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 04/30/2012] [Accepted: 05/07/2012] [Indexed: 12/27/2022]
Abstract
Pretranslational modification by alternative splicing, alternative promoter usage and RNA editing enables the production of multiple protein isoforms from a single gene. A large quantity of data now supports the notion that short linear motifs (SLiMs), which are protein interaction modules enriched within intrinsically disordered regions, are key for the functional diversification of these isoforms. The inclusion or removal of these SLiMs can switch the subcellular localisation of an isoform, promote cooperative associations, refine the affinity of an interaction, coordinate phase transitions within the cell, and even create isoforms of opposing function. This article discusses the novel functionality enabled by the addition or removal of SLiM-containing exons by pretranslational modifications, such as alternative splicing and alternative promoter usage, and how these alterations enable the creation and modulation of complex regulatory and signalling pathways.
Collapse
Affiliation(s)
- Robert J Weatheritt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | |
Collapse
|
43
|
Seale AP, Moorman BP, Stagg JJ, Breves JP, Lerner DT, Grau EG. Prolactin177, prolactin188 and prolactin receptor 2 in the pituitary of the euryhaline tilapia, Oreochromis mossambicus, are differentially osmosensitive. J Endocrinol 2012; 213:89-98. [PMID: 22266961 DOI: 10.1530/joe-11-0384] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Two forms of prolactin (Prl), prolactin 177 (Prl(177)) and prolactin 188 (Prl(188)), are produced in the rostral pars distalis (RPD) of the pituitary gland of euryhaline Mozambique tilapia, Oreochromis mossambicus. Consistent with their roles in fresh water (FW) osmoregulation, release of both Prls is rapidly stimulated by hyposmotic stimuli, both in vivo and in vitro. We examined the concurrent dynamics of Prl(177) and Prl(188) hormone release and mRNA expression from Prl cells in response to changes in environmental salinity in vivo and to changes in extracellular osmolality in vitro. In addition, mRNA levels of Prl receptors 1 and 2 (prlr1 and prlr2) and osmotic stress transcription factor 1 (ostf1) were measured. Following transfer from seawater (SW) to FW, plasma osmolality decreased, while plasma levels of Prl(177) and Prl(188) and RPD mRNA levels of prl(177) and prl(188) increased. The opposite pattern was observed when fish were transferred from FW to SW. Moreover, hyposmotically induced release of Prl(188) was greater in Prl cells isolated from FW-acclimated fish after 6 h of incubation, while the hyposmotically induced increase in prl(188) mRNA levels was only observed in SW-acclimated fish. In addition, prlr2 and ostf1 mRNA levels in Prl cells from both FW- and SW-acclimated fish increased in direct proportion to increases in extracellular osmolality both in vivo and in vitro. Taken together, these results indicate that the osmosensitivity of the tilapia RPD is modulated by environmental salinity with respect to hormone release and gene expression.
Collapse
Affiliation(s)
- Andre P Seale
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA.
| | | | | | | | | | | |
Collapse
|
44
|
|
45
|
Fiol DF, Sanmarti E, Lim AH, Kültz D. A novel GRAIL E3 ubiquitin ligase promotes environmental salinity tolerance in euryhaline tilapia. Biochim Biophys Acta Gen Subj 2010; 1810:439-45. [PMID: 21126558 DOI: 10.1016/j.bbagen.2010.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 11/14/2010] [Accepted: 11/17/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Tilapia (Oreochromis mossambicus) are euryhaline fishes capable of tolerating large salinity changes. In a previous study aimed to identify genes involved in osmotolerance, we isolated an mRNA sequence with similarity to GRAIL (Gene Related to Anergy In Lymphocytes), which is a critical regulator of adaptive immunity and development. Tilapia GRAIL contains a PA (protease associated) domain and a C3H2C3 RING finger domain indicative of E3 ubiquitin ligase activity. SCOPE OF REVIEW Western blots analysis was used to assess GRAIL expression pattern and responses to hyperosmotic stress. Immunohistochemistry was used to reveal the cellular localization of GRAIL in gill epithelium. Overexpression in HEK293 T-Rex cells was used to functionally characterize tilapia GRAIL. Salinity stress causes strong up-regulation of both mRNA and protein levels of tilapia GRAIL in gill epithelium. Tissue distribution of GRAIL protein is mainly confined to gill epithelium, which is the primary tissue responsible for osmoregulation of teleost fishes. Overexpression of tilapia GRAIL in HEK293 cells increases cell survival (cell viability) while decreases apoptosis during salinity challenge. MAJOR CONCLUSIONS Our data indicate that tilapia GRAIL is a novel E3 ubiquitin ligase involved in osmotic stress signaling, which promotes environmental salinity tolerance by supporting gill cell function during hyperosmotic stress. GENERAL SIGNIFICANCE Involvement of tilapia GRAIL in the osmotic stress response suggests that GRAIL E3 ubiquitin ligases play a broader role in environmental stress responses, beyond their documented functions in adaptive immunity and development.
Collapse
Affiliation(s)
- Diego F Fiol
- Physiological Genomics Group, Department of Animal Sciences, University of California at Davis, CA 95616, USA
| | | | | | | |
Collapse
|
46
|
Breves JP, Seale AP, Helms RE, Tipsmark CK, Hirano T, Grau EG. Dynamic gene expression of GH/PRL-family hormone receptors in gill and kidney during freshwater-acclimation of Mozambique tilapia. Comp Biochem Physiol A Mol Integr Physiol 2010; 158:194-200. [PMID: 21056111 DOI: 10.1016/j.cbpa.2010.10.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 12/12/2022]
Abstract
In teleosts, prolactin (PRL) and growth hormone (GH) act at key osmoregulatory tissues to regulate hydromineral balance. This study was aimed at characterizing patterns of expression for genes encoding receptors for the GH/PRL-family of hormones in the gill and kidney of Mozambique tilapia (Oreochromis mossambicus) during freshwater (FW)-acclimation. Transfer of seawater (SW)-acclimated tilapia to FW elicited rapid and sustained increases in plasma levels and pituitary gene expression of PRL177 and PRL188; plasma hormone and pituitary mRNA levels of GH were unchanged. In the gill, PRL receptor 1 (PRLR1) mRNA increased markedly after transfer to FW by 6h, while increases in GH receptor (GHR) mRNA were observed 48 h and 14 d after the transfer. By contrast, neither PRLR2 nor the somatolactin receptor (SLR) was responsive to FW transfer. Paralleling these endocrine responses were marked increases in branchial gene expression of a Na+/Cl- cotransporter and a Na+/H+ exchanger, indicators of FW-type mitochondrion-rich cells (MRCs), at 24 and 48 h after FW transfer, respectively. Expression of Na+/K+/2Cl- cotransporter, an indicator of SW-type MRCs, was sharply down-regulated by 6h after transfer to FW. In kidney, PRLR1, PRLR2 and SLR mRNA levels were unchanged, while GHR mRNA was up-regulated from 6h after FW transfer to all points thereafter. Collectively, these results suggest that the modulation of the gene expression for PRL and GH receptors in osmoregulatory tissues represents an important aspect of FW-acclimation of tilapia.
Collapse
Affiliation(s)
- Jason P Breves
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| | | | | | | | | | | |
Collapse
|
47
|
Breves JP, Watanabe S, Kaneko T, Hirano T, Grau EG. Prolactin restores branchial mitochondrion-rich cells expressing Na+/Cl- cotransporter in hypophysectomized Mozambique tilapia. Am J Physiol Regul Integr Comp Physiol 2010; 299:R702-10. [PMID: 20504910 DOI: 10.1152/ajpregu.00213.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypophysectomy and hormone replacement therapy were conducted to investigate the regulation of branchial mitochondrion-rich cell (MRC) recruitment and hormone receptor expression in euryhaline tilapia (Oreochromis mossambicus). Gene expression and immunolocalization of Na(+)/Cl(-) cotransporter (NCC) and Na(+)/K(+)/2Cl(-) cotransporter (NKCC) were used as markers for freshwater (FW)- and seawater (SW)-type MRCs, respectively. In FW fish, hypophysectomy resulted in a significant drop in plasma osmolality, an effect associated with a marked reduction of NCC gene expression and the disappearance of MRCs with apical-NCC immunoreactivity. In contrast, hypophysectomy in SW fish did not impact plasma osmolality, NKCC, or Na(+), K(+)-ATPase(alpha1) gene expression, or the recruitment of MRCs with basolateral-NKCC. Hypophysectomized fish in SW exhibited reduced mRNA levels of prolactin (PRL) receptor 1 and growth hormone (GH) receptor in the gill; GH receptor expression was also reduced following hypophysectomy in FW. PRL replacement therapy restored NCC gene expression and the appearance of MRCs with apical NCC in both FW and SW; there was no interaction of PRL with cortisol. In FW, cortisol modestly stimulated NKCC mRNA levels, while no effect of GH was evident. In SW, no clear effects of hormone replacement on gene expression of NKCC, Na(+), K(+)-ATPase(alpha1), or hormone receptors were detected. Taken together, the essential nature of PRL to survival of Mozambique tilapia in FW is derived, at least in part, from its ability to stimulate the recruitment of MRCs that express NCC, while recruitment of SW-type MRCs does not require pituitary mediation in this euryhaline tilapia.
Collapse
Affiliation(s)
- Jason P Breves
- Hawaii Institute of Marine Biology, Univ. of Hawaii, P.O. Box 1346, Kaneohe, HI 96744, USA
| | | | | | | | | |
Collapse
|