1
|
Maraschi A, Asaro A, Bas CC, Ituarte RB. Assessment of the physiological performance of the invasive oriental shrimp Palaemon macrodactylus from an atypical marine population. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:885-895. [PMID: 38934391 DOI: 10.1002/jez.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Since 2000, a well-established population of the invasive oriental shrimp Palaemon macrodactylus has been present in fully marine conditions in the southwestern Atlantic Ocean (~38° S). To assess the physiological performance of this atypical population restricted to fully marine conditions, we conducted a laboratory experiment in which individuals were transferred from 35 ‰S (local seawater) to 2 ‰S; 5 ‰S; 10 ‰S; 20 ‰S; 50 ‰S and 60‰ for short (6 h), medium (48 h), and long (>504 h) acclimation periods. We measured the time course response of relevant parameters in the shrimp's hemolymph; activity of Na+, K+-ATPase (NKA), and V-H+-ATPase (VHA); and muscle water content. Shrimp showed great osmoregulatory plasticity, being able to survive for long periods between 5 ‰S and 50 ‰S, whereas no individual survived after transfer to either 2 ‰S or 60 ‰S. Shrimp hyper-regulated hemolymph osmolality at 5 ‰S and 10 ‰S, hypo-regulated at 35 ‰S and 50 ‰S, and isosmoticity was close to 20 ‰S. Compared to 35 ‰S, prolonged acclimation to 5 ‰S caused a decrease in hemolymph osmolality (~34%) along with sodium and chloride concentrations (~24%); the NKA and VHA activities decreased by ~52% and ~88%, respectively, while muscle water content was tightly regulated. Our results showed that the atypical population of P. macrodactylus studied here lives in a chronic hypo-osmo-ion regulatory state and suggest that fully marine conditions contribute to its poor performance at the lower limit of salinity tolerance (<5 ‰S).
Collapse
Affiliation(s)
- Anieli Maraschi
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Antonela Asaro
- Departamento de Biología, Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Claudia Cristina Bas
- Departamento de Biología, Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Romina Belén Ituarte
- Departamento de Biología, Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras (IIMyC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| |
Collapse
|
2
|
Fabri LM, Moraes CM, Garçon DP, McNamara JC, Faria SC, Leone FA. Primary amino acid sequences of decapod (Na +, K +)-ATPase provide evolutionary insights into osmoregulatory mechanisms. Comp Biochem Physiol A Mol Integr Physiol 2024; 296:111696. [PMID: 39004301 DOI: 10.1016/j.cbpa.2024.111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Decapod Crustacea exhibit a marine origin, but many taxa have occupied environments ranging from brackish to fresh water and terrestrial habitats, overcoming their inherent osmotic challenges. Osmotic and ionic regulation is achieved by the gill epithelia, driven by two active ATP-hydrolyzing ion transporters, the basal (Na+, K+)-ATPase and the apical V(H+)-ATPase. The kinetic characteristic of gill (Na+, K+)-ATPase and the mRNA expression of its α subunit have been widely studied in various decapod species under different salinity challenges. However, the evolution of the primary structure has not been explored, especially considering the functional modifications associated with decapod phylogeny. Here, we proposed a model for the topology of the decapod α subunit, identifying the sites and motifs involved in its function and regulation, as well as the patterns of its evolution assuming a decapod phylogeny. We also examined both the amino acid substitutions and their functional implications within the context of biochemical and physiological adaptation. The α-subunit of decapod crustaceans shows greater conservation (∼94% identity) compared to the β-subunit (∼40%). While the binding sites for ATP and modulators are conserved in the decapod enzyme, the residues involved in the α-β interaction are only partially conserved. In the phylogenetic context of the complete sequence of (Na+, K+)-ATPase α-subunit, most substitutions appear to be characteristic of the entire group, with specific changes for different subgroups, especially among brachyuran crabs. Interestingly, there was no consistent separation of α-subunit partial sequences related to habitat, suggesting that the convergent evolution for freshwater or terrestrial modes of life is not correlated with similar changes in the enzyme's primary amino acid sequence.
Collapse
Affiliation(s)
- Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - John C McNamara
- Departamento de Biologia Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - Samuel C Faria
- Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Lin L, Zhang Y, Zhuo H, Li J, Fu S, Zhou X, Wu G, Guo C, Liu J. Integrated histological, physiological, and transcriptome analysis reveals the post-exposure recovery mechanism of nitrite in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 281:116673. [PMID: 38964070 DOI: 10.1016/j.ecoenv.2024.116673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/17/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Nitrite is one of the most common toxic pollutants in intensive aquaculture and is harmful to aquatic animals. Recovery mechanisms post exposure to nitrite in shrimp have rarely been investigated. This study focuses on the effect of nitrite exposure and post-exposure recovery on the histological and physiological aspects of Litopenaeus vannamei and utilizes transcriptome sequencing to analyze the molecular mechanisms of adaptation to nitrite exposure. The results showed that histopathological damage to the hepatopancreas and gills caused by short-term nitrite exposure resolved with recovery. The total antioxidant capacity (T-AOC), superoxide dismutase (SOD), and catalase (CAT) of shrimp were significantly reduced during nitrite exposure and returned to the control level after recovery, malondialdehyde (MDA) levels were opposite to them. Restoration of the antioxidant system after exposure mitigated oxidative damage. Nitrite exposure results in reduced activity of the immuno-enzymes acid phosphatase (ACP) and alkaline phosphatase (AKP), which can be recovered to the control level. L. vannamei can adapt to nitrite exposure by regulating Na+/K+-ATPase (NKA) activity. Transcriptome analysis revealed that activation of glutathione metabolism and peroxisomal pathways facilitated the mitigation of oxidative damage in L. vannamei during the recovery period. Excessive oxidative damage activates the apoptosis and p53 pathways. Additionally, Sestrin2 and STEAP4 may have a positive effect on recovery in shrimp. These results provide evidence for the damage caused by nitrite exposure and the recovery ability of L. vannamei. This study can complement the knowledge of the mechanisms of adaptation and recovery of shrimp under nitrite exposure.
Collapse
Affiliation(s)
- Lanting Lin
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuan Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hongbiao Zhuo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jinyan Li
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shuo Fu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoxun Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangbo Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chaoan Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jianyong Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Shrimp Breeding and Culture Laboratory, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
4
|
Bozza DC, Freire CA, Prodocimo V. A systematic evaluation on the relationship between hypo-osmoregulation and hyper-osmoregulation in decapods of different habitats. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:5-30. [PMID: 37853933 DOI: 10.1002/jez.2757] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/06/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Decapods occupy all aquatic, and terrestrial and semi-terrestrial environments. According to their osmoregulatory capacity, they can be osmoconformers or osmoregulators (hypo or hyperegulators). The goal of this study is to gather data available in the literature for aquatic decapods and verify if the rare hyporegulatory capacity of decapods is associated with hyper-regulatory capacity. The metric used to quantify osmoregulation was the osmotic capacity (OC), the gradient between external and internal (hemolymph) osmolalities. We employ phylogenetic comparative methods using 83 species of decapods to test the correlation between hyper OC and hypo OC, beyond the ancestral state for osmolality habitat, which was used to reconstruct the colonization route. Our analysis showed a phylogenetic signal for habitat osmolality, hyper OC and hypo OC, suggesting that hyper-hyporegulators decapods occupy similar habitats and show similar hyper and hyporegulatory capacities. Our findings reveal that all hyper-hyporegulators decapods (mainly shrimps and crabs) originated in estuarine waters. Hyper OC and hypo OC are correlated in decapods, suggesting correlated evolution. The analysis showed that species which inhabit environments with intense salinity variation such as estuaries, supratidal and mangrove habitats, all undergo selective pressure to acquire efficient hyper-hyporegulatory mechanisms, aided by low permeabilities. Therefore, hyporegulation can be observed in any colonization route that passes through environments with extreme variations in salinity, such as estuaries or brackish water.
Collapse
Affiliation(s)
- Deivyson Cattine Bozza
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carolina Arruda Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Viviane Prodocimo
- Departamento de Fisiologia, Setor de Ciências Biológicas, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
5
|
Fabri LM, Garçon DP, Moraes CM, Pinto MR, McNamara JC, Leone FA. A kinetic characterization of the gill V(H +)-ATPase from two hololimnetic populations of the Amazon River shrimp Macrobrachium amazonicum. Comp Biochem Physiol B Biochem Mol Biol 2023; 268:110880. [PMID: 37517460 DOI: 10.1016/j.cbpb.2023.110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
This investigation examines the kinetic characteristics and effect of acclimation to a brackish medium (21 ‰S) on gill V(H+)-ATPase activity in two hololimnetic populations of M. amazonicum. We also investigate the cellular immunolocalization of the enzyme. Immunofluorescence findings demonstrate that the V(H+)-ATPase c-subunit is distributed in the apical pillar cells of shrimps in fresh water but is absent after acclimation to 21 ‰S for 10 days. V(H+)-ATPase activity from the Tietê River population is ≈50% greater than the Grande River population, comparable to a wild population from the Santa Elisa Reservoir, but is 2-fold less than in cultivated shrimps. V(H+)-ATPase activity in the Tietê and the Grande River shrimps is abolished after 21 ‰S acclimation. The apparent affinities of the V(H+)-ATPase for ATP (0.27 ± 0.04 and 0.16 ± 0.03 mmol L-1, respectively) and Mg2+ (0.28 ± 0.05 and 0.14 ± 0.02 mmol L-1, respectively) are similar in both populations. The absence of V(H+)-ATPase activity in salinity-acclimated shrimps and its apical distribution in shrimps in fresh water underpins the importance of the crustacean V(H+)-ATPase for ion uptake in fresh water.
Collapse
Affiliation(s)
- Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Daniela P Garçon
- Universidade Federal do Triângulo Mineiro, Campus Universitário de Iturama, 38280-000, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Marcelo R Pinto
- Laboratory of Biopathology and Molecular Biology, University of Uberaba, Uberaba, Minas Gerais, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, 11000-600, Brazil. https://twitter.com/maracoani
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil.
| |
Collapse
|
6
|
Zhang R, Shi X, Liu Z, Sun J, Sun T, Lei M. Histological, Physiological and Transcriptomic Analysis Reveal the Acute Alkalinity Stress of the Gill and Hepatopancreas of Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:588-602. [PMID: 37369881 DOI: 10.1007/s10126-023-10228-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023]
Abstract
The pacific white shrimp (Litopenaeus vannamei) has gradually become a promising economic species in the development of saline-alkali water fishery. The study related to the stress reaction of pacific white shrimp under alkalinity stress is still limited, which is also a critical limiting factor for its saline-alkaline aquaculture. In this study, we aim to analyse the stress reaction of pacific white shrimp under acute alkalinity stress between control group (alkalinity:40 mg/L) and treatment group (alkalinity:350 mg/L) through histological observation, physiological determination and transcriptome. In the present study, during the process of acute alkalinity stress, the activities of Na+-K+-ATPase, carbonic anhydrase, sodium/hydrogen exchanger in gill related to homeostasis were significantly changed, the activities of superoxide dismutase and catalase related to antioxidant were decreased in both gill and hepatopancreas, and the activities of protease, lipase and amylase in hepatopancreas were decreased. At the same time, different degrees of histological damages were occured in the gill and hepatopancreas under acute alkalinity stress. There were 194 and 236 different expressed genes identified in gill and hepatopancreas respectively. Functional enrichment assessment indicated that the alkalinity stress-related genes in both gill and hepatopancreas were primarily involved in fatty acid metabolism, glycolysis/gluconeogenesis, glycerophospholipid metabolism. The results indicated that the functions of homeostasis regulation, antioxidation and digestion of pacific white shrimp were decreased under acute alkalinity stress, at the same time, the energy metabolism in gill and hepatopancreas were modified to cope with alkalinity stress. This work provides important clues for understanding the response mechanism of pacific white shrimp under acute alkalinity stress.
Collapse
Affiliation(s)
- Ruiqi Zhang
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China.
| | - Xiang Shi
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Jun Sun
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Tongzhen Sun
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| | - Mingquan Lei
- College of Animal Science & Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, 730070, Gansu Province, People's Republic of China
| |
Collapse
|
7
|
Ge Q, Wang J, Li J, Li J. Effect of high alkalinity on shrimp gills: Histopathological alternations and cell specific responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114902. [PMID: 37062262 DOI: 10.1016/j.ecoenv.2023.114902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/20/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
High alkalinity stress was considered as a major risk factor for aquatic animals surviving in saline-alkaline water. However, few information exists on the effects of alkalinity stress in crustacean species. As the dominant role of gills in osmotic and ionic regulation, the present study firstly evaluated the effect of alkalinity stress in Exopalaemon carinicauda to determine changes in gill microstructure, and then explore the heterogeneity response of gill cells in alkalinity adaptation by single-cell RNA sequencing (scRNA-seq). Hemolymph osmolality and pH were increased remarkably, and gills showed pillar cells with more symmetrical arrangement and longer lateral flanges and nephrocytes with larger vacuoles in high alkalinity. ScRNA-seq results showed that alkalinity stress reduced the proportion of pillar cells and increased the proportion of nephrocytes significantly. The differentially expressed genes (DEGs) related to ion transport, especially acid-base regulation, such as V(H+)-ATPases and carbonic anhydrases, were down-regulated in pillar cells and up-regulated in nephrocytes. Furthermore, pseudotime analysis showed that some nephrocytes transformed to perform ion transport function in alkalinity adaption. Notedly, the positive signals of carbonic anhydrase were obviously observed in the nephrocytes after alkalinity stress. These results indicated that the alkalinity stress inhibited the ion transport function of pillar cells, but induced the active role of nephrocytes in alkalinity adaptation. Collectively, our results provided the new insight into the cellular and molecular mechanism behind the adverse effects of saline-alkaline water and the saline-alkaline adaption mechanism in crustaceans.
Collapse
Affiliation(s)
- Qianqian Ge
- Laoshan Laboratory, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Qingdao Marine Science and Technology Center, Qingdao, China
| | - Jiajia Wang
- Laoshan Laboratory, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jitao Li
- Laoshan Laboratory, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Jian Li
- Laoshan Laboratory, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
8
|
Rios LP, Freire CA. Acute metabolic responses of two marine brachyuran crabs to dilute seawater: The aerobic cost of hyper regulation. JOURNAL OF EXPERIMENTAL ZOOLOGY PART A: ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023. [DOI: 10.1002/jez.2697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/04/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023]
|
9
|
McNamara JC, Maraschi AC, Tapella F, Romero MC. Evolutionary trade-offs in osmotic and ionic regulation and expression of gill ion transporter genes in high latitude, cold clime Neotropical crabs from the 'end of the world'. J Exp Biol 2023; 226:287036. [PMID: 36789831 DOI: 10.1242/jeb.244129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Osmoregulatory findings on crabs from high Neotropical latitudes are entirely lacking. Seeking to identify the consequences of evolution at low temperature, we examined hyperosmotic/hypo-osmotic and ionic regulation and gill ion transporter gene expression in two sub-Antarctic Eubrachyura from the Beagle Channel, Tierra del Fuego. Despite sharing the same osmotic niche, Acanthocyclus albatrossis tolerates a wider salinity range (2-65‰ S) than Halicarcinus planatus (5-60‰ S); their respective lower and upper critical salinities are 4‰ and 12‰ S, and 63‰ and 50‰ S. Acanthocyclus albatrossis is a weak hyperosmotic regulator, while H. planatus hyperosmoconforms; isosmotic points are 1380 and ∼1340 mOsm kg-1 H2O, respectively. Both crabs hyper/hypo-regulate [Cl-] well with iso-chloride points at 452 and 316 mmol l-1 Cl-, respectively. [Na+] is hyper-regulated at all salinities. mRNA expression of gill Na+/K+-ATPase is salinity sensitive in A. albatrossis, increasing ∼1.9-fold at 5‰ compared with 30‰ S, decreasing at 40-60‰ S. Expression in H. planatus is very low salinity sensitive, increasing ∼4.7-fold over 30‰ S, but decreasing at 50‰ S. V-ATPase expression decreases in A. albatrossis at low and high salinities as in H. planatus. Na+/K+/2Cl- symporter expression in A. albatrossis increases 2.6-fold at 5‰ S, but decreases at 60‰ S versus 30‰ S. Chloride uptake may be mediated by increased Na+/K+/2Cl- expression but Cl- secretion is independent of symporter expression. These unrelated eubrachyurans exhibit similar systemic osmoregulatory characteristics and are better adapted to dilute media; however, the expression of genes underlying ion uptake and secretion shows marked interspecific divergence. Cold clime crabs may limit osmoregulatory energy expenditure by hyper/hypo-regulating hemolymph [Cl-] alone, apportioning resources for other energy-demanding processes.
Collapse
Affiliation(s)
- John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.,Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11600-000, SP, Brazil
| | - Anieli Cristina Maraschi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Federico Tapella
- Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Bernardo A. Houssay 200, V9410CAB Ushuaia, Tierra del Fuego, Argentina
| | - Maria Carolina Romero
- Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Bernardo A. Houssay 200, V9410CAB Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
10
|
Farhadi A, Liu Y, Xu C, Han T, Wang X, Li E. Evidence from transcriptome analysis unravelled the roles of eyestalk in salinity adaptation in Pacific white shrimp (Litopenaeus vannamei). Gen Comp Endocrinol 2022; 329:114120. [PMID: 36055397 DOI: 10.1016/j.ygcen.2022.114120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022]
Abstract
Eyestalk is considered the main neuroendocrine organ in crustaceans. Eyestalk regulates reproduction, molting, and energy metabolism by secreting several neurohormones. However, the role of eyestalk in salinity adaptation in crustaceans remains unclear. To reveal the role of eyestalk in salinity adaptation in Litopenaeus vannamei, we performed RNA-seq to compare the transcriptomic response of the eyestalk under low salinity (salinity 3) with that of the control group (salinity 25) for 8 weeks. A total of 479 mRNAs, including 150 upregulated and 329 downregulated mRNAs, were differentially expressed between the two salinity groups. The majority of the differentially expressed genes (DEGs) were enriched in biological pathways related to osmoregulation, metabolism and energy production, and oxidative stress. The most important DEGs associated with osmoregulation were CA4, ATP1A, ATP2B, ABCB1, ABCC4, PhoA, PhoB, NOS1, ACE, ANPEP, and the V-type H+-ATPase E-subunit. The metabolism-related DEGs were divided into three main categories: carbohydrate and energy metabolism (i.e., G6PC, UGT), protein and amino acid metabolism (i.e., SLC15A1, AhcY, GFAT), and lipid and fatty acid metabolism (i.e., GPAT3_4, CYP2J). The key DEGs related to the oxidative stress response were UGT, NDUFB1, QCR7, QCR8, P5CDh, COX6B, and CES1. These results provide evidence for the existence of an eyestalk-salinity adaptation-stress endocrine axis in L. vannamei. These findings provide a better understanding of the molecular mechanism underlying salinity adaptation in L. vannamei.
Collapse
Affiliation(s)
- Ardavan Farhadi
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Yan Liu
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaodan Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, Hainan 570228, China.
| |
Collapse
|
11
|
Ge Q, Wang J, Li J, Li J. Highly sensitive and specific responses of shrimp gill cells to high pH stress based on single cell RNA-seq analysis. Front Cell Dev Biol 2022; 10:1031828. [PMID: 36425531 PMCID: PMC9679296 DOI: 10.3389/fcell.2022.1031828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/24/2022] [Indexed: 01/24/2025] Open
Abstract
High pH is one of the main stressors affecting the shrimp survival, growth, and physiology in aquaculture ponds, but the cellular and molecular mechanism responsible for high pH stress has not been elucidated in shrimp. In this study, the shrimp acid-base disturbance and gill cell alterations were significantly observed and then single cell RNA-sequencing (scRNA-seq) was performed to study the sensitive and specific responses of gill cells to high pH stress. Three main gill cell types, including pillar cells, hemocytes and septal cells were identified. By comparative scRNA-seq analysis between control and pH group, the pillar cell was regarded as the target cell type in response to high pH stress with the down-regulation of ammonia excretion and H+ transport related genes and up-regulation of immune related genes. Notedly, high pH resulted in the emergence of a new immune cell subcluster in pillar cells, with immune activation and stress defense states. Pseudotime analysis also showed that the pillar cells could transform into the functionally inhibited ion cell subclusters and functionally activated immune cell subclusters after high pH stress. Further, the regulatory network of pillar cell population was predicted by WGCNA and two transcription factors were identified. In conclusion, these results provide key insights into the shrimp gill cell-type-specific mechanisms underlying high pH stress response at a single-cell resolution.
Collapse
Affiliation(s)
- Qianqian Ge
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Jiajia Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jitao Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| |
Collapse
|
12
|
Lee CE, Charmantier G, Lorin-Nebel C. Mechanisms of Na + uptake from freshwater habitats in animals. Front Physiol 2022; 13:1006113. [PMID: 36388090 PMCID: PMC9644288 DOI: 10.3389/fphys.2022.1006113] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 07/20/2023] Open
Abstract
Life in fresh water is osmotically and energetically challenging for living organisms, requiring increases in ion uptake from dilute environments. However, mechanisms of ion uptake from freshwater environments are still poorly understood and controversial, especially in arthropods, for which several hypothetical models have been proposed based on incomplete data. One compelling model involves the proton pump V-type H+ ATPase (VHA), which energizes the apical membrane, enabling the uptake of Na+ (and other cations) via an unknown Na+ transporter (referred to as the "Wieczorek Exchanger" in insects). What evidence exists for this model of ion uptake and what is this mystery exchanger or channel that cooperates with VHA? We present results from studies that explore this question in crustaceans, insects, and teleost fish. We argue that the Na+/H+ antiporter (NHA) is a likely candidate for the Wieczorek Exchanger in many crustaceans and insects; although, there is no evidence that this is the case for fish. NHA was discovered relatively recently in animals and its functions have not been well characterized. Teleost fish exhibit redundancy of Na+ uptake pathways at the gill level, performed by different ion transporter paralogs in diverse cell types, apparently enabling tolerance of low environmental salinity and various pH levels. We argue that much more research is needed on overall mechanisms of ion uptake from freshwater habitats, especially on NHA and other potential Wieczorek Exchangers. Such insights gained would contribute greatly to our general understanding of ionic regulation in diverse species across habitats.
Collapse
Affiliation(s)
- Carol Eunmi Lee
- Department of Integrative Biology, University of Wisconsin, Madison, WI, United States
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Guy Charmantier
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | | |
Collapse
|
13
|
Fabri LM, Moraes CM, Costa MIC, Garçon DP, Fontes CFL, Pinto MR, McNamara JC, Leone FA. Salinity-dependent modulation by protein kinases and the FXYD2 peptide of gill (Na +, K +)-ATPase activity in the freshwater shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183982. [PMID: 35671812 DOI: 10.1016/j.bbamem.2022.183982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The geographical distribution of aquatic crustaceans is determined by ambient factors like salinity that modulate their biochemistry, physiology, behavior, reproduction, development and growth. We investigated the effects of exogenous pig FXYD2 peptide and endogenous protein kinases A and C on gill (Na+, K+)-ATPase activity, and characterized enzyme kinetic properties in a freshwater population of Macrobrachium amazonicum in fresh water (<0.5 ‰ salinity) or acclimated to 21 ‰S. Stimulation by FXYD2 peptide and inhibition by endogenous kinase phosphorylation are salinity-dependent. While without effect in shrimps in fresh water, the FXYD2 peptide stimulated activity in salinity-acclimated shrimps by ≈50 %. PKA-mediated phosphorylation inhibited gill (Na+, K+)-ATPase activity by 85 % in acclimated shrimps while PKC phosphorylation markedly inhibited enzyme activity in freshwater- and salinity-acclimated shrimps. The (Na+, K+)-ATPase in salinity-acclimated shrimp gills hydrolyzed ATP at a Vmax of 54.9 ± 1.8 nmol min-1 mg-1 protein, corresponding to ≈60 % that of freshwater shrimps. Mg2+ affinity increased with salinity acclimation while K+ affinity decreased. (Ca2+, Mg2+)-ATPase activity increased while V(H+)- and Na+- or K+-stimulated activities decreased on salinity acclimation. The 120-kDa immunoreactive band expressed in salinity-acclimated shrimps suggests nonspecific α-subunit phosphorylation by PKA and/or PKC. These alterations in (Na+, K+)-ATPase kinetics in salinity-acclimated M. amazonicum may result from regulatory mechanisms mediated by phosphorylation via protein kinases A and C and the FXYD2 peptide rather than through the expression of a different α-subunit isoform. This is the first demonstration of gill (Na+, K+)-ATPase regulation by protein kinases in freshwater shrimps during salinity challenge.
Collapse
Affiliation(s)
- Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Brazil
| | - Maria I C Costa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | - Carlos F L Fontes
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Brazil
| | - Marcelo R Pinto
- Laboratório de Biopatologia e Biologia Molecular, Universidade de Uberaba, Uberaba, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| |
Collapse
|
14
|
Garçon DP, Fabri LM, Moraes CM, Costa MIC, Freitas RS, McNamara JC, Leone FA. Effects of ammonia on gill (Na +, K +)-ATPase kinetics in a hololimnetic population of the Amazon River shrimp Macrobrachium amazonicum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106144. [PMID: 35339850 DOI: 10.1016/j.aquatox.2022.106144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 03/04/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Water quality is essential for successful aquaculture. For freshwater shrimp farming, ammonia concentrations can increase considerably, even when culture water is renewed frequently, consequently increasing the risk of ammonia intoxication. We investigated ammonia lethality (LC50-96 h) in a hololimnetic population of the Amazon River shrimp Macrobrachium amazonicum from the Paraná/Paraguay River basin, including the effects of exposure to 4.93 mg L-1 total ammonia concentration on gill (Na+, K+)-ATPase activity. The mean LC50-96 h was 49.27 mg L-1 total ammonia, corresponding to 1.8 mg L-1 un-ionized ammonia. Except for NH4+ affinity that increased 2.5-fold, that of the gill (Na+, K+)-ATPase for ATP, Mg2+, Na+, K+ and ouabain was unchanged after ammonia exposure. Western blotting of gill microsomal preparations from fresh caught shrimps showed a single immunoreactive band of ≈110 kDa, corresponding to the gill (Na+, K+)-ATPase α-subunit. Ammonia exposure increased (Na+, K+)-ATPase activity by ≈25%, coincident with an additional 130 kDa α-subunit immunoreactive band, and increased K+-stimulated and V(H+)-ATPase activities by ≈2.5-fold. Macrobrachium amazonicum from the Paraná/Paraguay River basin is as tolerant to ammonia as are other Amazon River basins populations, showing toxicity comparable to that of marine crustaceans.
Collapse
Affiliation(s)
- Daniela P Garçon
- Campus Universitário de Iturama, Universidade Federal do Triângulo Mineiro, Iturama, MG, Brasil
| | - Leonardo M Fabri
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Cintya M Moraes
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Izabel C Costa
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Renata S Freitas
- Campus Universitário de Iturama, Universidade Federal do Triângulo Mineiro, Iturama, MG, Brasil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, SP, Brasil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
| |
Collapse
|
15
|
Knobloch J, Müller C, Hildebrandt JP. Expression levels and activities of energy-yielding ATPases in the oligohaline neritid snail Theodoxus fluviatilis under changing environmental salinities. Biol Open 2022; 11:274356. [PMID: 35147181 PMCID: PMC8844442 DOI: 10.1242/bio.059190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/20/2022] Open
Abstract
The aquatic gastropod Theodoxus fluviatilis occurs in Europe and adjacent areas of Asia. The snail species has formed two genetically closely related subgroups, the freshwater ecotype (FW) and the brackish water ecotype (BW). Other than individuals of the FW ecotype, those of the BW ecotype survive in salinities of up to 28‰. Coastal aquatic ecosystems may be affected by climate change due to salinization. Thus, we investigated how the two Theodoxus ecotypes adjust to changes in environmental salinity, focusing on the question whether Na+/K+-ATPase or V-ATPase are regulated on the transcriptional, the translational or at the activity level under changing external salinities. Animals were gradually adjusted to extreme salinities in containers under long-day conditions and constant temperature. Whole body RNA- or protein extracts were prepared. Semi-quantitative PCR- and western blot-analyses did not reveal major changes in transcript or protein abundances for the two transporters under low or high salinity conditions. No significant changes in ATPase activities in whole body extracts of animals adjusted to high or low salinity conditions were detected. We conclude that constitutive expression of ATPases is sufficient to support osmotic and ion regulation in this species under changing salinities given the high level of tolerance with respect to changes in body fluid volume.
Collapse
Affiliation(s)
- Jan Knobloch
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Christian Müller
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| | - Jan-Peter Hildebrandt
- Animal Physiology and Biochemistry, Zoological Institute and Museum, University of Greifswald, Felix Hausdorff-Strasse 1, D-17489 Greifswald, Germany
| |
Collapse
|
16
|
Rahi ML, Azad KN, Tabassum M, Irin HH, Hossain KS, Aziz D, Moshtaghi A, Hurwood DA. Effects of Salinity on Physiological, Biochemical and Gene Expression Parameters of Black Tiger Shrimp ( Penaeus monodon): Potential for Farming in Low-Salinity Environments. BIOLOGY 2021; 10:biology10121220. [PMID: 34943135 PMCID: PMC8698961 DOI: 10.3390/biology10121220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023]
Abstract
Salinity is one of the most important abiotic factors affecting growth, metabolism, immunity and survival of aquatic species in farming environments. As a euryhaline species, the black tiger shrimp (Penaeus monodon) can tolerate a wide range of salinity levels and is farmed between brackish to marine water conditions. The current study tested the effects of six different salinity levels (0‱, 2.5‱, 5‱, 10‱, 20‱ and 30‱) on the selected physiological, biochemical and genetic markers (individual changes in the expression pattern of selected candidate genes) in the black tiger shrimp. Experimental salinity levels significantly affected growth and survival performance (p < 0.05); the highest levels of growth and survival performance were observed at the control (20‱) salinity. Salinity reductions significantly increased free fatty acid (FFA), but reduced free amino acid (FAA) levels. Lower salinity treatments (0-10‱) significantly reduced hemolymph osmolality levels while 30‱ significantly increased osmolality levels. The five different salinity treatments increased the expression of osmoregulatory and hemolymph regulatory genes by 1.2-8-fold. In contrast, 1.2-1.6-fold lower expression levels were observed at the five salinity treatments for growth (alpha amylase) and immunity (toll-like receptor) genes. O2 consumption, glucose and serotonin levels, and expression of osmoregulatory genes showed rapid increase initially with salinity change, followed by reducing trend and stable patterns from the 5th day to the end. Hemocyte counts, expression of growth and immunity related genes showed initial decreasing trends, followed by an increasing trend and finally stability from 20th day to the end. Results indicate the farming potential of P. monodon at low salinity environments (possibly at freshwater) by proper acclimation prior to stocking with minimal effects on production performance.
Collapse
Affiliation(s)
- Md. Lifat Rahi
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Khairun Naher Azad
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Maliha Tabassum
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Hasna Hena Irin
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Kazi Sabbir Hossain
- Fisheries and Marine Resource Technology Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh; (M.L.R.); (K.N.A.); (M.T.); (H.H.I.); (K.S.H.)
| | - Dania Aziz
- Department of Aquaculture, Faculty of Agriculture, University Putra Malaysia (UPM), Serdang 43400, Malaysia
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), University Putra Malaysia (UPM), Port Dickson 70150, Malaysia; (A.M.); (D.A.H.)
- Correspondence:
| | - Azam Moshtaghi
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), University Putra Malaysia (UPM), Port Dickson 70150, Malaysia; (A.M.); (D.A.H.)
| | - David A Hurwood
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), University Putra Malaysia (UPM), Port Dickson 70150, Malaysia; (A.M.); (D.A.H.)
| |
Collapse
|
17
|
Maraschi AC, Faria SC, McNamara JC. Salt transport by the gill Na -K -2Cl symporter in palaemonid shrimps: exploring physiological, molecular and evolutionary landscapes. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110968. [DOI: 10.1016/j.cbpa.2021.110968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022]
|
18
|
Osmoregulatory power influences tissue ionic composition after salinity acclimation in aquatic decapods. Comp Biochem Physiol A Mol Integr Physiol 2021; 259:111001. [PMID: 34098129 DOI: 10.1016/j.cbpa.2021.111001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
Decapod crustaceans show variable degrees of euryhalinity and osmoregulatory capacity, by responding to salinity changes through anisosmotic extracellular regulation and/or cell volume regulation. Cell volume regulatory mechanisms involve exchange of inorganic ions between extra- and intra-cellular (tissue) compartments. Here, this interplay of inorganic ions between both compartments has been evaluated in four decapod species with distinct habitats and osmoregulatory strategies. The marine/estuarine species Litopenaeus vannamei (Lv) and Callinectes danae (Cd) were submitted to reduced salinity (15‰), after acclimation to 25 and 30‰, respectively. The freshwater Macrobrachium acanthurus (Ma) and Aegla schmitti (As) were submitted to increased salinity (25‰). The four species were salinity-challenged for both 5 and 10 days. Hemolymph osmolality, sodium, chloride, potassium, and magnesium were assayed. The same inorganic ions were quantified in muscle samples. Muscle hydration (MH) and ninhydrin-positive substances (NPS) were also determined. Lv showed slight hemolymph dilution, increased MH and no osmotically-relevant decreases in muscle osmolytes; Cd displayed hemolymph dilution, decreased muscular NaCl and stable MH; Ma showed hypo-regulation and steady MH, with no change in muscle ions; As conformed hemolymph sodium but hypo-regulated chloride, had stable MH and increased muscle NPS and ion levels. Hemolymph and muscle ions (especially chloride) of As were highly correlated (Pearson, +0.83). Significant exchanges between hemolymph and muscle ionic pools were more evident in the two species with comparatively less AER regulatory power, C. danae and A. schmitti. Our findings endorse that the interplay between extracellular and tissue ionic pools is especially detectable in euryhaline species with relatively lower osmoregulatory strength.
Collapse
|
19
|
Mantovani M, McNamara JC. Contrasting strategies of osmotic and ionic regulation in freshwater crabs and shrimps: gene expression of gill ion transporters. J Exp Biol 2021; 224:jeb233890. [PMID: 33443071 DOI: 10.1242/jeb.233890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022]
Abstract
Owing to their extraordinary niche diversity, the Crustacea are ideal for comprehending the evolution of osmoregulation. The processes that effect systemic hydro-electrolytic homeostasis maintain hemolymph ionic composition via membrane transporters located in highly specialized gill ionocytes. We evaluated physiological and molecular hyper- and hypo-osmoregulatory mechanisms in two phylogenetically distant, freshwater crustaceans, the crab Dilocarcinus pagei and the shrimp Macrobrachium jelskii, when osmotically challenged for up to 10 days. When in distilled water, D. pagei survived without mortality, hemolymph osmolality and [Cl-] increased briefly, stabilizing at initial values, while [Na+] decreased continually. Expression of gill V-type H+-ATPase (V-ATPase), Na+/K+-ATPase and Na+/K+/2Cl- symporter genes was unchanged. In M. jelskii, hemolymph osmolality, [Cl-] and [Na+] decreased continually for 12 h, the shrimps surviving only around 15-24 h exposure. Gill transporter gene expression increased 2- to 5-fold. After 10 days exposure to brackish water (25‰S), D. pagei was isosmotic, iso-chloremic and iso-natriuremic. Gill V-ATPase expression decreased while Na+/K+-ATPase and Na+/K+/2Cl- symporter expression was unchanged. In M. jelskii (20‰S), hemolymph was hypo-regulated, particularly [Cl-]. Transporter expression initially increased 3- to 12-fold, declining to control values. Gill V-ATPase expression underlies the ability of D. pagei to survive in fresh water while V-ATPase, Na+/K+-ATPase and Na+/K+/2Cl- symporter expression enables M. jelskii to confront hyper/hypo-osmotic challenges. These findings reveal divergent responses in two unrelated crustaceans inhabiting a similar osmotic niche. While D. pagei does not secrete salt, tolerating elevated cellular isosmoticity, M. jelskii exhibits clear hypo-osmoregulatory ability. Each species has evolved distinct strategies at the transcriptional and systemic levels during its adaptation to fresh water.
Collapse
Affiliation(s)
- Milene Mantovani
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - John Campbell McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| |
Collapse
|
20
|
Rahi ML, Mather PB, Hurwood DA. Do plasticity in gene expression and physiological responses in Palaemonid prawns facilitate adaptive response to different osmotic challenges? Comp Biochem Physiol A Mol Integr Physiol 2021; 251:110810. [DOI: 10.1016/j.cbpa.2020.110810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/20/2022]
|
21
|
Osmotic and ionic regulation, and modulation by protein kinases, FXYD2 peptide and ATP of gill (Na+, K+)-ATPase activity, in the swamp ghost crab Ucides cordatus (Brachyura, Ocypodidae). Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110507. [DOI: 10.1016/j.cbpb.2020.110507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 11/20/2022]
|
22
|
Havird JC, Meyer E, Fujita Y, Vaught RC, Henry RP, Santos SR. Disparate responses to salinity across species and organizational levels in anchialine shrimps. ACTA ACUST UNITED AC 2019; 222:jeb.211920. [PMID: 31727759 DOI: 10.1242/jeb.211920] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/05/2019] [Indexed: 01/22/2023]
Abstract
Environmentally induced plasticity in gene expression is one of the underlying mechanisms of adaptation to habitats with variable environments. For example, euryhaline crustaceans show predictable changes in the expression of ion-transporter genes during salinity transfers, although studies have typically been limited to specific genes, taxa and ecosystems of interest. Here, we investigated responses to salinity change at multiple organizational levels in five species of shrimp representing at least three independent invasions of the anchialine ecosystem, defined as habitats with marine and freshwater influences with spatial and temporal fluctuations in salinity. Although all five species were generally strong osmoregulators, salinity-induced changes in gill physiology and gene expression were highly species specific. While some species exhibited patterns similar to those of previously studied euryhaline crustaceans, instances of distinct and atypical patterns were recovered from closely related species. Species-specific patterns were found when examining: (1) numbers and identities of differentially expressed genes, (2) salinity-induced expression of genes predicted a priori to play a role in osmoregulation, and (3) salinity-induced expression of orthologs shared among all species. Notably, ion transport genes were unchanged in the atyid Halocaridina rubra while genes normally associated with vision and light perception were among those most highly upregulated. Potential reasons for species-specific patterns are discussed, including variation among anchialine habitats in salinity regimes and divergent evolution in anchialine taxa. Underexplored mechanisms of osmoregulation in crustaceans revealed here by the application of transcriptomic approaches to ecologically and taxonomically understudied systems are also explored.
Collapse
Affiliation(s)
- Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA .,Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| | - Eli Meyer
- Department of Integrative Biology, Oregon State University, 3106 Cordley Hall, Corvallis, OR 97331, USA
| | - Yoshihisa Fujita
- Okinawa Prefectural University of Arts, 1-4, Shuri-Tonokura, Naha-shi, Okinawa 903-8602, Japan
| | - Rebecca C Vaught
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA.,School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Raymond P Henry
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| | - Scott R Santos
- Department of Biological Sciences and Molette Laboratory for Climate Change and Environmental Studies, Auburn University, 101 Rouse Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
23
|
Rahi ML, Mather PB, Ezaz T, Hurwood DA. The Molecular Basis of Freshwater Adaptation in Prawns: Insights from Comparative Transcriptomics of Three Macrobrachium Species. Genome Biol Evol 2019; 11:1002-1018. [PMID: 30840062 PMCID: PMC6450038 DOI: 10.1093/gbe/evz045] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2019] [Indexed: 12/17/2022] Open
Abstract
Elucidating the molecular basis of adaptation to different environmental conditions is important because adaptive ability of a species can shape its distribution, influence speciation, and also drive a variety of evolutionary processes. For crustaceans, colonization of freshwater habitats has significantly impacted diversity, but the molecular basis of this process is poorly understood. In the current study, we examined three prawn species from the genus Macrobrachium (M. australiense, M. tolmerum, and M. novaehollandiae) to better understand the molecular basis of freshwater adaptation using a comparative transcriptomics approach. Each of these species naturally inhabit environments with different salinity levels; here, we exposed them to the same experimental salinity conditions (0‰ and 15‰), to compare expression patterns of candidate genes that previously have been shown to influence phenotypic traits associated with freshwater adaptation (e.g., genes associated with osmoregulation). Differential gene expression analysis revealed 876, 861, and 925 differentially expressed transcripts under the two salinities for M. australiense, M. tolmerum, and M. novaehollandiae, respectively. Of these, 16 were found to be unannotated novel transcripts and may be taxonomically restricted or orphan genes. Functional enrichment and molecular pathway mapping revealed 13 functionally enriched categories and 11 enriched molecular pathways that were common to the three Macrobrachium species. Pattern of selection analysis revealed 26 genes with signatures of positive selection among pairwise species comparisons. Overall, our results indicate that the same key genes and similar molecular pathways are likely to be involved with freshwater adaptation widely across this decapod group; with nonoverlapping sets of genes showing differential expression (mainly osmoregulatory genes) and signatures of positive selection (genes involved with different life history traits).
Collapse
Affiliation(s)
- Md Lifat Rahi
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences (EEBS), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Peter B Mather
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences (EEBS), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Tariq Ezaz
- Wildlife Genetics Laboratory, Institute for Applied Ecology, University of Canberra, Australian Capital Territory, Australia
| | - David A Hurwood
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences (EEBS), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Bozza DC, Freire CA, Prodocimo V. Osmo-ionic regulation and carbonic anhydrase, Na+/K+-ATPase and V-H+-ATPase activities in gills of the ancient freshwater crustacean Aegla schmitti (Anomura) exposed to high salinities. Comp Biochem Physiol A Mol Integr Physiol 2019; 231:201-208. [DOI: 10.1016/j.cbpa.2019.02.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/13/2022]
|
25
|
Fabri LM, Lucena MN, Garçon DP, Moraes CM, McNamara JC, Leone FA. Kinetic characterization of the gill (Na+, K+)-ATPase in a hololimnetic population of the diadromous Amazon River shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). Comp Biochem Physiol B Biochem Mol Biol 2019; 227:64-74. [DOI: 10.1016/j.cbpb.2018.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
|
26
|
Moshtaghi A, Rahi ML, Mather PB, Hurwood DA. An investigation of gene expression patterns that contribute to osmoregulation in Macrobrachium australiense: Assessment of adaptive responses to different osmotic niches. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
27
|
Faleiros RO, Garçon DP, Lucena MN, McNamara JC, Leone FA. Short- and long-term salinity challenge, osmoregulatory ability, and (Na +, K +)-ATPase kinetics and α-subunit mRNA expression in the gills of the thinstripe hermit crab Clibanarius symmetricus (Anomura, Diogenidae). Comp Biochem Physiol A Mol Integr Physiol 2018; 225:16-25. [PMID: 29932975 DOI: 10.1016/j.cbpa.2018.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022]
Abstract
The evolutionary history of the Crustacea reveals ample adaptive radiation and the subsequent occupation of many osmotic niches resulting from physiological plasticity in their osmoregulatory mechanisms. We evaluate osmoregulatory ability in the intertidal, thinstripe hermit crab Clibanarius symmetricus after short-term exposure (6 h) or long-term acclimation (10 days) to a wide salinity range, also analyzing kinetic behavior and α-subunit mRNA expression of the gill (Na+, K+)-ATPase. The crab strongly hyper-regulates its hemolymph at 5 and 15‰S (Salinity, g L-1) but weakly hyper-regulates up to ≈27‰S. After 6 h exposure to 35‰S and 45‰S, C. symmetricus slightly hypo-regulates its hemolymph, becoming isosmotic after 10 days acclimation to these salinities. (Na+, K+)-ATPase specific activity decreases with increasing salinity for both exposure periods, reflecting physiological adjustment to isosmoticity. At low salinities, the gill enzyme exhibits a single, low affinity ATP binding site. However, at elevated salinities, a second, high affinity, ATP binding site appears, independently of exposure time. (Na+, K+)-ATPase α-subunit mRNA expression increases only after 10 days acclimation to 5‰S. Our findings suggest that hemolymph hyper-regulation is effected by alterations in enzyme activity during short-term exposure, but is sustained by increased mRNA expression during long-term acclimation. The decrease in gill (Na+, K+)-ATPase activity seen as a consequence of increasing salinity appears to underlie biochemical adjustments to hemolymph isosmoticity as hypo-regulatory ability diminishes.
Collapse
Affiliation(s)
- Rogério O Faleiros
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Unidade Acadêmica Especial de Ciências Biológicas, Universidade Federal de Jataí, Jataí 75801-615, GO, Brazil
| | - Daniela P Garçon
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Universidade Federal do Triângulo Mineiro, Iturama 38280-000, MG, Brazil
| | - Malson N Lucena
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande 79070-900, MS, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião 11000-600, SP, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| |
Collapse
|
28
|
Freire CA, Maraschi AC, Lara AF, Amado EM, Prodocimo V. Late rise in hemolymph osmolality in Macrobrachium acanthurus (diadromous freshwater shrimp) exposed to brackish water: Early reduction in branchial Na+/K+ pump activity but stable muscle HSP70 expression. Comp Biochem Physiol B Biochem Mol Biol 2018; 216:69-74. [DOI: 10.1016/j.cbpb.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 12/20/2022]
|
29
|
González-Mira A, Torreblanca A, Hontoria F, Navarro JC, Mañanós E, Varó I. Effects of ibuprofen and carbamazepine on the ion transport system and fatty acid metabolism of temperature conditioned juveniles of Solea senegalensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:693-701. [PMID: 29172150 DOI: 10.1016/j.ecoenv.2017.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
The increasing presence of pharmaceuticals in aquatic environments in the last decades, derived from human and veterinary use, has become an important environmental problem. Previous studies have shown that ibuprofen (IB) and carbamazepine (CBZ) modify physiological and biochemical processes in Senegalese sole (Solea senegalensis) in a temperature-dependent manner. In other vertebrates, there is evidence that both of these pharmaceuticals interfere with the 'arachidonic acid (AA) cascade', which is responsible for the biosynthesis of numerous enzymes that are involved in the osmoregulatory process. The present work aims to study the temperature-dependent effects of these two pharmaceuticals on several biochemical and molecular parameters in Senegalese sole. Regarding osmoregulation, Na+, K+ -ATPase enzyme activity was determined in the gills, kidney and intestine, and the expressions of both Na+, K+ -ATPase 1α-subunit isoforms (ATP1A1a and ATP1A1b) were quantified in gills. Gill prostaglandin-endoperoxide synthase-2 (PTGS2) gene expression and fatty acid composition were selected to determine the interference of both pharmaceuticals with the AA cascade. Senegalese sole juveniles, acclimatised at 15°C or 20°C, were exposed through intraperitoneal injection to IB (10mg/kg) and CBZ (1mg/kg) for 48h. Non-injected fish (Control) and those injected with the carrier (sunflower oil; S.O.), acclimated at each of the two temperatures, were used for comparison. The results show that IB directly affected the osmoregulatory mechanisms that alter gill and intestine Na+, K+ -ATPase activities. In addition, the copy number of ATP1A1a was higher at 20°C than at 15°C, which could be a direct response to the temperature variation. The gene expression of PTGS2 was affected by neither drug administration nor acclimation temperature. Nevertheless, detailed analysis of AA and eicosapentaenoic acid (EPA) percentages revealed a CBZ-derived effect in the fatty acid composition of the gills.
Collapse
Affiliation(s)
- A González-Mira
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain
| | - A Torreblanca
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universitat de València, Dr. Moliner 50, Burjassot, 46100 Valencia, Spain.
| | - F Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - J C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - E Mañanós
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| | - I Varó
- Instituto de Acuicultura Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595 Castellón, Spain
| |
Collapse
|
30
|
Koyama H, Mizusawa N, Hoashi M, Tan E, Yasumoto K, Jimbo M, Ikeda D, Yokoyama T, Asakawa S, Piyapattanakorn S, Watabe S. Changes in free amino acid concentrations and associated gene expression profiles in the abdominal muscle of kuruma shrimp Marsupenaeus japonicus acclimated at different salinities. J Exp Biol 2018; 221:jeb.168997. [DOI: 10.1242/jeb.168997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 04/11/2018] [Indexed: 12/21/2022]
Abstract
Shrimps inhabiting the coastal water can survive in a wide range of salinity. However, the molecular mechanisms involved in their acclimation to different environmental salinities have remained largely unknown. In the present study, we acclimated kuruma shrimp Marsupenaeus japonicus at 1.7 %, 3.4 % and 4.0 % salinities. After acclimating for 6, 12, 24 and 72 h, we determined free amino acid concentrations in their abdominal muscle, and performed RNA-seq analysis on this muscle. The concentrations of free amino acids were clearly altered depending on salinity after acclimating for 24 h. Glutamine and alanine concentrations were markedly increased following the increase of salinity. In association with such changes, many genes related to amino acid metabolism changed their expression levels. In particular, the increase of the expression level of the gene encoding glutamate-ammonia ligase which functions in the glutamine metabolism appeared to be relevant to the increased glutamine concentration at high salinity. Furthermore, the alanine concentration increased at high salinity was likely to be associated with the decrease in the expression levels of the alanine-glyoxylate transaminase gene. Thus, there is a possibility that changes in the concentration of free amino acids for osmoregulation in kuruma shrimp are regulated by changes in the expression levels of genes related to amino acid metabolism.
Collapse
Affiliation(s)
- Hiroki Koyama
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8528, Japan
| | - Nanami Mizusawa
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Masataka Hoashi
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Engkong Tan
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ko Yasumoto
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Mitsuru Jimbo
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Daisuke Ikeda
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Takehiko Yokoyama
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Sanit Piyapattanakorn
- Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Shugo Watabe
- Kitasato University School of Marine Biosciences, Kanagawa 252-0373, Japan
| |
Collapse
|
31
|
Faleiros RO, Furriel RP, McNamara JC. Transcriptional, translational and systemic alterations during the time course of osmoregulatory acclimation in two palaemonid shrimps from distinct osmotic niches. Comp Biochem Physiol A Mol Integr Physiol 2017; 212:97-106. [DOI: 10.1016/j.cbpa.2017.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 12/27/2022]
|
32
|
Ali MY, Pavasovic A, Dammannagoda LK, Mather PB, Prentis PJ. Comparative molecular analyses of select pH- and osmoregulatory genes in three freshwater crayfish Cherax quadricarinatus, C. destructor and C. cainii. PeerJ 2017; 5:e3623. [PMID: 28852583 PMCID: PMC5572425 DOI: 10.7717/peerj.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/08/2017] [Indexed: 11/20/2022] Open
Abstract
Systemic acid-base balance and osmotic/ionic regulation in decapod crustaceans are in part maintained by a set of transport-related enzymes such as carbonic anhydrase (CA), Na+/K+-ATPase (NKA), H+-ATPase (HAT), Na+/K+/2Cl− cotransporter (NKCC), Na+/Cl−/HCO\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{upgreek}
\usepackage{mathrsfs}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
}{}${}_{3}^{-}$\end{document}3− cotransporter (NBC), Na+/H+ exchanger (NHE), Arginine kinase (AK), Sarcoplasmic Ca+2-ATPase (SERCA) and Calreticulin (CRT). We carried out a comparative molecular analysis of these genes in three commercially important yet eco-physiologically distinct freshwater crayfish, Cherax quadricarinatus, C. destructor and C. cainii, with the aim to identify mutations in these genes and determine if observed patterns of mutations were consistent with the action of natural selection. We also conducted a tissue-specific expression analysis of these genes across seven different organs, including gills, hepatopancreas, heart, kidney, liver, nerve and testes using NGS transcriptome data. The molecular analysis of the candidate genes revealed a high level of sequence conservation across the three Cherax sp. Hyphy analysis revealed that all candidate genes showed patterns of molecular variation consistent with neutral evolution. The tissue-specific expression analysis showed that 46% of candidate genes were expressed in all tissue types examined, while approximately 10% of candidate genes were only expressed in a single tissue type. The largest number of genes was observed in nerve (84%) and gills (78%) and the lowest in testes (66%). The tissue-specific expression analysis also revealed that most of the master genes regulating pH and osmoregulation (CA, NKA, HAT, NKCC, NBC, NHE) were expressed in all tissue types indicating an important physiological role for these genes outside of osmoregulation in other tissue types. The high level of sequence conservation observed in the candidate genes may be explained by the important role of these genes as well as potentially having a number of other basic physiological functions in different tissue types.
Collapse
Affiliation(s)
- Muhammad Y Ali
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Lalith K Dammannagoda
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter B Mather
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Peter J Prentis
- School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Farias DL, Lucena MN, Garçon DP, Mantelatto FL, McNamara JC, Leone FA. A Kinetic Characterization of the Gill (Na +, K +)-ATPase from the Semi-terrestrial Mangrove Crab Cardisoma guanhumi Latreille, 1825 (Decapoda, Brachyura). J Membr Biol 2017; 250:517-534. [PMID: 28840273 DOI: 10.1007/s00232-017-9978-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 08/09/2017] [Indexed: 11/25/2022]
Abstract
We provide a kinetic characterization of (Na+, K+)-ATPase activity in a posterior gill microsomal fraction from the semi-terrestrial mangrove crab Cardisoma guanhumi. Sucrose density gradient centrifugation reveals two distinct membrane fractions showing considerable (Na+, K+)-ATPase activity, but also containing other microsomal ATPases. The (Na+, K+)-ATPase, notably immuno-localized to the apical region of the epithelial pillar cells, and throughout the pillar cell bodies, has an M r of around 110 kDa and hydrolyzes ATP with V M = 146.8 ± 6.3 nmol Pi min-1 mg protein-1 and K M = 0.05 ± 0.003 mmol L-1 obeying Michaelis-Menten kinetics. While stimulation by Na+ (V M = 139.4 ± 6.9 nmol Pi min-1 mg protein-1, K M = 4.50 ± 0.22 mmol L-1) also follows Michaelis-Menten kinetics, modulation of (Na+, K+)-ATPase activity by MgATP (V M = 136.8 ± 6.5 nmol Pi min-1 mg protein-1, K 0.5 = 0.27 ± 0.04 mmol L-1), K+ (V M = 140.2 ± 7.0 nmol Pi min-1 mg protein-1, K 0.5 = 0.17 ± 0.008 mmol L-1), and NH4+ (V M = 149.1 ± 7.4 nmol Pi min-1 mg protein-1, K 0.5 = 0.60 ± 0.03 mmol L-1) shows cooperative kinetics. Ouabain (K I = 52.0 ± 2.6 µmol L-1) and orthovanadate (K I = 1.0 ± 0.05 µmol L-1) inhibit total ATPase activity by around 75%. At low Mg2+ concentrations, ATP is an allosteric modulator of the enzyme. This is the first study to provide a kinetic characterization of the gill (Na+, K+)-ATPase in C. guanhumi, and will be useful in better comprehending the biochemical underpinnings of osmoregulatory ability in a semi-terrestrial mangrove crab.
Collapse
Affiliation(s)
- Daniel L Farias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Prêto, SP, 14040-901, Brazil
| | - Malson N Lucena
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Prêto, SP, 14040-901, Brazil
| | - Daniela P Garçon
- DPG, Campus Universitário de Iturama, Universidade Federal do Triângulo Mineiro, Iturama, Minas Gerais, 38280-000, Brazil
| | - Fernando L Mantelatto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Prêto, SP, 14040-901, Brazil
| | - John C McNamara
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Prêto, SP, 14040-901, Brazil
- Centro de Biologia Marinha, São Sebastião, SP, 11000-600, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Prêto, SP, 14040-901, Brazil.
| |
Collapse
|
34
|
Urzúa Á, Urbina MA. Ecophysiological adaptations to variable salinity environments in the crab Hemigrapsus crenulatus from the Southeastern Pacific coast: Sodium regulation, respiration and excretion. Comp Biochem Physiol A Mol Integr Physiol 2017; 210:35-43. [DOI: 10.1016/j.cbpa.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 11/28/2022]
|
35
|
Rahi ML, Amin S, Mather PB, Hurwood DA. Candidate genes that have facilitated freshwater adaptation by palaemonid prawns in the genus Macrobrachium: identification and expression validation in a model species ( M. koombooloomba). PeerJ 2017; 5:e2977. [PMID: 28194319 PMCID: PMC5301973 DOI: 10.7717/peerj.2977] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/10/2017] [Indexed: 11/20/2022] Open
Abstract
Background The endemic Australian freshwater prawn, Macrobrachium koombooloomba, provides a model for exploring genes involved with freshwater adaptation because it is one of the relatively few Macrobrachium species that can complete its entire life cycle in freshwater. Methods The present study was conducted to identify potential candidate genes that are likely to contribute to effective freshwater adaptation by M. koombooloomba using a transcriptomics approach. De novo assembly of 75 bp paired end 227,564,643 high quality Illumina raw reads from 6 different cDNA libraries revealed 125,917 contigs of variable lengths (200–18,050 bp) with an N50 value of 1597. Results In total, 31,272 (24.83%) of the assembled contigs received significant blast hits, of which 27,686 and 22,560 contigs were mapped and functionally annotated, respectively. CEGMA (Core Eukaryotic Genes Mapping Approach) based transcriptome quality assessment revealed 96.37% completeness. We identified 43 different potential genes that are likely to be involved with freshwater adaptation in M. koombooloomba. Identified candidate genes included: 25 genes for osmoregulation, five for cell volume regulation, seven for stress tolerance, three for body fluid (haemolymph) maintenance, eight for epithelial permeability and water channel regulation, nine for egg size control and three for larval development. RSEM (RNA-Seq Expectation Maximization) based abundance estimation revealed that 6,253, 5,753 and 3,795 transcripts were expressed (at TPM value ≥10) in post larvae, juveniles and adults, respectively. Differential gene expression (DGE) analysis showed that 15 genes were expressed differentially in different individuals but these genes apparently were not involved with freshwater adaptation but rather were involved in growth, development and reproductive maturation. Discussion The genomic resources developed here will be useful for better understanding the molecular basis of freshwater adaptation in Macrobrachium prawns and other crustaceans more broadly.
Collapse
Affiliation(s)
- Md Lifat Rahi
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences, Queensland University of Technology (QUT) , Brisbane , Queensland , Australia
| | - Shorash Amin
- Science and Engineering Faculty, School of Biomedical Sciences, Queensland University of Technology , Brisbane , Queensland , Australia
| | - Peter B Mather
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences, Queensland University of Technology (QUT) , Brisbane , Queensland , Australia
| | - David A Hurwood
- Science and Engineering Faculty, School of Earth Environment and Biological Sciences, Queensland University of Technology (QUT) , Brisbane , Queensland , Australia
| |
Collapse
|
36
|
Ali MY, Pavasovic A, Mather PB, Prentis PJ. Expression patterns of two carbonic anhydrase genes, Na+/K+-ATPase and V-type H+-ATPase, in the freshwater crayfish, Cherax quadricarinatus, exposed to low pH and high pH. AUST J ZOOL 2017. [DOI: 10.1071/zo16048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Carbonic anhydrase (CA), Na+/K+-ATPase (NKA) and Vacuolar-type H+-ATPase (HAT) play vital roles in osmoregulation and pH balance in decapod crustaceans. As variable pH levels have a significant impact on the physiology of crustaceans, it is crucial to understand the mechanisms by which an animal maintains its internal pH. We examined expression patterns of cytoplasmic (CAc) and membrane-associated form (CAg) of CA, NKA α subunit and HAT subunit a in gills of freshwater crayfish, Cherax quadricarinatus, at three pH levels – 6.2, 7.2 (control) and 8.2 – over 24 h. Expression levels of CAc were significantly increased at low pH and decreased at high pH conditions 24 h after transfer. Expression increased at low pH after 12 h, and reached its maximum level by 24 h. CAg showed a significant increase in expression at 6 h after transfer at low pH. Expression of NKA significantly increased at 6 h after transfer to pH 6.2 and remained elevated for up to 24 h. Expression for HAT and NKA showed similar patterns, where expression significantly increased 6 h after transfer to low pH and remained significantly elevated throughout the experiment. Overall, CAc, CAg, NKA and HAT gene expression is induced at low pH conditions in freshwater crayfish.
Collapse
|
37
|
Boudour-Boucheker N, Boulo V, Charmantier-Daures M, Anger K, Charmantier G, Lorin-Nebel C. Osmoregulation in larvae and juveniles of two recently separated Macrobrachium species: Expression patterns of ion transporter genes. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:39-45. [DOI: 10.1016/j.cbpa.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 11/27/2022]
|
38
|
Gerber L, Lee CE, Grousset E, Blondeau-Bidet E, Boucheker NB, Lorin-Nebel C, Charmantier-Daures M, Charmantier G. The Legs Have It: In Situ Expression of Ion Transporters V-Type H(+)-ATPase and Na(+)/K(+)-ATPase in the Osmoregulatory Leg Organs of the Invading Copepod Eurytemora affinis. Physiol Biochem Zool 2016; 89:233-50. [PMID: 27153133 DOI: 10.1086/686323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The copepod Eurytemora affinis has an unusually broad salinity range, as some populations have recently invaded freshwater habitats independently from their ancestral saline habitats. Prior studies have shown evolutionary shifts in ion transporter activity during freshwater invasions and localization of ion transporters in newly discovered "Crusalis organs" in the swimming legs. The goals of this study were to localize and quantify expression of ion transport enzymes V-type H(+)-ATPase (VHA) and Na(+)/K(+)-ATPase (NKA) in the swimming legs of E. affinis and determine the degree of involvement of each leg in ionic regulation. We confirmed the presence of two distinct types of ionocytes in the Crusalis organs. Both cell types expressed VHA and NKA, and in the freshwater population the location of VHA and NKA in ionocytes was, respectively, apical and basal. Quantification of in situ expression of NKA and VHA established the predominance of swimming leg pairs 3 and 4 in ion transport in both saline and freshwater populations. Increases in VHA expression in swimming legs 3 and 4 of the freshwater population (in fresh water) relative to the saline population (at 15 PSU) arose from an increase in the abundance of VHA per cell rather than an increase in the number of ionocytes. This result suggests a simple mechanism for increasing ion uptake in fresh water. In contrast, the decline in NKA expression in the freshwater population arose from a decrease in ionocyte area in legs 4, likely resulting from decreases in number or size of ionocytes containing NKA. Such results provide insights into mechanisms of ionic regulation for this species, with added insights into evolutionary mechanisms underlying physiological adaptation during habitat invasions.
Collapse
|
39
|
Ituarte RB, Lignot JH, Charmantier G, Spivak E, Lorin-Nebel C. Immunolocalization and expression of Na(+)/K(+) -ATPase in embryos, early larval stages and adults of the freshwater shrimp Palaemonetes argentinus (Decapoda, Caridea, Palaemonidae). Cell Tissue Res 2016; 364:527-541. [PMID: 26796205 DOI: 10.1007/s00441-015-2351-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 12/15/2015] [Indexed: 11/29/2022]
Abstract
The euryhaline shrimp Palaemonetes argentinus exemplifies an evolutionary transition from brackish to freshwater habitats that requires adequate osmoregulatory capacities. Hyperosmoregulation is functional at hatching and it likely begins during the embryonic phase allowing this species to develop entirely in fresh water. Here, we investigated the Na(+)/K(+)-ATPase α-subunit gene (nka-α) expression using quantitative real-time PCR and localized Na(+)/K(+)-ATPase (NKA) in ion-transporting epithelia through immunofluorescence microscopy. We reared shrimps from spawning to juvenile stages at two salinities (1, 15 ‰) and maintained adults for 3 weeks at three salinity treatments (1, 15, 25 ‰). nka-α gene expression was measured in: (1) embryos at an early (SI), intermediate (SII) and late (SIII) stage of embryonic development; (2) newly hatched larvae (Zoea I, ZI); and (3) isolated gill tissue of adults. The nka-α expression was low in SI and SII embryos and reached maximum levels prior to hatching (SIII), which were similar to expression levels detected in the ZI. The nka-α expression in SIII and ZI was highest at 15 ‰, whereas salinity did not affect expression in earlier embryos. In SIII, in ZI and in a later zoeal stage ZIV, NKA was localized in epithelial cells of pleurae, in the inner-side epithelium of branchiostegite and in the antennal glands. Gills appeared in the ZIV but NKA immunolabeling of the cells of the gill shaft occurred in a subsequent developmental larval stage, the decapodid. Extrabranchial organs constitute the main site of osmoregulation in early ontogenetic stages of this freshwater shrimp.
Collapse
Affiliation(s)
- Romina Belén Ituarte
- Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3250, 7600, Mar del Plata, Argentina.
| | - Jehan-Hervé Lignot
- Groupe Fonctionnel Adaptation Ecophysiologique et Ontogenèse, UMR 9190 MARBEC, UM-CNRS-IRD-Ifremer, Université Montpellier, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France
| | - Guy Charmantier
- Groupe Fonctionnel Adaptation Ecophysiologique et Ontogenèse, UMR 9190 MARBEC, UM-CNRS-IRD-Ifremer, Université Montpellier, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France
| | - Eduardo Spivak
- Grupo Zoología Invertebrados, Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Mar del Plata, Dean Funes 3250, 7600, Mar del Plata, Argentina
| | - Catherine Lorin-Nebel
- Groupe Fonctionnel Adaptation Ecophysiologique et Ontogenèse, UMR 9190 MARBEC, UM-CNRS-IRD-Ifremer, Université Montpellier, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France
| |
Collapse
|
40
|
Pinto MR, Lucena MN, Faleiros RO, Almeida EA, McNamara JC, Leone FA. Effects of ammonia stress in the Amazon river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:13-23. [PMID: 26571214 DOI: 10.1016/j.aquatox.2015.10.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 06/05/2023]
Abstract
We evaluate the effects of total ammonia nitrogen-N (TAN) exposure for 72h on (Na(+),K(+))- and V(H(+))-ATPase activities and on their subunit expressions in gills of the diadromous freshwater shrimp Macrobrachium amazonicum. Specific (Na(+),K(+))- and V(H(+))-ATPase activities increased roughly 1.5- to 2-fold, respectively, after exposure to 2.0mmolL(-1) TAN. Quantitative RT-PCR analyses revealed a 2.5-fold increase in V(H(+))-ATPase B subunit mRNA expression while (Na(+),K(+))-ATPase α-subunit expression was unchanged. Immunohistochemical analyses of the gill lamellae located the (Na(+),K(+))-ATPase throughout the intralamellar septal cells, independently of TAN concentration, while the V(H(+))-ATPase was located in both the apical pillar cell flanges and pillar cell bodies. Systemic stress parameters like total hemocyte count decreased by 30% after exposure to 2.0mmolL(-1) TAN, accompanied by increased activities of the oxidative stress enzymes superoxide dismutase, glutathione reductase and glucose-6-phosphate dehydrogenase in the gills. The stress responses of M. amazonicum to elevated TAN include increases in gill (Na(+),K(+))- and V(H(+))-ATPase activities that are accompanied by changes in oxidative stress enzyme activities, immune system effects and an increase in gill V(H(+))-ATPase gene expression. These findings likely underpin physiological effects in a crustacean like M. amazonicum that exploits multiple ecosystems during its life cycle, as well as under culture conditions that may significantly impact shrimp production by the aquaculture industry.
Collapse
Affiliation(s)
- Marcelo R Pinto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP, Brazil
| | - Malson N Lucena
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP, Brazil
| | | | - Eduardo Alves Almeida
- Universidade Estadual Paulista Júlio de Mesquita Filho - Campus de São José do Rio Preto, Brazil
| | - John C McNamara
- Departamento de Biologia -Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP, Brazil
| | - Francisco A Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP, Brazil.
| |
Collapse
|
41
|
Leone FA, Garçon DP, Lucena MN, Faleiros RO, Azevedo SV, Pinto MR, McNamara JC. Gill-specific (Na+, K+)-ATPase activity and α-subunit mRNA expression during low-salinity acclimation of the ornate blue crab Callinectes ornatus (Decapoda, Brachyura). Comp Biochem Physiol B Biochem Mol Biol 2015; 186:59-67. [DOI: 10.1016/j.cbpb.2015.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/16/2015] [Accepted: 04/21/2015] [Indexed: 12/27/2022]
|
42
|
Maraschi AC, Freire CA, Prodocimo V. Immunocytochemical localization of V-H+-ATPase, Na+/K+-ATPase, and carbonic anhydrase in gill lamellae of adult freshwater euryhaline shrimpMacrobrachium acanthurus(Decapoda, Palaemonidae). ACTA ACUST UNITED AC 2015; 323:414-21. [DOI: 10.1002/jez.1934] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/12/2015] [Accepted: 04/05/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Anieli Cristina Maraschi
- Departamento de Fisiologia, Setor de Ciências Biológicas; Universidade Federal do Paraná, Centro Politécnico; Curitiba Paraná Brazil
| | - Carolina Arruda Freire
- Departamento de Fisiologia, Setor de Ciências Biológicas; Universidade Federal do Paraná, Centro Politécnico; Curitiba Paraná Brazil
| | - Viviane Prodocimo
- Departamento de Fisiologia, Setor de Ciências Biológicas; Universidade Federal do Paraná, Centro Politécnico; Curitiba Paraná Brazil
| |
Collapse
|
43
|
Analysis, characterisation and expression of gill-expressed carbonic anhydrase genes in the freshwater crayfish Cherax quadricarinatus. Gene 2015; 564:176-87. [PMID: 25863177 DOI: 10.1016/j.gene.2015.03.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 02/27/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
Abstract
Changes in water quality parameters such as pH and salinity can have a significant effect on productivity of aquaculture species. Similarly, relative osmotic pressure influences various physiological processes and regulates expression of a number of osmoregulatory genes. Among those, carbonic anhydrase (CA) plays a key role in systemic acid-base balance and ion regulation. Redclaw crayfish (Cherax quadricarinatus) are unique in their ability to thrive in environments with naturally varied pH levels, suggesting unique adaptation to pH stress. To date, however, no studies have focused on identification and characterisation of CA or other osmoregulatory genes in C. quadricarinatus. Here, we analysed the redclaw gill transcriptome and characterized CA genes along with a number of other key osmoregulatory genes that were identified in the transcriptome. We also examined patterns of gene expression of these CA genes when exposed to three pH treatments. In total, 72,382,710 paired end Illumina reads were assembled into 36,128 contigs with an average length of 800bp. Approximately 37% of contigs received significant BLAST hits and 22% were assigned gene ontology terms. Three full length CA isoforms; cytoplasmic CA (ChqCAc), glycosyl-phosphatidylinositol-linked CA (ChqCAg), and β-CA (ChqCA-beta) as well as two partial CA gene sequences were identified. Both partial CA genes showed high similarity to ChqCAg and appeared to be duplicated from the ChqCAg. Full length coding sequences of Na(+)/K(+)-ATPase, V-type H(+)-ATPase, sarcoplasmic Ca(+)-ATPase, arginine kinase, calreticulin and Cl(-) channel protein 2 were also identified. Only the ChqCAc gene showed significant differences in expression across the three pH treatments. These data provide valuable information on the gill expressed CA genes and their expression patterns in freshwater crayfish. Overall our data suggest an important role for the ChqCAc gene in response to changes in pH and in systemic acid-base balance in freshwater crayfish.
Collapse
|
44
|
Lucena MN, Pinto MR, Garçon DP, McNamara JC, Leone FA. A kinetic characterization of the gill V(H+)-ATPase in juvenile and adult Macrobrachium amazonicum, a diadromous palaemonid shrimp. Comp Biochem Physiol B Biochem Mol Biol 2015; 181:15-25. [DOI: 10.1016/j.cbpb.2014.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/05/2014] [Accepted: 11/07/2014] [Indexed: 10/24/2022]
|
45
|
Li J, Ma P, Liu P, Chen P, Li J. The roles of Na⁺/K⁺-ATPase α-subunit gene from the ridgetail white prawn Exopalaemon carinicauda in response to salinity stresses. FISH & SHELLFISH IMMUNOLOGY 2015; 42:264-271. [PMID: 25449370 DOI: 10.1016/j.fsi.2014.10.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/25/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
Na(+)/K(+)-ATPase (NAK) is one important transporter protein and plays a key role in maintaining osmotic homeostasis in low and high salinity acclimation in variety of crustacean species. The ridgetail white prawn Exopalaemon carinicauda is an euryhaline and economic shrimp species in China, but it remains unclear about its mechanism of salinity adaption. In this study, a full-length of Na(+)/K(+)-ATPase α-subunit (α-NAK) cDNA was cloned from E. carinicauda by using rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of α-NAK was of 3680 bp, containing an open reading frame (ORF) of 3030 bp encoding a polypeptide of 1009 amino acids with the predicted molecular weight of 112.27 kDa. Eight transmembrane domains and two sites of phosphorylation and ATP binding were identified in E. carinicauda α-NAK. BLAST analysis revealed that the sequence of α-NAK amino acids of E. carinicauda shared more than 75% homologies with those of other crustacean. Real time quantitative RT-PCR analysis indicated that E. carinicauda α-NAK gene could be detected in all the tested tissues with highest expression level in gill. The expression profiles of E. carinicauda α-NAK transcripts were analyzed in gill and hepatopancreas tissues after salinity stresses. The results showed that the expression level of E. carinicauda α-NAK gene in both gill and hepatopancreas reached peak at different time after low and high salinity stresses, and showed different expression profiles. The expression profiles of proPO transcripts in gills after salinity stresses also indicated α-NAK and proPO played synergistic actions for salinity responses in E. carinicauda. These results indicated that E. carinicauda α-NAK involved in stress responses against salinity.
Collapse
Affiliation(s)
- Jitao Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 PR China
| | - Peng Ma
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 PR China
| | - Ping Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 PR China
| | - Ping Chen
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 PR China
| | - Jian Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao, 266071 PR China.
| |
Collapse
|
46
|
McNamara JC, Freire CA, Torres AH, Faria SC. The conquest of fresh water by the palaemonid shrimps: an evolutionary history scripted in the osmoregulatory epithelia of the gills and antennal glands. Biol J Linn Soc Lond 2015. [DOI: 10.1111/bij.12443] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- John Campbell McNamara
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brasil
- Centro de Biologia Marinha; Universidade de São Paulo; São Sebastião 11600-000 SP Brasil
| | - Carolina Arruda Freire
- Departamento de Fisiologia; Setor de Ciências Biológicas; Universidade Federal do Paraná; Curitiba 81531-990 PR Brasil
| | - Antonio Hernandes Torres
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brasil
| | - Samuel Coelho Faria
- Departamento de Biologia; Faculdade de Filosofia; Ciências e Letras de Ribeirão Preto; Universidade de São Paulo; Ribeirão Preto 14040-901 SP Brasil
| |
Collapse
|
47
|
Leone FA, Lucena MN, Rezende LA, Garçon DP, Pinto MR, Mantelatto FL, McNamara JC. A kinetic characterization of (Na+, K+)-ATPase activity in the gills of the pelagic seabob shrimp Xiphopenaeus kroyeri (Decapoda, Penaeidae). J Membr Biol 2014; 248:257-72. [PMID: 25534346 DOI: 10.1007/s00232-014-9765-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
We characterize the kinetic properties of a gill (Na(+), K(+))-ATPase from the pelagic marine seabob Xiphopenaeus kroyeri. Sucrose density gradient centrifugation revealed membrane fractions distributed mainly into a heavy fraction showing considerable (Na(+), K(+))-ATPase activity, but also containing mitochondrial F0F1- and Na(+)- and V-ATPases. Western blot analysis identified a single immunoreactive band against the (Na(+), K(+))-ATPase α-subunit with an Mr of ≈ 110 kDa. The α-subunit was immunolocalized to the intralamellar septum of the gill lamellae. The (Na(+), K(+))-ATPase hydrolyzed ATP obeying Michaelis-Menten kinetics with VM = 109.5 ± 3.2 nmol Pi min(-1) mg(-1) and KM = 0.03 ± 0.003 mmol L(-1). Mg(2+) (VM = 109.8 ± 2.1 nmol Pi min(-1 )mg(-1), K0.5 = 0.60 ± 0.03 mmol L(-1)), Na(+) (VM = 117.6 ± 3.5 nmol Pi min(-1 ) mg(-1), K0.5 = 5.36 ± 0.14 mmol L(-1)), K(+) (VM = 112.9 ± 1.4 nmol Pi min(-1 )mg(-1), K0.5 = 1.32 ± 0.08 mmol L(-1)), and NH4 (+) (VM = 200.8 ± 7.1 nmol Pi min(-1 )mg(-1), K0.5 = 2.70 ± 0.04 mmol L(-1)) stimulated (Na(+), K(+))-ATPase activity following site-site interactions. K(+) plus NH4 (+) does not synergistically stimulate (Na(+), K(+))-ATPase activity, although each ion modulates affinity of the other. The enzyme exhibits a single site for K(+) binding that can be occupied by NH4 (+), stimulating the enzyme. Ouabain (KI = 84.0 ± 2.1 µmol L(-1)) and orthovanadate (KI = 0.157 ± 0.001 µmol L(-1)) inhibited total ATPase activity by ≈ 50 and ≈ 44 %, respectively. Ouabain inhibition increases ≈ 80 % in the presence of NH4 (+) with a threefold lower KI, suggesting that NH4 (+) is likely transported as a K(+) congener.
Collapse
Affiliation(s)
- Francisco Assis Leone
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes 3900, Ribeirão Preto, SP, 14040-901, Brasil,
| | | | | | | | | | | | | |
Collapse
|
48
|
Boudour-Boucheker N, Boulo V, Charmantier-Daures M, Grousset E, Anger K, Charmantier G, Lorin-Nebel C. Differential distribution of V-type H(+)-ATPase and Na (+)/K (+)-ATPase in the branchial chamber of the palaemonid shrimp Macrobrachium amazonicum. Cell Tissue Res 2014; 357:195-206. [PMID: 24805036 DOI: 10.1007/s00441-014-1845-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/05/2014] [Indexed: 01/08/2023]
Abstract
V-H(+)-ATPase and Na(+)/K(+)-ATPase were localized in the gills and branchiostegites of M. amazonicum and the effects of salinity on the branchial chamber ultrastructure and on the localization of transporters were investigated. Gills present septal and pillar cells. In freshwater (FW), the apical surface of pillar cells is amplified by extensive evaginations associated with mitochondria. V-H(+)-ATPase immunofluorescence was localized in the membranes of the apical evaginations and in clustered subapical areas of pillar cells, suggesting labeling of intracellular vesicle membranes. Na(+)/K(+)-ATPase labeling was restricted to the septal cells. No difference in immunostaining was recorded for both proteins according to salinity (FW vs. 25 PSU). In the branchiostegite, both V-H(+)-ATPase and Na(+)/K(+)-ATPase immunofluorescence were localized in the same cells of the internal epithelium. Immunogold revealed that V-H(+)-ATPase was localized in apical evaginations and in electron-dense areas throughout the inner epithelium, while Na(+)/K(+)-ATPase occurred densely along the basal infoldings of the cytoplasmic membrane. Our results suggest that morphologically different cell types within the gill lamellae may also be functionally specialized. We propose that, in FW, pillar cells expressing V-H(+)-ATPase absorb ions (Cl(-), Na(+)) that are transported either directly to the hemolymph space or through a junctional complex to the septal cells, which may be responsible for active Na(+) delivery to the hemolymph through Na(+)/K(+)-ATPase. This suggests a functional link between septal and pillar cells in osmoregulation. When shrimps are transferred to FW, gill and branchiostegite epithelia undergo ultrastructural changes, most probably resulting from their involvement in osmoregulatory processes.
Collapse
Affiliation(s)
- Nesrine Boudour-Boucheker
- Université Montpellier 2, Equipe Adaptation Ecophysiologique et Ontogénèse, UMR5119 EcoSyM, UM2-UM1, CNRS-IRD-Ifremer, cc 092, Place E. Bataillon, 34095, Montpellier cedex 05, France,
| | | | | | | | | | | | | |
Collapse
|
49
|
Modulation by K+ Plus NH4+ of microsomal (Na+, K+)-ATPase activity in selected ontogenetic stages of the diadromous river shrimp Macrobrachium amazonicum (Decapoda, Palaemonidae). PLoS One 2014; 9:e89625. [PMID: 24586919 PMCID: PMC3931822 DOI: 10.1371/journal.pone.0089625] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/21/2014] [Indexed: 12/25/2022] Open
Abstract
We investigate the synergistic stimulation by K+ plus NH4+ of (Na+, K+)-ATPase activity in microsomal preparations of whole zoea I and decapodid III, and in juvenile and adult river shrimp gills. Modulation of (Na+, K+)-ATPase activity is ontogenetic stage-specific, and particularly distinct between juveniles and adults. Although both gill enzymes exhibit two different sites for K+ and NH4+ binding, in the juvenile enzyme, these two sites are equivalent: binding by both ions results in slightly stimulated activity compared to that of a single ionic species. In the adult enzyme, the sites are not equivalent: when one ion occupies its specific binding site, (Na+, K+)-ATPase activity is stimulated synergistically by ≈50% on binding of the complementary ion. Immunolocalization reveals the enzyme to be distributed predominantly throughout the intralamellar septum in the gill lamellae of juveniles and adults. Western blot analyses demonstrate a single immunoreactive band, suggesting a single (Na+, K+)-ATPase α-subunit isoform that is distributed into different density membrane fractions, independently of ontogenetic stage. We propose a model for the modulation by K+ and NH4+ of gill (Na+, K+)-ATPase activity. These findings suggest that the gill enzyme may be regulated by NH4+ during ontogenetic development in M. amazonicum.
Collapse
|
50
|
Havird JC, Santos SR, Henry RP. Osmoregulation in the Hawaiian anchialine shrimp Halocaridina rubra (Crustacea: Atyidae): expression of ion transporters, mitochondria-rich cell proliferation, and hemolymph osmolality during salinity transfers. J Exp Biol 2014; 217:2309-20. [DOI: 10.1242/jeb.103051] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Studies of euryhaline crustaceans have identified conserved osmoregulatory adaptions allowing hyper-osmoregulation in dilute waters. However, previous studies have mainly examined decapod brachyurans with marine ancestries inhabiting estuaries or tidal creeks on a seasonal basis. Here, we describe osmoregulation in the atyid Halocaridina rubra, an endemic Hawaiian shrimp of freshwater ancestry from the islands' anchialine ecosystem (coastal ponds with subsurface fresh water and seawater connections) that encounters near-continuous spatial and temporal salinity changes. Given this, survival and osmoregulatory responses were examined over a wide salinity range. In the laboratory, H. rubra tolerated salinities of ~0-56‰, acting as both a hyper- and hypo-osmoregulator and maintaining a maximum osmotic gradient of ~868 mOsm/kg H2O in freshwater. Furthermore, hemolymph osmolality was more stable during salinity transfers relative to other crustaceans. Silver nitrate and vital mitochondria-rich cell staining suggest all gills are osmoregulatory, with a large proportion of each individual gill functioning in ion transport (including when H. rubra acts as an osmoconformer in seawater). Additionally, expression of ion transporters and supporting enzymes that typically undergo up-regulation during salinity transfer in osmoregulatory gills (i.e., Na+/K+-ATPase, carbonic anhydrase, Na+/K+/2Cl- cotransporter, V-type H+-ATPase, and arginine kinase) were generally unaltered in H. rubra during similar transfers. These results suggest H. rubra (and possibly other anchialine species) maintains high, constitutive levels of gene expression and ion transport capability in the gills as a means of potentially coping with the fluctuating salinities that are encountered in anchialine habitats. Thus, anchialine taxa represent an interesting avenue for future physiological research.
Collapse
|