1
|
Castelló ME, Olivera-Pasilio V, Rosillo JC, Fernández AS. Adult neurogenesis in the Uruguayan teleost species Austrolebias charrua and Gymnotus omarorum. Neuroscience 2025; 573:143-153. [PMID: 40101892 DOI: 10.1016/j.neuroscience.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/19/2025] [Accepted: 03/14/2025] [Indexed: 03/20/2025]
Abstract
Neurogenesis -the process by which new neurons are generated in the brain- is critical for nervous system development and plasticity. Adult neurogenesis underlies growth, repair, and adaptation to environmental changes. Vertebrates differ in their neurogenic and regenerative capacity, being particularly prominent in teleost as adult neurogenesis occurs throughout the rostral-caudal brain axis. This review examines adult proliferation and neurogenesis in the autochthonous Uruguayan teleost Austrolebias charrua and Gymnotus omarorum. A. charrua are annual fishes that live in temporary freshwater pools that dry up in the summer. The luminosity of the puddles varies greatly, and both vision and olfaction are crucial for the survival of this species. G. omarorum inhabits freshwater lagoons and rivers beneath dense masses of floating plants and have nocturnal habits. They rely on the electrosensory modality to navigate and communicate with conspecifics. These differences in habitats and predominant sensory modalities are reflected in the distinct brain morphotypes of G. omarorum and A. charrua. While G. omarorum is characterized by the hypertrophy of rhombencephalic cerebellum and electrosensory lateral line lobe, A. charrua has a well-developed olfactory bulb, mesencephalic tectum opticum, and torus longitudinalis. Accordingly, these regions have notorious neurogenic activity. Differences in neuroanatomy and distribution of neurogenesis in the brains of both species are discussed considering their life cycle and lifestyle. The comparison of these results with those reported in other teleost and vertebrates contributes to the understanding of the key role of neurogenesis in brain plasticity and evolution.
Collapse
Affiliation(s)
- María E Castelló
- Laboratorio de Desarrollo Y Evolución Neural, Departamento de Neurociencias Integrativas Y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, (IIBCE-MEC), Avenida. Italia 3318 11600 Montevideo, Uruguay.
| | - Valentina Olivera-Pasilio
- Laboratorio de Desarrollo Y Evolución Neural, Departamento de Neurociencias Integrativas Y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, (IIBCE-MEC), Avenida. Italia 3318 11600 Montevideo, Uruguay; Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Juan Carlos Rosillo
- Laboratorio de Neurobiología Comparada, Departamento Neurociencias Integrativas Y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE-MEC), Uruguay; Departamento de Histología Y Embriología, Facultad de Medicina, UdelaR. Avda. General Flores 2125 11800 Montevideo, Uruguay; Departamento de Neurobiología Y Neuropatología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE-MEC), Avenida. Italia 3318 11600 Montevideo, Uruguay.
| | - Anabel S Fernández
- Laboratorio de Neurobiología Comparada, Departamento Neurociencias Integrativas Y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE-MEC), Uruguay; Laboratorio de Neurociencias, Instituto de Biología, Facultad de Ciencias, UdelaR, Iguá 4225 11400 Montevideo, Uruguay.
| |
Collapse
|
2
|
Prentice PM, Chivite Alcalde M, Císař P, Rey Planellas S. Early-life environmental enrichment promotes positive animal welfare for juvenile Atlantic salmon (Salmo salar) in aquaculture research. Sci Rep 2025; 15:5828. [PMID: 39966558 PMCID: PMC11836395 DOI: 10.1038/s41598-025-88780-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025] Open
Abstract
Early life experiences have long-lasting effects on behaviour and physiology, influencing development of adaptive natural behaviours. Enriching farmed environments encourages expression of natural behaviours in captive fish, promoting positive animal welfare, important for conducting valid and reproducible research and informing better management practices. Using juvenile Atlantic Salmon (Salmo salar), we tested whether provision of environmental enrichment in early life improves welfare. Welfare indicators were measured comparing enriched to non-enriched tanks. Morphological (fin damage and body condition), physiological (plasma cortisol) and behavioural traits (activity, group cohesion, and neophobia) were recorded. Molecular expression of brain mRNA transcripts related to stress response, neuroplasticity and serotonergic system was analysed. Environmental enrichment did not affect morphological welfare indicators, activity, or cortisol. Enriched fish were more cohesive than non-enriched fish, less neophobic, with higher serotonergic turnover, suggesting enrichment mitigates against stress, promoting positive emotional states. Genes related to neuronal development and activity (bdnf and ndf1), cellular stress (hsp90 and hsp70), and serotonin synthesis (tph2) increased in enriched fish following stress, enhancing cognitive function. Our findings suggest early life environmental enrichment is advantageous for positive animal welfare by improving emotional states in captive environments, ensuring animals are free of negative experiences and able to access positive ones.
Collapse
Affiliation(s)
- Pamela M Prentice
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
- Animal Behaviour and Welfare, Animal and Veterinary Science Research Group, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK.
| | - Mauro Chivite Alcalde
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK
- Centro de Investigación Mariña, Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional E Ciencias da Saúde, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Petr Císař
- University of South Bohemia in České Budějovice, FFPW, CENAKVA, Zámek 136, 373 33, Nové Hrady, Czech Republic
| | - Sonia Rey Planellas
- Animal Behaviour and Welfare, Animal and Veterinary Science Research Group, SRUC, West Mains Rd, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
3
|
LaDage LD, McCormick GL, Robbins TR, Longwell AS, Langkilde T. The effects of early-life and intergenerational stress on the brain. Proc Biol Sci 2023; 290:20231356. [PMID: 38018110 PMCID: PMC10685117 DOI: 10.1098/rspb.2023.1356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/07/2023] [Indexed: 11/30/2023] Open
Abstract
Stress experienced during ontogeny can have profound effects on the adult phenotype. However, stress can also be experienced intergenerationally, where an offspring's phenotype can be moulded by stress experienced by the parents. Although early-life and intergenerational stress can alter anatomy, physiology, and behaviour, nothing is known about how these stress contexts interact to affect the neural phenotype. Here, we examined how early-life and intergenerational stress affect the brain in eastern fence lizards (Sceloporus undulatus). Some lizard populations co-occur with predatory fire ants, and stress from fire ant attacks exerts intergenerational physiological and behavioural changes in lizards. However, it is unclear if intergenerational stress, or the interaction between intergenerational and early-life stress, modulates the brain. To test this, we captured gravid females from fire ant invaded and uninvaded populations, and subjected offspring to three early-life stress treatments: (1) fire ant attack, (2) corticosterone, or (3) a control. Corticosterone and fire ant attack decreased some aspects of the neural phenotype while population of origin and the interaction of early-life stress and population had no effects on the brain. These results suggest that early-life stressors may better predict adult brain variation than intergenerational stress in this species.
Collapse
Affiliation(s)
- Lara D. LaDage
- Division of Mathematics & Natural Sciences, Penn State Altoona, 3000 Ivyside Dr., Altoona, PA 16601, USA
| | - Gail L. McCormick
- Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| | - Travis R. Robbins
- Department of Biology, University of Nebraska Omaha, 6001 Dodge St., Omaha, NE 68182, USA
| | - Anna S. Longwell
- Division of Mathematics & Natural Sciences, Penn State Altoona, 3000 Ivyside Dr., Altoona, PA 16601, USA
| | - Tracy Langkilde
- Eberly College of Science, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Mahamat M, De León LF, Martínez ML. Exploring potential drivers of brain size variation in the electric fish Brachyhypopomus occidentalis. ZOOLOGY 2023; 156:126058. [PMID: 36459729 DOI: 10.1016/j.zool.2022.126058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Characterizing the factors that shape variation in brain size in natural populations is crucial to understanding the evolution of brain size in animals. Here, we explore how relative brain size and brain allometry vary with drainage, predation risk and sex in natural populations of the electric knifefish Brachyhypopomus occidentalis. Fish were sampled from high and low predation risk sites within two independent river drainages in eastern and central Panamá. Overall, we observed low variation in brain-body size allometric slopes associated with drainage, predation risk and sex category. However, we observed significant differences in allometric intercepts between predation risk sites. We also found significant differences in relative brain mass associated with drainage, as well as significant differences in absolute brain mass associated with drainage, predation risk and sex category. Our results suggest potential constraints in brain-body allometry across populations of B. occidentalis. However, both drainage and predation risk may be playing a role in brain mass variation among populations. We suggest that variation in brain mass in electric fishes is affected by multiple extrinsic and intrinsic factors, including geography, environmental complexity, social interaction and developmental or functional constraints.
Collapse
Affiliation(s)
- Marangaby Mahamat
- School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Luis F De León
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA; Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), P.O. Box 0843-01103 Panamá, Republica of Panama
| | - Mery L Martínez
- School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada.
| |
Collapse
|
5
|
Guo H, Näslund J, Thomassen ST, Larsen MH. Social isolation affects intra-specific interaction behaviour and reduces the size of the cerebellar brain region in juvenile Atlantic salmon Salmo salar. JOURNAL OF FISH BIOLOGY 2022; 101:711-721. [PMID: 35751413 PMCID: PMC9540882 DOI: 10.1111/jfb.15142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The social environment can affect the development of behavioural phenotypes in fish, and it is important to understand such effects when rearing fish in artificial environments. Here, the authors test the effects of spatial isolation on social interaction propensity and brain development in hatchery-reared Atlantic salmon Salmo salar L. Salmon reared in isolation generally stayed further away from a conspecific in a standardized intruder test than conspecifics reared together in groups. Isolated salmon also tended to be more active in an intruder test, albeit non-significantly so, but this pattern was not detected in open-field tests without an intruding conspecific. The cerebellar brain region was relatively smaller in isolated salmon, suggesting that the brain was developing differently in these fish. Therefore, some features of the behavioural and neural phenotype are affected by rearing in isolation. These effects should be considered when rearing salmon, particularly for experimental purposes as it may affect results of laboratory studies on behavioural expression and brain size.
Collapse
Affiliation(s)
- Haoyu Guo
- Fisheries CollegeZhejiang Ocean UniversityZhoushanChina
| | - Joacim Näslund
- Department of Aquatic ResourcesInstitute of Freshwater Research, Swedish University of Agricultural SciencesDrottningholmSweden
| | | | - Martin H. Larsen
- Danish Centre for Wild SalmonRandersDenmark
- National Institute of Aquatic ResourcesSection for Freshwater Fisheries Ecology, Technical University of DenmarkSilkeborgDenmark
| |
Collapse
|
6
|
Cardona E, Brunet V, Baranek E, Milhade L, Skiba-Cassy S, Bobe J, Calandreau L, Roy J, Colson V. Physical Enrichment Triggers Brain Plasticity and Influences Blood Plasma Circulating miRNA in Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2022; 11:1093. [PMID: 35892949 PMCID: PMC9394377 DOI: 10.3390/biology11081093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Physical enrichment is known to improve living conditions of fish held in farming systems and has been shown to promote behavioral plasticity in captive fish. However, the brain's regulatory-mechanism systems underlying its behavioral effects remain poorly studied. The present study investigated the impact of a three-month exposure to an enriched environment (EE vs. barren environment, BE) on the modulation of brain function in rainbow trout (Oncorhynchus mykiss) juveniles. Using high-throughput RT-qPCR, we assessed mRNA genes related to brain function in several areas of the trout brain. These included markers of cerebral activity and plasticity, neurogenesis, synaptogenesis, or selected neurotransmitters pathways (dopamine, glutamate, GABA, and serotonin). Overall, the fish from EE displayed a series of differentially expressed genes (neurotrophic, neurogenesis, and synaptogenesis markers) essentially localized in the telencephalon, which could underpin the beneficial effects of complexifying the environment on fish brain plasticity. In addition, EE significantly affected blood plasma c-miRNA signatures, as revealed by the upregulation of four c-miRNAs (miR-200b/c-3p, miR-203a-3p, miR-205-1a-5p, miR-218a-5p) in fish blood plasma after 185 days of EE exposure. Overall, we concluded that complexifying the environment through the addition of physical structures that stimulate and encourage fish to explore promotes the trout's brain function in farming conditions.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, INRAE, Université de Pau & Pays Adour, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (E.C.); (E.B.); (S.S.-C.)
| | | | - Elodie Baranek
- INRAE, INRAE, Université de Pau & Pays Adour, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (E.C.); (E.B.); (S.S.-C.)
| | - Léo Milhade
- IRISA, INRIA, CNRS, Université de Rennes 1, 35000 Rennes, France;
| | - Sandrine Skiba-Cassy
- INRAE, INRAE, Université de Pau & Pays Adour, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (E.C.); (E.B.); (S.S.-C.)
| | - Julien Bobe
- INRAE, LPGP, 35000 Rennes, France; (V.B.); (J.B.)
| | | | - Jérôme Roy
- INRAE, INRAE, Université de Pau & Pays Adour, NUMEA, 64310 Saint-Pée-sur-Nivelle, France; (E.C.); (E.B.); (S.S.-C.)
| | | |
Collapse
|
7
|
Kumar A, Salinas J. The Long-Term Public Health Impact of Social Distancing on Brain Health: Topical Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:7307. [PMID: 34299756 PMCID: PMC8305633 DOI: 10.3390/ijerph18147307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/03/2021] [Accepted: 07/07/2021] [Indexed: 12/26/2022]
Abstract
Social distancing has been a critical public health measure for the COVID-19 pandemic, yet a long history of research strongly suggests that loneliness and social isolation play a major role in several cognitive health issues. What is the true severity and extent of risks involved and what are potential approaches to balance these competing risks? This review aimed to summarize the neurological context of social isolation and loneliness in population health and the long-term effects of social distancing as it relates to neurocognitive aging, health, and Alzheimer's disease and related dementias. The full scope of the underlying causal mechanisms of social isolation and loneliness in humans remains unclear partly because its study is not amenable to randomized controlled trials; however, there are many detailed experimental and observational studies that may provide a hypothesis-generating theoretical framework to better understand the pathophysiology and underlying neurobiology. To address these challenges and inform future studies, we conducted a topical review of extant literature investigating associations of social isolation and loneliness with relevant biological, cognitive, and psychosocial outcomes, and provide recommendations on how to approach the need to fill key knowledge gaps in this important area of research.
Collapse
Affiliation(s)
- Anagha Kumar
- Harvard College, Harvard University, Cambridge, MA 02138, USA;
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York University, New York, NY 10017, USA
| | - Joel Salinas
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York University, New York, NY 10017, USA
| |
Collapse
|
8
|
Salena MG, Turko AJ, Singh A, Pathak A, Hughes E, Brown C, Balshine S. Understanding fish cognition: a review and appraisal of current practices. Anim Cogn 2021; 24:395-406. [PMID: 33595750 DOI: 10.1007/s10071-021-01488-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/24/2020] [Accepted: 02/06/2021] [Indexed: 02/04/2023]
Abstract
With over 30,000 recognized species, fishes exhibit an extraordinary variety of morphological, behavioural, and life-history traits. The field of fish cognition has grown markedly with numerous studies on fish spatial navigation, numeracy, learning, decision-making, and even theory of mind. However, most cognitive research on fishes takes place in a highly controlled laboratory environment and it can therefore be difficult to determine whether findings generalize to the ecology of wild fishes. Here, we summarize four prominent research areas in fish cognition, highlighting some of the recent advances and key findings. Next, we survey the literature, targeting these four areas, and quantify the nearly ubiquitous use of captive-bred individuals and a heavy reliance on lab-based research. We then discuss common practices that occur prior to experimentation and within experiments that could hinder our ability to make more general conclusions about fish cognition, and suggest possible solutions. By complementing ecologically relevant laboratory-based studies with in situ cognitive tests, we will gain further inroads toward unraveling how fishes learn and make decisions about food, mates, and territories.
Collapse
Affiliation(s)
- Matthew G Salena
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.
| | - Andy J Turko
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada.,Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - Angad Singh
- Department of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Avani Pathak
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada.,Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Emily Hughes
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Culum Brown
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Sigal Balshine
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
9
|
Pereira PDC, Henrique EP, Porfírio DM, Crispim CCDS, Campos MTB, de Oliveira RM, Silva IMS, Guerreiro LCF, da Silva TWP, da Silva ADJF, Rosa JBDS, de Azevedo DLF, Lima CGC, Castro de Abreu C, Filho CS, Diniz DLWP, Magalhães NGDM, Guerreiro-Diniz C, Diniz CWP, Diniz DG. Environmental Enrichment Improved Learning and Memory, Increased Telencephalic Cell Proliferation, and Induced Differential Gene Expression in Colossoma macropomum. Front Pharmacol 2020; 11:840. [PMID: 32595498 PMCID: PMC7303308 DOI: 10.3389/fphar.2020.00840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Fish use spatial cognition based on allocentric cues to navigate, but little is known about how environmental enrichment (EE) affects learning and memory in correlation with hematological changes or gene expression in the fish brain. Here we investigated these questions in Colossoma macropomum (Teleostei). Fish were housed for 192 days in either EE or in an impoverished environment (IE) aquarium. EE contained toys, natural plants, and a 12-h/day water stream for voluntary exercise, whereas IE had no toys, plants, or water stream. A third plus maze aquarium was used for spatial and object recognition tests. Compared with IE, the EE fish showed greater learning rates, body length, and body weight. After behavioral tests, whole brain tissue was taken, stored in RNA-later, and then homogenized for DNA sequencing after conversion of isolated RNA. To compare read mapping and gene expression profiles across libraries for neurotranscriptome differential expression, we mapped back RNA-seq reads to the C. macropomum de novo assembled transcriptome. The results showed significant differential behavior, cell counts and gene expression in EE and IE individuals. As compared with IE, we found a greater number of cells in the telencephalon of individuals maintained in EE but no significant difference in the tectum opticum, suggesting differential plasticity in these areas. A total of 107,669 transcripts were found that ultimately yielded 64 differentially expressed transcripts between IE and EE brains. Another group of adult fish growing in aquaculture conditions were either subjected to exercise using running water flow or maintained sedentary. Flow cytometry analysis of peripheral blood showed a significantly higher density of lymphocytes, and platelets but no significant differences in erythrocytes and granulocytes. Thus, under the influence of contrasting environments, our findings showed differential changes at the behavioral, cellular, and molecular levels. We propose that the differential expression of selected transcripts, number of telencephalic cell counts, learning and memory performance, and selective hematological cell changes may be part of Teleostei adaptive physiological responses triggered by EE visuospatial and somatomotor stimulation. Our findings suggest abundant differential gene expression changes depending on environment and provide a basis for exploring gene regulation mechanisms under EE in C. macropomum.
Collapse
Affiliation(s)
- Patrick Douglas Corrêa Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Ediely Pereira Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Danillo Monteiro Porfírio
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | | - Maitê Thaís Barros Campos
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Renata Melo de Oliveira
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Isabella Mesquita Sfair Silva
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Luma Cristina Ferreira Guerreiro
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Tiago Werley Pires da Silva
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | | | - João Batista da Silva Rosa
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Cecília Gabriella Coutinho Lima
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cintya Castro de Abreu
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Carlos Santos Filho
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | | | - Nara Gyzely de Morais Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Guerreiro-Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação, Ciência e Tecnologia do Pará, Bragança, Brazil
| | - Cristovam Wanderley Picanço Diniz
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigação em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Belém, Brazil
- Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| |
Collapse
|
10
|
Dunlap KD, Vergara MM, Corbo JH. Reduced brain cell proliferation following somatic injury is buffered by social interaction in electric fish, Apteronotus leptorhynchus. Dev Neurobiol 2020; 80:168-177. [PMID: 32452106 DOI: 10.1002/dneu.22760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 11/12/2022]
Abstract
In many species, the negative effects of aversive stimuli are mitigated by social interactions, a phenomenon termed social buffering. In one form of social buffering, social interactions reduce the inhibition of brain cell proliferation during stress. Indirect predator stimuli (e.g., olfactory or visual cues) are known to decrease brain cell proliferation, but little is known about how somatic injury, as might occur from direct predator encounter, affects brain cell proliferation and whether this response is influenced by conspecific interactions. Here, we assessed the social buffering of brain cell proliferation in an electric fish, Apteronotus leptorhynchus, by examining the separate and combined effects of tail injury and social interactions. We mimicked a predator-induced injury by amputating the caudal tail tip, exposed fish to paired interactions that varied in timing, duration and recovery period, and measured brain cell proliferation and the degree of social affiliation. Paired social interaction mitigated the negative effects of tail amputation on cell proliferation in the forebrain but not the midbrain. Social interaction either before or after tail amputation reduced the effect of tail injury and continuous interaction both before and after caused an even greater buffering effect. Social interaction buffered the proliferation response after short-term (1 d) or long-term recovery (7 d) from tail amputation. This is the first report of social buffering of brain cell proliferation in a non-mammalian model. Despite the positive association between social stimuli and brain cell proliferation, we found no evidence that fish affiliate more closely following tail injury.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT, USA
| | | | - Joshua H Corbo
- Department of Biology, Trinity College, Hartford, CT, USA
| |
Collapse
|
11
|
Maruska KP, Butler JM, Anselmo C, Tandukar G. Distribution of aromatase in the brain of the African cichlid fish
Astatotilapia burtoni
: Aromatase expression, but not estrogen receptors, varies with female reproductive‐state. J Comp Neurol 2020; 528:2499-2522. [DOI: 10.1002/cne.24908] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Karen P. Maruska
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Julie M. Butler
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Chase Anselmo
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
| | - Ganga Tandukar
- Department of Biological Sciences Louisiana State University Baton Rouge Louisiana USA
- Biology Program University of Louisiana at Monroe Monroe Louisiana USA
| |
Collapse
|
12
|
Abreu CC, Fernandes TN, Henrique EP, Pereira PDC, Marques SB, Herdeiro SLS, Oliveira FRR, Magalhães NGM, Anthony DC, Melo MAD, Guerreiro-Diniz C, Diniz DG, Picanço-Diniz CW. Small-scale environmental enrichment and exercise enhance learning and spatial memory of Carassius auratus, and increase cell proliferation in the telencephalon: an exploratory study. ACTA ACUST UNITED AC 2019; 52:e8026. [PMID: 31038577 PMCID: PMC6487742 DOI: 10.1590/1414-431x20198026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022]
Abstract
Carassius auratus is a teleost fish that has been largely used in behavioral studies. However, little is known about potential environmental influences on its performance of learning and memory tasks. Here, we investigated this question in C. auratus, and searched for potential correlation between exercise and visuospatial enrichment with the total number of telencephalic glia and neurons. To that end, males and females were housed for 183 days in either an enriched (EE) or impoverished environment (IE) aquarium. EE contained toys, natural plants, and a 12-hour/day water stream for voluntary exercise, whereas the IE had none of the above. A third plus-maze aquarium was used for spatial and object recognition tests. Different visual clues in 2 of its 4 arms were used to guide fish to reach the criteria to complete the task. The test consisted of 30 sessions and was concluded when each animal performed three consecutive correct choices or seven alternated, each ten trials. Learning rates revealed significant differences between EE and IE fish. The optical fractionator was used to estimate the total number of telencephalic cells that were stained with cresyl violet. On average, the total number of cells in the subjects from EE was higher than those from subjects maintained in IE (P=0.0202). We suggest that environmental enrichment significantly influenced goldfish spatial learning and memory abilities, and this may be associated with an increase in the total number of telencephalic cells.
Collapse
Affiliation(s)
- C C Abreu
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - T N Fernandes
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - E P Henrique
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - P D C Pereira
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - S B Marques
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - S L S Herdeiro
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - F R R Oliveira
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - N G M Magalhães
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - D C Anthony
- University of Oxford, Department of Pharmacology, Mansfield Road, Oxford, United Kingdom
| | - M A D Melo
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - C Guerreiro-Diniz
- Laboratório de Biologia Molecular e Neuroecologia, Instituto Federal de Educação Ciência e Tecnologia do Pará, Bragança, PA, Brasil
| | - D G Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| | - C W Picanço-Diniz
- Instituto de Ciências Biológicas, Hospital Universitário João de Barros Barreto, Laboratório de Neurodegeneração e Infecção, Universidade Federal do Pará, Belém, PA, Brasil
| |
Collapse
|
13
|
Validation of hippocampal biomarkers of cumulative affective experience. Neurosci Biobehav Rev 2019; 101:113-121. [PMID: 30951763 PMCID: PMC6525303 DOI: 10.1016/j.neubiorev.2019.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 03/29/2019] [Accepted: 03/31/2019] [Indexed: 12/29/2022]
Abstract
Recent knowledge on hippocampal structural plasticity is reviewed. This knowledge is harnessed to develop biomarkers of cumulative experience. Hippocampal plasticity is shown to have construct, content and criterion validity in mammals. The biomarkers require further validation to be used in birds and fish. We discuss some practical considerations to implement the biomarkers.
Progress in improving the welfare of captive animals has been hindered by a lack of objective indicators to assess the quality of lifetime experience, often called cumulative affective experience. Recent developments in stress biology and psychiatry have shed new light on the role of the mammalian hippocampus in affective processes. Here we review these findings and argue that structural hippocampal biomarkers demonstrate criterion, construct and content validity as indicators of cumulative affective experience in mammals. We also briefly review emerging findings in birds and fish, which have promising implications for applying the hippocampal approach to these taxa, but require further validation. We hope that this review will motivate welfare researchers and neuroscientists to explore the potential of hippocampal biomarkers of cumulative affective experience.
Collapse
|
14
|
Venables MJ, Xing L, Edington CC, Trudeau VL. Neuronal regeneration in the goldfish telencephalon following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) insult. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The constitutive regenerative ability of the goldfish central nervous system makes them an excellent model organism to study neurogenesis. Intraperitoneal injection of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to deplete tyrosine hydroxylase-positive neurons in the adult goldfish telencephalon. We report novel information on the ability of the goldfish to regenerate (∼3–4 d post-MPTP insult) damaged neurons in telencephalic tissue by observing the rapid incorporation of bromodeoxyuridine into newly generated cells, which precedes the recovery of motor function in MPTP-treated animals. Specifically, the telencephalon area telencephali pars dorsalis in female goldfish, which is associated with fish motor activity, regenerates following MPTP toxicity. The remarkable ability of goldfish to rapidly regenerate damaged neurons provides insight into their use as model organisms to study neuroregenerative abilities within a few days following injury. We provide evidence that goldfish are able to regenerate neurons in ∼3–4 d to both replenish and recover baseline catecholaminergic levels, thus enabling the fish to reestablish basic activities such as swimming. The study of neuron regeneration in the damaged goldfish brain will increase our understanding of vertebrate neurogenesis and regeneration processes following central nervous system injury.
Collapse
Affiliation(s)
| | - Lei Xing
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
15
|
Mes D, von Krogh K, Gorissen M, Mayer I, Vindas MA. Neurobiology of Wild and Hatchery-Reared Atlantic Salmon: How Nurture Drives Neuroplasticity. Front Behav Neurosci 2018; 12:210. [PMID: 30254575 PMCID: PMC6141658 DOI: 10.3389/fnbeh.2018.00210] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/21/2018] [Indexed: 12/03/2022] Open
Abstract
Life experiences in the rearing environment shape the neural and behavioral plasticity of animals. In fish stocking practices, the hatchery environment is relatively stimulus-deprived and does not optimally prepare fish for release into the wild. While the behavioral differences between wild and hatchery-reared fish have been examined to some extent, few studies have compared neurobiological characteristics between wild and hatchery-reared individuals. Here, we compare the expression of immediate early gene cfos and neuroplasticity marker brain-derived neurotrophic factor (bdnf) in telencephalic subregions associated with processing of stimuli in wild and hatchery-reared Atlantic salmon at basal and 30 min post (acute) stress conditions. Using in situ hybridization, we found that the expression level of these markers is highly specific per neuronal region and affected by both the origin of the fish, and exposure to acute stress. Expression of cfos was increased by stress in all brain regions and cfos was more highly expressed in the Dlv (functional equivalent to the mammalian hippocampus) of hatchery-reared compared to wild fish. Expression of bdnf was higher overall in hatchery fish, while acute stress upregulated bdnf in the Dm (functional equivalent to the mammalian amygdala) of wild, but not hatchery individuals. Our findings demonstrate that the hatchery environment affects neuroplasticity and neural activation in brain regions that are important for learning processes and stress reactivity, providing a neuronal foundation for the behavioral differences observed between wild and hatchery-reared fish.
Collapse
Affiliation(s)
- Daan Mes
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute of Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, Oslo, Norway
| | - Marco A Vindas
- Uni Environment, Uni Research AS, Bergen, Norway.,Department of Neurobiology and Physiology, University of Gothenburg, Gothenburg, Sweden.,Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
16
|
Dunlap KD, Keane G, Ragazzi M, Lasky E, Salazar VL. Simulated predator stimuli reduce brain cell proliferation in two electric fish species, Brachyhypopomus gauderio and Apteronotus leptorhynchus. ACTA ACUST UNITED AC 2018; 220:2328-2334. [PMID: 28679791 DOI: 10.1242/jeb.158246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
The brain structure of many animals is influenced by their predators, but the cellular processes underlying this brain plasticity are not well understood. Previous studies showed that electric fish (Brachyhypopomus occidentalis) naturally exposed to high predator (Rhamdia quelen) density and tail injury had reduced brain cell proliferation compared with individuals facing few predators and those with intact tails. However, these field studies described only correlations between predator exposure and cell proliferation. Here, we used a congener Brachyhypopomus gauderio and another electric fish Apteronotus leptorhynchus to experimentally test the hypothesis that exposure to a predator stimulus and tail injury causes alterations in brain cell proliferation. To simulate predator exposure, we either amputated the tail followed by short-term (1 day) or long-term (17-18 days) recovery or repeatedly chased intact fish with a plastic rod over a 7 day period. We measured cell proliferation (PCNA+ cell density) in the telencephalon and diencephalon, and plasma cortisol, which commonly mediates stress-induced changes in brain cell proliferation. In both species, either tail amputation or simulated predator chase decreased cell proliferation in the telencephalon in a manner resembling the effect of predators in the field. In A. leptorhynchus, cell proliferation decreased drastically in the short term after tail amputation and partially rebounded after long-term recovery. In B. gauderio, tail amputation elevated cortisol levels, but repeated chasing had no effect. In A. leptorhynchus, tail amputation elevated cortisol levels in the short term but not in the long term. Thus, predator stimuli can cause reductions in brain cell proliferation, but the role of cortisol is not clear.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Geoffrey Keane
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Michael Ragazzi
- Department of Biology, Trinity College, Hartford, CT 06106, USA.,Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Elise Lasky
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Vielka L Salazar
- Department of Biology, Cape Breton University, Sydney, NS, Canada B1P 6L2
| |
Collapse
|
17
|
Torres-Pérez M, Rosillo JC, Berrosteguieta I, Olivera-Bravo S, Casanova G, García-Verdugo JM, Fernández AS. Stem cells distribution, cellular proliferation and migration in the adult Austrolebias charrua brain. Brain Res 2017; 1673:11-22. [DOI: 10.1016/j.brainres.2017.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 12/18/2022]
|
18
|
Olivera-Pasilio V, Lasserre M, Castelló ME. Cell Proliferation, Migration, and Neurogenesis in the Adult Brain of the Pulse Type Weakly Electric Fish, Gymnotus omarorum. Front Neurosci 2017; 11:437. [PMID: 28860962 PMCID: PMC5562682 DOI: 10.3389/fnins.2017.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/17/2017] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis, an essential mechanism of brain plasticity, enables brain development along postnatal life, constant addition of new neurons, neuronal turnover, and/or regeneration. It is amply distributed but negatively modulated during development and along evolution. Widespread cell proliferation, high neurogenic, and regenerative capacities are considered characteristics of teleost brains during adulthood. These anamniotes are promising models to depict factors that modulate cell proliferation, migration, and neurogenesis, and might be intervened to promote brain plasticity in mammals. Nevertheless, the migration path of derived cells to their final destination was not studied in various teleosts, including most weakly electric fish. In this group adult brain morphology is attributed to sensory specialization, involving the concerted evolution of peripheral electroreceptors and electric organs, encompassed by the evolution of neural networks involved in electrosensory information processing. In wave type gymnotids adult brain morphology is proposed to result from lifelong region specific cell proliferation and neurogenesis. Consistently, pulse type weakly electric gymnotids and mormyrids show widespread distribution of proliferation zones that persists in adulthood, but their neurogenic potential is still unknown. Here we studied the migration process and differentiation of newborn cells into the neuronal phenotype in the pulse type gymnotid Gymnotus omarorum. Pulse labeling of S-phase cells with 5-Chloro-2′-deoxyuridine thymidine followed by 1 to 180 day survivals evidenced long distance migration of newborn cells from the rostralmost telencephalic ventricle to the olfactory bulb, and between layers of all cerebellar divisions. Shorter migration appeared in the tectum opticum and torus semicircularis. In many brain regions, derived cells expressed early neuronal markers doublecortin (chase: 1–30 days) and HuC/HuD (chase: 7–180 days). Some newborn cells expressed the mature neuronal marker tyrosine hydroxylase in the subpallium (chase: 90 days) and olfactory bulb (chase: 180 days), indicating the acquisition of a mature neuronal phenotype. Long term CldU labeled newborn cells of the granular layer of the corpus cerebelli were also retrogradely labeled “in vivo,” suggesting their insertion into the neural networks. These findings evidence the neurogenic capacity of telencephalic, mesencephalic, and rhombencephalic brain proliferation zones in G. omarorum, supporting the phylogenetic conserved feature of adult neurogenesis and its functional significance.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la RepúblicaMontevideo, Uruguay.,IIBE "Histología de Sistemas Sensoriales", Unidad Asociada F. de MedicinaMontevideo, Uruguay
| | - Moira Lasserre
- Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay
| | - María E Castelló
- Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay.,IIBE "Histología de Sistemas Sensoriales", Unidad Asociada F. de MedicinaMontevideo, Uruguay
| |
Collapse
|
19
|
Dunlap KD. Fish Neurogenesis in Context: Assessing Environmental Influences on Brain Plasticity within a Highly Labile Physiology and Morphology. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:156-166. [DOI: 10.1159/000446907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fish have unusually high rates of brain cell proliferation and neurogenesis during adulthood, and the rates of these processes are greatly influenced by the environment. This high level of cell proliferation and its responsiveness to environmental change indicate that such plasticity might be a particularly important mechanism underlying behavioral plasticity in fish. However, as part of their highly labile physiology and morphology, fish also respond to the environment through processes that affect cell proliferation but that are not specific to behavioral change. For example, the environment has nonspecific influences on cell proliferation all over the body via its effect on body temperature and growth rate. In addition, some fish species also have an unusual capacity for sex change and somatic regeneration, and both of these processes likely involve widespread changes in cell proliferation. Thus, in evaluating the possible behavioral role of adult brain cell proliferation, it is important to distinguish regionally specific responses in behaviorally relevant brain nuclei from global proliferative changes across the whole brain or body. In this review, I first highlight how fish differ from other vertebrates, particularly birds and mammals, in ways that have a bearing on the interpretation of brain plasticity. I then summarize the known effects of the physical and social environment, sex change, and predators on brain cell proliferation and neurogenesis, with a particular emphasis on whether the effects are regionally specific. Finally, I review evidence that environmentally induced changes in brain cell proliferation and neurogenesis in fish are mediated by hormones and play a role in behavioral responses to the environment.
Collapse
|
20
|
Abstract
Teleost fish have a remarkable neurogenic and regenerative capacity in the adult throughout the rostrocaudal axis of the brain. The distribution of proliferation zones shows a remarkable conservation, even in distantly related teleost species, suggesting a common teleost ground plan of proliferation zones. There are different progenitor populations in the neurogenic niches-progenitors positive for radial glial markers (dorsal telencephalon, hypothalamus) and progenitors with neuroepithelial-like characteristics (ventral telencephalon, optic tectum, cerebellum). Definition of these progenitors has allowed studying their role in normal growth of the adult brain, but also when challenged following a lesion. From these studies, important roles have emerged for intrinsic mechanisms and extrinsic signals controlling the activation of adult neurogenesis that enable regeneration of the adult brain to occur, opening up new perspectives on rekindling regeneration also in the context of the mammalian brain.
Collapse
Affiliation(s)
- Julia Ganz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, Oregon 97403
| | - Michael Brand
- Biotechnology Center, and DFG-Research Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
21
|
Edmunds NB, McCann KS, Laberge F. Food Web Structure Shapes the Morphology of Teleost Fish Brains. BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:128-38. [PMID: 27216606 DOI: 10.1159/000445973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/05/2016] [Indexed: 11/19/2022]
Abstract
Previous work showed that teleost fish brain size correlates with the flexible exploitation of habitats and predation abilities in an aquatic food web. Since it is unclear how regional brain changes contribute to these relationships, we quantitatively examined the effects of common food web attributes on the size of five brain regions in teleost fish at both within-species (plasticity or natural variation) and between-species (evolution) scales. Our results indicate that brain morphology is influenced by habitat use and trophic position, but not by the degree of littoral-pelagic habitat coupling, despite the fact that the total brain size was previously shown to increase with habitat coupling in Lake Huron. Intriguingly, the results revealed two potential evolutionary trade-offs: (i) relative olfactory bulb size increased, while relative optic tectum size decreased, across a trophic position gradient, and (ii) the telencephalon was relatively larger in fish using more littoral-based carbon, while the cerebellum was relatively larger in fish using more pelagic-based carbon. Additionally, evidence for a within-species effect on the telencephalon was found, where it increased in size with trophic position. Collectively, these results suggest that food web structure has fundamentally contributed to the shaping of teleost brain morphology.
Collapse
|
22
|
Dunlap KD, Tran A, Ragazzi MA, Krahe R, Salazar VL. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis. Proc Biol Sci 2016; 283:20152113. [PMID: 26842566 PMCID: PMC4760157 DOI: 10.1098/rspb.2015.2113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/08/2016] [Indexed: 11/12/2022] Open
Abstract
Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA
| | - Alex Tran
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | | | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Vielka L Salazar
- Department of Biology, Cape Breton University, Sydney, Nova Scotia, Canada B1P 6L2
| |
Collapse
|
23
|
Jalabert C, Quintana L, Pessina P, Silva A. Extra-gonadal steroids modulate non-breeding territorial aggression in weakly electric fish. Horm Behav 2015; 72:60-7. [PMID: 25989595 DOI: 10.1016/j.yhbeh.2015.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/03/2023]
Abstract
The neuroendocrine control of intraspecific aggression is a matter of current debate. Although aggression in a reproductive context has been associated with high levels of circulating androgens in a broad range of species, it has also been shown to occur during the non-breeding season when gonads are regressed and plasma steroid hormone levels are low. In mammals and birds the aromatization of androgens into estrogens plays a key role in the regulation of aggression in both the breeding and non-breeding seasons. This is the first study in a teleost fish to explore the role of steroids in the modulation of non-breeding aggression. Gymnotus omarorum is a highly aggressive teleost fish that exhibits aggression all year-round. We analyzed male-male non-breeding agonistic behavior, compared circulating 11-Ketotestosterone (11-KT) levels between dominants and isolated males, assessed the regulatory role of aromatization of androgens into estrogens, and evaluated the gonads as a source of these sex steroids. We found that high levels of aggression occurred in the non-breeding season despite low plasma 11-KT levels, and that there was no difference in 11-KT levels between dominant and isolated males. We demonstrated that acute aromatase inhibition decreased aggression, distorted contest dynamics, and affected expected outcome. We also found that castrated individuals displayed aggressive behavior indistinguishable from non-castrated males. Our results show, for the first time in teleost fish, that territorial aggression of G. omarorum during the non-breeding season depends on a non-gonadal estrogenic pathway.
Collapse
Affiliation(s)
- Cecilia Jalabert
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Laura Quintana
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Paula Pessina
- Laboratorio de Técnicas Nucleares, Facultad de Veterinaria, Universidad de la Republica, Montevideo 11600, Uruguay
| | - Ana Silva
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay; Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la Republica, Montevideo 11400, Uruguay.
| |
Collapse
|
24
|
Abstract
Social isolation has been recognized as a major risk factor for morbidity and mortality in humans for more than a quarter century. The brain is the key organ of social connections and processes, however, and the same objective social relationship can be experienced as caring and protective or as exploitive and isolating. We review evidence that the perception of social isolation (i.e., loneliness) impacts brain and behavior and is a risk factor for broad-based morbidity and mortality. However, the causal role of loneliness on neural mechanisms and mortality is difficult to test conclusively in humans. Mechanistic animal studies provide a lens through which to evaluate the neurological effects of a member of a social species living chronically on the social perimeter. Experimental studies show that social isolation produces significant changes in brain structures and processes in adult social animals. These effects are not uniform across the brain or across species but instead are most evident in brain regions that reflect differences in the functional demands of solitary versus social living for a particular species. The human and animal literatures have developed independently, however, and significant gaps also exist. The current review underscores the importance of integrating human and animal research to delineate the mechanisms through which social relationships impact the brain, health, and well-being.
Collapse
Affiliation(s)
- Stephanie Cacioppo
- High Performance Electrical NeuroImaging (HPEN) Laboratory of the Center for Cognitive and Social Neuroscience, and Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| | - John P Capitanio
- California National Primate Research Center and Department of Psychology, University of California-Davis
| | - John T Cacioppo
- High Performance Electrical NeuroImaging (HPEN) Laboratory of the Center for Cognitive and Social Neuroscience, and Department of Psychiatry and Behavioral Neuroscience, University of Chicago
| |
Collapse
|
25
|
Olivera-Pasilio V, Peterson DA, Castelló ME. Spatial distribution and cellular composition of adult brain proliferative zones in the teleost, Gymnotus omarorum. Front Neuroanat 2014; 8:88. [PMID: 25249943 PMCID: PMC4157608 DOI: 10.3389/fnana.2014.00088] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022] Open
Abstract
Proliferation of stem/progenitor cells during development provides for the generation of mature cell types in the CNS. While adult brain proliferation is highly restricted in the mammals, it is widespread in teleosts. The extent of adult neural proliferation in the weakly electric fish, Gymnotus omarorum has not yet been described. To address this, we used double thymidine analog pulse-chase labeling of proliferating cells to identify brain proliferation zones, characterize their cellular composition, and analyze the fate of newborn cells in adult G. omarorum. Short thymidine analog chase periods revealed the ubiquitous distribution of adult brain proliferation, similar to other teleosts, particularly Apteronotus leptorhynchus. Proliferating cells were abundant at the ventricular-subventricular lining of the ventricular-cisternal system, adjacent to the telencephalic subpallium, the diencephalic preoptic region and hypothalamus, and the mesencephalic tectum opticum and torus semicircularis. Extraventricular proliferation zones, located distant from the ventricular-cisternal system surface, were found in all divisions of the rombencephalic cerebellum. We also report a new adult proliferation zone at the caudal-lateral border of the electrosensory lateral line lobe. All proliferation zones showed a heterogeneous cellular composition. The use of short (24 h) and long (30 day) chase periods revealed abundant fast cycling cells (potentially intermediate amplifiers), sparse slow cycling (potentially stem) cells, cells that appear to have entered a quiescent state, and cells that might correspond to migrating newborn neural cells. Their abundance and migration distance differed among proliferation zones: greater numbers and longer range and/or pace of migrating cells were associated with subpallial and cerebellar proliferation zones.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| | - Daniel A Peterson
- Neuroscience, Center for Stem Cell and Regenerative Medicine, Rosalind Franklin University of Medicine and Science North Chicago, IL, USA
| | - María E Castelló
- Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable Montevideo, Uruguay
| |
Collapse
|
26
|
Jonsson B, Jonsson N. Early environment influences later performance in fishes. JOURNAL OF FISH BIOLOGY 2014; 85:151-88. [PMID: 24961386 DOI: 10.1111/jfb.12432] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/28/2014] [Indexed: 05/19/2023]
Abstract
Conditions fish encounter during embryogenesis and early life history can leave lasting effects not only on morphology, but also on growth rate, life-history and behavioural traits. The ecology of offspring can be affected by conditions experienced by their parents and mother in particular. This review summarizes such early impacts and their ecological influences for a variety of teleost species, but with special reference to salmonids. Growth and adult body size, sex ratio, egg size, lifespan and tendency to migrate can all be affected by early influences. Mechanisms behind such phenotypically plastic impacts are not well known, but epigenetic change appears to be one central mechanism. The thermal regime during development and incubation is particularly important, but also early food consumption and intraspecific density can all be responsible for later life-history variation. For behavioural traits, early experiences with effects on brain, sensory development and cognition appear essential. This may also influence boldness and other social behaviours such as mate choice. At the end of the review, several issues and questions for future studies are given.
Collapse
Affiliation(s)
- B Jonsson
- Norwegian Institute for Nature Research, Gaustadalléen 21, N-0349 Oslo, Norway
| | | |
Collapse
|
27
|
Dunlap KD, Chung M, Castellano JF. Influence of long-term social interaction on chirping behavior, steroid levels and neurogenesis in weakly electric fish. ACTA ACUST UNITED AC 2014; 216:2434-41. [PMID: 23761468 DOI: 10.1242/jeb.082875] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Social interactions dramatically affect the brain and behavior of animals. Studies in birds and mammals indicate that socially induced changes in adult neurogenesis participate in the regulation of social behavior, but little is known about this relationship in fish. Here, we review studies in electric fish (Apteronotus leptorhychus) that link social stimulation, changes in electrocommunication behavior and adult neurogenesis in brain regions associated with electrocommunication. Compared with isolated fish, fish living in pairs have greater production of chirps, an electrocommunication signal, during dyadic interactions and in response to standardized artificial social stimuli. Social interaction also promotes neurogenesis in the periventricular zone, which contributes born cells to the prepacemaker nucleus, the brain region that regulates chirping. Both long-term chirp rate and periventricular cell addition depend on the signal dynamics (amplitude and waveform variation), modulations (chirps) and novelty of the stimuli from the partner fish. Socially elevated cortisol levels and cortisol binding to glucocorticoid receptors mediate, at least in part, the effect of social interaction on chirping behavior and brain cell addition. In a closely related electric fish (Brachyhypopomus gauderio), social interaction enhances cell proliferation specifically in brain regions for electrocommunication and only during the breeding season, when social signaling is most elaborate. Together, these studies demonstrate a consistent correlation between brain cell addition and environmentally regulated chirping behavior across many social and steroidal treatments and suggest a causal relationship.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA.
| | | | | |
Collapse
|
28
|
Maine AR, Powers SD, Lutterschmidt DI. Seasonal Variation in Cell Proliferation and Cell Migration in the Brain of Adult Red-Sided Garter Snakes(Thamnophis sirtalis parietalis). BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:181-96. [DOI: 10.1159/000364778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022]
|
29
|
Maruska KP, Carpenter RE, Fernald RD. Characterization of cell proliferation throughout the brain of the African cichlid fish Astatotilapia burtoni and its regulation by social status. J Comp Neurol 2013; 520:3471-91. [PMID: 22431175 DOI: 10.1002/cne.23100] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
New cells are added in the brains of all adult vertebrates, but fishes have some of the greatest potential for neurogenesis and gliogenesis among all taxa, partly due to their indeterminate growth. Little is known, however, about how social interactions influence cell proliferation in the brain of these fishes that comprise the largest group of vertebrates. We used 5-bromo-2'-deoxyuridine (BrdU) to identify and localize proliferation zones in the telencephalon, diencephalon, mesencephalon, and rhombencephalon that were primarily associated with ventricular surfaces in the brain of the African cichlid fish Astatotilapia burtoni. Cell migration was evident in some regions by 1 day post injection, and many newborn cells coexpressed the neuronal marker HuC/D at 30 days, suggesting they had differentiated into neurons. To test the hypothesis that social status and perception of an opportunity to rise in rank influenced cell proliferation, we compared numbers of BrdU-labeled cells in multiple brain nuclei among fish of different social status. Socially suppressed subordinate males had the lowest numbers of proliferating cells in all brain regions examined, but males that were given an opportunity to rise in status had higher cell proliferation rates within 1 day, suggesting rapid upregulation of brain mitotic activity associated with this social transition. Furthermore, socially isolated dominant males had similar numbers of BrdU-labeled cells compared with dominant males that were housed in a socially rich environment, suggesting that isolation has little effect on proliferation and that reduced proliferation in subordinates is a result of the social subordination. These results suggest that A. burtoni will be a useful model to analyze the mechanisms of socially induced neurogenesis in vertebrates.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biology, Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
30
|
Sørensen C, Johansen IB, Øverli Ø. Neural plasticity and stress coping in teleost fishes. Gen Comp Endocrinol 2013; 181:25-34. [PMID: 23274407 DOI: 10.1016/j.ygcen.2012.12.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/28/2012] [Accepted: 12/03/2012] [Indexed: 12/25/2022]
Abstract
Physiological and behavioural responses to environmental change are individually variable traits, which manifest phenotypically and are subject to natural selection as correlated trait-clusters (coping styles, behavioural syndromes, or personality traits). Comparative research has revealed a range of neuroendocrine-behavioural associations which are conserved throughout the vertebrate subphylum. Regulatory mechanisms universally mediate a switch between proactive (e.g. active/aggressive) and reactive (e.g. conservation/withdrawal) behaviour in response to unpredictable and uncontrollable events. Thresholds for switching from active coping to behavioural inhibition are individually variable, and depend on experience and genetic factors. Such factors affect physiological stress responses as well as perception, learning, and memory. Here we review the role of an important contributor to neural processing, the set of biochemical, molecular, and structural processes collectively referred to as neural plasticity. We will concentrate on work in teleost fishes, while also elucidating conserved aspects. In fishes, environmental and physiological control of brain cell proliferation and neurogenesis has received recent attention. This work has revealed that the expression of genes involved in CNS plasticity is affected by heritable variation in stress coping style, and is also differentially affected by short- and long-term stress. Chronic stress experienced by subordinate fish in social hierarchies leads to a marked suppression of brain cell proliferation. Interestingly, typically routine dependent and inflexible behaviour in proactive individuals is also associated with low transcription of neurogenesis related genes. The potential for these findings to illuminate stress-related neurobiological disorders in other vertebrates is also discussed.
Collapse
Affiliation(s)
- Christina Sørensen
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, N-0316 Oslo, Norway
| | | | | |
Collapse
|
31
|
Ebbesson LOE, Braithwaite VA. Environmental effects on fish neural plasticity and cognition. JOURNAL OF FISH BIOLOGY 2012; 81:2151-2174. [PMID: 23252732 DOI: 10.1111/j.1095-8649.2012.03486.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Most fishes experiencing challenging environments are able to adjust and adapt their physiology and behaviour to help them cope more effectively. Much of this flexibility is supported and influenced by cognition and neural plasticity. The understanding of fish cognition and the role played by different regions of the brain has improved significantly in recent years. Techniques such as lesioning, tract tracing and quantifying changes in gene expression help in mapping specialized brain areas. It is now recognized that the fish brain remains plastic throughout a fish's life and that it continues to be sensitive to environmental challenges. The early development of fish brains is shaped by experiences with the environment and this can promote positive and negative effects on both neural plasticity and cognitive ability. This review focuses on what is known about the interactions between the environment, the telencephalon and cognition. Examples are used from a diverse array of fish species, but there could be a lot to be gained by focusing research on neural plasticity and cognition in fishes for which there is already a wealth of knowledge relating to their physiology, behaviour and natural history, e.g. the Salmonidae.
Collapse
Affiliation(s)
- L O E Ebbesson
- Uni Research AS, Thormøhlensgate 49B, 5006 Bergen, Norway.
| | | |
Collapse
|
32
|
Dunlap KD, Chung M. Social novelty enhances brain cell proliferation, cell survival, and chirp production in an electric fish, Apteronotus leptorhynchus. Dev Neurobiol 2012; 73:324-32. [PMID: 23076841 DOI: 10.1002/dneu.22063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022]
Abstract
For many animals, enriched environments and social interaction promote adult neurogenesis. However, in some cases, the effect is transient, and long-term environmental stimuli have little benefit for neurogenesis. In electric fish, Apteronotus leptorhynchus, fish housed in pairs for 7 days show higher density of newborn brain cells (cell addition) than isolated fish, but fish paired for 14 days have rates of cell addition similar to isolated controls. We examined whether introduction of social novelty can sustain elevated levels of cell addition and prevent long-term habituation to social interaction. We also monitored electrocommunication signals ("chirps") as a measure of the behavioral response to social novelty. We paired fish for 14 days with one continuous partner (no social novelty), two sequential partners changed after 7 days (low novelty) or seven sequential partners changed every 2 days (high novelty). On Day 11, we injected fish with BrdU, sacrificed fish 3 days later and quantified BrdU labeling in the diencephalic periventricular zone. Fish exposed to no novelty had BrdU labeling similar to isolated fish. Fish with low novelty showed small increases in BrdU labeling and those with high novelty had much greater BrdU labeling. Similarly, chirp rates were greater in fish with low novelty than with no novelty and greatest yet in fish with high novelty. By varying the timing of novelty relative to BrdU injection, we showed that social novelty promoted both proliferation and survival of newborn cells. These results indicated that brain cell proliferation and survival is influenced more by social change than simply the presence of social stimuli.
Collapse
Affiliation(s)
- Kent D Dunlap
- Department of Biology, Trinity College, Hartford, Connecticut 06106, USA.
| | | |
Collapse
|
33
|
Almli LM, Wilczynski W. Socially modulated cell proliferation is independent of gonadal steroid hormones in the brain of the adult green treefrog (Hyla cinerea). BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:170-80. [PMID: 22269468 DOI: 10.1159/000335037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 07/21/2011] [Indexed: 12/22/2022]
Abstract
Gonadal steroid hormones have been shown to influence adult neurogenesis in addition to their well-defined role in regulating social behavior. Adult neurogenesis consists of several processes including cell proliferation, which can be studied via 5-bromo-2'-deoxyuridine (BrdU) labeling. In a previous study we found that social stimulation altered both cell proliferation and levels of circulating gonadal steroids, leaving the issue of cause/effect unclear. In this study, we sought to determine whether socially modulated BrdU-labeling depends on gonadal hormone changes. We investigated this using a gonadectomy-implant paradigm and by exposing male and female green treefrogs (Hyla cinerea) to their conspecific chorus or control stimuli (i.e. random tones). Our results indicate that socially modulated cell proliferation occurred independently of gonadal hormone levels; furthermore, neither androgens in males nor estrogen in females increased cell proliferation in the preoptic area (POA) and infundibular hypothalamus, brain regions involved in endocrine regulation and acoustic communication. In fact, elevated estrogen levels decreased cell proliferation in those brain regions in the implanted female. In male frogs, evoked calling behavior was positively correlated with BrdU-labeling in the POA; however, statistical analysis showed that this behavior did not mediate socially induced cell proliferation. These results show that the social modulation of cell proliferation can occur without gonadal hormone involvement in either male or female adult anuran amphibians, and confirms that it is independent of a behavioral response in males.
Collapse
Affiliation(s)
- Lynn M Almli
- Institute for Neuroscience, The University of Texas at Austin, Austin, Tex., USA
| | | |
Collapse
|
34
|
Neural plasticity is affected by stress and heritable variation in stress coping style. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:161-71. [PMID: 22285148 DOI: 10.1016/j.cbd.2012.01.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/03/2012] [Accepted: 01/04/2012] [Indexed: 02/07/2023]
Abstract
Here we use a comparative model to investigate how behavioral and physiological traits correlate with neural plasticity. Selection for divergent post-stress cortisol levels in rainbow trout (Oncorhynchus mykiss) has yielded low- (LR) and high responsive (HR) lines. Recent reports show low behavioral flexibility in LR compared to HR fish and we hypothesize that this divergence is caused by differences in neural plasticity. Genes involved in neural plasticity and neurogenesis were investigated by quantitative PCR in brains of LR and HR fish at baseline conditions and in response to two different stress paradigms: short-term confinement (STC) and long-term social (LTS) stress. Expression of proliferating cell nuclear antigen (PCNA), neurogenic differentiation factor (NeuroD) and doublecortin (DCX) was generally higher in HR compared to LR fish. STC stress led to increased expression of PCNA and brain-derived neurotrophic factor (BDNF) in both lines, whereas LTS stress generally suppressed PCNA and NeuroD expression while leaving BDNF expression unaltered. These results indicate that the transcription of neuroplasticity-related genes is associated with variation in coping style, while also being affected by STC - and LTS stress in a biphasic manner. A higher degree of neural plasticity in HR fish may provide the substrate for enhanced behavioral flexibility.
Collapse
|
35
|
Hager Y. BRAIN CELLS BORN WHEN ELECTRIC FISH BREED. J Exp Biol 2011. [DOI: 10.1242/jeb.056416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|