1
|
Thill A, Cammaerts MC, Balmori A. Biological effects of electromagnetic fields on insects: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2024; 39:853-869. [PMID: 37990587 DOI: 10.1515/reveh-2023-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/04/2023] [Indexed: 11/23/2023]
Abstract
Worldwide, insects are declining at an alarming rate. Among other causes, the use of pesticides and modern agricultural practices play a major role in this. Cumulative effects of multiple low-dose toxins and the distribution of toxicants in nature have only started to be investigated in a methodical way. Existing research indicates another factor of anthropogenic origin that could have subtle harmful effects: the increasingly frequent use of electromagnetic fields (EMF) from man-made technologies. This systematic review summarizes the results of studies investigating the toxicity of electromagnetic fields in insects. The main objective of this review is to weigh the evidence regarding detrimental effects on insects from the increasing technological infrastructure, with a particular focus on power lines and the cellular network. The next generation of mobile communication technologies, 5G, is being deployed - without having been tested in respect of potential toxic effects. With humanity's quest for pervasiveness of technology, even modest effects of electromagnetic fields on organisms could eventually reach a saturation level that can no longer be ignored. An overview of reported effects and biological mechanisms of exposure to electromagnetic fields, which addresses new findings in cell biology, is included. Biological effects of non-thermal EMF on insects are clearly proven in the laboratory, but only partly in the field, thus the wider ecological implications are still unknown. There is a need for more field studies, but extrapolating from the laboratory, as is common practice in ecotoxicology, already warrants increasing the threat level of environmental EMF impact on insects.
Collapse
|
2
|
Nik Abdull Halim NMH, Mohd Jamili AF, Che Dom N, Abd Rahman NH, Jamal Kareem Z, Dapari R. The impact of radiofrequency exposure on Aedes aegypti (Diptera: Culicidae) development. PLoS One 2024; 19:e0298738. [PMID: 38412167 PMCID: PMC10898727 DOI: 10.1371/journal.pone.0298738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
INTRODUCTION Wireless communication connects billions of people worldwide, relying on radiofrequency electromagnetic fields (RF-EMF). Generally, fifth-generation (5G) networks shift RF carriers to higher frequencies. Although radio, cell phones, and television have benefitted humans for decades, higher carrier frequencies can present potential health risks. Insects closely associated with humans (such as mosquitoes) can undergo increased RF absorption and dielectric heating. This process inadvertently impacts the insects' behaviour, morphology, and physiology, which can influence their spread. Therefore, this study examined the impact of RF exposure on Ae. aegypti mosquitoes, which are prevalent in indoor environments with higher RF exposure risk. The morphologies of Ae. aegypti eggs and their developments into Ae. aegypti mosquitoes were investigated. METHODS A total of 30 eggs were exposed to RF radiation at three frequencies: baseline, 900 MHz, and 18 GHz. Each frequency was tested in triplicate. Several parameters were assessed through daily observations in an insectarium, including hatching responses, development times, larval numbers, and pupation periods until the emergence of adult insects. RESULTS This study revealed that the hatching rate for the 900 MHz group was the highest (79 ± 10.54%) compared to other exposures (p = 0.87). The adult emergence rate for the 900 MHz group was also the lowest at 33 ± 2.77%. A significant difference between the groups was demonstrated in the statistical analysis (p = 0.03). CONCLUSION This work highlighted the morphology sensitivity of Ae. aegypti eggs and their developments in the aquatic phase to RF radiation, potentially altering their life cycle.
Collapse
Affiliation(s)
- Nik Muhammad Hanif Nik Abdull Halim
- Centre of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Selangor, Malaysia
- Integrated Mosquito Research Group (I-MeRGe), Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Selangor, Malaysia
| | - Alya Farzana Mohd Jamili
- Centre of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Selangor, Malaysia
| | - Nazri Che Dom
- Centre of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA (UiTM), UITM Cawangan Selangor, Puncak Alam, Selangor, Malaysia
- Institute for Biodiversity and Sustainable Development (IBSD), Universiti Teknologi MARA, Shah Alam, Malaysia
- Setiu District Health Office, Permaisuri, Terengganu, Malaysia
| | - Nurul Huda Abd Rahman
- Antenna Research Centre, School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Zana Jamal Kareem
- Faculty of Health Sciences, Qaiwan International University, Sulaymaniyah, Iraq
- Kurdistan Institution for Strategic Studies and Scientific Research (KISSR), Sulaymaniyah, Iraq
| | - Rahmat Dapari
- Department of Community Health, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Romanova N, Utvenko G, Prokshina A, Cellarius F, Fedorishcheva A, Pakhomov A. Migratory birds are able to choose the appropriate migratory direction under dim yellow narrowband light. Proc Biol Sci 2023; 290:20232499. [PMID: 38113940 PMCID: PMC10730290 DOI: 10.1098/rspb.2023.2499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Currently, it is generally assumed that migratory birds are oriented in the appropriate migratory direction under UV, blue and green light (short-wavelength) and are unable to use their magnetic compass in total darkness and under yellow and red light (long-wavelength). However, it has also been suggested that the magnetic compass has two sensitivity peaks: in the short and long wavelengths, but with different intensities. In this project, we aimed to study the orientation of long-distance migrants, pied flycatchers (Ficedula hypoleuca), under different narrowband light conditions during autumn and spring migrations. The birds were tested in the natural magnetic field (NMF) and a changed magnetic field (CMF) rotated counterclockwise by 120° under dim green (autumn) and yellow (spring and autumn) light, which are on the 'threshold' between the short-wavelength and long-wavelength light. We showed that pied flycatchers (i) were completely disoriented under green light both in the NMF and CMF but (ii) showed the migratory direction in the NMF and the appropriate response to CMF under yellow light. Our data contradict the results of previous experiments under narrowband green and yellow light and raise doubts about the existence of only short-wavelength magnetoreception. The parameters of natural light change dramatically in spectral composition and intensity after local sunset, and the avian magnetic compass should be adapted to function properly under such constantly changing light conditions.
Collapse
Affiliation(s)
- Nadezhda Romanova
- Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991, Russia
| | - Gleb Utvenko
- Department of Vertebrate Zoology, St. Petersburg State University, 199034 St. Petersburg, Russia
- Biological Station Rybachy, Zoological Institute RAS, Kaliningrad Region, Rybachy 238535, Russia
| | - Anisia Prokshina
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Fyodor Cellarius
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | | | - Alexander Pakhomov
- Biological Station Rybachy, Zoological Institute RAS, Kaliningrad Region, Rybachy 238535, Russia
| |
Collapse
|
4
|
Muheim R, Phillips JB. Effects of low-level RF fields reveal complex pattern of magnetic input to the avian magnetic compass. Sci Rep 2023; 13:19970. [PMID: 37968316 PMCID: PMC10651899 DOI: 10.1038/s41598-023-46547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
The avian magnetic compass can be disrupted by weak narrow-band and broadband radio-frequency (RF) fields in the lower MHz range. However, it is unclear whether disruption of the magnetic compass results from the elimination of the perception pattern produced by the magnetic field or from qualitative changes that make the pattern unrecognizable. We show that zebra finches trained in a 4-arm maze to orient relative to the magnetic field are disoriented when tested in the presence of low-level (~ 10 nT) Larmor-frequency RF fields. However, they are able to orient when tested in such RF fields if trained under this condition, indicating that the RF field alters, but does not eliminate, the magnetic input. Larmor-frequency RF fields of higher intensities, with or without harmonics, dramatically alter the magnetic compass response. In contrast, exposure to broadband RF fields in training, in testing, or in both training and testing eliminates magnetic compass information. These findings demonstrate that low-level RF fields at intensities found in many laboratory and field experiments may have very different effects on the perception of the magnetic field in birds, depending on the type and intensity of the RF field, and the birds' familiarity with the RF-generated pattern.
Collapse
Affiliation(s)
- Rachel Muheim
- Department of Biology, Lund University, Biology Building, 223 62, Lund, Sweden.
| | - John B Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| |
Collapse
|
5
|
Baňas M, Šofranková L, Kurimský J, Pavlík M, Pikalík M, Majláthová V, Cimbala R, Pipová N, Wurfl L, Majláth I. Interspecific differences in the behavioral response of ticks exposed to radiofrequency electromagnetic radiation. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:477-485. [PMID: 37819593 PMCID: PMC10615928 DOI: 10.1007/s10493-023-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Artificial electromagnetic radiation is a new environmental factor that affects animals. Experiments with the effect of radio frequency electromagnetic radiation were focused on both vertebrates and invertebrates. Ticks showed a significant affinity to radiation. Our study is a continuation of this research and its aim was to monitor the effect of radiation on the behavior of four tick species: Ixodes ricinus, Dermacentor reticulatus, Dermacentor marginatus and Haemaphysalis inermis. In total 1,200 ticks, 300 of each species, were tested in modules allowing the choice of an exposed or shielded area. During the test, the ticks were exposed to electro-magnetic radiation of 900 MHz for 24 h. The position of the individuals was recorded and we evaluated the obtained data statistically. We observed a significant preference to the exposed area in both sexes of I. ricinus. Males of D. reticulatus and D. marginatus also showed an affinity to radiation, but not females of both species, nor females and males of H. inermis. The results of the study support the assumption that ticks perceive the electromagnetic field and the observed differences in their response have the potential to help understand the mechanism of perception.
Collapse
Affiliation(s)
- Miroslav Baňas
- Institute of biology and ecology, Pavol Jozef Safarik University in Kosice, Srobarova 2, Kosice, 041 80, Slovak Republic
| | - Lívia Šofranková
- Institute of biology and ecology, Pavol Jozef Safarik University in Kosice, Srobarova 2, Kosice, 041 80, Slovak Republic
| | - Juraj Kurimský
- Department of Electrical Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Masiarska 74, Kosice, 041 20, Slovak Republic
| | - Marek Pavlík
- Department of Electrical Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Masiarska 74, Kosice, 041 20, Slovak Republic
| | - Mário Pikalík
- Institute of biology and ecology, Pavol Jozef Safarik University in Kosice, Srobarova 2, Kosice, 041 80, Slovak Republic
| | - Viktória Majláthová
- Institute of biology and ecology, Pavol Jozef Safarik University in Kosice, Srobarova 2, Kosice, 041 80, Slovak Republic.
| | - Roman Cimbala
- Department of Electrical Power Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Masiarska 74, Kosice, 041 20, Slovak Republic
| | - Natália Pipová
- Institute of biology and ecology, Pavol Jozef Safarik University in Kosice, Srobarova 2, Kosice, 041 80, Slovak Republic
| | - Liliana Wurfl
- Boston Children´s Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Igor Majláth
- Institute of biology and ecology, Pavol Jozef Safarik University in Kosice, Srobarova 2, Kosice, 041 80, Slovak Republic
| |
Collapse
|
6
|
Kawasaki H, Okano H, Ishiwatari H, Kishi T, Ishida N. A role of cryptochrome for magnetic field-dependent improvement of sleep quality, lifespan, and motor function in Drosophila. Genes Cells 2023. [PMID: 37096945 DOI: 10.1111/gtc.13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/05/2023] [Accepted: 04/05/2023] [Indexed: 04/26/2023]
Abstract
Understanding the molecular genetic basis of animal magnet reception has been one of the big challenges in molecular biology. Recently it was discovered that the magnetic sense of Drosophila melanogaster is mediated by the ultraviolet (UV)-A/blue light photoreceptor cryptochrome (Cry). Here, using the fruit fly as a magnet-receptive model organism, we show that the magnetic field exposure (0.4-0.6 mT) extended lifespan under starvation, but not in cryptochrome mutant flies (cryb ). The magnetic field exposure increases motor function in wild type and neurodegenerative disease model flies. Furthermore, the magnetic field exposure improved sleep quality at night-time specific manner, but not in cryb . We also showed that repeated AC magnetic field exposure increased climbing activity in wild-type Drosophila, but not in cryb . The data suggests that magnetic field-dependent improvement of lifespan, sleep quality, and motor function is mediated through a cry-dependent pathway in Drosophila.
Collapse
Affiliation(s)
- Haruhisa Kawasaki
- Institute for Chronobiology, Foundation for Advancement of International Science, Tsukuba, Japan
| | - Hideyuki Okano
- Advanced Institute of Innovative Technology, Saitama University, Saitama, Japan
| | | | | | - Norio Ishida
- Institute for Chronobiology, Foundation for Advancement of International Science, Tsukuba, Japan
| |
Collapse
|
7
|
Levitt BB, Lai HC, Manville AM. Low-level EMF effects on wildlife and plants: What research tells us about an ecosystem approach. Front Public Health 2022; 10:1000840. [PMID: 36505009 PMCID: PMC9732734 DOI: 10.3389/fpubh.2022.1000840] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
There is enough evidence to indicate we may be damaging non-human species at ecosystem and biosphere levels across all taxa from rising background levels of anthropogenic non-ionizing electromagnetic fields (EMF) from 0 Hz to 300 GHz. The focus of this Perspective paper is on the unique physiology of non-human species, their extraordinary sensitivity to both natural and anthropogenic EMF, and the likelihood that artificial EMF in the static, extremely low frequency (ELF) and radiofrequency (RF) ranges of the non-ionizing electromagnetic spectrum are capable at very low intensities of adversely affecting both fauna and flora in all species studied. Any existing exposure standards are for humans only; wildlife is unprotected, including within the safety margins of existing guidelines, which are inappropriate for trans-species sensitivities and different non-human physiology. Mechanistic, genotoxic, and potential ecosystem effects are discussed.
Collapse
Affiliation(s)
- B. Blake Levitt
- National Association of Science Writers, Berkeley, CA, United States
| | - Henry C. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Albert M. Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington, DC, United States
| |
Collapse
|
8
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
9
|
Adedara IA, Mohammed KA, Da-Silva OF, Salaudeen FA, Gonçalves FL, Rosemberg DB, Aschner M, Rocha JBT, Farombi EO. Utility of cockroach as a model organism in the assessment of toxicological impacts of environmental pollutants. ENVIRONMENTAL ADVANCES 2022; 8:100195. [PMID: 35992224 PMCID: PMC9390120 DOI: 10.1016/j.envadv.2022.100195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Environmental pollution is a global concern because of its associated risks to human health and ecosystem. The bio-monitoring of environmental health has attracted much attention in recent years and efforts to minimize environmental contamination as well as to delineate toxicological mechanisms related to toxic exposure are essential to improve the health conditions of both humans and animals. This review aims to substantiate the need and advantages in utilizing cockroaches as a complementary, non-mammalian model to further understand the noxious impact of environmental contaminants on humans and animals. We discuss recent advances in neurotoxicology, immunotoxicology, reproductive and developmental toxicology, environmental forensic entomotoxicology, and environmental toxicology that corroborate the utility of the cockroach (Periplaneta americana, Blaptica dubia, Blattella germanica and Nauphoeta cinerea) in addressing toxicological mechanisms as well as a sensor of environmental pollution. Indeed, recent improvements in behavioural assessment and the detection of potential biomarkers allow for the recognition of phenotypic alterations in cockroaches following exposure to toxic chemicals namely saxitoxin, methylmercury, polychlorinated biphenyls, electromagnetic fields, pharmaceuticals, polycyclic aromatic hydrocarbon, chemical warfare agents and nanoparticles. The review provides a state-of-the-art update on the current utility of cockroach models in various aspects of toxicology as well as discusses the potential limitations and future perspectives.
Collapse
Affiliation(s)
- Isaac A. Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
- Corresponding author. (I.A. Adedara)
| | - Khadija A. Mohammed
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatobiloba F. Da-Silva
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Faoziyat A. Salaudeen
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Falco L.S. Gonçalves
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Denis B. Rosemberg
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine Forchheimer 209; 1300 Morris Park Avenue, Bronx, NY 10461, U.S.A
| | - Joao B. T. Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
10
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, part 1. Rising ambient EMF levels in the environment. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:81-122. [PMID: 34047144 DOI: 10.1515/reveh-2021-0026] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Ambient levels of electromagnetic fields (EMF) have risen sharply in the last 80 years, creating a novel energetic exposure that previously did not exist. Most recent decades have seen exponential increases in nearly all environments, including rural/remote areas and lower atmospheric regions. Because of unique physiologies, some species of flora and fauna are sensitive to exogenous EMF in ways that may surpass human reactivity. There is limited, but comprehensive, baseline data in the U.S. from the 1980s against which to compare significant new surveys from different countries. This now provides broader and more precise data on potential transient and chronic exposures to wildlife and habitats. Biological effects have been seen broadly across all taxa and frequencies at vanishingly low intensities comparable to today's ambient exposures. Broad wildlife effects have been seen on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and longevity and survivorship. Cyto- and geno-toxic effects have been observed. The above issues are explored in three consecutive parts: Part 1 questions today's ambient EMF capabilities to adversely affect wildlife, with more urgency regarding 5G technologies. Part 2 explores natural and man-made fields, animal magnetoreception mechanisms, and pertinent studies to all wildlife kingdoms. Part 3 examines current exposure standards, applicable laws, and future directions. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Wildlife loss is often unseen and undocumented until tipping points are reached. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced.
Collapse
Affiliation(s)
- B Blake Levitt
- National Association of Science Writers, Berkeley, CA, USA
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
11
|
Phillips J, Muheim R, Painter M, Raines J, Anderson C, Landler L, Dommer D, Raines A, Deutschlander M, Whitehead J, Fitzpatrick NE, Youmans P, Borland C, Sloan K, McKenna K. Why is it so difficult to study magnetic compass orientation in murine rodents? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:197-212. [PMID: 35094127 DOI: 10.1007/s00359-021-01532-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/21/2023]
Abstract
A magnetic compass sense has been demonstrated in all major classes of vertebrates, as well as in many invertebrates. In mammals, controlled laboratory studies of mice have provided evidence for a robust magnetic compass that is comparable to, or exceeds, the performance of that in other animals. Nevertheless, the vast majority of laboratory studies of spatial behavior and cognition in murine rodents have failed to produce evidence of sensitivity to magnetic cues. Given the central role that a magnetic compass sense plays in the spatial ecology and cognition of non-mammalian vertebrates, and the potential utility that a global/universal reference frame derived from the magnetic field would have in mammals, the question of why responses to magnetic cues have been so difficult to demonstrate reliably is of considerable importance. In this paper, we review evidence that the magnetic compass of murine rodents shares a number of properties with light-dependent compasses in a wide variety of other animals generally believed to be mediated by a radical pair mechanism (RPM) or related quantum process. Consistent with the RPM, we summarize both published and previously unpublished findings suggesting that the murine rodent compass is sensitive to low-level radio frequency (RF) fields. Finally, we argue that the presence of anthropogenic RF fields in laboratory settings, may be an important source of variability in responses of murine rodents to magnetic cues.
Collapse
Affiliation(s)
- John Phillips
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA.
| | - Rachel Muheim
- Dept of Biology, Lund University, Biology Building, 223 62, Lund, Sweden
| | - Michael Painter
- Dept of Biology, Barry University, 11300 NE 2nd Ave, Miami, FL, 33161, USA
| | - Jenny Raines
- University of Virginia, 409 Lane Road, Charlottesville, VA, 22908, USA
| | - Chris Anderson
- Electrical Engineering Dept, US Naval Academy, 105 Maryland Ave, Annapolis, MD, 21402, USA
| | - Lukas Landler
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), Gregor-Mendel-Straße 33/I, 1180, Vienna, Austria
| | - Dave Dommer
- University of Mount Olive, 5001 South Miami Boulevard, Durham, NC, 27703, USA
| | - Adam Raines
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| | - Mark Deutschlander
- Dept of Biology, Hobart and William Smith Colleges, 300 Pulteney St., Geneva, NY, 14456, USA
| | - John Whitehead
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| | | | - Paul Youmans
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| | - Chris Borland
- Civic Champs, 642 N. Madison St., Suite 116, Bloomington, IN, 47404, USA
| | - Kelly Sloan
- Sanibel Captiva Conservation Foundation, 3333 Sanibel Captiva Rd, PO Box 839, Sanibel, FL, 33957, USA
| | - Kaitlyn McKenna
- Dept of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061-0406, USA
| |
Collapse
|
12
|
Granger J, Cummer SA, Lohmann KJ, Johnsen S. Environmental sources of radio frequency noise: potential impacts on magnetoreception. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:83-95. [DOI: 10.1007/s00359-021-01516-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
|
13
|
Effects of an electric field on sleep quality and life span mediated by ultraviolet (UV)-A/blue light photoreceptor CRYPTOCHROME in Drosophila. Sci Rep 2021; 11:20543. [PMID: 34654874 PMCID: PMC8519966 DOI: 10.1038/s41598-021-99753-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
Although electric fields (EF) exert beneficial effects on animal wound healing, differentiation, cancers and rheumatoid arthritis, the molecular mechanisms of these effects have remained unclear about a half century. Therefore, we aimed to elucidate the molecular mechanisms underlying EF effects in Drosophila melanogaster as a genetic animal model. Here we show that the sleep quality of wild type (WT) flies was improved by exposure to a 50-Hz (35 kV/m) constant electric field during the day time, but not during the night time. The effect was undetectable in cryptochrome mutant (cryb) flies. Exposure to a 50-Hz electric field under low nutrient conditions elongated the lifespan of male and female WT flies by ~ 18%, but not of several cry mutants and cry RNAi strains. Metabolome analysis indicated that the adenosine triphosphate (ATP) content was higher in intact WT than cry gene mutant strains exposed to an electric field. A putative magnetoreceptor protein and UV-A/blue light photoreceptor, CRYPTOCHROME (CRY) is involved in electric field (EF) receptors in animals. The present findings constitute hitherto unknown genetic evidence of a CRY-based system that is electric field sensitive in animals.
Collapse
|
14
|
Ilijin L, Mrdaković M, Todorović D, Vlahović M, Grčić A, Filipović A, Perić-Mataruga V. Biological effects of chronic exposure of Blaptica dubia (Blattodea: Blaberidae) nymphs to static and extremely low frequency magnetic fields. AN ACAD BRAS CIENC 2021; 93:e20190118. [PMID: 34105607 DOI: 10.1590/0001-3765202120190118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/15/2019] [Indexed: 11/21/2022] Open
Abstract
In this paper, we analyzed the effects of chronic exposure (5 months) to static magnetic field (110 mT; SMF) and extremely low frequency magnetic field (ELF MF; 10 mT, 50 Hz) on Blaptica dubia nymphs. We have examined acetylcholinesterase (AChE) activity and heat shock protein 70 (HSP70) level, two sensitive biomarkers of stress in terrestrial insects. Relative growth rate (RGR), as a life history trait, was estimated. AChE activity was determined spectrophotometrically and HSP70 levels were quantified using indirect non-competitive ELISA and Western blotting. Calculated RGR was significantly changed upon exposure to both types of ambiental MFs. The effects of chronic exposure of B. dubia nymphs to SMF and ELF MF (50 Hz) were observed as decreased activity of AChE. The increased level of HSP70 was present only after exposure to SMF. The strength of ELF MF was most likely below the energy level needed to induce the expression of this stress protein. Different patterns of the expression of two HSP70 isoforms, where isoform 2 was sensitive only to SMF, are most likely a possibly switch - off in the expression of constitutive and/or inducible HSP70 isoforms.
Collapse
Affiliation(s)
- Larisa Ilijin
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Marija Mrdaković
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Dajana Todorović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Milena Vlahović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Anja Grčić
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Aleksandra Filipović
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| | - Vesna Perić-Mataruga
- University of Belgrade, Institute for Biological Research "Siniša Stanković", National Institute of Republic of Serbia, Department of Insect Physiology and Biochemistry, Serbia
| |
Collapse
|
15
|
Lee KS, Dumke R, Paterek T. Numerical tests of magnetoreception models assisted with behavioral experiments on American cockroaches. Sci Rep 2021; 11:12221. [PMID: 34108599 PMCID: PMC8190300 DOI: 10.1038/s41598-021-91815-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/26/2021] [Indexed: 02/05/2023] Open
Abstract
Many animals display sensitivity to external magnetic field, but it is only in the simplest organisms that the sensing mechanism is understood. Here we report on behavioural experiments where American cockroaches (Periplaneta americana) were subjected to periodically rotated external magnetic fields with a period of 10 min. The insects show increased activity when placed in a periodically rotated Earth-strength field, whereas this effect is diminished in a twelve times stronger periodically rotated field. We analyse established models of magnetoreception, the magnetite model and the radical pair model, in light of this adaptation result. A broad class of magnetite models, based on single-domain particles found in insects and assumption that better alignment of magnetic grains towards the external field yields better sensing and higher insect activity, is shown to be excluded by the measured data. The radical-pair model explains the data if we assume that contrast in the chemical yield on the order of one in a thousand is perceivable by the animal, and that there also exists a threshold value for detection, attained in an Earth-strength field but not in the stronger field.
Collapse
Affiliation(s)
- Kai Sheng Lee
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore
| | - Rainer Dumke
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore ,grid.4280.e0000 0001 2180 6431Centre for Quantum Technologies, National University of Singapore, Singapore, 117543 Singapore
| | - Tomasz Paterek
- grid.59025.3b0000 0001 2224 0361School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371 Singapore ,grid.8585.00000 0001 2370 4076Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics, and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland
| |
Collapse
|
16
|
Balmori A. Electromagnetic radiation as an emerging driver factor for the decline of insects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 767:144913. [PMID: 33636787 DOI: 10.1016/j.scitotenv.2020.144913] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The biodiversity of insects is threatened worldwide. Numerous studies have reported the serious decline in insects that has occurred in recent decades. The same is happening with the important group of pollinators, with an essential utility for pollination of crops. Loss of insect diversity and abundance is expected to provoke cascading effects on food webs and ecosystem services. Many authors point out that reductions in insect abundance must be attributed mainly to agricultural practices and pesticide use. On the other hand, evidence for the effects of non-thermal microwave radiation on insects has been known for at least 50 years. The review carried out in this study shows that electromagnetic radiation should be considered seriously as a complementary driver for the dramatic decline in insects, acting in synergy with agricultural intensification, pesticides, invasive species and climate change. The extent that anthropogenic electromagnetic radiation represents a significant threat to insect pollinators is unresolved and plausible. For these reasons, and taking into account the benefits they provide to nature and humankind, the precautionary principle should be applied before any new deployment (such 5G) is considered.
Collapse
|
17
|
Adedara IA, Ajayi BO, Afolabi BA, Awogbindin IO, Rocha JBT, Farombi EO. Toxicological outcome of exposure to psychoactive drugs carbamazepine and diazepam on non-target insect Nauphoeta cinerea. CHEMOSPHERE 2021; 264:128449. [PMID: 33032224 DOI: 10.1016/j.chemosphere.2020.128449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 05/27/2023]
Abstract
The continuous detection of human pharmaceuticals during environmental biomonitoring is a global concern because of the menaces they may exert on non-target organisms. Carbamazepine (CBZ) and diazepam (DZP) are commonly prescribed psychotropic drugs which have been reported to coexist in the environment globally. Nauphoeta cinerea is a common insect with high ecological impact. This study elucidated the influence of co-exposure to DZP (0.5 and 1.0 μg kg-1 diet) and CBZ (1.5 and 3.0 μg kg-1 diet) for 42 days on the behavior and biochemical responses in Nauphoeta cinerea. Results showed that DZP alone did not induce adverse effect on the behavior and antioxidant status in the exposed insects. However, exposure to CBZ alone and binary mixtures of DZP and CBZ significantly decreased locomotor and exploratory accomplishments evidenced by decreased mobile episodes, total mobile time, maximum speed, total distance traveled, absolute turn angle, body rotation and path efficiency in comparison with control. The decline observed in the exploratory activities of insects fed with CBZ alone and the mixtures was confirmed by track plots and heat maps. Further, acetylcholinesterase and antioxidant enzyme activities decreased significantly whereas reactive oxygen and nitrogen species, nitric oxide and lipid peroxidation levels increased significantly in the hemolymph, head and midgut of insects exposed to CBZ alone and the mixtures. Collectively, CBZ alone and binary mixtures of CBZ and DZP caused neurotoxicity via induction of inflammatory and oxidative stress in insects. Nauphoeta cinerea may be a potential non-target insect model for monitoring ecotoxicological hazard of pharmaceuticals.
Collapse
Affiliation(s)
- Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Babajide O Ajayi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ifeoluwa O Awogbindin
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joao B T Rocha
- Departamento de Bioquímica e Biologia Molecular, CCNE, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
18
|
Párraga DG, Tyack PL, Marco-Cabedo V, Crespo-Picazo JL, Manteca X, Martí-Bonmatí L. Effects of 3 Tesla magnetic resonance imaging exposure on the behavior and orientation of homing pigeons Columba livia domestica. PLoS One 2020; 15:e0241280. [PMID: 33338040 PMCID: PMC7748148 DOI: 10.1371/journal.pone.0241280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
Homing pigeons (Columba livia domestica) were used to test whether clinical magnetic resonance (MR) imaging disrupts orientation of animals that sense the earth’s magnetic field. Thirty young pigeons were randomly separated into three groups (n = 10/group). Two groups were anaesthetized and exposed to either a constant (no sequence) or a varying (gradient echo and echo planar sequences) magnetic field within a 3 Tesla MR unit for 15 minutes. The control group was not exposed to the MR field but shared all other aspects of the procedure. One day later, animals were released from a site they had never visited, 15 km from the home loft. Three weeks after the procedure, animals were released from a different unfamiliar site 30 km from the loft. Measured variables included the time to disappear from sight (seconds), vanishing bearing (angle), and the time interval from release to entering the home loft (hours). On first release, the group exposed to varying field gradients during image acquisition using 2 different standard sequences showed more variability in the vanishing bearing compared to the other groups (p = 0.0003 compared to control group), suggesting interference with orientation. Other measures did not show significant differences between groups. On second release, there were no significant differences between groups. Our results on homing pigeons show that regular clinical MR imaging exposure may temporarily affect the orientation of species that have magnetoreception capabilities. If exposure to MR imaging disrupted processes that are not specific to magnetoreception, then it may affect other species and other capabilities as well.
Collapse
Affiliation(s)
- Daniel García Párraga
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
- Biology Department, Avanqua-Oceanográfic SL, Valencia, Spain
| | - Peter L. Tyack
- Sea Mammal Research Unit, Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews, United Kingdom
- * E-mail:
| | - Vicente Marco-Cabedo
- Research Department, Fundación Oceanogràfic de la Comunidad Valenciana, Valencia, Spain
| | | | - Xavier Manteca
- School of Veterinary Science, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Luis Martí-Bonmatí
- Medical Imaging Department and Biomedical Imaging Research Group at La Fe University and Polytechnic Hospital and Health Research Institute, Valencia, Spain
| |
Collapse
|
19
|
Yanagawa A, Tomaru M, Kajiwara A, Nakajima H, Quemener EDL, Steyer JP, Mitani T. Impact of 2.45 GHz Microwave Irradiation on the Fruit Fly, Drosophila melanogaster. INSECTS 2020; 11:insects11090598. [PMID: 32899629 PMCID: PMC7564283 DOI: 10.3390/insects11090598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022]
Abstract
Simple Summary The physiological and behavioral influences of 2.45 GHz microwaves on Drosophila melanogaster were examined. This study indicated that there was no concern regarding the thermal effects of microwave irradiation for levels of daily usage if it is traveling waves. However, it still gave non-thermal effects. We detected genotoxicity and behavioral alterations associated with travelling wave irradiation. Electron spin resonance (ESR) revealed that fruit flies possessed paramagnetic substances in the body such as Fe3+, Cu2+, Mn2+, and organic radicals, and the behavioral tests supported the microwave susceptibility of the insects. Abstract The physiological and behavioral influences of 2.45 GHz microwaves on Drosophila melanogaster were examined. Standing waves transitioned into heat energy effectively when passing through the insect body. On the contrary, travelling waves did not transit into heat energy in the insect body. This indicated that there was no concern regarding the thermal effects of microwave irradiation for levels of daily usage. However, we detected genotoxicity and behavioral alterations associated with travelling wave irradiation, which can be attributed to the non-thermal effects of the waves. Electron spin resonance (ESR) revealed that fruit flies possessed paramagnetic substances in the body such as Fe3+, Cu2+, Mn2+, and organic radicals. The temperature dependent intensities of these paramagnetic substances indicated that females possessed more of the components susceptible to electromagnetic waves than males, and the behavioral tests supported the differences between the sexes.
Collapse
Affiliation(s)
- Aya Yanagawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan;
- Correspondence: (A.Y.); (E.D.-L.Q.)
| | - Masatoshi Tomaru
- Department of Drosophila Genomics and Genetic Resources, Kyoto Institute of Technology, Kyoto 616-8354, Japan;
| | - Atsushi Kajiwara
- Nara University of Education, Takabatake-cho, Nara 630-8528, Japan;
| | - Hiroki Nakajima
- Department of Molecular Chemistry, Graduate School of Kyoto Institute of Technology, Kyoto 606-8585, Japan;
| | - Elie Desmond-Le Quemener
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France;
- Correspondence: (A.Y.); (E.D.-L.Q.)
| | | | - Tomohiko Mitani
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan;
| |
Collapse
|
20
|
Hochstoeger T, Al Said T, Maestre D, Walter F, Vilceanu A, Pedron M, Cushion TD, Snider W, Nimpf S, Nordmann GC, Landler L, Edelman N, Kruppa L, Dürnberger G, Mechtler K, Schuechner S, Ogris E, Malkemper EP, Weber S, Schleicher E, Keays DA. The biophysical, molecular, and anatomical landscape of pigeon CRY4: A candidate light-based quantal magnetosensor. SCIENCE ADVANCES 2020; 6:eabb9110. [PMID: 32851187 PMCID: PMC7423367 DOI: 10.1126/sciadv.abb9110] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The biophysical and molecular mechanisms that enable animals to detect magnetic fields are unknown. It has been proposed that birds have a light-dependent magnetic compass that relies on the formation of radical pairs within cryptochrome molecules. Using spectroscopic methods, we show that pigeon cryptochrome clCRY4 is photoreduced efficiently and forms long-lived spin-correlated radical pairs via a tetrad of tryptophan residues. We report that clCRY4 is broadly and stably expressed within the retina but enriched at synapses in the outer plexiform layer in a repetitive manner. A proteomic survey for retinal-specific clCRY4 interactors identified molecules that are involved in receptor signaling, including glutamate receptor-interacting protein 2, which colocalizes with clCRY4. Our data support a model whereby clCRY4 acts as an ultraviolet-blue photoreceptor and/or a light-dependent magnetosensor by modulating glutamatergic synapses between horizontal cells and cones.
Collapse
Affiliation(s)
- Tobias Hochstoeger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Tarek Al Said
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Dante Maestre
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Florian Walter
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Alexandra Vilceanu
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Miriam Pedron
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Thomas D. Cushion
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - William Snider
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Simon Nimpf
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Gregory Charles Nordmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Lukas Landler
- Institute of Zoology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Nathaniel Edelman
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Lennard Kruppa
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), VBC, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), VBC, Dr. Bohr-Gasse 3, Vienna 1030, Austria
| | - Stefan Schuechner
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna 1030, Austria
| | - Egon Ogris
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna 1030, Austria
| | - E. Pascal Malkemper
- Monoclonal Antibody Facility, Max Perutz Labs, Medical University of Vienna, Dr. Bohr-Gasse 9, Vienna 1030, Austria
- Max Planck Research Group Neurobiology of Magnetoreception, Center of Advanced European Studies and Research (CAESAR), Ludwig-Erhard-Allee 2, Bonn 53175, Germany
| | - Stefan Weber
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - Erik Schleicher
- Institut für Physikalische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, Freiburg 79104, Germany
| | - David A. Keays
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| |
Collapse
|
21
|
Babcock N, Kattnig DR. Electron-Electron Dipolar Interaction Poses a Challenge to the Radical Pair Mechanism of Magnetoreception. J Phys Chem Lett 2020; 11:2414-2421. [PMID: 32141754 PMCID: PMC7145362 DOI: 10.1021/acs.jpclett.0c00370] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
A visual magnetic sense in migratory birds has been hypothesized to rely on a radical pair reaction in the protein cryptochrome. In this model, magnetic sensitivity originates from coherent spin dynamics, as the radicals couple to magnetic nuclei via hyperfine interactions. Prior studies have often neglected the electron-electron dipolar (EED) coupling from this hypothesis. We show that EED interactions suppress the anisotropic response to the geomagnetic field by the radical pair mechanism in cryptochrome and that this attenuation is unlikely to be mitigated by mutual cancellation of the EED and electronic exchange coupling, as previously suggested. We then demonstrate that this limitation may be overcome by extending the conventional model to include a third, nonreacting radical. We predict that hyperfine effects could work in concert with three-radical dipolar interactions to tailor a superior magnetic response, thereby providing a new principle for magnetosensitivity with applications for sensing, navigation, and the assessment of biological magnetic field effects.
Collapse
Affiliation(s)
- Nathan
S. Babcock
- Living Systems Institute and Department
of Physics, University of Exeter, Stocker Road, Exeter EX4 4QD, United
Kingdom
| | - Daniel R. Kattnig
- Living Systems Institute and Department
of Physics, University of Exeter, Stocker Road, Exeter EX4 4QD, United
Kingdom
| |
Collapse
|
22
|
Abstract
Nanomaterials have become increasingly important in medicine, manufacturing, and consumer products. A fundamental understanding of the effects of nanoparticles (NPs) and their interactions with biomolecules and organismal systems has yet to be achieved. In this chapter, we firstly provide a brief review of the interactions between nanoparticles and biological systems. We then provide an example by describing a novel method to assess the effects of NPs on biological systems, using insects as a model. Nanoparticles were injected into the central nervous system of the discoid cockroach (Blaberus discoidalis). It was found that insects became hyperactive compared to negative control (water injections). Our method could provide a generic method of assessing nanoparticles toxicity.
Collapse
|
23
|
Vanbergen AJ, Potts SG, Vian A, Malkemper EP, Young J, Tscheulin T. Risk to pollinators from anthropogenic electro-magnetic radiation (EMR): Evidence and knowledge gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 695:133833. [PMID: 31419678 DOI: 10.1016/j.scitotenv.2019.133833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Worldwide urbanisation and use of mobile and wireless technologies (5G, Internet of Things) is leading to the proliferation of anthropogenic electromagnetic radiation (EMR) and campaigning voices continue to call for the risk to human health and wildlife to be recognised. Pollinators provide many benefits to nature and humankind, but face multiple anthropogenic threats. Here, we assess whether artificial light at night (ALAN) and anthropogenic radiofrequency electromagnetic radiation (AREMR), such as used in wireless technologies (4G, 5G) or emitted from power lines, represent an additional and growing threat to pollinators. A lack of high quality scientific studies means that knowledge of the risk to pollinators from anthropogenic EMR is either inconclusive, unresolved, or only partly established. A handful of studies provide evidence that ALAN can alter pollinator communities, pollination and fruit set. Laboratory experiments provide some, albeit variable, evidence that the honey bee Apis mellifera and other invertebrates can detect EMR, potentially using it for orientation or navigation, but they do not provide evidence that AREMR affects insect behaviour in ecosystems. Scientifically robust evidence of AREMR impacts on abundance or diversity of pollinators (or other invertebrates) are limited to a single study reporting positive and negative effects depending on the pollinator group and geographical location. Therefore, whether anthropogenic EMR (ALAN or AREMR) poses a significant threat to insect pollinators and the benefits they provide to ecosystems and humanity remains to be established.
Collapse
Affiliation(s)
- Adam J Vanbergen
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; Centre for Ecology & Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, UK.
| | - Simon G Potts
- Centre for Agri-Environmental Research, School of Agriculture, Policy and Development, Reading University, RG6 6AR, UK.
| | - Alain Vian
- IRHS, Université d'Angers, Agrocampus-Ouest, INRA, SFR 4207 QuaSaV, 49071 Beaucouzé, France.
| | - E Pascal Malkemper
- Research Institute of Molecular Pathology (IMP), Campus-Vienna-BioCenter 1, 1030 Vienna, Austria.
| | - Juliette Young
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; Centre for Ecology & Hydrology, Bush Estate, Penicuik, Edinburgh EH26 0QB, UK.
| | - Thomas Tscheulin
- Department of Geography, University of the Aegean, University Hill, GR-81100, Greece.
| |
Collapse
|
24
|
Bartos P, Netusil R, Slaby P, Dolezel D, Ritz T, Vacha M. Weak radiofrequency fields affect the insect circadian clock. J R Soc Interface 2019; 16:20190285. [PMID: 31530135 DOI: 10.1098/rsif.2019.0285] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is known that the circadian clock in Drosophila can be sensitive to static magnetic fields (MFs). Man-made radiofrequency (RF) electromagnetic fields have been shown to have effects on animal orientation responses at remarkably weak intensities in the nanotesla range. Here, we tested if weak broadband RF fields also affect the circadian rhythm of the German cockroach (Blatella germanica). We observed that static MFs slow down the cockroach clock rhythm under dim UV light, consistent with results on the Drosophila circadian clock. Remarkably, 300 times weaker RF fields likewise slowed down the cockroach clock in a near-zero static magnetic field. This demonstrates that the internal clock of organisms can be sensitive to weak RF fields, consequently opening the possibility of an influence of man-made RF fields on many clock-dependent events in living systems.
Collapse
Affiliation(s)
- Premysl Bartos
- Department of Experimental Biology, Section of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Czech Republic
| | - Radek Netusil
- Department of Experimental Biology, Section of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Czech Republic
| | - Pavel Slaby
- Department of Experimental Biology, Section of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Czech Republic
| | - David Dolezel
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branisovska 31, Ceske Budejovice, Czech Republic.,Department of Molecular Biology and Genetics, Faculty of Science, Branisovska 31, Ceske Budejovice, Czech Republic
| | - Thorsten Ritz
- Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
| | - Martin Vacha
- Department of Experimental Biology, Section of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Czech Republic
| |
Collapse
|
25
|
Chandel S, Kaur S, Issa M, Singh HP, Batish DR, Kohli RK. Exposure to mobile phone radiations at 2350 MHz incites cyto- and genotoxic effects in root meristems of Allium cepa. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2019; 17:97-104. [PMID: 31297205 PMCID: PMC6582205 DOI: 10.1007/s40201-018-00330-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The exponential increase of electromagnetic field radiations (EMF-r) in the natural environment has raked up the controversies regarding their biological effects. Concern regarding the putative capacity of EMF-r to affect living beings has been growing due to the ongoing elevation in the use of high frequency EMF-r in communication systems, e.g. Mobile phones. METHODS In the present study, we tried to examine the cyto- and genotoxic potential of mobile phone EMF-r at 2350 MHz using onions (Allium cepa L.). Fresh adventitious onion roots were exposed to continuous EMF-r at 2350 MHz for different time periods (1 h, 2 h and 4 h). The evaluation of cytotoxicity was done in terms of mitotic index (MI), phase index and chromosomal aberrations. Genotoxicity was investigated employing comet assay in terms of changes in % HDNA (head DNA) and % TDNA (tail DNA), TM (tail moment) and OTM (olive tail moment). Data were analyzed using one-way ANOVA and mean values were separated using post hoc Tukey's test. RESULTS The results manifested a significant increase of MI and chromosomal aberrations (%) upon 4 h, and ≥ 2 h of exposure, respectively, as compared to the control. No specific changes in phase index in response to EMF-r exposure were observed. The % HDNA and % TDNA values exhibited significant changes in contrast to that of control upon 2 h and 4 h of exposure, respectively. However, TM and OTM did not change significantly. CONCLUSIONS Our results infer that continuous exposures of radiofrequency EMF-r (2350 MHz) for long durations have a potential of inciting cyto- and genotoxic effects in onion root meristems.
Collapse
Affiliation(s)
- Shikha Chandel
- Department of Botany, Panjab University, Chandigarh, 160014 India
| | - Shalinder Kaur
- Department of Botany, Panjab University, Chandigarh, 160014 India
| | - Mohd Issa
- Department of Environment Studies, Panjab University, Chandigarh, 160014 India
| | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh, 160014 India
| | | | - Ravinder Kumar Kohli
- Department of Botany, Panjab University, Chandigarh, 160014 India
- Central University of Punjab, Mansa Road, Bathinda, 151 001 India
| |
Collapse
|
26
|
Odemer R, Odemer F. Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 661:553-562. [PMID: 30682608 DOI: 10.1016/j.scitotenv.2019.01.154] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/09/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Mobile phones can be found almost everywhere across the globe, upholding a direct point-to-point connection between the device and the broadcast tower. The emission of radiofrequency electromagnetic fields (RF-EMF) puts the surrounding environment inevitably into contact with this radiation. We have therefore exposed honey bee queen larvae to the radiation of a common mobile phone device (GSM band at 900 MHz) during all stages of their pre-adult development including pupation. After 14 days of exposure, hatching of adult queens was assessed and mating success after further 11 days, respectively. Moreover, full colonies were established of five of the untreated and four of the treated queens to contrast population dynamics. We found that mobile phone radiation had significantly reduced the hatching ratio but not the mating success. If treated queens had successfully mated, colony development was not adversely affected. We provide evidence that mobile phone radiation may alter pupal development, once succeeded this point, no further impairment has manifested in adulthood. Our results are discussed against the background of long-lasting consequences for colony performance and the possible implication on periodic colony losses.
Collapse
Affiliation(s)
- Richard Odemer
- University of Hohenheim, Apicultural State Institute, 70593 Stuttgart, Germany.
| | - Franziska Odemer
- University of Hohenheim, Apicultural State Institute, 70593 Stuttgart, Germany
| |
Collapse
|
27
|
Todorović D, Ilijin L, Mrdaković M, Vlahović M, Filipović A, Grčić A, Perić-Mataruga V. Long-term exposure of cockroach Blaptica dubia (Insecta: Blaberidae) nymphs to magnetic fields of different characteristics: effects on antioxidant biomarkers and nymphal gut mass. Int J Radiat Biol 2019; 95:1185-1193. [PMID: 30822251 DOI: 10.1080/09553002.2019.1589017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purpose: The main goal of this study was to analyze the long-term effects of static (SMF) and extremely low-frequency magnetic field (ELF MF) on nymphal gut mass and antioxidant biomarkers in this tissue of cockroach Blaptica dubia. Materials and methods: One-month-old nymphs were exposed to magnetic field (MF) for 5 months in three experimental groups: control, exposure to SMF (110 mT) and exposure to ELF MF (50 Hz, 10 mT). Results: The gut masses of the MF groups were significantly lower when compared to control. Superoxide dismutase (SOD) and catalase (CAT) activities were markedly higher than for the control and the differences between the MF groups were statistically significant only for SOD. The applied MF had no effect on total glutathione (GSH) content. Glutathione reductase (GR) and glutathione S-transferase (GST) activities were significantly lower in both MF groups in comparison to the control. There was a significant difference between MF groups for GR activity. Principal Component Analysis (PCA) showed that CAT and GST were the main factors contributing to the differentiation of the control group from the treated experimental groups along PCA 1, and SOD and GR along PCA 2. PCA revealed clear separation between experimental groups depends on antioxidant biomarker response. Conclusion: The applied magnetic fields could be considered a potential stressor influencing gut mass, as well as examined antioxidative biomarkers.
Collapse
Affiliation(s)
- Dajana Todorović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Larisa Ilijin
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Marija Mrdaković
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Milena Vlahović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Aleksandra Filipović
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Anja Grčić
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| | - Vesna Perić-Mataruga
- a Department of Insect Physiology and Biochemistry, Institute for Biological Research "Siniša Stanković", University of Belgrade , Belgrade , Serbia
| |
Collapse
|
28
|
Abstract
Over the last three decades, evidence has emerged that low-intensity magnetic fields can influence biological systems. It is now well established that migratory birds have the capacity to detect the Earth's magnetic field; it has been reported that power lines are associated with childhood leukemia and that pulsed magnetic fields increase the production of reactive oxidative species (ROS) in cellular systems. Justifiably, studies in this field have been viewed with skepticism, as the underlying molecular mechanisms are unknown. In the accompanying paper, Sherrard and colleagues report that low-flux pulsed electromagnetic fields (PEMFs) result in aversive behavior in Drosophila larvae and ROS production in cell culture. They further report that these responses require the presence of cryptochrome, a putative magnetoreceptor. If correct, it is conceivable that carcinogenesis associated with power lines, PEMF-induced ROS generation, and animal magnetoreception share a common mechanistic basis.
Collapse
Affiliation(s)
- Lukas Landler
- Research Institute of Molecular Pathology, Vienna Biocentre, Vienna, Austria
| | - David A. Keays
- Research Institute of Molecular Pathology, Vienna Biocentre, Vienna, Austria
| |
Collapse
|
29
|
Kong LJ, Crepaz H, Górecka A, Urbanek A, Dumke R, Paterek T. In-vivo biomagnetic characterisation of the American cockroach. Sci Rep 2018; 8:5140. [PMID: 29572509 PMCID: PMC5865160 DOI: 10.1038/s41598-018-23005-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 03/05/2018] [Indexed: 11/09/2022] Open
Abstract
We present a quantitative method, utilising a highly sensitive quantum sensor, that extends applicability of magnetorelaxometry to biological samples at physiological temperature. The observed magnetic fields allow for non-invasive determination of physical properties of magnetic materials and their surrounding environment inside the specimen. The method is applied to American cockroaches and reveals magnetic deposits with strikingly different behaviour in alive and dead insects. We discuss consequences of this finding to cockroach magneto-reception. To our knowledge, this work represents the first characterisation of the magnetisation dynamics in live insects and helps to connect results from behavioural experiments on insects in magnetic fields with characterisation of magnetic materials in their corpses.
Collapse
Affiliation(s)
- Ling-Jun Kong
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,MOE Key Laboratory of Weak Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin, 300071, China
| | - Herbert Crepaz
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Centre for Quantum Technologies, National University of Singapore, Singapore, 117543, Singapore
| | - Agnieszka Górecka
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,School of Physics and Astronomy, Monash University, Melbourne, 3800, Australia
| | - Aleksandra Urbanek
- Department of Invertebrate Zoology and Parasitology, University of Gdańsk, Gdańsk, 80-308, Poland
| | - Rainer Dumke
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.,Centre for Quantum Technologies, National University of Singapore, Singapore, 117543, Singapore
| | - Tomasz Paterek
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore. .,Centre for Quantum Technologies, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
30
|
Lambinet V, Hayden ME, Reigl K, Gomis S, Gries G. Linking magnetite in the abdomen of honey bees to a magnetoreceptive function. Proc Biol Sci 2018; 284:rspb.2016.2873. [PMID: 28330921 PMCID: PMC5378088 DOI: 10.1098/rspb.2016.2873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 02/27/2017] [Indexed: 01/21/2023] Open
Abstract
Previous studies of magnetoreception in honey bees, Apis mellifera, focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen.
Collapse
Affiliation(s)
- Veronika Lambinet
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael E Hayden
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Katharina Reigl
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Surath Gomis
- Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
31
|
Hiscock HG, Mouritsen H, Manolopoulos DE, Hore PJ. Disruption of Magnetic Compass Orientation in Migratory Birds by Radiofrequency Electromagnetic Fields. Biophys J 2017; 113:1475-1484. [PMID: 28978441 DOI: 10.1016/j.bpj.2017.07.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 11/30/2022] Open
Abstract
The radical-pair mechanism has been put forward as the basis of the magnetic compass sense of migratory birds. Some of the strongest supporting evidence has come from behavioral experiments in which birds exposed to weak time-dependent magnetic fields lose their ability to orient in the geomagnetic field. However, conflicting results and skepticism about the requirement for abnormally long quantum coherence lifetimes have cast a shroud of uncertainty over these potentially pivotal studies. Using a recently developed computational approach, we explore the effects of various radiofrequency magnetic fields on biologically plausible radicals within the theoretical framework of radical-pair magnetoreception. We conclude that the current model of radical-pair magnetoreception is unable to explain the findings of the reported behavioral experiments. Assuming that an unknown mechanism amplifies the predicted effects, we suggest experimental conditions that have the potential to distinguish convincingly between the two distinct families of radical pairs currently postulated as magnetic compass sensors. We end by making recommendations for experimental protocols that we hope will increase the chance that future experiments can be independently replicated.
Collapse
Affiliation(s)
- Hamish G Hiscock
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford, United Kingdom
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany; Research Centre for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - David E Manolopoulos
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford, United Kingdom
| | - P J Hore
- Department of Chemistry, University of Oxford, Physical and Theoretical Chemistry Laboratory, Oxford, United Kingdom.
| |
Collapse
|
32
|
Pakhomov A, Bojarinova J, Cherbunin R, Chetverikova R, Grigoryev PS, Kavokin K, Kobylkov D, Lubkovskaja R, Chernetsov N. Very weak oscillating magnetic field disrupts the magnetic compass of songbird migrants. J R Soc Interface 2017; 14:20170364. [PMID: 28794163 PMCID: PMC5582129 DOI: 10.1098/rsif.2017.0364] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/13/2017] [Indexed: 11/12/2022] Open
Abstract
Previously, it has been shown that long-distance migrants, garden warblers (Sylvia borin), were disoriented in the presence of narrow-band oscillating magnetic field (1.403 MHz OMF, 190 nT) during autumn migration. This agrees with the data of previous experiments with European robins (Erithacus rubecula). In this study, we report the results of experiments with garden warblers tested under a 1.403 MHz OMF with various amplitudes (∼0.4, 1, ∼2.4, 7 and 20 nT). We found that the ability of garden warblers to orient in round arenas using the magnetic compass could be disrupted by a very weak oscillating field, such as an approximate 2.4, 7 and 20 nT OMF, but not by an OMF with an approximate 0.4 nT amplitude. The results of the present study indicate that the sensitivity threshold of the magnetic compass to the OMF lies around 2-3 nT, while in experiments with European robins the birds were disoriented in a 15 nT OMF but could choose the appropriate migratory direction when a 5 nT OMF was added to the stationary magnetic field. The radical-pair model, one of the mainstream theories of avian magnetoreception, cannot explain the sensitivity to such a low-intensity OMF, and therefore, it needs further refinement.
Collapse
Affiliation(s)
- Alexander Pakhomov
- Biological Station Rybachy, Zoological Institute RAS, 238535 Rybachy, Kaliningrad Region, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
| | - Julia Bojarinova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Roman Cherbunin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Raisa Chetverikova
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
- AG Neurosensorik (Animal Navigation), Institut für Biologie und Umweltwissenschaften (IBU), University of Oldenburg, 26111 Oldenburg, Germany
| | - Philipp S Grigoryev
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Kirill Kavokin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
- A.F. Ioffe Physical Technical Institute, 26 Polytechnicheskaya, St Petersburg 194021, Russia
| | - Dmitry Kobylkov
- AG Neurosensorik (Animal Navigation), Institut für Biologie und Umweltwissenschaften (IBU), University of Oldenburg, 26111 Oldenburg, Germany
| | - Regina Lubkovskaja
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| | - Nikita Chernetsov
- Biological Station Rybachy, Zoological Institute RAS, 238535 Rybachy, Kaliningrad Region, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, 44 Thorez Ave, 194223 St Petersburg, Russia
- St Petersburg State University, 7-9 Universitetskaya Emb., St Petersburg 199034, Russia
| |
Collapse
|
33
|
Affiliation(s)
- P. J. Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Henrik Mouritsen
- Institut für Biologie und Umweltwissenschaften, Carl von Ossietzky Universität Oldenburg, DE-26111 Oldenburg, Germany;
- Research Centre for Neurosensory Sciences, University of Oldenburg, DE-26111 Oldenburg, Germany
| |
Collapse
|
34
|
Magnetic Sensing through the Abdomen of the Honey bee. Sci Rep 2016; 6:23657. [PMID: 27005398 PMCID: PMC4804335 DOI: 10.1038/srep23657] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/11/2016] [Indexed: 11/16/2022] Open
Abstract
Honey bees have the ability to detect the Earth’s magnetic field, and the suspected magnetoreceptors are the iron granules in the abdomens of the bees. To identify the sensing route of honey bee magnetoreception, we conducted a classical conditioning experiment in which the responses of the proboscis extension reflex (PER) were monitored. Honey bees were successfully trained to associate the magnetic stimulus with a sucrose reward after two days of training. When the neural connection of the ventral nerve cord (VNC) between the abdomen and the thorax was cut, the honey bees no longer associated the magnetic stimulus with the sucrose reward but still responded to an olfactory PER task. The neural responses elicited in response to the change of magnetic field were also recorded at the VNC. Our results suggest that the honey bee is a new model animal for the investigation of magnetite-based magnetoreception.
Collapse
|
35
|
Tomanova K, Vacha M. The magnetic orientation of the Antarctic amphipod Gondogeneia antarctica is cancelled by very weak radiofrequency fields. J Exp Biol 2016; 219:1717-24. [DOI: 10.1242/jeb.132878] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/15/2016] [Indexed: 11/20/2022]
Abstract
Studies on weak man-made radiofrequency electromagnetic fields (RF) affecting animal magnetoreception aim for a better understanding of the reception mechanism and also point to a new phenomenon having possible consequences in ecology and environmental protection. RF impacts on magnetic compasses have recently been demonstrated on migratory birds and other vertebrates. We set out to investigate the effect of RF on the magnetic orientation of the Antarctic krill species Gondogeneia antarctica, a small marine crustacean widespread along the Antarctic littoral line. Here, we show that having been released under laboratory conditions, G. antarctica escaped in the magnetically seaward direction along the magnetic sea-land axis (Y-axis) of the home beach. However, the animals were disoriented after being exposed to RF. Orientation was lost not only in an RF of a magnetic flux density of 20 nT, as expected according to the literary data, but even under the 2 nT originally intended as a control. Our results extend recent findings of the extraordinary sensitivity of animal magnetoreception to weak RF fields in marine invertebrates.
Collapse
Affiliation(s)
- K. Tomanova
- Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Brno, Kamenice 735/5, 625 00 Brno, Czech Republic
| | - M. Vacha
- Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Brno, Kamenice 735/5, 625 00 Brno, Czech Republic
| |
Collapse
|
36
|
Balmori A. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:58-60. [PMID: 25747364 DOI: 10.1016/j.scitotenv.2015.02.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 06/04/2023]
Abstract
The rate of scientific activity regarding the effects of anthropogenic electromagnetic radiation in the radiofrequency (RF) range on animals and plants has been small despite the fact that this topic is relevant to the fields of experimental biology, ecology and conservation due to its remarkable expansion over the past 20 years. Current evidence indicates that exposure at levels that are found in the environment (in urban areas and near base stations) may particularly alter the receptor organs to orient in the magnetic field of the earth. These results could have important implications for migratory birds and insects, especially in urban areas, but could also apply to birds and insects in natural and protected areas where there are powerful base station emitters of radiofrequencies. Therefore, more research on the effects of electromagnetic radiation in nature is needed to investigate this emerging threat.
Collapse
Affiliation(s)
- Alfonso Balmori
- Consejería de Medio Ambiente, Junta de Castilla y León, C/ Rigoberto Cortejoso, 14, 47071 Valladolid, Spain.
| |
Collapse
|
37
|
Landler L, Painter MS, Youmans PW, Hopkins WA, Phillips JB. Spontaneous magnetic alignment by yearling snapping turtles: rapid association of radio frequency dependent pattern of magnetic input with novel surroundings. PLoS One 2015; 10:e0124728. [PMID: 25978736 PMCID: PMC4433231 DOI: 10.1371/journal.pone.0124728] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/03/2015] [Indexed: 11/18/2022] Open
Abstract
We investigated spontaneous magnetic alignment (SMA) by juvenile snapping turtles using exposure to low-level radio frequency (RF) fields at the Larmor frequency to help characterize the underlying sensory mechanism. Turtles, first introduced to the testing environment without the presence of RF aligned consistently towards magnetic north when subsequent magnetic testing conditions were also free of RF ('RF off → RF off'), but were disoriented when subsequently exposed to RF ('RF off → RF on'). In contrast, animals initially introduced to the testing environment with RF present were disoriented when tested without RF ('RF on → RF off'), but aligned towards magnetic south when tested with RF ('RF on → RF on'). Sensitivity of the SMA response of yearling turtles to RF is consistent with the involvement of a radical pair mechanism. Furthermore, the effect of RF appears to result from a change in the pattern of magnetic input, rather than elimination of magnetic input altogether, as proposed to explain similar effects in other systems/organisms. The findings show that turtles first exposed to a novel environment form a lasting association between the pattern of magnetic input and their surroundings. However, under natural conditions turtles would never experience a change in the pattern of magnetic input. Therefore, if turtles form a similar association of magnetic cues with the surroundings each time they encounter unfamiliar habitat, as seems likely, the same pattern of magnetic input would be associated with multiple sites/localities. This would be expected from a sensory input that functions as a global reference frame, helping to place multiple locales (i.e., multiple local landmark arrays) into register to form a global map of familiar space.
Collapse
Affiliation(s)
- Lukas Landler
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael S. Painter
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Paul W. Youmans
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - William A. Hopkins
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, United States of America
| | - John B. Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
38
|
Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus. Naturwissenschaften 2014; 101:557-63. [DOI: 10.1007/s00114-014-1192-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 04/23/2014] [Accepted: 05/23/2014] [Indexed: 11/26/2022]
|
39
|
Phillips JB, Youmans PW, Muheim R, Sloan KA, Landler L, Painter MS, Anderson CR. Rapid learning of magnetic compass direction by C57BL/6 mice in a 4-armed 'plus' water maze. PLoS One 2013; 8:e73112. [PMID: 24023673 PMCID: PMC3758273 DOI: 10.1371/journal.pone.0073112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 07/18/2013] [Indexed: 11/19/2022] Open
Abstract
Magnetoreception has been demonstrated in all five vertebrate classes. In rodents, nest building experiments have shown the use of magnetic cues by two families of molerats, Siberian hamsters and C57BL/6 mice. However, assays widely used to study rodent spatial cognition (e.g. water maze, radial arm maze) have failed to provide evidence for the use of magnetic cues. Here we show that C57BL/6 mice can learn the magnetic direction of a submerged platform in a 4-armed (plus) water maze. Naïve mice were given two brief training trials. In each trial, a mouse was confined to one arm of the maze with the submerged platform at the outer end in a predetermined alignment relative to magnetic north. Between trials, the training arm and magnetic field were rotated by 180° so that the mouse had to swim in the same magnetic direction to reach the submerged platform. The directional preference of each mouse was tested once in one of four magnetic field alignments by releasing it at the center of the maze with access to all four arms. Equal numbers of responses were obtained from mice tested in the four symmetrical magnetic field alignments. Findings show that two training trials are sufficient for mice to learn the magnetic direction of the submerged platform in a plus water maze. The success of these experiments may be explained by: (1) absence of alternative directional cues (2), rotation of magnetic field alignment, and (3) electromagnetic shielding to minimize radio frequency interference that has been shown to interfere with magnetic compass orientation of birds. These findings confirm that mice have a well-developed magnetic compass, and give further impetus to the question of whether epigeic rodents (e.g., mice and rats) have a photoreceptor-based magnetic compass similar to that found in amphibians and migratory birds.
Collapse
Affiliation(s)
- John B. Phillips
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| | - Paul W. Youmans
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Rachel Muheim
- Department of Functional Zoology, Lund University, Lund, Sweden
| | - Kelly A. Sloan
- South Carolina Department of Natural Resources, Charleston, South Carolina, United States of America
| | - Lukas Landler
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael S. Painter
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | | |
Collapse
|
40
|
Wedge CJ, Lau JCS, Ferguson KA, Norman SA, Hore PJ, Timmel CR. Spin-locking in low-frequency reaction yield detected magnetic resonance. Phys Chem Chem Phys 2013; 15:16043-53. [PMID: 23963374 DOI: 10.1039/c3cp52019f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purported effects of weak magnetic fields on various biological systems from animal magnetoreception to human health have generated widespread interest and sparked much controversy in the past decade. To date the only well established mechanism by which the rates and yields of chemical reactions are known to be influenced by magnetic fields is the radical pair mechanism, based on the spin-dependent reactivity of radical pairs. A diagnostic test for the operation of the radical pair mechanism was proposed by Henbest et al. [J. Am. Chem. Soc., 2004, 126, 8102] based on the combined effects of weak static magnetic fields and radiofrequency oscillating fields in a reaction yield detected magnetic resonance experiment. Here we investigate the effects on radical pair reactions of applying relatively strong oscillating fields, both parallel and perpendicular to the static field. We demonstrate the importance of understanding the effect of the strength of the radiofrequency oscillating field; our experiments demonstrate that there is an optimal oscillating field strength above which the observed signal decreases in intensity and eventually inverts. We establish the correlation between the onset of this effect and the hyperfine structure of the radicals involved, and identify the existence of 'overtone' type features appearing at multiples of the expected resonance field position.
Collapse
Affiliation(s)
- C J Wedge
- Department of Chemistry, University of Oxford, Centre for Advanced Electron Spin Resonance, South Parks Road, Oxford, OX1 3QR, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Giraldo D, Hernández C, Molina J. In search of magnetosensitivity and ferromagnetic particles in Rhodnius prolixus: behavioral studies and vibrating sample magnetometry. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:345-350. [PMID: 23291498 DOI: 10.1016/j.jinsphys.2012.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 12/24/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
Magnetoreception is a sensory mechanism with wide phylogenetic distribution, which many organisms use for navigation and orientation. Radical pair reactions and the use of magnetic particles have been proposed as mechanisms for magnetosensitivity in terrestrial animals. Magnetosensitivity and the presence of a ferromagnetic material were tested in the hematophagous bug Rhodnius prolixus (Hemiptera: Reduviidae: Triatominae) vector of Chagas disease in Colombia and Venezuela. R. prolixus is well known in both countries for its active dispersal that allows flow of individuals from sylvatic to domestic environments. Behavioral experiments quantifying the number of body rotations and quadrant changes in a Petri dish were carried out, applying 1 mT artificial field in a constant direction for 45 min and rotated 180° every 5 min for 45 min. In addition, magnetite presence in the abdomens of Apis mellifera (positive control) and the bodies of R. prolixus was tested using a vibrating sample magnetometer (VSM). No differences in the number of body rotations and quadrant changes were found in R. prolixus with and without the presence of an artificial magnetic field. Results obtained with the VSM indicate presence of ferromagnetic material (hysteresis loop) in A. mellifera abdomens and absence of ferromagnetic material in R. prolixus bodies. Both VSM and behavioral results suggest that magnetosensitivity by a ferromagnetic hypothesis is not present in R. prolixus. Finally, our results indicate that the VSM magnetometer is a sensitive technique for detecting ferromagnetic material in insect tissues.
Collapse
Affiliation(s)
- Diego Giraldo
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Universidad de los Andes, A.A. 4976 Carrera 1a # 18A-10, Bogotá, Colombia
| | | | | |
Collapse
|
42
|
Cucurachi S, Tamis WLM, Vijver MG, Peijnenburg WJGM, Bolte JFB, de Snoo GR. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). ENVIRONMENT INTERNATIONAL 2013; 51:116-140. [PMID: 23261519 DOI: 10.1016/j.envint.2012.10.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE This article presents a systematic review of published scientific studies on the potential ecological effects of radiofrequency electromagnetic fields (RF-EMF) in the range of 10 MHz to 3.6 GHz (from amplitude modulation, AM, to lower band microwave, MW, EMF). METHODS Publications in English were searched in ISI Web of Knowledge and Scholar Google with no restriction on publication date. Five species groups were identified: birds, insects, other vertebrates, other organisms, and plants. Not only clear ecological articles, such as field studies, were taken into consideration, but also biological articles on laboratory studies investigating the effects of RF-EMF with biological endpoints such as fertility, reproduction, behaviour and development, which have a clear ecological significance, were also included. RESULTS Information was collected from 113 studies from original peer-reviewed publications or from relevant existing reviews. A limited amount of ecological field studies was identified. The majority of the studies were conducted in a laboratory setting on birds (embryos or eggs), small rodents and plants. In 65% of the studies, ecological effects of RF-EMF (50% of the animal studies and about 75% of the plant studies) were found both at high as well as at low dosages. No clear dose-effect relationship could be discerned. Studies finding an effect applied higher durations of exposure and focused more on the GSM frequency ranges. CONCLUSIONS In about two third of the reviewed studies ecological effects of RF-EMF was reported at high as well as at low dosages. The very low dosages are compatible with real field situations, and could be found under environmental conditions. However, a lack of standardisation and a limited number of observations limit the possibility of generalising results from an organism to an ecosystem level. We propose in future studies to conduct more repetitions of observations and explicitly use the available standards for reporting RF-EMF relevant physical parameters in both laboratory and field studies.
Collapse
Affiliation(s)
- S Cucurachi
- Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300 RA Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
43
|
Válková T, Vácha M. How do honeybees use their magnetic compass? Can they see the North? BULLETIN OF ENTOMOLOGICAL RESEARCH 2012; 102:461-467. [PMID: 22313997 DOI: 10.1017/s0007485311000824] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
While seeking food sources and routes back to their hive, bees make use of their advanced nervous and sensory capacities, which underlie a diverse behavioral repertoire. One of several honeybee senses that is both exceptional and intriguing is magnetoreception - the ability to perceive the omnipresent magnetic field (MF) of the Earth. The mechanism by which animals sense MFs has remained fascinating as well as elusive because of the intricacies involved, which makes it one of the grand challenges for neural and sensory biology. However, investigations in recent years have brought substantial progress to our understanding of how such magneto-receptor(s) may work. Some terrestrial animals (birds) are reported to be equipped even with a dual perception system: one based on diminutive magnetic particles - in line with the original model which has also always been hypothesized for bees - and the other one, as the more recent model describes, based on a sensitivity of some photochemical reactions to MF (radical-pair or chemical mechanism). The latter model postulates a close link to vision and supposes that the animals can see the position of the geomagnetic North as a visible pattern superimposed on the picture of the environment. In recent years, a growing body of evidence has shown that radical-pair magnetoreception might also be used by insects. It is realistic to expect that such evidence will inspire a re-examination and extension or confirmation of established views on the honeybee magnetic-compass mechanism. However, the problem of bee magnetoreception will not be solved at the moment that a receptor is discovered. On the contrary, the meaning of magnetoreception in insect life and its involvement in the orchestration of other senses is yet to be fully understood. The crucial question to be addressed in the near future is whether the compass abilities of the honeybee could suffer from radio frequency (RF) smog accompanying modern civilization and whether the fitness of this dominant pollinator might be affected by RF fields. The goal of this review is to provide an overview of the path that the behavioral research on honeybee magnetoreception has taken and to discuss it in the context of contemporary data obtained on other insects.
Collapse
Affiliation(s)
- T Válková
- Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| | - M Vácha
- Department of Animal Physiology and Immunology, Faculty of Science, Masaryk University, Kotlarska 2, 611 37, Brno, Czech Republic
| |
Collapse
|
44
|
Hellinger J, Hoffmann KP. Magnetic field perception in the rainbow trout Oncorynchus mykiss: magnetite mediated, light dependent or both? J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:593-605. [PMID: 22592858 DOI: 10.1007/s00359-012-0732-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 04/27/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
In the present study, we demonstrate the role of the trigeminal system in the perception process of different magnetic field parameters by heartbeat conditioning, i.e. a significantly longer interval between two consecutive heartbeats after magnetic stimulus onset in the salmonid fish Oncorhynchus mykiss. The electrocardiogram was recorded with subcutaneous silver wire electrodes in freely swimming fish. Inactivation of the ophthalmic branch of the trigeminal nerve by local anaesthesia revealed its role in the perception of intensity/inclination of the magnetic field by abolishing the conditioned response (CR). In contrast, experiments with 90° direction shifts clearly showed the normal conditioning effect during trigeminal inactivation. In experiments under red light and in darkness, CR occurred in case of both the intensity/inclination stimulation and 90° direction shifts, respectively. With regard to the data obtained, we propose the trigeminal system to perceive the intensity/inclination of the magnetic field in rainbow trouts and suggest the existence of another light-independent sensory structure that enables fish to detect the magnetic field direction.
Collapse
Affiliation(s)
- Jens Hellinger
- Lehrstuhl für Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, Bochum, Germany.
| | | |
Collapse
|
45
|
Stoneham A, Gauger E, Porfyrakis K, Benjamin S, Lovett B. A new type of radical-pair-based model for magnetoreception. Biophys J 2012; 102:961-8. [PMID: 22404918 PMCID: PMC3296028 DOI: 10.1016/j.bpj.2012.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 11/11/2011] [Accepted: 01/03/2012] [Indexed: 11/25/2022] Open
Abstract
Certain migratory birds can sense the Earth's magnetic field. The nature of this process is not yet properly understood. Here we offer a simple explanation according to which birds literally see the local magnetic field through the impact of a physical rather than a chemical signature of the radical pair: a transient, long-lived electric dipole moment. Based on this premise, our picture can explain recent surprising experimental data indicating long lifetimes for the radical pair. Moreover, there is a clear evolutionary path toward this field-sensing mechanism: it is an enhancement of a weak effect that may be present in many species.
Collapse
Affiliation(s)
- A. Marshall Stoneham
- Department of Physics and Astronomy, University College London, London, United Kingdom
| | - Erik M. Gauger
- Department of Materials, University of Oxford, Oxford, United Kingdom
- Centre for Quantum Technologies, National University of Singapore, Singapore
| | | | - Simon C. Benjamin
- Department of Materials, University of Oxford, Oxford, United Kingdom
- Centre for Quantum Technologies, National University of Singapore, Singapore
| | - Brendon W. Lovett
- Department of Materials, University of Oxford, Oxford, United Kingdom
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, United Kingdom
| |
Collapse
|
46
|
Wiltschko R, Wiltschko W. Magnetoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 739:126-41. [DOI: 10.1007/978-1-4614-1704-0_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Zhou Y, Rocha A, Sanchez CJ, Liang H. Assessment of toxicity of nanoparticles using insects as biological models. Methods Mol Biol 2012; 906:423-433. [PMID: 22791454 DOI: 10.1007/978-1-61779-953-2_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanomaterials have become increasingly important in medicine, manufacturing, and consumer products. The fundamental understanding in effects of nanoparticles (NPs) on and their interactions with biomolecules and organismal systems have yet to be achieved. In this chapter, we firstly provide a brief review of the interactions between nanoparticles and biological systems. We will then provide an example by describing a novel method to assess the effects of NPs on biological systems, using insects as a model. Nanoparticles were injected into the central nervous system of the discoid cockroach (Blaberus discoidalis). It was found that insects became hyperactive compared to negative control (water injections). Our method could provide a generic method of assessing nanoparticles toxicity.
Collapse
Affiliation(s)
- Yan Zhou
- Materials Science and Mechanical Engineering, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
48
|
Phillips JB, Muheim R, Jorge PE. A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? ACTA ACUST UNITED AC 2011; 213:3247-55. [PMID: 20833916 DOI: 10.1242/jeb.020792] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In terrestrial organisms, sensitivity to the Earth's magnetic field is mediated by at least two different magnetoreception mechanisms, one involving biogenic ferromagnetic crystals (magnetite/maghemite) and the second involving a photo-induced biochemical reaction that forms long-lasting, spin-coordinated, radical pair intermediates. In some vertebrate groups (amphibians and birds), both mechanisms are present; a light-dependent mechanism provides a directional sense or 'compass', and a non-light-dependent mechanism underlies a geographical-position sense or 'map'. Evidence that both magnetite- and radical pair-based mechanisms are present in the same organisms raises a number of interesting questions. Why has natural selection produced magnetic sensors utilizing two distinct biophysical mechanisms? And, in particular, why has natural selection produced a compass mechanism based on a light-dependent radical pair mechanism (RPM) when a magnetite-based receptor is well suited to perform this function? Answers to these questions depend, to a large degree, on how the properties of the RPM, viewed from a neuroethological rather than a biophysical perspective, differ from those of a magnetite-based magnetic compass. The RPM is expected to produce a light-dependent, 3-D pattern of response that is axially symmetrical and, in some groups of animals, may be perceived as a pattern of light intensity and/or color superimposed on the visual surroundings. We suggest that the light-dependent magnetic compass may serve not only as a source of directional information but also provide a spherical coordinate system that helps to interface metrics of distance, direction and spatial position.
Collapse
Affiliation(s)
- John B Phillips
- Department of Biological Sciences, Virginia Tech, 4100 Derring Hall, Blacksburg, VA 24061-0406, USA
| | | | | |
Collapse
|
49
|
|
50
|
Spruell JM, Coskun A, Friedman DC, Forgan RS, Sarjeant AA, Trabolsi A, Fahrenbach AC, Barin G, Paxton WF, Dey SK, Olson MA, Benítez D, Tkatchouk E, Colvin MT, Carmielli R, Caldwell ST, Rosair GM, Hewage SG, Duclairoir F, Seymour JL, Slawin AMZ, Goddard WA, Wasielewski MR, Cooke G, Stoddart JF. Highly stable tetrathiafulvalene radical dimers in [3]catenanes. Nat Chem 2010; 2:870-9. [PMID: 20861904 DOI: 10.1038/nchem.749] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 06/14/2010] [Indexed: 11/09/2022]
Abstract
Two [3]catenane 'molecular flasks' have been designed to create stabilized, redox-controlled tetrathiafulvalene (TTF) dimers, enabling their spectrophotometric and structural properties to be probed in detail. The mechanically interlocked framework of the [3]catenanes creates the ideal arrangement and ultrahigh local concentration for the encircled TTF units to form stable dimers associated with their discrete oxidation states. These dimerization events represent an affinity umpolung, wherein the inversion in electronic affinity replaces the traditional TTF-bipyridinium interaction, which is over-ridden by stabilizing mixed-valence (TTF)2•+ and radical-cation (TTF•+)2 states inside the 'molecular flasks.' The experimental data, collected in the solid state as well as in solution under ambient conditions, together with supporting quantum mechanical calculations, are consistent with the formation of stabilized paramagnetic mixed-valence dimers, and then diamagnetic radical-cation dimers following subsequent one-electron oxidations of the [3]catenanes.
Collapse
Affiliation(s)
- Jason M Spruell
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|