1
|
Zhao R, Zhang X, Geng Y, Lu D, Wang Y, Xie H, Zhang X, Xu S, Cao Y. SPRY1 regulates macrophage M1 polarization in skin aging and melanoma prognosis. Transl Oncol 2025; 54:102331. [PMID: 40023001 PMCID: PMC11915026 DOI: 10.1016/j.tranon.2025.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/28/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Skin aging is a complex, multifactorial process involving cellular damage, inflammation, and increased susceptibility to diseases. Despite its importance, the role of SPRY1 in skin aging remains poorly understood. This study aims to investigate the function of SPRY1 in skin aging, particularly its impact on macrophage M1 polarization, and explore its potential as a therapeutic target for mitigating skin aging and melanoma. METHODS Bioinformatics analyses were performed using datasets from the GTEx and GEO databases, alongside in vitro cellular experiments. These included Weighted Gene Co-expression Network Analysis (WGCNA), single-cell sequencing, and various cellular assays in RAW264.7 murine monocyte/macrophage leukemia cells and NIH/3T3 mouse skin fibroblasts. The assays comprised gene transfection, Cell Counting Kit-8 (CCK-8) assays, quantitative real-time PCR (qRT-PCR), and measurements of reactive oxygen species (ROS) and superoxide dismutase (SOD) activity. RESULTS SPRY1 was identified as a key gene within modules linked to skin aging. Single-cell sequencing revealed its enrichment in macrophages and keratinocytes. Knockdown of SPRY1 in RAW264.7 cells resulted in a shift from M1 to M2 macrophage polarization, reduced oxidative stress, and decreased expression of inflammatory markers. In NIH/3T3 cells, SPRY1 knockdown reduced cell viability and lowered the expression of inflammatory genes. Additionally, SPRY1 expression was downregulated in melanoma, and its reduced levels were associated with poorer survival outcomes. CONCLUSIONS SPRY1 accelerates skin aging by promoting macrophage M1 polarization and may serve as a promising therapeutic target. Future research should focus on in vivo validation and further exploration of its regulatory networks to develop novel treatments.
Collapse
Affiliation(s)
- Rongxin Zhao
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China
| | - Xun Zhang
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 XianXia Road, Shanghai 200336, China
| | - Yingnan Geng
- Department of Burns and Plastic Surgery, Second Affiliated Hospital of Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Dan Lu
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China
| | - Yuqing Wang
- Department of Dermatology, Xuzhou Huamei Cosmetology Hospital, Jiangsu, West Huaihai Road, Quanshan District, Xuzhou, Jiangsu, China
| | - Han Xie
- The Fifth People's Hospital of Shanghai, Fudan University, No. 128, Ruili Road, Minhang District, Shanghai, China
| | - Xiaofei Zhang
- Shanghai Xinmei Medical Beauty Outpatient Department, 202A, No.285, Jianguo West Road, Xuhui District, Shanghai, China.
| | - Shunming Xu
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China.
| | - Yanyun Cao
- Department of Dermatology, Pudong New Area People's Hospital, 490 Chuanhuang South Road, Pudong New Area, Shanghai, China.
| |
Collapse
|
2
|
Zhang BK, Gines L. Analysis of Cancer-Resisting Evolutionary Adaptations in Wild Animals and Applications for Human Oncology. J Mol Evol 2024; 92:685-694. [PMID: 39256250 DOI: 10.1007/s00239-024-10204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
This literature review is to present a new direction in developing better treatment or preventive measures. The larger the body of an organism, the more numerous the cells, which theoretically lead to a higher risk of cancer. However, observational studies suggest the lack of correlation between body size and cancer risk, which is known as Peto's paradox. The corollary of Peto's paradox is that large organisms must be cancer-resistant. Further investigation of the anti-cancer mechanisms in each species could be potentially rewarding, and how the anti-cancer mechanisms found in wild animals can help influence and develop more effective cancer treatment in humans is the main focus of this literature review. Due to a lack of research and understanding of the exact molecular mechanisms of the researched species, only a few (Elephants and rodents) that have been extensively researched have made substantive contributions to human oncology. A new research direction is to investigate the positively selective genes that are related to cancer resistance and see if homologous genes are presented in humans. Despite the great obstacle of applying anti-cancer mechanisms to the human body from phylogenetically distant species, this research direction of gaining insights through investigating cancer-resisting evolutionary adaptations in wild animals has great potential in human oncology research.
Collapse
Affiliation(s)
- Bokai K Zhang
- Brigham Young University, Brigham Young University, Provo, UT, 84602, USA.
| | - Leoned Gines
- Shoreline Community College, 16101 Greenwood Avenue North, Shoreline, WA, 98133-5696, USA
| |
Collapse
|
3
|
Yusuf AO, Danborno B, Bauchi ZM, Sani D, Ndams IS. Aging impaired locomotor and biochemical activities in Drosophila melanogaster Oregon R (fruit fly) model. Exp Gerontol 2024; 197:112593. [PMID: 39326807 DOI: 10.1016/j.exger.2024.112593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Despite advancements in healthcare and increased lifespan, aging populations face numerous challenges, including declining cognitive function, increased susceptibility to chronic diseases, and reduced quality of life. This study investigated Aging impaired Locomotors and Biochemical Activities in Drosophila melanogaster Oregon R (Fruit Fly) Model with the aim to elucidate the mechanism involved. Adult wild-type Drosophila melanogaster Oregon R was used for this study. Survival assay, antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH) and malondialdehyde (MDA)) and total protein (TP) concentration were investigated. Data obtained were analyzed using R studio and GraphPad Prism. The result indicated low survival in male flies compared to female flies and the highest survival rate was observed with both flies reared together in the same vial. There was impaired locomotor activity in the flies with age. There was a significant decrease in the level of SOD, CAT, GSH and TP with age with a corresponding significant increase in the level of MDA. This finding demonstrated that locomotor activity decreased with aging with decrease performance index and also established the involvement of oxidation through the activities of antioxidant enzymes in aging; decreased (p < 0.05) concentration of antioxidant enzymes and increased (p < 0.05) lipid peroxidation. Also, it demonstrated that female species had longer lifespan compared to males while co-habiting of male and female species extended lifespan.
Collapse
Affiliation(s)
- Abdullateef Onoruoiza Yusuf
- Department of Anatomy, Faculty of Basic Medical Sciences, Prince Abubakar Audu University, Anyigba, Kogi State, Nigeria.
| | - Barnabas Danborno
- Department of Human Anatomy, Faculty of Basic Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Zainab M Bauchi
- Department of Human Anatomy, Faculty of Basic Medical Sciences, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| | - Dahiru Sani
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Iliya Shehu Ndams
- Department of Zoology, Faculty of Life Sciences, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
4
|
Kuchenmüller LL, Hoots EC, Clark TD. Hyperoxia disproportionally benefits the aerobic performance of large fish at elevated temperature. J Exp Biol 2024; 227:jeb247887. [PMID: 39234663 DOI: 10.1242/jeb.247887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Increasing evidence shows that larger fish are more vulnerable to acute warming than smaller individuals of the same species. This size-dependency of thermal tolerance has been ascribed to differences in aerobic performance, largely owing to a decline in oxygen supply relative to demand. To shed light on these ideas, we examined metabolic allometry in 130 rainbow trout ranging from 12 to 358 g under control conditions (17°C) and in response to acute heating (to 25°C), with and without supplemental oxygen (100% versus 150% air saturation). Under normoxia, high temperature caused an average 17% reduction in aerobic scope compared with 17°C. Aerobic performance disproportionally deteriorated in bigger fish as the scaling exponent (b) for aerobic scope declined from b=0.87 at 17°C to b=0.74 at 25°C. Hyperoxia increased maximum metabolic rate and aerobic scope at both temperatures and disproportionally benefited larger fish at 25°C as the scaling exponent for aerobic scope was reestablished to the same level as at 17°C (b=0.86). This suggests that hyperoxia may provide metabolic refuge for larger individuals, allowing them to sustain aerobic activities when facing acute warming. Notably, the elevated aerobic capacity afforded by hyperoxia did not appear to improve thermal resilience, as mortality in 25°C hyperoxia (13.8%, n=4) was similar to that in normoxia (12.1%, n=4), although we caution that this topic warrants more targeted research. We highlight the need for mechanistic investigations of the oxygen transport system to determine the consequences of differential metabolic scaling across temperature in a climate warming context.
Collapse
Affiliation(s)
- Luis L Kuchenmüller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Elizabeth C Hoots
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
5
|
McMullen E, Strych L, Chodakova L, Krebs A, Dolezal T. JAK/STAT mediated insulin resistance in muscles is essential for effective immune response. Cell Commun Signal 2024; 22:203. [PMID: 38566182 PMCID: PMC10986132 DOI: 10.1186/s12964-024-01575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The metabolically demanding nature of immune response requires nutrients to be preferentially directed towards the immune system at the expense of peripheral tissues. We study the mechanisms by which this metabolic reprograming occurs using the parasitoid infection of Drosophila larvae. To overcome such an immune challenge hemocytes differentiate into lamellocytes, which encapsulate and melanize the parasitoid egg. Hemocytes acquire the energy for this process by expressing JAK/STAT ligands upd2 and upd3, which activates JAK/STAT signaling in muscles and redirects carbohydrates away from muscles in favor of immune cells. METHODS Immune response of Drosophila larvae was induced by parasitoid wasp infestation. Carbohydrate levels, larval locomotion and gene expression of key proteins were compared between control and infected animals. Efficacy of lamellocyte production and resistance to wasp infection was observed for RNAi and mutant animals. RESULTS Absence of upd/JAK/STAT signaling leads to an impaired immune response and increased mortality. We demonstrate how JAK/STAT signaling in muscles leads to suppression of insulin signaling through activation of ImpL2, the inhibitor of Drosophila insulin like peptides. CONCLUSIONS Our findings reveal cross-talk between immune cells and muscles mediates a metabolic shift, redirecting carbohydrates towards immune cells. We emphasize the crucial function of muscles during immune response and show the benefits of insulin resistance as an adaptive mechanism that is necessary for survival.
Collapse
Affiliation(s)
- Ellen McMullen
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia.
| | - Lukas Strych
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Lenka Chodakova
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Amber Krebs
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Tomas Dolezal
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia.
| |
Collapse
|
6
|
Lagarde H, Lallias D, Patrice P, Dehaullon A, Prchal M, François Y, D'Ambrosio J, Segret E, Acin-Perez A, Cachelou F, Haffray P, Dupont-Nivet M, Phocas F. Genetic architecture of acute hyperthermia resistance in juvenile rainbow trout (Oncorhynchus mykiss) and genetic correlations with production traits. Genet Sel Evol 2023; 55:39. [PMID: 37308823 DOI: 10.1186/s12711-023-00811-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Selective breeding is a promising solution to reduce the vulnerability of fish farms to heat waves, which are predicted to increase in intensity and frequency. However, limited information about the genetic architecture of acute hyperthermia resistance in fish is available. Two batches of sibs from a rainbow trout commercial line were produced: the first (N = 1382) was phenotyped for acute hyperthermia resistance at nine months of age and the second (N = 1506) was phenotyped for main production traits (growth, body length, muscle fat content and carcass yield) at 20 months of age. Fish were genotyped on a 57 K single nucleotide polymorphism (SNP) array and their genotypes were imputed to high-density based on the parent's genotypes from a 665 K SNP array. RESULTS The heritability estimate of resistance to acute hyperthermia was 0.29 ± 0.05, confirming the potential of selective breeding for this trait. Since genetic correlations of acute hyperthermia resistance with the main production traits near harvest age were all close to zero, selecting for acute hyperthermia resistance should not impact the main production traits, and vice-versa. A genome-wide association study revealed that resistance to acute hyperthermia is a highly polygenic trait, with six quantitative trait loci (QTL) detected, but explaining less than 5% of the genetic variance. Two of these QTL, including the most significant one, may explain differences in acute hyperthermia resistance across INRAE isogenic lines of rainbow trout. Differences in mean acute hyperthermia resistance phenotypes between homozygotes at the most significant SNP was 69% of the phenotypic standard deviation, showing promising potential for marker-assisted selection. We identified 89 candidate genes within the QTL regions, among which the most convincing functional candidates are dnajc7, hsp70b, nkiras2, cdk12, phb, fkbp10, ddx5, cygb1, enpp7, pdhx and acly. CONCLUSIONS This study provides valuable insight into the genetic architecture of acute hyperthermia resistance in juvenile rainbow trout. We show that the selection potential for this trait is substantial and selection for this trait should not be too detrimental to improvement of other traits of interest. Identified functional candidate genes provide new knowledge on the physiological mechanisms involved in acute hyperthermia resistance, such as protein chaperoning, oxidative stress response, homeostasis maintenance and cell survival.
Collapse
Affiliation(s)
- Henri Lagarde
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Delphine Lallias
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Pierre Patrice
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Audrey Dehaullon
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Martin Prchal
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Yoannah François
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Jonathan D'Ambrosio
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | - Emilien Segret
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | - Ana Acin-Perez
- Viviers de Sarrance, Pisciculture Labedan, 64490, Sarrance, France
| | | | - Pierrick Haffray
- SYSAAF, French Poultry, Aquaculture and Insect Breeders Association, 35042, Rennes, France
| | | | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
7
|
Targeting the "hallmarks of aging" to slow aging and treat age-related disease: fact or fiction? Mol Psychiatry 2023; 28:242-255. [PMID: 35840801 PMCID: PMC9812785 DOI: 10.1038/s41380-022-01680-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 01/09/2023]
Abstract
Aging is a major risk factor for a number of chronic diseases, including neurodegenerative and cerebrovascular disorders. Aging processes have therefore been discussed as potential targets for the development of novel and broadly effective preventatives or therapeutics for age-related diseases, including those affecting the brain. Mechanisms thought to contribute to aging have been summarized under the term the "hallmarks of aging" and include a loss of proteostasis, mitochondrial dysfunction, altered nutrient sensing, telomere attrition, genomic instability, cellular senescence, stem cell exhaustion, epigenetic alterations and altered intercellular communication. We here examine key claims about the "hallmarks of aging". Our analysis reveals important weaknesses that preclude strong and definitive conclusions concerning a possible role of these processes in shaping organismal aging rate. Significant ambiguity arises from the overreliance on lifespan as a proxy marker for aging, the use of models with unclear relevance for organismal aging, and the use of study designs that do not allow to properly estimate intervention effects on aging rate. We also discuss future research directions that should be taken to clarify if and to what extent putative aging regulators do in fact interact with aging. These include multidimensional analytical frameworks as well as designs that facilitate the proper assessment of intervention effects on aging rate.
Collapse
|
8
|
Merino MM. Azot expression in the Drosophila gut modulates organismal lifespan. Commun Integr Biol 2022; 16:2156735. [PMID: 36606245 PMCID: PMC9809965 DOI: 10.1080/19420889.2022.2156735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell Competition emerged in Drosophila as an unexpected phenomenon, when confronted clones of fit vs unfit cells genetically induced. During the last decade, it has been shown that this mechanism is physiologically active in Drosophila and higher organisms. In Drosophila, Flower (Fwe) eliminates unfit cells during development, regeneration and disease states. Furthermore, studies suggest that Fwe signaling is required to eliminate accumulated unfit cells during adulthood extending Drosophila lifespan. Indeed, ahuizotl (azot) mutants accumulate unfit cells during adulthood and after physical insults in the brain and other epithelial tissues, showing a decrease in organismal lifespan. On the contrary, flies carrying three functional copies of the gene, unfit cell culling seems to be more efficient and show an increase in lifespan. During aging, Azot is required for the elimination of unfit cells, however, the specific organs modulating organismal lifespan by Azot remain unknown. Here we found a potential connection between gut-specific Azot expression and lifespan which may uncover a more widespread organ-specific mechanism modulating organismal survival.
Collapse
Affiliation(s)
- Marisa M. Merino
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland,CONTACT Marisa M. Merino Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Schraverus H, Larondelle Y, Page MM. Beyond the Lab: What We Can Learn about Cancer from Wild and Domestic Animals. Cancers (Basel) 2022; 14:cancers14246177. [PMID: 36551658 PMCID: PMC9776354 DOI: 10.3390/cancers14246177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer research has benefited immensely from the use of animal models. Several genetic tools accessible in rodent models have provided valuable insight into cellular and molecular mechanisms linked to cancer development or metastasis and various lines are available. However, at the same time, it is important to accompany these findings with those from alternative or non-model animals to offer new perspectives into the understanding of tumor development, prevention, and treatment. In this review, we first discuss animals characterized by little or no tumor development. Cancer incidence in small animals, such as the naked mole rat, blind mole rat and bats have been reported as almost negligible and tumor development may be inhibited by increased defense and repair mechanisms, altered cell cycle signaling and reduced rates of cell migration to avoid tumor microenvironments. On the other end of the size spectrum, large animals such as elephants and whales also appear to have low overall cancer rates, possibly due to gene replicates that are involved in apoptosis and therefore can inhibit uncontrolled cell cycle progression. While it is important to determine the mechanisms that lead to cancer protection in these animals, we can also take advantage of other animals that are highly susceptible to cancer, especially those which develop tumors similar to humans, such as carnivores or poultry. The use of such animals does not require the transplantation of malignant cancer cells or use of oncogenic substances as they spontaneously develop tumors of similar presentation and pathophysiology to those found in humans. For example, some tumor suppressor genes are highly conserved between humans and domestic species, and various tumors develop in similar ways or because of a common environment. These animals are therefore of great interest for broadening perspectives and techniques and for gathering information on the tumor mechanisms of certain types of cancer. Here we present a detailed review of alternative and/or non-model vertebrates, that can be used at different levels of cancer research to open new perspectives and fields of action.
Collapse
|
10
|
Zhai J, Li W, Liu X, Wang D, Zhang D, Liu Y, Liang X, Chen Z. Tiny Drosophila intestinal stem cells, big power. Cell Biol Int 2022; 47:3-14. [PMID: 36177490 DOI: 10.1002/cbin.11911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/12/2022]
Abstract
The signaling pathways are highly conserved between Drosophila and mammals concerning intestinal development, regeneration, and disease. The powerful genetic tools of Drosophila make it a valuable and convenient alternative to answer basic biological questions that can not be addressed using mammalian models. In this review, we discuss recent advances in how we use fly midgut to answer the following key questions: (1) How intestine stem cell niches are established; (2) which factors control asymmetric division of stem cells; (3) how intestinal cells interact with environmental factors, such as tissue damage, microbiota, and diet; (4) how to screen aging/cancer-related factors or drugs by fly intestine stem cells.
Collapse
Affiliation(s)
- Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Wanyang Li
- Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Xin Liu
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Di Wang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Dongli Zhang
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yanli Liu
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Xiuwen Liang
- Hulunbuir City People's Hospital, Hulunbuir City, China
| | - Zeliang Chen
- Medical College, Inner Mongolia Minzu University, Tongliao, China.,Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China.,Brucellosis Prevention and Treatment Engineering Research Center of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
11
|
Blasco FR, Taylor EW, Leite CAC, Monteiro DA, Rantin FT, McKenzie DJ. Tolerance of an acute warming challenge declines with body mass in Nile tilapia: evidence of a link to capacity for oxygen uptake. J Exp Biol 2022; 225:276171. [PMID: 35909333 DOI: 10.1242/jeb.244287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
It has been proposed that larger individuals within fish species may be more sensitive to global warming, due to limitations in their capacity to provide oxygen for aerobic metabolic activities. This could affect size distributions of populations in a warmer world but evidence is lacking. In Nile tilapia Oreochromis niloticus (n=18, mass range 21 - 313g), capacity to provide oxygen for aerobic activities (aerobic scope) was independent of mass at an acclimation temperature of 26 °C. Tolerance of acute warming, however, declined significantly with mass when evaluated as the critical temperature for fatigue from aerobic swimming (CTSmax). The CTSmax protocol challenges a fish to meet the oxygen demands of constant aerobic exercise while their demands for basal metabolism are accelerated by incremental warming, culminating in fatigue. CTSmax elicited pronounced increases in oxygen uptake in the tilapia but the maximum rates achieved prior to fatigue declined very significantly with mass. Mass-related variation in CTSmax and maximum oxygen uptake rates were positively correlated, which may indicate a causal relationship. When fish populations are faced with acute thermal stress, larger individuals may become constrained in their ability to perform aerobic activities at lower temperatures than smaller conspecifics. This could affect survival and fitness of larger fish in a future world with more frequent and extreme heatwaves, with consequences for population productivity.
Collapse
Affiliation(s)
- F R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, 14801-903, Araraquara SP, Brazil
| | - E W Taylor
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,School of Biosciences, University of Birmingham, B15 2TT, UK
| | - C A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - F T Rantin
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D J McKenzie
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France
| |
Collapse
|
12
|
Burdina EV, Gruntenko NE. Physiological Aspects of Wolbachia pipientis–Drosophila melanogaster Relationship. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022020016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Golubev D, Zemskaya N, Shevchenko O, Shaposhnikov M, Kukuman D, Patov S, Punegov V, Moskalev A. Honeysuckle extract (Lonicera pallasii L.) exerts antioxidant properties and extends the lifespan and healthspan of Drosophila melanogaster. Biogerontology 2022; 23:215-235. [PMID: 35122571 DOI: 10.1007/s10522-022-09954-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Honeysuckle Lonicera pallasii (Lonicera caerulea L.) is an excellent source of anthocyanins which have a number of health-promoting properties mainly associated with antioxidant and anti-inflammatory activities. Cyanidin-3-O-glucoside (C3G) is one of the most common anthocyanins naturally found in honeysuckle. The goal of the present study was to investigate antioxidant and anti-aging properties of Lonicera pallasii (Lonicera caerulea L.) extract (LE) and C3G using red blood cells (RBC) and Drosophila melanogaster models. LE and C3G treatment at a concentration of 100 μM induced enhancement of median and maximum lifespan up to 8%. LE and C3G supplementation at a concentration of 100 μM increased stress resistance up to 10%. The locomotor activity decreased during LE and C3G treatment in 4 and 6 weeks up to 52% in females. The integrity of the intestinal barrier was increased by 4% after LE treatment. These effects were accompanied by increased expression of Hif1 (pro-longevity gene) in response to C3G treatment and decreased expression of Keap1 (anti-longevity gene) after C3G and LE supplementation. RNA interference-mediated knockdown of Sirt6 completely abolished the positive effect obtained of LE and C3G supplementation in males which indicates that lifespan-extending effect is associated with Sirt6 activation. The experiments on the various in-vitro models (including radical scavenging activity and oxidative hemolysis of RBC demonstrated antioxidant and membrane-protective activities of LE and C3G. The present study indicates that Lonicera extract can prolong the lifespan and improve the healthspan of Drosophila model through biological and antioxidant activities.
Collapse
Affiliation(s)
- Denis Golubev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda Zemskaya
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Oksana Shevchenko
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Mikhail Shaposhnikov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Daria Kukuman
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Sergey Patov
- Institute of Chemistry of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Vasily Punegov
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982
| | - Alexey Moskalev
- Institute of Biology of Komi Scientific Centre of the Ural Branch of the RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
14
|
Endurance exercise training under normal diet conditions activates skeletal muscle protein synthesis and inhibits protein degradation signaling except MuRF1. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-021-00888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Non-canonical Wnt signaling promotes directed migration of intestinal stem cells to sites of injury. Nat Commun 2021; 12:7150. [PMID: 34887411 PMCID: PMC8660829 DOI: 10.1038/s41467-021-27384-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/15/2021] [Indexed: 12/16/2022] Open
Abstract
Tissue regeneration after injury requires coordinated regulation of stem cell activation, division, and daughter cell differentiation, processes that are increasingly well understood in many regenerating tissues. How accurate stem cell positioning and localized integration of new cells into the damaged epithelium are achieved, however, remains unclear. Here, we show that enteroendocrine cells coordinate stem cell migration towards a wound in the Drosophila intestinal epithelium. In response to injury, enteroendocrine cells release the N-terminal domain of the PTK7 orthologue, Otk, which activates non-canonical Wnt signaling in intestinal stem cells, promoting actin-based protrusion formation and stem cell migration towards a wound. We find that this migratory behavior is closely linked to proliferation, and that it is required for efficient tissue repair during injury. Our findings highlight the role of non-canonical Wnt signaling in regeneration of the intestinal epithelium, and identify enteroendocrine cell-released ligands as critical coordinators of intestinal stem cell migration.
Collapse
|
16
|
Omotoso O, Gladyshev VN, Zhou X. Lifespan Extension in Long-Lived Vertebrates Rooted in Ecological Adaptation. Front Cell Dev Biol 2021; 9:704966. [PMID: 34733838 PMCID: PMC8558438 DOI: 10.3389/fcell.2021.704966] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/02/2021] [Indexed: 01/21/2023] Open
Abstract
Contemporary studies on aging and longevity have largely overlooked the role that adaptation plays in lifespan variation across species. Emerging evidence indicates that the genetic signals of extended lifespan may be maintained by natural selection, suggesting that longevity could be a product of organismal adaptation. The mechanisms of adaptation in long-lived animals are believed to account for the modification of physiological function. Here, we first review recent progress in comparative biology of long-lived animals, together with the emergence of adaptive genetic factors that control longevity and disease resistance. We then propose that hitchhiking of adaptive genetic changes is the basis for lifespan changes and suggest ways to test this evolutionary model. As individual adaptive or adaptation-linked mutations/substitutions generate specific forms of longevity effects, the cumulative beneficial effect is largely nonrandom and is indirectly favored by natural selection. We consider this concept in light of other proposed theories of aging and integrate these disparate ideas into an adaptive evolutionary model, highlighting strategies in decoding genetic factors of lifespan control.
Collapse
Affiliation(s)
- Olatunde Omotoso
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Xuming Zhou
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Beijing, China
| |
Collapse
|
17
|
GDF15 and Cardiac Cells: Current Concepts and New Insights. Int J Mol Sci 2021; 22:ijms22168889. [PMID: 34445593 PMCID: PMC8396208 DOI: 10.3390/ijms22168889] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
Growth and differentiation factor 15 (GDF15) belongs to the transforming growth factor-β (TGF-β) superfamily of proteins. Glial-derived neurotrophic factor (GDNF) family receptor α-like (GFRAL) is an endogenous receptor for GDF15 detected selectively in the brain. GDF15 is not normally expressed in the tissue but is prominently induced by “injury”. Serum levels of GDF15 are also increased by aging and in response to cellular stress and mitochondrial dysfunction. It acts as an inflammatory marker and plays a role in the pathogenesis of cardiovascular diseases, metabolic disorders, and neurodegenerative processes. Identified as a new heart-derived endocrine hormone that regulates body growth, GDF15 has a local cardioprotective role, presumably due to its autocrine/paracrine properties: antioxidative, anti-inflammatory, antiapoptotic. GDF15 expression is highly induced in cardiomyocytes after ischemia/reperfusion and in the heart within hours after myocardial infarction (MI). Recent studies show associations between GDF15, inflammation, and cardiac fibrosis during heart failure and MI. However, the reason for this increase in GDF15 production has not been clearly identified. Experimental and clinical studies support the potential use of GDF15 as a novel therapeutic target (1) by modulating metabolic activity and (2) promoting an adaptive angiogenesis and cardiac regenerative process during cardiovascular diseases. In this review, we comment on new aspects of the biology of GDF15 as a cardiac hormone and show that GDF15 may be a predictive biomarker of adverse cardiac events.
Collapse
|
18
|
Kawai M, Jin JP. Mechanisms of Frank-Starling law of the heart and stretch activation in striated muscles may have a common molecular origin. J Muscle Res Cell Motil 2021; 42:355-366. [PMID: 33575955 PMCID: PMC10905364 DOI: 10.1007/s10974-020-09595-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/24/2020] [Indexed: 01/24/2023]
Abstract
Vertebrate cardiac muscle generates progressively larger systolic force when the end diastolic chamber volume is increased, a property called the "Frank-Starling Law", or "length dependent activation (LDA)". In this mechanism a larger force develops when the sarcomere length (SL) increased, and the overlap between thick and thin filament decreases, indicating increased production of force per unit length of the overlap. To account for this phenomenon at the molecular level, we examined several hypotheses: as the muscle length is increased, (1) lattice spacing decreases, (2) Ca2+ sensitivity increases, (3) titin mediated rearrangement of myosin heads to facilitate actomyosin interaction, (4) increased SL activates cross-bridges (CBs) in the super relaxed state, (5) increased series stiffness at longer SL promotes larger elementary force/CB to account for LDA, and (6) stretch activation (SA) observed in insect muscles and LDA in vertebrate muscles may have similar mechanisms. SA is also known as delayed tension or oscillatory work, and universally observed among insect flight muscles, as well as in vertebrate skeletal and cardiac muscles. The sarcomere stiffness observed in relaxed muscles may significantly contributes to the mechanisms of LDA. In vertebrate striated muscles, the sarcomere stiffness is mainly caused by titin, a single filamentary protein spanning from Z-line to M-line and tightly associated with the myosin thick filament. In insect flight muscles, kettin connects Z-line and the thick filament to stabilize the sarcomere structure. In vertebrate cardiac muscles, titin plays a similar role, and may account for LDA and may constitute a molecular mechanism of Frank-Starling response.
Collapse
Affiliation(s)
- Masataka Kawai
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, 1-324 BSB, 51 Newton Rd, Iowa City, IA, 52242, USA.
| | - Jian-Ping Jin
- Departmewnt of Physiology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
19
|
Rai M, Coleman Z, Curley M, Nityanandam A, Platt A, Robles-Murguia M, Jiao J, Finkelstein D, Wang YD, Xu B, Fan Y, Demontis F. Proteasome stress in skeletal muscle mounts a long-range protective response that delays retinal and brain aging. Cell Metab 2021; 33:1137-1154.e9. [PMID: 33773104 PMCID: PMC8172468 DOI: 10.1016/j.cmet.2021.03.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/21/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Neurodegeneration in the central nervous system (CNS) is a defining feature of organismal aging that is influenced by peripheral tissues. Clinical observations indicate that skeletal muscle influences CNS aging, but the underlying muscle-to-brain signaling remains unexplored. In Drosophila, we find that moderate perturbation of the proteasome in skeletal muscle induces compensatory preservation of CNS proteostasis during aging. Such long-range stress signaling depends on muscle-secreted Amyrel amylase. Mimicking stress-induced Amyrel upregulation in muscle reduces age-related accumulation of poly-ubiquitinated proteins in the brain and retina via chaperones. Preservation of proteostasis stems from the disaccharide maltose, which is produced via Amyrel amylase activity. Correspondingly, RNAi for SLC45 maltose transporters reduces expression of Amyrel-induced chaperones and worsens brain proteostasis during aging. Moreover, maltose preserves proteostasis and neuronal activity in human brain organoids challenged by thermal stress. Thus, proteasome stress in skeletal muscle hinders retinal and brain aging by mounting an adaptive response via amylase/maltose.
Collapse
Affiliation(s)
- Mamta Rai
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zane Coleman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michelle Curley
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Stem Cell Core, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anna Platt
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Maricela Robles-Murguia
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jianqin Jiao
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Beisi Xu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
20
|
Dorling JL, Martin CK, Redman LM. Calorie restriction for enhanced longevity: The role of novel dietary strategies in the present obesogenic environment. Ageing Res Rev 2020; 64:101038. [PMID: 32109603 DOI: 10.1016/j.arr.2020.101038] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022]
Abstract
Calorie restriction (CR) is a potent modulator of longevity in multiple species. A growing body of evidence shows that sustained periods of CR without malnutrition improves risk factors involved in the pathophysiology of type 2 diabetes, cardiovascular diseases, cancer, and neurological disorders in humans. Innovative dietary strategies such as intermittent fasting and protein restriction have recently emerged as alternative approaches that improve markers of aging. Some of these newer strategies might provide benefits for healthy aging with little to no CR and therefore, compared to traditional CR, may be easier to follow. Further to providing an update of CR studies in humans, the present narrative review appraises the influence of these contemporary dietary strategies on mechanisms posited to drive CR-induced longevity in humans, including those involving energy metabolism, oxidative damage, inflammation, glucose homeostasis, and functional changes in the neuroendocrine systems. The review also discusses the utilization of these diets for populations in the current obesogenic environment, and comments on whether current research can inform an optimal diet that attenuates aging, can be easily followed, and promises to improve longevity in humans.
Collapse
Affiliation(s)
- James L Dorling
- Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA, 70808, USA
| | - Corby K Martin
- Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA, 70808, USA
| | - Leanne M Redman
- Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA, 70808, USA.
| |
Collapse
|
21
|
Rodriguez-Fernandez IA, Tauc HM, Jasper H. Hallmarks of aging Drosophila intestinal stem cells. Mech Ageing Dev 2020; 190:111285. [DOI: 10.1016/j.mad.2020.111285] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022]
|
22
|
Liang Q, Ma P, Zhang Q, Yin Y, Wang P, Wang S, Zhang Y, Han R, Deng H. A gum Arabic assisted sustainable drug delivery system for adult Drosophila. Biol Open 2020; 9:bio052241. [PMID: 32487516 PMCID: PMC7328006 DOI: 10.1242/bio.052241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/11/2020] [Indexed: 01/26/2023] Open
Abstract
Large-scale compound screening in adult flies is hampered by the lack of continuous drug delivery systems and poor solubility of numerous compounds. Here we found that gum Arabic (Acacia/Senegal gum), a widely used stabilizer, can also emulsify lipophilic compounds and profoundly increase their accessibility to target tissues in Drosophila and mice. We further developed a gum Arabic-based drug delivery system, wherein the drug was ground into gum Arabic and emulsified in liquid food fed to flies by siphoning through a U-shape glass capillary. This system did not affect food intake nor cell viability. Since drugs were continuously delivered by siphoning, minimal compound waste and less frequent food changes make this system ideal for large-scale long-term screenings. In our pilot screening for antitumor drugs in the NCI DTP library, we used a Drosophila model of colorectal cancer and identified two drugs that are especially hydrophobic and were not identified in previous screenings. Our data demonstrated that gum Arabic facilitates drug delivery in animal models and the system is suitable for long-term high-throughput drug screening in Drosophila This system would accelerate drug discovery for chronic and cognitive conditions.
Collapse
Affiliation(s)
- Qiying Liang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
- College of Animal Sciences and Technology, Guangxi University, Nanning, 530004, China
| | - Peng Ma
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Qi Zhang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Youjie Yin
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Ping Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Saifei Wang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Yao Zhang
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Ruolei Han
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| | - Hansong Deng
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 6B, Shixun Building, 1239 Siping Road, Yangpu District, 20092 China
| |
Collapse
|
23
|
Ruzzi LR, Schilman PE, San Martin A, Lew SE, Gelb BD, Pagani MR. The Phosphatase CSW Controls Life Span by Insulin Signaling and Metabolism Throughout Adult Life in Drosophila. Front Genet 2020; 11:364. [PMID: 32457793 PMCID: PMC7221067 DOI: 10.3389/fgene.2020.00364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/25/2020] [Indexed: 11/30/2022] Open
Abstract
Noonan syndrome and related disorders are caused by mutations in genes encoding for proteins of the RAS-ERK1/2 signaling pathway, which affect development by enhanced ERK1/2 activity. However, the mutations’ effects throughout adult life are unclear. In this study, we identify that the protein most commonly affected in Noonan syndrome, the phosphatase SHP2, known in Drosophila as corkscrew (CSW), controls life span, triglyceride levels, and metabolism without affecting ERK signaling pathway. We found that CSW loss-of-function mutations extended life span by interacting with components of the insulin signaling pathway and impairing AKT activity in adult flies. By expressing csw-RNAi in different organs, we determined that CSW extended life span by acting in organs that regulate energy availability, including gut, fat body and neurons. In contrast to that in control animals, loss of CSW leads to reduced homeostasis in metabolic rate during activity. Clinically relevant gain-of-function csw allele reduced life span, when expressed in fat body, but not in other tissues. However, overexpression of a wild-type allele did not affect life span, showing a specific effect of the gain-of-function allele independently of a gene dosage effect. We concluded that CSW normally regulates life span and that mutations in SHP2 are expected to have critical effects throughout life by insulin-dependent mechanisms in addition to the well-known RAS-ERK1/2-dependent developmental alterations.
Collapse
Affiliation(s)
- Leonardo R Ruzzi
- Department of Physiology and Biophysics, School of Medicine, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| | - Pablo E Schilman
- Department of Biodiversity and Experimental Biology, Faculty of Exact and Natural Sciences, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| | - Alvaro San Martin
- Department of Physiology and Biophysics, School of Medicine, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| | - Sergio E Lew
- Institute of Biomedical Engineering, Faculty of Engineering, University of Buenos Aires, Buenos Aires, Argentina
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mario R Pagani
- Department of Physiology and Biophysics, School of Medicine, National Scientific and Technical Research Council, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Ulgherait M, Chen A, McAllister SF, Kim HX, Delventhal R, Wayne CR, Garcia CJ, Recinos Y, Oliva M, Canman JC, Picard M, Owusu-Ansah E, Shirasu-Hiza M. Circadian regulation of mitochondrial uncoupling and lifespan. Nat Commun 2020; 11:1927. [PMID: 32317636 PMCID: PMC7174288 DOI: 10.1038/s41467-020-15617-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022] Open
Abstract
Because old age is associated with defects in circadian rhythm, loss of circadian regulation is thought to be pathogenic and contribute to mortality. We show instead that loss of specific circadian clock components Period (Per) and Timeless (Tim) in male Drosophila significantly extends lifespan. This lifespan extension is not mediated by canonical diet-restriction longevity pathways but is due to altered cellular respiration via increased mitochondrial uncoupling. Lifespan extension of per mutants depends on mitochondrial uncoupling in the intestine. Moreover, upregulated uncoupling protein UCP4C in intestinal stem cells and enteroblasts is sufficient to extend lifespan and preserve proliferative homeostasis in the gut with age. Consistent with inducing a metabolic state that prevents overproliferation, mitochondrial uncoupling drugs also extend lifespan and inhibit intestinal stem cell overproliferation due to aging or even tumorigenesis. These results demonstrate that circadian-regulated intestinal mitochondrial uncoupling controls longevity in Drosophila and suggest a new potential anti-aging therapeutic target.
Collapse
Affiliation(s)
- Matt Ulgherait
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Anna Chen
- Columbia College, New York, NY, 10027, USA
| | | | - Han X Kim
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Rebecca Delventhal
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Charlotte R Wayne
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Christian J Garcia
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Yocelyn Recinos
- Department of Systems Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | | | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Martin Picard
- Departments of Psychiatry and Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
25
|
Shaposhnikov M, Proshkina E, Koval L, Zemskaya N, Zhavoronkov A, Moskalev A. Overexpression of CBS and CSE genes affects lifespan, stress resistance and locomotor activity in Drosophila melanogaster. Aging (Albany NY) 2019; 10:3260-3272. [PMID: 30408770 PMCID: PMC6286861 DOI: 10.18632/aging.101630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 10/28/2018] [Indexed: 12/20/2022]
Abstract
Recent experimental studies highlighted the role of hydrogen sulfide (H2S) in aging and longevity. The cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CSE) are the key enzymes responsible for H2S production. Here we investigated the geroprotective effects of CSE and CBS overexpression in Drosophila. Overexpression of CSE did not affect a lifespan and decrease (mitochondrial form of CSE) or increase (cytoplasmic form of CSE) age dynamics of locomotor activity, while overexpression of CBS increase median (by 12.5%) and maximum (by 6.9%) lifespan and locomotor activity. Increasing of both CSE and CBS expression levels resulted in thermotolerance, but the resistance to combination of arid and food-free conditions decreased. The resistance to oxidative stress (paraquat) was not affected in flies with overexpression of CBS and cytoplasmic CSE, but decreased in flies overexpressing mitochondrial form of CSE. Thus, transgene overexpression of the CSE and CBS in Drosophila induce similar effects on stress-resistance and locomotor activity, however lifespan extending effect was revealed for CBS overexpression only.
Collapse
Affiliation(s)
- Mikhail Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Ekaterina Proshkina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Lyubov Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Nadezhda Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
26
|
Zhang G, Cui R, Kang Y, Qi C, Ji X, Zhang T, Guo Q, Cui H, Shi G. Testosterone propionate activated the Nrf2-ARE pathway in ageing rats and ameliorated the age-related changes in liver. Sci Rep 2019; 9:18619. [PMID: 31819135 PMCID: PMC6901587 DOI: 10.1038/s41598-019-55148-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022] Open
Abstract
The present study aimed to evaluate the protective efficacy of testosterone propionate (TP) on age-related liver changes via activation of the nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway in aged rats. Aged rats received subcutaneous injections of TP (2 mg/kg/d, 84 days). Oxidative stress parameters and the expression levels of signal transducer and activator of transcription 5b (STAT5b), Kelch-like ECH associating protein-1 (Keap1), Nrf2, haem oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase-1 (NQO1) in liver tissues were examined to check whether the Nrf2-ARE pathway was involved in the age-related changes in liver. Our results showed that TP supplementation alleviated liver morphology, liver function and liver fibrosis; improved oxidative stress parameters; and increased the expression of STAT5b, Nrf2, HO-1 and NQO-1 and decreased the expression of Keap1 in the liver tissues of aged rats. These results suggested that TP increased the expression of STAT5b, and then activated the Nrf2-ARE pathway and promoted antioxidant mechanisms in aged rats. These findings may provide new therapeutic uses for TP in patients with age-related liver changes.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China.,Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Rui Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Yunxiao Kang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Chunxiao Qi
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Xiaoming Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Tianyun Zhang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Qiqing Guo
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, 050017, P.R. China.,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Geming Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China. .,Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, P.R. China. .,Hebei Key Laboratory of Forensic Medicine, Department of Forensic Medicine, Hebei Medical University, Shijiazhuang, 050017, P.R. China.
| |
Collapse
|
27
|
Abstract
Regenerative processes that maintain the function of the gastrointestinal (GI) epithelium are critical for health and survival of multicellular organisms. In insects and vertebrates, intestinal stem cells (ISCs) regenerate the GI epithelium. ISC function is regulated by intrinsic, local, and systemic stimuli to adjust regeneration to tissue demands. These control mechanisms decline with age, resulting in significant perturbation of intestinal homeostasis. Processes that lead to this decline have been explored intensively in Drosophila melanogaster in recent years and are now starting to be characterized in mammalian models. This review presents a model for age-related regenerative decline in the fly intestine and discusses recent findings that start to establish molecular mechanisms of age-related decline of mammalian ISC function.
Collapse
Affiliation(s)
- Heinrich Jasper
- Immunology Discovery, Genentech, Inc., South San Francisco, California 94080, USA;
| |
Collapse
|
28
|
Lou Y, Chen A, Yoshida E, Chen Y. Homeostasis and systematic ageing as non-equilibrium phase transitions in computational multicellular organizations. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190012. [PMID: 31417709 PMCID: PMC6689615 DOI: 10.1098/rsos.190012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 06/04/2019] [Indexed: 05/15/2023]
Abstract
Being a fatal threat to life, the breakdown of homeostasis in tissues is believed to involve multiscale factors ranging from the accumulation of genetic damages to the deregulation of metabolic processes. Here, we present a prototypical multicellular homeostasis model in the form of a two-dimensional stochastic cellular automaton with three cellular states, cell division, cell death and cell cycle arrest, of which the state-updating rules are based on fundamental cell biology. Despite the simplicity, this model illustrates how multicellular organizations can develop into diverse homeostatic patterns with distinct morphologies, turnover rates and lifespans without considering genetic, metabolic or other exogenous variations. Through mean-field analysis and Monte-Carlo simulations, those homeostatic states are found to be classified into extinctive, proliferative and degenerative phases, whereas healthy multicellular organizations evolve from proliferative to degenerative phases over a long time, undergoing a systematic ageing akin to a transition into an absorbing state in non-equilibrium physical systems. It is suggested that the collapse of homeostasis at the multicellular level may originate from the fundamental nature of cell biology regarding the physics of some non-equilibrium processes instead of subcellular details.
Collapse
Affiliation(s)
- Yuting Lou
- SCS Laboratory, Department of Human and Environmental Engineering, Graduate School of Frontier Sciences, The University of Tokyo, 277-8561 Chiba, Japan
- Author for correspondence: Yuting Lou e-mail:
| | - Ao Chen
- Department of Physics, Fudan University, Shanghai, People’s Republic of China
| | - Erika Yoshida
- Department of Systems Innovation, Faculty of Engineering, The University of Tokyo, 111-8564 Tokyo, Japan
| | - Yu Chen
- SCS Laboratory, Department of Human and Environmental Engineering, Graduate School of Frontier Sciences, The University of Tokyo, 277-8561 Chiba, Japan
| |
Collapse
|
29
|
Kroeze Y, Oti M, van Beusekom E, Cooijmans RHM, van Bokhoven H, Kolk SM, Homberg JR, Zhou H. Transcriptome Analysis Identifies Multifaceted Regulatory Mechanisms Dictating a Genetic Switch from Neuronal Network Establishment to Maintenance During Postnatal Prefrontal Cortex Development. Cereb Cortex 2019; 28:833-851. [PMID: 28108491 DOI: 10.1093/cercor/bhw407] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/20/2022] Open
Abstract
The prefrontal cortex (PFC) is one of the latest brain regions to mature, which allows the acquisition of complex cognitive abilities through experience. To unravel the underlying gene expression changes during postnatal development, we performed RNA-sequencing (RNA-seq) in the rat medial PFC (mPFC) at five developmental time points from infancy to adulthood, and analyzed the differential expression of protein-coding genes, long intergenic noncoding RNAs (lincRNAs), and alternative exons. We showed that most expression changes occur in infancy, and that the number of differentially expressed genes reduces toward adulthood. We observed 137 differentially expressed lincRNAs and 796 genes showing alternative exon usage during postnatal development. Importantly, we detected a genetic switch from neuronal network establishment in infancy to maintenance of neural networks in adulthood based on gene expression dynamics, involving changes in protein-coding and lincRNA gene expression as well as alternative exon usage. Our gene expression datasets provide insights into the multifaceted transcriptional regulation of the developing PFC. They can be used to study the basic developmental processes of the mPFC and to understand the mechanisms of neurodevelopmental and neuropsychiatric disorders. Our study provides an important contribution to the ongoing efforts to complete the "brain map", and to the understanding of PFC development.
Collapse
Affiliation(s)
- Yvet Kroeze
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands.,Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Martin Oti
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands.,Carlos Chagas Filho Biophysics Institute (IBCCF), Federal University of Rio de Janeiro (UFRJ), 21941-902 Rio de Janeiro, Brazil
| | - Ellen van Beusekom
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Roel H M Cooijmans
- Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - Sharon M Kolk
- Department of Molecular Animal Physiology, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 GA Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EZ Nijmegen, The Netherlands
| | - Huiqing Zhou
- Department of Human Genetics, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands.,Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
30
|
The Effect of Inulin on Lifespan, Related Gene Expression and Gut Microbiota in InRp5545/TM3 Mutant Drosophila melanogaster: A Preliminary Study. Nutrients 2019; 11:nu11030636. [PMID: 30875994 PMCID: PMC6470987 DOI: 10.3390/nu11030636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/16/2022] Open
Abstract
Inulin is considered an efficient prebiotic and is beneficial for metabolic diseases via promoting intestinal probiotic enrichment and the metabolites of short-chain fatty acids (SCFAs). However, the effect of inulin on patients with InR deficiencies has seldom been reported. In this study, the lifespan, related gene expression, and gut microbiota of InRp5545/TM3 (insulin receptor mutant) Drosophila melanogaster under inulin treatment were investigated. The results showed that the lifespan was extended in only males and not in females. Furthermore, distinctly different patterns of gene expression were found between males and females, especially in the insulin/insulin-like growth factor (IGF)-like signalling (IIS) and target of rapamycin (TOR) pathways. Additionally, as a link between inulin and lifespan responses, the gut microbiota was distinctly separated by gender in both the standard diet group and the inulin treatment group, and the relationship between lifespan and the gut microbiota community was stronger in male flies than in females. This study provides preliminary evidence for the gender-dependent lifespan responses to inulin in insulin signalling-deficient Drosophila. However, controls such as wild-type and TM3 flies, and more InR mutant strains with different genetic backgrounds need to be further investigated to elucidate the mechanisms underlying the phenomenon.
Collapse
|
31
|
Scopelliti A, Bauer C, Yu Y, Zhang T, Kruspig B, Murphy DJ, Vidal M, Maddocks ODK, Cordero JB. A Neuronal Relay Mediates a Nutrient Responsive Gut/Fat Body Axis Regulating Energy Homeostasis in Adult Drosophila. Cell Metab 2019; 29:269-284.e10. [PMID: 30344016 PMCID: PMC6370946 DOI: 10.1016/j.cmet.2018.09.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 08/10/2018] [Accepted: 09/25/2018] [Indexed: 02/05/2023]
Abstract
The control of systemic metabolic homeostasis involves complex inter-tissue programs that coordinate energy production, storage, and consumption, to maintain organismal fitness upon environmental challenges. The mechanisms driving such programs are largely unknown. Here, we show that enteroendocrine cells in the adult Drosophila intestine respond to nutrients by secreting the hormone Bursicon α, which signals via its neuronal receptor DLgr2. Bursicon α/DLgr2 regulate energy metabolism through a neuronal relay leading to the restriction of glucagon-like, adipokinetic hormone (AKH) production by the corpora cardiaca and subsequent modulation of AKH receptor signaling within the adipose tissue. Impaired Bursicon α/DLgr2 signaling leads to exacerbated glucose oxidation and depletion of energy stores with consequent reduced organismal resistance to nutrient restrictive conditions. Altogether, our work reveals an intestinal/neuronal/adipose tissue inter-organ communication network that is essential to restrict the use of energy and that may provide insights into the physiopathology of endocrine-regulated metabolic homeostasis.
Collapse
Affiliation(s)
| | - Christin Bauer
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Yachuan Yu
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Tong Zhang
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Björn Kruspig
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Daniel J Murphy
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Marcos Vidal
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Oliver D K Maddocks
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Julia B Cordero
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
32
|
Abstract
All people want to age "successfully," maintaining functional capacity and quality of life as they reach advanced age. Achieving this goal depends on preserving optimal cognitive and brain functioning. Yet, significant individual differences exist in this regard. Some older adults continue to retain most cognitive abilities throughout their lifetime. Others experience declines in cognitive and functional capacity that range from mild decrements in certain cognitive functions over time to severe dementia among those with neurodegenerative diseases. Even among relatively healthy "successful agers," certain cognitive functions are reduced from earlier levels. This is particularly true for cognitive functions that are dependent on cognitive processing speed and efficiency. Working memory and executive and attentional functions tend to be most vulnerable. Learning and memory functions are also usually reduced, although in the absence of neurodegenerative disease learning and retrieval efficiency rather than memory storage are affected. Other functions, such as visual perception, language, semantics, and knowledge, are often well preserved. Structural, functional, and physiologic/metabolic brain changes correspond with age-associated cognitive decline. Physiologic and metabolic mechanisms, such as oxidative stress and neuroinflammation, may contribute to these changes, along with the contribution of comorbidities that secondarily affect the brain of older adults. Cognitive frailty often corresponds with physical frailty, both affected by multiple exogenous and endogenous factors. Neuropsychologic assessment provides a way of measuring the cognitive and functional status of older adults, which is useful for monitoring changes that may be occurring. Neuroimaging is also useful for characterizing age-associated structural, functional, physiologic, and metabolic brain changes, including alterations in cerebral blood flow and metabolite concentrations. Some interventions that may enhance cognitive function, such as cognitive training, neuromodulation, and pharmacologic approaches, exist or are being developed. Yet, preventing, slowing, and reversing the adverse effects of cognitive aging remains a challenge.
Collapse
Affiliation(s)
- Ronald A Cohen
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.
| | - Michael M Marsiske
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| | - Glenn E Smith
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL, United States; Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
33
|
Rochette L, Meloux A, Rigal E, Zeller M, Cottin Y, Malka G, Vergely C. Regenerative Capacity of Endogenous Factor: Growth Differentiation Factor 11; a New Approach of the Management of Age-Related Cardiovascular Events. Int J Mol Sci 2018; 19:ijms19123998. [PMID: 30545044 PMCID: PMC6321079 DOI: 10.3390/ijms19123998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
Aging is a complicated pathophysiological process accompanied by a wide array of biological adaptations. The physiological deterioration correlates with the reduced regenerative capacity of tissues. The rejuvenation of tissue regeneration in aging organisms has also been observed after heterochronic parabiosis. With this model, it has been shown that exposure to young blood can rejuvenate the regenerative capacity of peripheral tissues and brain in aged animals. An endogenous compound called growth differentiation factor 11 (GDF11) is a circulating negative regulator of cardiac hypertrophy, suggesting that raising GDF11 levels could potentially treat or prevent cardiac diseases. The protein GDF11 is found in humans as well as animals. The existence of endogenous regulators of regenerative capacity, such as GDF11, in peripheral tissues and brain has now been demonstrated. It will be important to investigate the mechanisms with therapeutic promise that induce the regenerative effects of GDF11 for a variety of age-related diseases.
Collapse
Affiliation(s)
- Luc Rochette
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Alexandre Meloux
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Eve Rigal
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Marianne Zeller
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| | - Yves Cottin
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
- Service de Cardiologie-CHU-Dijon, 21 000 Dijon, France.
| | - Gabriel Malka
- Institut de formation en biotechnologie et ingénierie biomédicale (IFR2B), Université Mohammed VI Polytechnique, 43 150 Ben-Guerir, Morocco.
| | - Catherine Vergely
- Equipe d'Accueil (EA 7460): Physiopathologie et Epidémiologie Cérébro-Cardiovasculaires (PEC2), Université de Bourgogne-Franche Comté, Faculté des Sciences de Santé, 7 Bd Jeanne d'Arc, 21000 Dijon, France.
| |
Collapse
|
34
|
Bednářová A, Tomčala A, Mochanová M, Kodrík D, Krishnan N. Disruption of Adipokinetic Hormone Mediated Energy Homeostasis Has Subtle Effects on Physiology, Behavior and Lipid Status During Aging in Drosophila. Front Physiol 2018; 9:949. [PMID: 30079029 PMCID: PMC6062650 DOI: 10.3389/fphys.2018.00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022] Open
Abstract
The impact of disruption of adipokinetic hormone (AKH) signaling was studied during aging in Drosophila in a sexually dimorphic manner. A mutant (Akh1) producing a non-functional AKH peptide was compared with isogenized wild-type controls (w1118), and Akh-rescue line where AKH was ectopically expressed in the mutant background (EE-Akh). Longevity, fecundity, and locomotor activity rhythms remained unaffected by lack of AKH signaling. While the strength of rhythms declined in general with age across all fly lines tested this was more so in case of Akh1 flies. Negative geotaxis was significantly impaired in Akh1 flies. Only young Akh1 flies of both sexes and old Akh1 females showed significantly higher body weight compared to age-matched iso-control flies (except in case of EE-Akh). Expression of genes involved in energy homeostasis and aging indicated that dTOR and Akt expression were elevated in Akh1 flies compared to other genotypes, whereas AMPK and dFoxO expression levels were significantly reduced. Multivariate analysis of the distribution of lipid species revealed a significant accumulation of specific diglyceride (DG) and triglyceride (TG) lipid species, irrespective of sex, attributable in part due to lack of AKH. Moreover, irrespective of lack of AKH, older flies of all genotypes accumulated TGs. Taken together, the results strongly suggest that disruption of AKH has very subtle effects on physiology, behavior and lipid status during aging.
Collapse
Affiliation(s)
- Andrea Bednářová
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States.,Biology Centre, Institute of Entomology, Academy of Sciences, České Budějovice, Czechia
| | - Aleš Tomčala
- Biology Centre, Institute of Parasitology, Academy of Sciences, České Budějovice, Czechia
| | - Michaela Mochanová
- Biology Centre, Institute of Entomology, Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Dalibor Kodrík
- Biology Centre, Institute of Entomology, Academy of Sciences, České Budějovice, Czechia.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
35
|
Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues. Int J Mol Sci 2018; 19:ijms19041140. [PMID: 29642630 PMCID: PMC5979431 DOI: 10.3390/ijms19041140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/21/2022] Open
Abstract
The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.
Collapse
|
36
|
Fan X, Gaur U, Yang M. Intestinal Homeostasis and Longevity: Drosophila Gut Feeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1086:157-168. [PMID: 30232758 DOI: 10.1007/978-981-13-1117-8_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The association between intestinal homeostasis and life span has caught the attention of the research community worldwide. There have been multiple evidences which support the role of gut homeostasis in aging. The Drosophila gastrointestinal tract is very similar to the mammalian gut, and therefore it can directly be used as a model to understand the association between gut microbiota, immune system, and aging in humans. In current review we have discussed the importance of gut microbiota in aging. Also we have highlighted the importance of host immune system and gut aging. Since the increased microbial load in the gut activates the host immune system, the dysregulated microbiota can have direct implications in gut aging. The proliferation and renewal of intestinal stem cells can also affect gut aging. Another important aspect that we have discussed is the communication between the gut and the other organ systems which affect the overall aging process. Altogether we propose that the Drosophila gut can be a good model to improve our understanding of human gut aging.
Collapse
Affiliation(s)
- Xiaolan Fan
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China
| | - Uma Gaur
- Faculty of Health Sciences, University of Macau, Beijing, China
| | - Mingyao Yang
- Institute of Animal Genetics and Breeding, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
37
|
|
38
|
Dasari V, Srivastava S, Khan S, Mishra RK. Epigenetic factors Polycomb (Pc) and Suppressor of zeste (Su(z)2) negatively regulate longevity in Drosophila melanogaster. Biogerontology 2017; 19:33-45. [PMID: 29177687 DOI: 10.1007/s10522-017-9737-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
The process of aging is a hallmark of the natural life span of all organisms and individuals within a population show variability in the measures of age related performance. Longevity and the rate of aging are influenced by several factors such as genetics, nutrition, stress, and environment. Many studies have focused on the genes that impact aging and there is increasing evidence that epigenetic factors regulate these genes to control life span. Polycomb (PcG) and trithorax (trxG) protein complexes maintain the expression profiles of developmentally important genes and regulate many cellular processes. Here, we report that mutations of PcG and trxG members affect the process of aging in Drosophila melanogaster, with perturbations mostly associated with retardation in aging. We find that mutations in polycomb repressive complex (PRC1) components Pc and Su(z)2 increase fly survival. Using an inducible UAS-GAL4 system, we show that this effect is tissue-specific; knockdown in fat body, but not in muscle or brain tissues, enhances life span. We hypothesize that these two proteins influence life span via pathways independent of their PRC1 functions, with distinct effects on response to oxidative stress. Our observations highlight the role of global epigenetic regulators in determining life span.
Collapse
Affiliation(s)
- Vasanthi Dasari
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Surabhi Srivastava
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
39
|
Luis NM, Wang L, Ortega M, Deng H, Katewa SD, Li PWL, Karpac J, Jasper H, Kapahi P. Intestinal IRE1 Is Required for Increased Triglyceride Metabolism and Longer Lifespan under Dietary Restriction. Cell Rep 2017; 17:1207-1216. [PMID: 27783936 DOI: 10.1016/j.celrep.2016.10.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/18/2016] [Accepted: 09/30/2016] [Indexed: 12/12/2022] Open
Abstract
Dietary restriction (DR) is one of the most robust lifespan-extending interventions in animals. The beneficial effects of DR involve a metabolic adaptation toward increased triglyceride usage. The regulatory mechanism and the tissue specificity of this metabolic switch remain unclear. Here, we show that the IRE1/XBP1 endoplasmic reticulum (ER) stress signaling module mediates metabolic adaptation upon DR in flies by promoting triglyceride synthesis and accumulation in enterocytes (ECs) of the Drosophila midgut. Consistently, IRE1/XBP1 function in ECs is required for increased longevity upon DR. We further identify sugarbabe, a Gli-like zinc-finger transcription factor, as a key mediator of the IRE1/XBP1-regulated induction of de novo lipogenesis in ECs. Overexpression of sugarbabe rescues metabolic and lifespan phenotypes of IRE1 loss-of-function conditions. Our study highlights the critical role of metabolic adaptation of the intestinal epithelium for DR-induced lifespan extension and explores the IRE1/XBP1 signaling pathway regulating this adaptation and influencing lifespan.
Collapse
Affiliation(s)
- Nuno Miguel Luis
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| | - Lifen Wang
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Mauricio Ortega
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Hansong Deng
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Subhash D Katewa
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Patrick Wai-Lun Li
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Heinrich Jasper
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena 07745, Germany.
| | - Pankaj Kapahi
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945-1400, USA.
| |
Collapse
|
40
|
Tauc HM, Tasdogan A, Meyer P, Pandur P. Nipped-A regulates intestinal stem cell proliferation in Drosophila. Development 2017; 144:612-623. [PMID: 28196804 DOI: 10.1242/dev.142703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022]
Abstract
Adult stem cells uphold a delicate balance between quiescent and active states, a deregulation of which can lead to age-associated diseases such as cancer. In Drosophila, intestinal stem cell (ISC) proliferation is tightly regulated and mis-regulation is detrimental to intestinal homeostasis. Various factors are known to govern ISC behavior; however, transcriptional changes in ISCs during aging are still unclear. RNA sequencing of young and old ISCs newly identified Nipped-A, a subunit of histone acetyltransferase complexes, as a regulator of ISC proliferation that is upregulated in old ISCs. We show that Nipped-A is required for maintaining the proliferative capacity of ISCs during aging and in response to tissue-damaging or tumorigenic stimuli. Interestingly, Drosophila Myc cannot compensate for the effect of the loss of Nipped-A on ISC proliferation. Nipped-A seems to be a superordinate regulator of ISC proliferation, possibly by coordinating different processes including modifying the chromatin landscape of ISCs and progenitors.
Collapse
Affiliation(s)
- Helen Marie Tauc
- Institut für Biochemie und Molekulare Biologie, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Alpaslan Tasdogan
- Institut für Immunologie, Universitätsklinikum Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Patrick Meyer
- Institut für Dermatologie, Universität Ulm, Life Science Building N27, James Franck-Ring/Meyerhofstrasse 11c, Ulm 89081, Germany
| | - Petra Pandur
- Institut für Biochemie und Molekulare Biologie, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
41
|
Gruntenko NE, Adonyeva NV, Burdina EV, Karpova EK, Andreenkova OV, Gladkikh DV, Ilinsky YY, Rauschenbach IY. The impact of FOXO on dopamine and octopamine metabolism in Drosophila under normal and heat stress conditions. Biol Open 2016; 5:1706-1711. [PMID: 27754851 PMCID: PMC5155542 DOI: 10.1242/bio.022038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The forkhead boxO transcription factor (FOXO) is a component of the insulin signalling pathway and plays a role in responding to adverse conditions, such as oxidative stress and starvation. In stressful conditions, FOXO moves from the cytosol to the nucleus where it activates gene expression programmes. Here, we show that FOXO in Drosophila melanogaster responds to heat stress as it does to other stressors. The catecholamine signalling pathway is another component of the stress response. In Drosophila, dopamine and octopamine levels rise steeply under heat, nutrition and mechanical stresses, which are followed by a decrease in the activity of synthesis enzymes. We demonstrate that the nearly twofold decline of FOXO expression in foxoBG01018 mutants results in dramatic changes in the metabolism of dopamine and octopamine and the overall response to stress. The absence of FOXO increases tyrosine decarboxylase activity, the first enzyme in octopamine synthesis, and decreases the enzymatic activity of enzymes in dopamine synthesis, alkaline phosphatase and tyrosine hydroxylase, in young Drosophila females. We identified the juvenile hormone as a mediator of FOXO regulation of catecholamine metabolism. Our findings suggest that FOXO is a possible trigger for endocrinological stress reactions. Summary: The transcription factor FOXO affects catecholamine metabolism under normal and heat stress conditions in D. melanogaster, and juvenile hormone (JH) is a mediator of this effect.
Collapse
Affiliation(s)
- Nataly E Gruntenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalya V Adonyeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Elena V Burdina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Evgenia K Karpova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Olga V Andreenkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Daniil V Gladkikh
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Yury Y Ilinsky
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Inga Yu Rauschenbach
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
42
|
JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks. Cell Rep 2016; 16:2641-2650. [PMID: 27568560 PMCID: PMC5089070 DOI: 10.1016/j.celrep.2016.08.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/06/2016] [Accepted: 08/01/2016] [Indexed: 02/01/2023] Open
Abstract
The accumulation of damage caused by oxidative stress has been linked to aging and to the etiology of numerous age-related diseases. The longevity gene, sirtuin 6 (SIRT6), promotes genome stability by facilitating DNA repair, especially under oxidative stress conditions. Here we uncover the mechanism by which SIRT6 is activated by oxidative stress to promote DNA double-strand break (DSB) repair. We show that the stress-activated protein kinase, c-Jun N-terminal kinase (JNK), phosphorylates SIRT6 on serine 10 in response to oxidative stress. This post-translational modification facilitates the mobilization of SIRT6 to DNA damage sites and is required for efficient recruitment of poly (ADP-ribose) polymerase 1 (PARP1) to DNA break sites and for efficient repair of DSBs. Our results demonstrate a post-translational mechanism regulating SIRT6, and they provide the link between oxidative stress signaling and DNA repair pathways that may be critical for hormetic response and longevity assurance.
Collapse
|
43
|
Guo Z, Lucchetta E, Rafel N, Ohlstein B. Maintenance of the adult Drosophila intestine: all roads lead to homeostasis. Curr Opin Genet Dev 2016; 40:81-86. [PMID: 27392294 DOI: 10.1016/j.gde.2016.06.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/20/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Maintenance of tissue homeostasis is critical in tissues with high turnover such as the intestinal epithelium. The intestinal epithelium is under constant cellular assault due to its digestive functions and its function as a barrier to chemical and bacterial insults. The resulting high rate of cellular turnover necessitates highly controlled mechanisms of regeneration to maintain the integrity of the tissue over the lifetime of the organism. Transient increase in stem cell proliferation is a commonly used and elaborate mechanism to ensure fast and efficient repair of the gut. However, tissue repair is not limited to regulating ISC proliferation, as emerging evidence demonstrates that the Drosophila intestine uses multiple strategies to ensure proper tissue homeostasis that may also extend to other tissues.
Collapse
Affiliation(s)
- Zheng Guo
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Elena Lucchetta
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Neus Rafel
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Benjamin Ohlstein
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
44
|
Dantoft W, Lundin D, Esfahani SS, Engström Y. The POU/Oct Transcription Factor Pdm1/nub Is Necessary for a Beneficial Gut Microbiota and Normal Lifespan of Drosophila. J Innate Immun 2016; 8:412-26. [PMID: 27231014 DOI: 10.1159/000446368] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 04/23/2016] [Indexed: 01/01/2023] Open
Abstract
Maintenance of a stable gut microbial community relies on a delicate balance between immune defense and immune tolerance. We have used Drosophila to study how the microbial gut flora is affected by changes in host genetic factors and immunity. Flies with a constitutively active gut immune system, due to a mutation in the POU transcriptional regulator Pdm1/nubbin (nub) gene, had higher loads of bacteria and a more diverse taxonomic composition than controls. In addition, the microbial composition shifted considerably during the short lifespan of the nub1 mutants. This shift was characterized by a loss of relatively few OTUs (operational taxonomic units) and a remarkable increase in a large number of Acetobacter spp. and Leuconostoc spp. Treating nub1 mutant flies with antibiotics prolonged their lifetime survival by more than 100%. Immune gene expression was also persistently high in the presence of antibiotics, indicating that the early death was not a direct consequence of an overactive immune defense but rather an indirect consequence of the microbial load and composition. Thus, changes in host genotype and an inability to regulate the normal growth and composition of the gut microbiota leads to a shift in the microbial community, dysbiosis and early death.
Collapse
|
45
|
Longevity-modulating effects of symbiosis: insights from Drosophila–Wolbachia interaction. Biogerontology 2016; 17:785-803. [DOI: 10.1007/s10522-016-9653-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/18/2016] [Indexed: 01/30/2023]
|
46
|
Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy J, Bjedov I, Partridge L. Lithium Promotes Longevity through GSK3/NRF2-Dependent Hormesis. Cell Rep 2016; 15:638-650. [PMID: 27068460 PMCID: PMC4850359 DOI: 10.1016/j.celrep.2016.03.041] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/31/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023] Open
Abstract
The quest to extend healthspan via pharmacological means is becoming increasingly urgent, both from a health and economic perspective. Here we show that lithium, a drug approved for human use, promotes longevity and healthspan. We demonstrate that lithium extends lifespan in female and male Drosophila, when administered throughout adulthood or only later in life. The life-extending mechanism involves the inhibition of glycogen synthase kinase-3 (GSK-3) and activation of the transcription factor nuclear factor erythroid 2-related factor (NRF-2). Combining genetic loss of the NRF-2 repressor Kelch-like ECH-associated protein 1 (Keap1) with lithium treatment revealed that high levels of NRF-2 activation conferred stress resistance, while low levels additionally promoted longevity. The discovery of GSK-3 as a therapeutic target for aging will likely lead to more effective treatments that can modulate mammalian aging and further improve health in later life.
Collapse
Affiliation(s)
- Jorge Iván Castillo-Quan
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Li Li
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Kerri J Kinghorn
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Dobril K Ivanov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Luke S Tain
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany
| | - Cathy Slack
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany
| | - Fiona Kerr
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Tobias Nespital
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany
| | - Janet Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - Ivana Bjedov
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; UCL Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Linda Partridge
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Strasse 9-b, 50931 Köln, Germany.
| |
Collapse
|
47
|
Regan JC, Khericha M, Dobson AJ, Bolukbasi E, Rattanavirotkul N, Partridge L. Sex difference in pathology of the ageing gut mediates the greater response of female lifespan to dietary restriction. eLife 2016; 5:e10956. [PMID: 26878754 PMCID: PMC4805549 DOI: 10.7554/elife.10956] [Citation(s) in RCA: 170] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/02/2016] [Indexed: 12/21/2022] Open
Abstract
Women live on average longer than men but have greater levels of late-life morbidity. We have uncovered a substantial sex difference in the pathology of the aging gut in Drosophila. The intestinal epithelium of the aging female undergoes major deterioration, driven by intestinal stem cell (ISC) division, while lower ISC activity in males associates with delay or absence of pathology, and better barrier function, even at old ages. Males succumb to intestinal challenges to which females are resistant, associated with fewer proliferating ISCs, suggesting a trade-off between highly active repair mechanisms and late-life pathology in females. Dietary restriction reduces gut pathology in aging females, and extends female lifespan more than male. By genetic sex reversal of a specific gut region, we induced female-like aging pathologies in males, associated with decreased lifespan, but also with a greater increase in longevity in response to dietary restriction.
Collapse
Affiliation(s)
- Jennifer C Regan
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Mobina Khericha
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Adam J Dobson
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Ekin Bolukbasi
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Nattaphong Rattanavirotkul
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom
| | - Linda Partridge
- Institute of Healthy Ageing, Department of Genetics, Evolution, and Environment, University College London, London, United Kingdom.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|
48
|
Rochette L, Zeller M, Cottin Y, Vergely C. Growth and differentiation factor 11 (GDF11): Functions in the regulation of erythropoiesis and cardiac regeneration. Pharmacol Ther 2015; 156:26-33. [DOI: 10.1016/j.pharmthera.2015.10.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Nászai M, Carroll LR, Cordero JB. Intestinal stem cell proliferation and epithelial homeostasis in the adult Drosophila midgut. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 67:9-14. [PMID: 26024801 DOI: 10.1016/j.ibmb.2015.05.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/05/2015] [Accepted: 05/24/2015] [Indexed: 05/15/2023]
Abstract
Adult tissue homeostasis requires a tight balance between the removal of old or damaged cells and the production of new ones. Such processes are usually driven by dedicated stem cells that reside within specific tissue locations or niches. The intestinal epithelium has a remarkable regenerative capacity, which has made it a prime paradigm for the study of stem cell-driven tissue self-renewal. The discovery of the presence of stem cells in the adult midgut of the fruit fly Drosophila melanogaster has significantly impacted our understanding of the role of stem cells in intestinal homeostasis. Here we will review the current knowledge of the main mechanisms involved in the regulation of tissue homeostasis in the adult Drosophila midgut, with a focus on the role of stem cells in this process. We will also discuss processes involving acute or chronic disruption of normal intestinal homeostasis such as damage-induced regeneration and ageing.
Collapse
Affiliation(s)
- Máté Nászai
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, G61 1QH Glasgow, United Kingdom
| | - Lynsey R Carroll
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, G61 1QH Glasgow, United Kingdom
| | - Julia B Cordero
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, G61 1QH Glasgow, United Kingdom.
| |
Collapse
|
50
|
Deshpande SA, Yamada R, Mak CM, Hunter B, Obando AS, Hoxha S, Ja WW. Acidic Food pH Increases Palatability and Consumption and Extends Drosophila Lifespan. J Nutr 2015; 145:2789-96. [PMID: 26491123 PMCID: PMC4656910 DOI: 10.3945/jn.115.222380] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/21/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. OBJECTIVES We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. METHODS We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. RESULTS An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. CONCLUSIONS Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival.
Collapse
Affiliation(s)
- Sonali A Deshpande
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Ryuichi Yamada
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Christine M Mak
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Brooke Hunter
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Alina Soto Obando
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - Sany Hoxha
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| | - William W Ja
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL
| |
Collapse
|