1
|
Skičková Š, Kratou M, Svobodová K, Maitre A, Abuin-Denis L, Wu-Chuang A, Obregón D, Said MB, Majláthová V, Krejčí A, Cabezas-Cruz A. Functional redundancy and niche specialization in honeybee and Varroa microbiomes. Int Microbiol 2025; 28:795-810. [PMID: 39172274 DOI: 10.1007/s10123-024-00582-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
The honeybee (Apis mellifera) is a key pollinator critical to global agriculture, facing threats from various stressors, including the ectoparasitic Varroa mite (Varroa destructor). Previous studies have identified shared bacteria between Varroa mites and honeybees, yet it remains unclear if these bacteria assemble similarly in both species. This study builds on existing knowledge by investigating co-occurrence patterns in the microbiomes of both Varroa mites and honeybees, shedding light on potential interactions. Leveraging 16S rRNA datasets, we conducted co-occurrence network analyses, explored Core Association Networks (CAN) and assess network robustness. Comparative network analyses revealed structural differences between honeybee and mite microbiomes, along with shared core features and microbial motifs. The mite network exhibited lower robustness, suggesting less resistance to taxa extension compared to honeybees. Furthermore, analyses of predicted functional profiling and taxa contribution revealed that common central pathways in the metabolic networks have different taxa contributing to Varroa mites and honeybee microbiomes. The results show that while both microbial systems exhibit functional redundancy, in which different taxa contribute to the functional stability and resilience of the ecosystem, there is evidence for niche specialization resulting in unique contributions to specific pathways in each part of this host-parasite system. The specificity of taxa contribution to key pathways offers targeted approaches to Varroa microbiome management and preserving honeybee microbiome. Our findings provide valuable insights into microbial interactions, aiding farmers and beekeepers in maintaining healthy and resilient bee colonies amid increasing Varroa mite infestations.
Collapse
Affiliation(s)
- Štefánia Skičková
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Košice, 04181, Slovakia.
| | - Myriam Kratou
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Karolína Svobodová
- University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
| | - Apolline Maitre
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250, Corte, France
- EA 7310, Laboratoire de Virologie, Université de Corse, 20250, Corte, France
| | - Lianet Abuin-Denis
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
- Animal Biotechnology Department, Center for Genetic Engineering and Biotechnology, Avenue 31 Between 158 and 190, P.O. Box 6162, 10600, Havana, Cuba
| | - Alejandra Wu-Chuang
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mourad Ben Said
- Laboratory of Microbiology, National School of Veterinary Medicine of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
- Department of Basic Sciences, Higher Institute of Biotechnology of Sidi Thabet, University of Manouba, 2010, Manouba, Tunisia
| | - Viktória Majláthová
- Pavol Jozef Šafárik University in Košice, Faculty of Science, Institute of Biology and Ecology, Department of Animal Physiology, Košice, 04181, Slovakia
| | - Alena Krejčí
- University of South Bohemia, Faculty of Science, České Budějovice, 37005, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, 37005, Czech Republic
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, École Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, 94700, Maisons-Alfort, France.
| |
Collapse
|
2
|
Norton AM, Buchmann G, Ashe A, Watson OT, Beekman M, Remnant EJ. Deformed wing virus genotypes A and B do not elicit immunologically different responses in naïve honey bee hosts. INSECT MOLECULAR BIOLOGY 2025; 34:33-51. [PMID: 39072811 PMCID: PMC11705515 DOI: 10.1111/imb.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Iflavirus aladeformis (Picornavirales: Iflaviridae), commonly known as deformed wing virus(DWV), in association with Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae), is a leading factor associated with honey bee (Apis mellifera L. [Hymenoptera: Apidae]) deaths. The virus and mite have a near global distribution, making it difficult to separate the effect of one from the other. The prevalence of two main DWV genotypes (DWV-A and DWV-B) has changed over time, leading to the possibility that the two strains elicit a different immune response by the host. Here, we use a honey bee population naïve to both the mite and the virus to investigate if honey bees show a different immunological response to DWV genotypes. We examined the expression of 19 immune genes by reverse transcription quantitative PCR (RT-qPCR) and analysed small RNA after experimental injection with DWV-A and DWV-B. We found no evidence that DWV-A and DWV-B elicit different immune responses in honey bees. RNA interference genes were up-regulated during DWV infection, and small interfering RNA (siRNA) responses were proportional to viral loads yet did not inhibit DWV accumulation. The siRNA response towards DWV was weaker than the response to another honey bee pathogen, Triatovirus nigereginacellulae (Picornavirales: Dicistroviridae; black queen cell virus), suggesting that DWV is comparatively better at evading host antiviral defences. There was no evidence for the production of virus-derived Piwi-interacting RNAs (piRNAs) in response to DWV. In contrast to previous studies, and in the absence of V. destructor, we found no evidence that DWV has an immunosuppressive effect. Overall, our results advance our understanding of the immunological effect that DWV in isolation elicits in honey bees.
Collapse
Affiliation(s)
- Amanda M. Norton
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Present address:
Laboratories and Technical Support, AcademyJames Cook UniversityTownsvilleQueenslandAustralia
| | - Gabriele Buchmann
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Present address:
Institute of Plant Genetics, Heinrich‐Heine UniversityDuesseldorfGermany
| | - Alyson Ashe
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Owen T. Watson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Madeleine Beekman
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Emily J. Remnant
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Metz BN, Molina-Marciales T, Strand MK, Rueppell O, Tarpy DR, Amiri E. Physiological trade-offs in male social insects: Interactions among infection, immunity, fertility, size, and age in honey bee drones. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104720. [PMID: 39510343 DOI: 10.1016/j.jinsphys.2024.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Female social insects represent a dramatic exception of the evolutionarily conserved physiological trade-off between reproduction and life span, where aging is positively correlated with reproduction. However, whether this facet of life history also pertains to male social insects, remains largely unknown. Male honey bees (drones) die in the act of copulation, placing them under opposing selective pressures. At the individual level, there is inter-male competition for a single successful mating attempt, leading to selective pressure that favors an increase in male fitness. Honey bee drones are haploid individuals and lack the allelic variation in their genome compared to diploid females. We hypothesized that this genetic limitation may result in trade-offs between pathological stress and fitness traits in honey bee males. In our study, we observed differences in size and fertility measures in old and young drones along with stressors of several endemic viruses and the transcriptional immune response. We found that infection does not appear to decrease fertility in old drones, despite evidence for a shift in immune expression away from established mechanisms. Contrary to our expectations, drones additionally do not appear to exhibit a physiological trade-off between size and fertility. These findings demonstrate that drones of different size are likely of different mating quality and that higher quality drones likely favor retaining reproductive output over immune function.
Collapse
Affiliation(s)
- Bradley N Metz
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | | | - Micheline K Strand
- Biological and Biotechnology Sciences, Army Research Office, Army Research Laboratory, Research Triangle Park, NC 27709, USA
| | - Olav Rueppell
- Department of Biology, University of North Carolina, Greensboro, NC 27402-6170, USA; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - David R Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina, Greensboro, NC 27402-6170, USA; Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA.
| |
Collapse
|
4
|
Hurychová J, Dostál J, Kunc M, Šreibr S, Dostálková S, Petřivalský M, Hyršl P, Titěra D, Danihlík J, Dobeš P. Modeling seasonal immune dynamics of honey bee (Apis mellifera L.) response to injection of heat-killed Serratia marcescens. PLoS One 2024; 19:e0311415. [PMID: 39365765 PMCID: PMC11452037 DOI: 10.1371/journal.pone.0311415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The honey bee, Apis mellifera L., is one of the main pollinators worldwide. In a temperate climate, seasonality affects the life span, behavior, physiology, and immunity of honey bees. In consequence, it impacts their interaction with pathogens and parasites. In this study, we used Bayesian statistics and modeling to examine the immune response dynamics of summer and winter honey bee workers after injection with the heat-killed bacteria Serratia marcescens, an opportunistic honey bee pathogen. We investigated the humoral and cellular immune response at the transcriptional and functional levels using qPCR of selected immune genes, antimicrobial activity assay, and flow cytometric analysis of hemocyte concentration. Our data demonstrate increased antimicrobial activity at transcriptional and functional levels in summer and winter workers after injection, with a stronger immune response in winter bees. On the other hand, an increase in hemocyte concentration was observed only in the summer bee population. Our results indicate that the summer population mounts a cellular response when challenged with heat-killed S. marcescens, while winter honey bees predominantly rely on humoral immune reactions. We created a model describing the honey bee immune response dynamics to bacteria-derived components by applying Bayesian statistics to our data. This model can be employed in further research and facilitate the investigating of the honey bee immune system and its response to pathogens.
Collapse
Affiliation(s)
- Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Dostál
- Department of Mathematical Analysis and Application of Mathematics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sara Šreibr
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dalibor Titěra
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science Prague, Prague, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Erban T, Kadleckova D, Sopko B, Harant K, Talacko P, Markovic M, Salakova M, Kadlikova K, Tachezy R, Tachezy J. Varroa destructor parasitism and Deformed wing virus infection in honey bees are linked to peroxisome-induced pathways. Proteomics 2024; 24:e2300312. [PMID: 38446070 DOI: 10.1002/pmic.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
The ectoparasitic mite Varroa destructor transmits and triggers viral infections that have deleterious effects on honey bee colonies worldwide. We performed a manipulative experiment in which worker bees collected at emergence were exposed to Varroa for 72 h, and their proteomes were compared with those of untreated control bees. Label-free quantitative proteomics identified 77 differentially expressed A. mellifera proteins (DEPs). In addition, viral proteins were identified by orthogonal analysis, and most importantly, Deformed wing virus (DWV) was found at high levels/intensity in Varroa-exposed bees. Pathway enrichment analysis suggested that the main pathways affected included peroxisomal metabolism, cyto-/exoskeleton reorganization, and cuticular proteins. Detailed examination of individual DEPs revealed that additional changes in DEPs were associated with peroxisomal function. In addition, the proteome data support the importance of TGF-β signaling in Varroa-DWV interaction and the involvement of the mTORC1 and Hippo pathways. These results suggest that the effect of DWV on bees associated with Varroa feeding results in aberrant autophagy. In particular, autophagy is selectively modulated by peroxisomes, to which the observed proteome changes strongly corresponded. This study complements previous research with different study designs and suggests the importance of the peroxisome, which plays a key role in viral infections.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Dominika Kadleckova
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Bruno Sopko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Martin Markovic
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Martina Salakova
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Klara Kadlikova
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Prague 6-Ruzyne, Czechia
| | - Ruth Tachezy
- Department of Genetics and Microbiology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science BIOCEV, Charles University, Vestec, Czechia
| |
Collapse
|
6
|
Mayack C, Cook SE, Niño BD, Rivera L, Niño EL, Seshadri A. Poor Air Quality Is Linked to Stress in Honeybees and Can Be Compounded by the Presence of Disease. INSECTS 2023; 14:689. [PMID: 37623399 PMCID: PMC10455886 DOI: 10.3390/insects14080689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/21/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023]
Abstract
Climate change-related extreme weather events have manifested in the western United States as warmer and drier conditions with an increased risk of wildfires. Honeybees, essential for crop pollination in California, are at the center of these extreme weather events. We associated the maximum daily temperature and air quality index values with the performance of colonies placed in wildfire-prone areas and determined the impact of these abiotic stressors on gene expression and histopathology. Our results indicate that poor air quality was associated with higher maximum daily temperatures and a lower gene expression level of Prophenoloxidase (ProPO), which is tied to immune system strength; however, a higher gene expression level of Vitellogenin (Vg) is tied to oxidative stress. There was a positive relationship between Varroa mites and N. ceranae pathogen loads, and a negative correlation between Varroa mites and Heat Shock Protein 70 (HSP70) gene expression, suggesting the limited ability of mite-infested colonies to buffer against extreme temperatures. Histological analyses did not reveal overt signs of interaction between pathology and abiotic stressors, but N. ceranae infections were evident. Our study provides insights into interactions between abiotic stressors, their relation to common biotic stressors, and the expression of genes related to immunity and oxidative stress in bees.
Collapse
Affiliation(s)
- Christopher Mayack
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA; (C.M.); (B.D.N.); (L.R.)
| | - Sarah E. Cook
- SpecialtyVETPATH, 3450 16th Ave. W. Ste 303, Seattle, WA 98119, USA;
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, 944 Garrod Drive, Davis, CA 95616, USA
| | - Bernardo D. Niño
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA; (C.M.); (B.D.N.); (L.R.)
| | - Laura Rivera
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA; (C.M.); (B.D.N.); (L.R.)
- Department of Entomology and Nematology, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Elina L. Niño
- Department of Entomology and Nematology, University of California, 1 Shields Avenue, Davis, CA 95616, USA;
| | - Arathi Seshadri
- USDA/ARS/WRRC, Invasive Species and Pollinator Health Research Unit, Davis, CA 95616, USA; (C.M.); (B.D.N.); (L.R.)
| |
Collapse
|
7
|
Durand T, Bonjour-Dalmon A, Dubois E. Viral Co-Infections and Antiviral Immunity in Honey Bees. Viruses 2023; 15:1217. [PMID: 37243302 PMCID: PMC10220773 DOI: 10.3390/v15051217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Over the past few decades, honey bees have been facing an increasing number of stressors. Beyond individual stress factors, the synergies between them have been identified as a key factor in the observed increase in colony mortality. However, these interactions are numerous and complex and call for further research. Here, in line with our need for a systemic understanding of the threats that they pose to bee health, we review the interactions between honey bee viruses. As viruses are obligate parasites, the interactions between them not only depend on the viruses themselves but also on the immune responses of honey bees. Thus, we first summarise our current knowledge of the antiviral immunity of honey bees. We then review the interactions between specific pathogenic viruses and their interactions with their host. Finally, we draw hypotheses from the current literature and suggest directions for future research.
Collapse
Affiliation(s)
- Tristan Durand
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| | - Anne Bonjour-Dalmon
- National Research Institute for Agriculture Food and Environement, INRAE, UR 406 Abeilles et Environnement, Site Agroparc, 84914 Avignon, France;
| | - Eric Dubois
- French Agency for Food, Environmental and Occupational Health Safety, ANSES, 06902 Sophia Antipolis, France
| |
Collapse
|
8
|
Kunc M, Dobeš P, Ward R, Lee S, Čegan R, Dostálková S, Holušová K, Hurychová J, Eliáš S, Pinďáková E, Čukanová E, Prodělalová J, Petřivalský M, Danihlík J, Havlík J, Hobza R, Kavanagh K, Hyršl P. Omics-based analysis of honey bee (Apis mellifera) response to Varroa sp. parasitisation and associated factors reveals changes impairing winter bee generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 152:103877. [PMID: 36403678 DOI: 10.1016/j.ibmb.2022.103877] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/24/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The extensive annual loss of honey bees (Apis mellifera L.) represents a global problem affecting agriculture and biodiversity. The parasitic mite Varroa destructor, associated with viral co-infections, plays a key role in this loss. Despite years of intensive research, the complex mechanisms of Varroa - honey bee interaction are still not fully defined. Therefore, this study employed a unique combination of transcriptomic, proteomic, metabolomic, and functional analyses to reveal new details about the effect of Varroa mites and naturally associated factors, including viruses, on honey bees. We focused on the differences between Varroa parasitised and unparasitised ten-day-old worker bees collected before overwintering from the same set of colonies reared without anti-mite treatment. Supplementary comparison to honey bees collected from colonies with standard anti-Varroa treatment can provide further insights into the effect of a pyrethroid flumethrin. Analysis of the honey bees exposed to mite parasitisation revealed alterations in the transcriptome and proteome related to immunity, oxidative stress, olfactory recognition, metabolism of sphingolipids, and RNA regulatory mechanisms. The immune response and sphingolipid metabolism were strongly activated, whereas olfactory recognition and oxidative stress pathways were inhibited in Varroa parasitised honey bees compared to unparasitised ones. Moreover, metabolomic analysis confirmed the depletion of nutrients and energy stores, resulting in a generally disrupted metabolism in the parasitised workers. The combined omics-based analysis conducted on strictly parasitised bees revealed the key molecular components and mechanisms underlying the detrimental effects of Varroa sp. and its associated pathogens. This study provides the theoretical basis and interlinked datasets for further research on honey bee response to biological threats and the development of efficient control strategies against Varroa mites.
Collapse
Affiliation(s)
- Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Rachel Ward
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Saetbyeol Lee
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Radim Čegan
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 779 00, Olomouc, Czech Republic
| | - Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Sara Eliáš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Eliška Pinďáková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Eliška Čukanová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Jana Prodělalová
- Department of Infectious Disease and Preventive Medicine, Veterinary Research Institute, Hudcova 296/70, 621 00, Brno, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Šlechtitelů 27, 783 71, Olomouc, Czech Republic
| | - Jaroslav Havlík
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00, Prague, Czech Republic
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 00, Brno, Czech Republic
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, W23 F2K8 Maynooth, Co. Kildare, Ireland
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
9
|
Multiple benefits of breeding honey bees for hygienic behavior. J Invertebr Pathol 2022; 193:107788. [DOI: 10.1016/j.jip.2022.107788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/20/2022]
|
10
|
Penn HJ, Simone-Finstrom MD, Chen Y, Healy KB. Honey Bee Genetic Stock Determines Deformed Wing Virus Symptom Severity but not Viral Load or Dissemination Following Pupal Exposure. Front Genet 2022; 13:909392. [PMID: 35719388 PMCID: PMC9204523 DOI: 10.3389/fgene.2022.909392] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Honey bees exposed to Varroa mites incur substantial physical damage in addition to potential exposure to vectored viruses such as Deformed wing virus (DWV) that exists as three master variants (DWV-A, DWV-B, and DWV-C) and recombinants. Although mite-resistant bees have been primarily bred to mitigate the impacts of Varroa mites, mite resistance may be associated with increased tolerance or resistance to the vectored viruses. The goal of our study is to determine if five honey bee stocks (Carniolan, Italian, Pol-Line, Russian, and Saskatraz) differ in their resistance or tolerance to DWV based on prior breeding for mite resistance. We injected white-eyed pupae with a sublethal dose (105) of DWV or exposed them to mites and then evaluated DWV levels and dissemination and morphological symptoms upon adult emergence. While we found no evidence of DWV resistance across stocks (i.e., similar rates of viral replication and dissemination), we observed that some stocks exhibited reduced symptom severity suggestive of differential tolerance. However, DWV tolerance was not consistent across mite-resistant stocks as Russian bees were most tolerant, while Pol-Line exhibited the most severe symptoms. DWV variants A and B exhibited differential dissemination patterns that interacted significantly with the treatment group but not bee stock. Furthermore, elevated DWV-B levels reduced adult emergence time, while both DWV variants were associated with symptom likelihood and severity. These data indicate that the genetic differences underlying bee resistance to Varroa mites are not necessarily correlated with DWV tolerance and may interact differentially with DWV variants, highlighting the need for further work on mechanisms of tolerance and bee stock-specific physiological interactions with pathogen variants.
Collapse
Affiliation(s)
- Hannah J. Penn
- United States Department of Agriculture, Agricultural Research Service, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- United States Department of Agriculture, Agricultural Research Service, Honey Bee Breeding, Genetics and Physiology Research Unit, Baton Rouge, LA, United States
| | - Yanping Chen
- United States Department of Agriculture, Agricultural Research Service, Bee Research Laboratory, Beltsville, MD, United States
| | - Kristen B. Healy
- Department of Entomology, Louisiana State University and AgCenter, Baton Rouge, LA, United States
| |
Collapse
|
11
|
Cheung YP, Park S, Pagtalunan J, Maringer K. The antiviral role of NF-κB-mediated immune responses and their antagonism by viruses in insects. J Gen Virol 2022; 103. [PMID: 35510990 DOI: 10.1099/jgv.0.001741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The antiviral role of innate immune responses mediated by the NF-κB family of transcription factors is well established in vertebrates but was for a long time less clear in insects. Insects encode two canonical NF-κB pathways, the Toll and Imd ('immunodeficiency') pathways, which are best characterised for their role in antibacterial and antifungal defence. An increasing body of evidence has also implicated NF-κB-mediated innate immunity in antiviral responses against some, but not all, viruses. Specific pattern recognition receptors (PRRs) and molecular events leading to NF-κB activation by viral pathogen-associated molecular patterns (PAMPs) have been elucidated for a number of viruses and insect species. Particularly interesting are recent findings indicating that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway detects viral RNA to activate NF-κB-regulated gene expression. We summarise the literature on virus-NF-κB pathway interactions across the class Insecta, with a focus on the dipterans Drosophila melanogaster and Aedes aegypti. We discuss potential reasons for differences observed between different virus-host combinations, and highlight similarities and differences between cGAS-STING signalling in insects versus vertebrates. Finally, we summarise the increasing number of known molecular mechanisms by which viruses antagonise NF-κB responses, which suggest that NF-κB-mediated immunity exerts strong evolutionary pressures on viruses. These developments in our understanding of insect antiviral immunity have relevance to the large number of insect species that impact on humans through their transmission of human, livestock and plant diseases, exploitation as biotechnology platforms, and role as parasites, pollinators, livestock and pests.
Collapse
Affiliation(s)
- Yin P Cheung
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sohyun Park
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Justine Pagtalunan
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
12
|
Simone-Finstrom M, Strand MK, Tarpy DR, Rueppell O. Impact of Honey Bee Migratory Management on Pathogen Loads and Immune Gene Expression is Affected by Complex Interactions With Environment, Worker Life History, and Season. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6523145. [PMID: 35137136 PMCID: PMC8825759 DOI: 10.1093/jisesa/ieab096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Indexed: 05/12/2023]
Abstract
The effects of honey bee management, such as intensive migratory beekeeping, are part of the ongoing debate concerning causes of colony health problems. Even though comparisons of disease and pathogen loads among differently managed colonies indicate some effects, the direct impact of migratory practices on honey bee pathogens is poorly understood. To test long- and short-term impacts of managed migration on pathogen loads and immunity, experimental honey bee colonies were maintained with or without migratory movement. Individuals that experienced migration as juveniles (e.g., larval and pupal development), as adults, or both were compared to control colonies that remained stationary and therefore did not experience migratory relocation. Samples at different ages and life-history stages (hive bees or foragers), taken at the beginning and end of the active season, were analyzed for pathogen loads and physiological markers of health. Bees exposed to migratory management during adulthood had increased levels of the AKI virus complex (Acute bee paralysis, Kashmir bee, and Israeli acute bee paralysis viruses) and decreased levels of antiviral gene expression (dicer-like). However, those in stationary management as adults had elevated gut parasites (i.e. trypanosomes). Effects of environment during juvenile development were more complex and interacted with life-history stage and season. Age at collection, life-history stage, and season all influenced numerous factors from viral load to immune gene expression. Although the factors that we examined are not independent, the results illuminate potential factors in both migratory and nonmigratory beekeeping that are likely to contribute to colony stress, and also indicate potential mitigation measures.
Collapse
Affiliation(s)
- Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics and Physiology Research Laboratory, 1157 Ben Hur Road, Baton Rouge, LA 70820, USA
- Corresponding author, e-mail:
| | - Micheline K Strand
- Life Sciences Branch, U.S. Army Research Office, 800 Park Office Drive, Research Triangle Park, NC 27703, USA
| | - David R Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, 100 Derieux Place, Raleigh, NC 27695, USA
- The W.M. Keck Center for Behavioral Biology, North Carolina State University, 112 Derieux Place, Raleigh, NC 27695, USA
- Current address: Department of Applied Ecology, North Carolina State University, 100 Eugene Brooks Avenue, Raleigh, NC 27695, USA
| | - Olav Rueppell
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
- Department of Biology, University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27412, USA
| |
Collapse
|
13
|
Henriques D, Lopes AR, Chejanovsky N, Dalmon A, Higes M, Jabal-Uriel C, Le Conte Y, Reyes-Carreño M, Soroker V, Martín-Hernández R, Pinto MA. A SNP assay for assessing diversity in immune genes in the honey bee (Apis mellifera L.). Sci Rep 2021; 11:15317. [PMID: 34321557 PMCID: PMC8319136 DOI: 10.1038/s41598-021-94833-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023] Open
Abstract
With a growing number of parasites and pathogens experiencing large-scale range expansions, monitoring diversity in immune genes of host populations has never been so important because it can inform on the adaptive potential to resist the invaders. Population surveys of immune genes are becoming common in many organisms, yet they are missing in the honey bee (Apis mellifera L.), a key managed pollinator species that has been severely affected by biological invasions. To fill the gap, here we identified single nucleotide polymorphisms (SNPs) in a wide range of honey bee immune genes and developed a medium-density assay targeting a subset of these genes. Using a discovery panel of 123 whole-genomes, representing seven A. mellifera subspecies and three evolutionary lineages, 180 immune genes were scanned for SNPs in exons, introns (< 4 bp from exons), 3' and 5´UTR, and < 1 kb upstream of the transcription start site. After application of multiple filtering criteria and validation, the final medium-density assay combines 91 quality-proved functional SNPs marking 89 innate immune genes and these can be readily typed using the high-sample-throughput iPLEX MassARRAY system. This medium-density-SNP assay was applied to 156 samples from four countries and the admixture analysis clustered the samples according to their lineage and subspecies, suggesting that honey bee ancestry can be delineated from functional variation. In addition to allowing analysis of immunogenetic variation, this newly-developed SNP assay can be used for inferring genetic structure and admixture in the honey bee.
Collapse
Affiliation(s)
- Dora Henriques
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Ana R Lopes
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Nor Chejanovsky
- Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | - Anne Dalmon
- INRAE, Unité Abeilles et Environnement, Avignon, France
| | - Mariano Higes
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Clara Jabal-Uriel
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
| | - Yves Le Conte
- INRAE, Unité Abeilles et Environnement, Avignon, France
| | | | - Victoria Soroker
- Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon, Israel
| | - Raquel Martín-Hernández
- IRIAF, Instituto Regional de Investigación y Desarrollo Agroalimentario y Forestal, Laboratorio de Patología Apícola, Centro de Investigación Apícola y Agroambiental (CIAPA), Consejería de Agricultura de la Junta de Comunidades de Castilla-La Mancha, Marchamalo, Spain
- Instituto de Recursos Humanos para la Ciencia y la Tecnología (INCRECYT-FEDER), Fundación Parque Científico y Tecnológico de Castilla-La Mancha, 02006, Albacete, Spain
| | - M Alice Pinto
- Centro de Investigação de Montanha, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal.
| |
Collapse
|
14
|
Tropilaelaps mercedesae parasitism changes behavior and gene expression in honey bee workers. PLoS Pathog 2021; 17:e1009684. [PMID: 34237116 PMCID: PMC8266070 DOI: 10.1371/journal.ppat.1009684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/02/2021] [Indexed: 11/24/2022] Open
Abstract
Tropilaelaps mercedesae is one of the most problematic honey bee parasites and has become more threatening to the beekeeping industry. Tropilaelaps can easily parasitize immature honey bees (larvae and pupae) and have both lethal and sublethal effects on the individual worker bees. Our study for the first time experimentally assessed the effects of T. mercedesae on olfactory learning, flight ability, homing ability as well as transcriptional changes in parasitized adult honey bees. T. mercedesae infestation had negative impacts on olfactory associated function, flight ability, and homing rate. The volume of the mushroom body significantly increased in infested honey bees, which may be correlated to the lower sucrose responsiveness as well as lower learning ability in the infested bees. The gene expression involved in immune systems and carbohydrate transport and metabolism were significantly different between infested bees and non-infested bees. Moreover, genes function in cell adhesion play an essential role in olfactory sensory in honey bees. Our findings provide a comprehensive understanding of European honey bees in response to T. mercedesae infestation, and could be used to further investigate the complex molecular mechanisms in honey bees under parasitic stress. In recent decades, there has been serious concern about the decline of honey bees in the world. One of the most serious factors contributing to bee population declines is mite parasitism. Although Varroa destructor is the most widespread globally, Tropilaelaps mercedesae displays greater threat to bee colonies due to its smaller size, shorter phoretic phase, more rapid locomotion, as well as faster reproductive rate. Tropilaelaps mites, originally parasite of the giant Asian honey bees, now becoming an emerging threat of European honey bees (Apis mellifera) in Asian area. This work aimed to investigate the influence of T. mercedesae infestation on behavior and gene expression in A. mellifera. Our results highlight the T. mercedesae infestation induced negative effects of olfactory learning, flight ability, homing ability of honey bee workers. Moreover, we found that T. mercedesae infestation caused the up-regulation of genes involved in immune systems and carbohydrate mechanism which were correlated to the different olfactory learning performance in infested honeybee. In addition, genes function in cell adhesion play an essential role in olfactory sensory in honey bees. Our results increase the knowledge of proximate mechanisms in honey bee responding to parasitic stress.
Collapse
|
15
|
Guo Y, Zhang Z, Zhuang M, Wang L, Li K, Yao J, Yang H, Huang J, Hao Y, Ying F, Mannan H, Wu J, Chen Y, Li J. Transcriptome Profiling Reveals a Novel Mechanism of Antiviral Immunity Upon Sacbrood Virus Infection in Honey Bee Larvae ( Apis cerana). Front Microbiol 2021; 12:615893. [PMID: 34149631 PMCID: PMC8208235 DOI: 10.3389/fmicb.2021.615893] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
The honey bee is one of the most important pollinators in the agricultural system and is responsible for pollinating a third of all food we eat. Sacbrood virus (SBV) is a member of the virus family Iflaviridae and affects honey bee larvae and causes particularly devastating disease in the Asian honey bees, Apis cerana. Chinese Sacbrood virus (CSBV) is a geographic strain of SBV identified in China and has resulted in mass death of honey bees in China in recent years. However, the molecular mechanism underlying SBV infection in the Asian honey bee has remained unelucidated. In this present study, we employed high throughput next-generation sequencing technology to study the host transcriptional responses to CSBV infection in A. cerana larvae, and were able to identify genome-wide differentially expressed genes associated with the viral infection. Our study identified 2,534 differentially expressed genes (DEGs) involved in host innate immunity including Toll and immune deficiency (IMD) pathways, RNA interference (RNAi) pathway, endocytosis, etc. Notably, the expression of genes encoding antimicrobial peptides (abaecin, apidaecin, hymenoptaecin, and defensin) and core components of RNAi such as Dicer-like and Ago2 were found to be significantly upregulated in CSBV infected larvae. Most importantly, the expression of Sirtuin target genes, a family of signaling proteins involved in metabolic regulation, apoptosis, and intracellular signaling was found to be changed, providing the first evidence of the involvement of Sirtuin signaling pathway in insects’ immune response to a virus infection. The results obtained from this study provide novel insights into the molecular mechanism and immune responses involved in CSBV infection, which in turn will contribute to the development of diagnostics and treatment for the diseases in honey bees.
Collapse
Affiliation(s)
- Yulong Guo
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhengyi Zhang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingsheng Zhuang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,Shanghai Suosheng Biotechnology Co., Ltd., Shanghai, China
| | - Liuhao Wang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Kai Li
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Yao
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huipeng Yang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxing Huang
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue Hao
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Ying
- Guizhou Provincial Animal and Poultry Genetic Resources Management Station, Guiyang, China
| | - Hira Mannan
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tando Jam, Pakistan
| | - Jie Wu
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanping Chen
- United States Department of Agriculture (USD) - Agricultural Research Service (ARS) Bee Research Laboratory, Beltsville, MD, United States
| | - Jilian Li
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Mookhploy W, Krongdang S, Chantawannakul P. Effects of Deformed Wing Virus Infection on Expressions of Immune- and Apoptosis-Related Genes in Western Honeybees ( Apis mellifera). INSECTS 2021; 12:82. [PMID: 33477797 PMCID: PMC7832323 DOI: 10.3390/insects12010082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/11/2023]
Abstract
Honeybees are globally threatened by several pathogens, especially deformed wing virus (DWV), as the presence of DWV in western honeybees is indicative of colony loss. The high mortality rate is further exacerbated by the lack of effective treatment, and therefore understanding the immune and apoptosis responses could pave an avenue for the treatment method. In this study, DWV was directly injected into the white-eyed pupae stage of western honeybees (Apis mellifera). The DWV loads and selected gene responses were monitored using the real-time PCR technique. The results showed that honeybee pupae that were injected with the highest concentration of viral loads showed a significantly higher mortality rate than the control groups. Deformed wings could be observed in newly emerged adult bees when the infected bees harbored high levels of viral loads. However, the numbers of viral loads in both normal and crippled wing groups were not significantly different. DWV-injected honeybee pupae with 104 and 107 copy numbers per bee groups showed similar viral loads after 48 h until newly emerged adult bees. Levels of gene expression including immune genes (defensin, abaecin, and hymenoptaecin) and apoptosis genes (buffy, p53, Apaf1, caspase3-like, caspase8-like, and caspase9-like) were analyzed after DWV infection. The expressions of immune and apoptosis genes were significantly different in infected bees compared to those of the control groups. In the pupae stage, the immune genes were activated by injecting DWV (defensin and hymenoptaecin) or Escherichia coli (defensin, abaecin, and hymenoptaecin), a positive control. On the contrary, the expression of apoptosis-related genes (buffy, caspase3-like, caspase8-like, and caspase9-like genes) was suppressed at 96 h post-infection. In DWV-infected newly emerged adult bees, abaecin, hymenoptaecin, Apaf1, and caspase8-like genes were upregulated. However, these genes were not significantly different between the normal and crippled wing bees. Our results suggested that DWV could activate the humoral immunity in honeybees and that honeybee hosts may be able to protect themselves from the virus infection through immune responses. Apoptosis gene expressions were upregulated in newly emerged adult bees by the virus, however, they were downregulated during the initial phase of viral infection.
Collapse
Affiliation(s)
- Wannapha Mookhploy
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; or
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sasiprapa Krongdang
- Faculty of Science and Social Sciences, Burapha University Sa Kaeo Campus, Sa Kaeo 27160, Thailand; or
| | - Panuwan Chantawannakul
- Bee Protection Laboratory, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; or
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Hinshaw C, Evans KC, Rosa C, López-Uribe MM. The Role of Pathogen Dynamics and Immune Gene Expression in the Survival of Feral Honey Bees. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.594263] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the ecoimmunology of feral organisms can provide valuable insight into how host–pathogen dynamics change as organisms transition from human-managed conditions back into the wild. Honey bees (Apis mellifera Linnaeus) offer an ideal system to investigate these questions as colonies of these social insects often escape management and establish in the wild. While managed honey bee colonies have low probability of survival in the absence of disease treatments, feral colonies commonly survive in the wild, where pathogen pressures are expected to be higher due to the absence of disease treatments. Here, we investigate the role of pathogen infections [Deformed wing virus (DWV), Black queen cell virus (BQCV), and Nosema ceranae] and immune gene expression (defensin-1, hymenoptaecin, pgrp-lc, pgrp-s2, argonaute-2, vago) in the survival of feral and managed honey bee colonies. We surveyed a total of 25 pairs of feral and managed colonies over a 2-year period (2017–2018), recorded overwintering survival, and measured pathogen levels and immune gene expression using quantitative polymerase chain reaction (qPCR). Our results showed that feral colonies had higher levels of DWV but it was variable over time compared to managed colonies. Higher pathogen levels were associated with increased immune gene expression, with feral colonies showing higher expression in five out of the six examined immune genes for at least one sampling period. Further analysis revealed that differential expression of the genes hymenoptaecin and vago increased the odds of overwintering survival in managed and feral colonies. Our results revealed that feral colonies express immune genes at higher levels in response to high pathogen burdens, providing evidence for the role of feralization in altering pathogen landscapes and host immune responses.
Collapse
|
18
|
Bhatia S, Baral SS, Vega Melendez C, Amiri E, Rueppell O. Comparing Survival of Israeli Acute Paralysis Virus Infection among Stocks of U.S. Honey Bees. INSECTS 2021; 12:60. [PMID: 33445412 PMCID: PMC7827508 DOI: 10.3390/insects12010060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.
Collapse
Affiliation(s)
- Shilpi Bhatia
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Applied Science & Technology, North Carolina Agricultural & Technical University, 1601 E Market Street, Greensboro, NC 27411, USA
| | - Saman S. Baral
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Carlos Vega Melendez
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- US Dairy Forage Research Center, USDA-ARS, 1925 Linden Drive, Madison, WI 53706, USA
| | - Esmaeil Amiri
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
| | - Olav Rueppell
- Department of Biology, University of North Carolina Greensboro, 321 McIver Street, Greensboro, NC 27403, USA; (S.B.); (S.S.B.); (C.V.M.); (E.A.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
19
|
Barrs KR, Ani MO, Eversman KK, Rowell JT, Wagoner KM, Rueppell O. Time-accuracy trade-off and task partitioning of hygienic behavior among honey bee (Apis mellifera) workers. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02940-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Li-Byarlay H, Boncristiani H, Howell G, Herman J, Clark L, Strand MK, Tarpy D, Rueppell O. Transcriptomic and Epigenomic Dynamics of Honey Bees in Response to Lethal Viral Infection. Front Genet 2020; 11:566320. [PMID: 33101388 PMCID: PMC7546774 DOI: 10.3389/fgene.2020.566320] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/17/2020] [Indexed: 12/28/2022] Open
Abstract
Honey bees (Apis mellifera L.) suffer from many brood pathogens, including viruses. Despite considerable research, the molecular responses and dynamics of honey bee pupae to viral pathogens remain poorly understood. Israeli Acute Paralysis Virus (IAPV) is emerging as a model virus since its association with severe colony losses. Using worker pupae, we studied the transcriptomic and methylomic consequences of IAPV infection over three distinct time points after inoculation. Contrasts of gene expression and 5 mC DNA methylation profiles between IAPV-infected and control individuals at these time points - corresponding to the pre-replicative (5 h), replicative (20 h), and terminal (48 h) phase of infection - indicate that profound immune responses and distinct manipulation of host molecular processes accompany the lethal progression of this virus. We identify the temporal dynamics of the transcriptomic response to with more genes differentially expressed in the replicative and terminal phases than in the pre-replicative phase. However, the number of differentially methylated regions decreased dramatically from the pre-replicative to the replicative and terminal phase. Several cellular pathways experienced hyper- and hypo-methylation in the pre-replicative phase and later dramatically increased in gene expression at the terminal phase, including the MAPK, Jak-STAT, Hippo, mTOR, TGF-beta signaling pathways, ubiquitin mediated proteolysis, and spliceosome. These affected biological functions suggest that adaptive host responses to combat the virus are mixed with viral manipulations of the host to increase its own reproduction, all of which are involved in anti-viral immune response, cell growth, and proliferation. Comparative genomic analyses with other studies of viral infections of honey bees and fruit flies indicated that similar immune pathways are shared. Our results further suggest that dynamic DNA methylation responds to viral infections quickly, regulating subsequent gene activities. Our study provides new insights of molecular mechanisms involved in epigenetic that can serve as foundation for the long-term goal to develop anti-viral strategies for honey bees, the most important commercial pollinator.
Collapse
Affiliation(s)
- Hongmei Li-Byarlay
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Humberto Boncristiani
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Gary Howell
- High Performance Cluster, Office of Information Technology, North Carolina State University, Raleigh, NC, United States
| | - Jake Herman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| | - Lindsay Clark
- High Performance Computing in Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Micheline K. Strand
- Army Research Office, Army Research Laboratory, Research Triangle Park, NC, United States
| | - David Tarpy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, United States
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC, United States
| |
Collapse
|
21
|
Wu Y, Liu Q, Weiss B, Kaltenpoth M, Kadowaki T. Honey Bee Suppresses the Parasitic Mite Vitellogenin by Antimicrobial Peptide. Front Microbiol 2020; 11:1037. [PMID: 32523577 PMCID: PMC7261897 DOI: 10.3389/fmicb.2020.01037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 04/27/2020] [Indexed: 01/04/2023] Open
Abstract
The negative effects of honey bee parasitic mites and deformed wing virus (DWV) on honey bee and colony health have been well characterized. However, the relationship between DWV and mites, particularly viral replication inside the mites, remains unclear. Furthermore, the physiological outcomes of honey bee immune responses stimulated by DWV and the mite to the host (honey bee) and perhaps the pathogen/parasite (DWV/mite) are not yet understood. To answer these questions, we studied the tripartite interactions between the honey bee, Tropilaelaps mercedesae, and DWV as the model. T. mercedesae functioned as a vector for DWV without supporting active viral replication. Thus, DWV negligibly affected mite fitness. Mite infestation induced mRNA expression of antimicrobial peptides (AMPs), Defensin-1 and Hymenoptaecin, which correlated with DWV copy number in honey bee pupae and mite feeding, respectively. Feeding T. mercedesae with fruit fly S2 cells heterologously expressing honey bee Hymenoptaecin significantly downregulated mite Vitellogenin expression, indicating that the honey bee AMP manipulates mite reproduction upon feeding on bee. Our results provide insights into the mechanism of DWV transmission by the honey bee parasitic mite to the host, and the novel role of AMP in defending against mite infestation.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Qiushi Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Benjamin Weiss
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Martin Kaltenpoth
- Department for Evolutionary Ecology, Institute for Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
22
|
Annoscia D, Brown SP, Di Prisco G, De Paoli E, Del Fabbro S, Frizzera D, Zanni V, Galbraith DA, Caprio E, Grozinger CM, Pennacchio F, Nazzi F. Haemolymph removal by Varroa mite destabilizes the dynamical interaction between immune effectors and virus in bees, as predicted by Volterra's model. Proc Biol Sci 2020; 286:20190331. [PMID: 30991929 PMCID: PMC6501932 DOI: 10.1098/rspb.2019.0331] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The association between the deformed wing virus and the parasitic mite Varroa destructor has been identified as a major cause of worldwide honeybee colony losses. The mite acts as a vector of the viral pathogen and can trigger its replication in infected bees. However, the mechanistic details underlying this tripartite interaction are still poorly defined, and, particularly, the causes of viral proliferation in mite-infested bees. Here, we develop and test a novel hypothesis that mite feeding destabilizes viral immune control through the removal of both virus and immune effectors, triggering uncontrolled viral replication. Our hypothesis is grounded on the predator-prey theory developed by Volterra, which predicts prey proliferation when both predators and preys are constantly removed from the system. Consistent with this hypothesis, we show that the experimental removal of increasing volumes of haemolymph from individual bees results in increasing viral densities. By contrast, we do not find consistent support for alternative proposed mechanisms of viral expansion via mite immune suppression or within-host viral evolution. Our results suggest that haemolymph removal plays an important role in the enhanced pathogen virulence observed in the presence of feeding Varroa mites. Overall, these results provide a new model for the mechanisms driving pathogen-parasite interactions in bees, which ultimately underpin honeybee health decline and colony losses.
Collapse
Affiliation(s)
- Desiderato Annoscia
- 1 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine , Udine , Italy
| | - Sam P Brown
- 2 School of Biological Sciences, Georgia Institute of Technology , Atlanta, GA , USA
| | - Gennaro Di Prisco
- 3 Dipartimento di Agraria 'Filippo Silvestri', Università degli Studi di Napoli 'Federico II' , Portici (Napoli) , Italy.,4 CREA, Council for Agricultural Research and Economics, Research Center for Agriculture and Environment , Bologna , Italy
| | - Emanuele De Paoli
- 1 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine , Udine , Italy
| | - Simone Del Fabbro
- 1 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine , Udine , Italy
| | - Davide Frizzera
- 1 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine , Udine , Italy
| | - Virginia Zanni
- 1 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine , Udine , Italy
| | - David A Galbraith
- 5 Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, PA , USA
| | - Emilio Caprio
- 3 Dipartimento di Agraria 'Filippo Silvestri', Università degli Studi di Napoli 'Federico II' , Portici (Napoli) , Italy
| | - Christina M Grozinger
- 5 Department of Entomology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University , University Park, PA , USA
| | - Francesco Pennacchio
- 3 Dipartimento di Agraria 'Filippo Silvestri', Università degli Studi di Napoli 'Federico II' , Portici (Napoli) , Italy
| | - Francesco Nazzi
- 1 Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine , Udine , Italy
| |
Collapse
|
23
|
Erban T, Sopko B, Kadlikova K, Talacko P, Harant K. Varroa destructor parasitism has a greater effect on proteome changes than the deformed wing virus and activates TGF-β signaling pathways. Sci Rep 2019; 9:9400. [PMID: 31253851 PMCID: PMC6599063 DOI: 10.1038/s41598-019-45764-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Honeybee workers undergo metamorphosis in capped cells for approximately 13 days before adult emergence. During the same period, Varroa mites prick the defenseless host many times. We sought to identify proteome differences between emerging Varroa-parasitized and parasite-free honeybees showing the presence or absence of clinical signs of deformed wing virus (DWV) in the capped cells. A label-free proteomic analysis utilizing nanoLC coupled with an Orbitrap Fusion Tribrid mass spectrometer provided a quantitative comparison of 2316 protein hits. Redundancy analysis (RDA) showed that the combination of Varroa parasitism and DWV clinical signs caused proteome changes that occurred in the same direction as those of Varroa alone and were approximately two-fold higher. Furthermore, proteome changes associated with DWV signs alone were positioned above Varroa in the RDA. Multiple markers indicate that Varroa activates TGF-β-induced pathways to suppress wound healing and the immune response and that the collective action of stressors intensifies these effects. Furthermore, we indicate JAK/STAT hyperactivation, p53-BCL-6 feedback loop disruption, Wnt pathway activation, Wnt/Hippo crosstalk disruption, and NF-κB and JAK/STAT signaling conflict in the Varroa–honeybee–DWV interaction. These results illustrate the higher effect of Varroa than of DWV at the time of emergence. Markers for future research are provided.
Collapse
Affiliation(s)
- Tomas Erban
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.
| | - Bruno Sopko
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia
| | - Klara Kadlikova
- Crop Research Institute, Drnovska 507/73, Prague 6-Ruzyne, CZ-161 06, Czechia.,Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague 6-Suchdol, CZ-165 00, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec, CZ-25242, Czechia
| |
Collapse
|
24
|
Wagoner K, Spivak M, Hefetz A, Reams T, Rueppell O. Stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. Sci Rep 2019; 9:8753. [PMID: 31217481 PMCID: PMC6584651 DOI: 10.1038/s41598-019-45008-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/24/2019] [Indexed: 01/23/2023] Open
Abstract
The health of the honey bee Apis mellifera is challenged by the ectoparasitic mite Varroa destructor, and the numerous harmful pathogens it vectors. Existing pesticide-based Varroa controls are not sustainable. In contrast, one promising approach for improved honey bee health is the breeding of hygienic bees, capable of detecting and removing brood that is parasitized or diseased. In three experiments we find evidence to support the hypothesis that stock-specific chemical brood signals are induced by Varroa and Deformed Wing Virus, and elicit hygienic response in the honey bee. By collecting, analyzing, and running bioassays involving mite-infested and control brood extracts from three honey bee breeding stocks we: 1) found evidence that a transferrable chemical signal for hygienic behavior is present in Varroa-infested brood extracts, 2) identified ten stock-specific hydrocarbons as candidates of hygienic signaling, and 3) found that two of these hydrocarbons linked to Varroa and DWV were also elevated in brood targeted for hygienic behavior. These findings expand our understanding of honey bee chemical communication, and facilitate the development of improved hygienic selection tools to breed honey bees with greater resistance to Varroa and associated pathogens.
Collapse
Affiliation(s)
- K Wagoner
- Biology Department, University of North Carolina at Greensboro, Greensboro, USA.
| | - M Spivak
- Department of Entomology, University of Minnesota, Minneapolis, USA
| | - A Hefetz
- George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - T Reams
- Department of Entomology, Texas A&M University, College Station, USA
| | - O Rueppell
- Biology Department, University of North Carolina at Greensboro, Greensboro, USA
| |
Collapse
|
25
|
Manley R, Temperton B, Doyle T, Gates D, Hedges S, Boots M, Wilfert L. Knock-on community impacts of a novel vector: spillover of emerging DWV-B from Varroa-infested honeybees to wild bumblebees. Ecol Lett 2019; 22:1306-1315. [PMID: 31190366 PMCID: PMC6852581 DOI: 10.1111/ele.13323] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/17/2019] [Accepted: 05/22/2019] [Indexed: 12/30/2022]
Abstract
Novel transmission routes can directly impact the evolutionary ecology of infectious diseases, with potentially dramatic effect on host populations and knock‐on effects on the wider host community. The invasion of Varroa destructor, an ectoparasitic viral vector in Western honeybees, provides a unique opportunity to examine how a novel vector affects disease epidemiology in a host community. This specialist honeybee mite vectors deformed wing virus (DWV), an important re‐emerging honeybee pathogen that also infects wild bumblebees. Comparing island honeybee and wild bumblebee populations with and without V. destructor, we show that V. destructor drives DWV prevalence and titre in honeybees and sympatric bumblebees. Viral genotypes are shared across hosts, with the potentially more virulent DWV‐B overtaking DWV‐A in prevalence in a current epidemic. This demonstrates disease emergence across a host community driven by the acquisition of a specialist novel transmission route in one host, with dramatic community level knock‐on effects.
Collapse
Affiliation(s)
- Robyn Manley
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR11 9FE, UK.,Department of Biosciences, University of Exeter, Streatham Campus, Exeter, EX4 4QD, UK
| | - Ben Temperton
- Department of Biosciences, University of Exeter, Streatham Campus, Exeter, EX4 4QD, UK
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR11 9FE, UK
| | - Daisy Gates
- Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Sophie Hedges
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR11 9FE, UK
| | - Michael Boots
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Lena Wilfert
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Penryn, TR11 9FE, UK.,Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, D-89069, Ulm, Germany
| |
Collapse
|
26
|
Barroso-Arévalo S, Vicente-Rubiano M, Puerta F, Molero F, Sánchez-Vizcaíno JM. Immune related genes as markers for monitoring health status of honey bee colonies. BMC Vet Res 2019; 15:72. [PMID: 30832657 PMCID: PMC6398266 DOI: 10.1186/s12917-019-1823-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/25/2019] [Indexed: 12/21/2022] Open
Abstract
Background Honey bee population decline threatens the beekeeping sector, agriculture and global biodiversity. Early detection of colony mortality may facilitate rapid interventions to contain and prevent mortality spread. Among others, deformed wing virus (DWV) is capable of inducing colony losses, especially when combined with Varroa destructor mite. Since the bee immune system plays a crucial role in ensuring that bees are able to face these pathogens, we explored whether expression of immune genes could serve as biomarkers of colony health. Results Herein, we describe a preliminary immunological marker composed of two immune genes (relish and defensin), which provide insight on honey bee antiviral defense mechanism. Of the tested genes, relish expression correlated with the presence of DWV-Varroa complex, while decreased defensin expression correlated with poor resistance to this complex. Conclusions The monitoring of these genes may help us to better understand the complex physiology of honey bees’s immune system and to develop new approaches for managing the health impacts of DWV infection and varroa infestation in the field.
Collapse
Affiliation(s)
- Sandra Barroso-Arévalo
- VISAVET Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain.
| | - Marina Vicente-Rubiano
- VISAVET Centre and Animal Health Department, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Francisco Puerta
- Apicultural Reference Center in Andalusia (CERA), Andalusia, Spain
| | - Fernando Molero
- Apicultural Reference Center in Andalusia (CERA), Andalusia, Spain
| | | |
Collapse
|
27
|
Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, Lim D, Joklik J, Cicero JM, Ellis JD, Hawthorne D, vanEngelsdorp D. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc Natl Acad Sci U S A 2019; 116:1792-1801. [PMID: 30647116 PMCID: PMC6358713 DOI: 10.1073/pnas.1818371116] [Citation(s) in RCA: 293] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The parasitic mite Varroa destructor is the greatest single driver of the global honey bee health decline. Better understanding of the association of this parasite and its host is critical to developing sustainable management practices. Our work shows that this parasite is not consuming hemolymph, as has been the accepted view, but damages host bees by consuming fat body, a tissue roughly analogous to the mammalian liver. Both hemolymph and fat body in honey bees were marked with fluorescent biostains. The fluorescence profile in the guts of mites allowed to feed on these bees was very different from that of the hemolymph of the host bee but consistently matched the fluorescence profile unique to the fat body. Via transmission electron microscopy, we observed externally digested fat body tissue in the wounds of parasitized bees. Mites in their reproductive phase were then fed a diet composed of one or both tissues. Mites fed hemolymph showed fitness metrics no different from the starved control. Mites fed fat body survived longer and produced more eggs than those fed hemolymph, suggesting that fat body is integral to their diet when feeding on brood as well. Collectively, these findings strongly suggest that Varroa are exploiting the fat body as their primary source of sustenance: a tissue integral to proper immune function, pesticide detoxification, overwinter survival, and several other essential processes in healthy bees. These findings underscore a need to revisit our understanding of this parasite and its impacts, both direct and indirect, on honey bee health.
Collapse
Affiliation(s)
- Samuel D Ramsey
- Department of Entomology, University of Maryland, College Park, MD 20742;
| | - Ronald Ochoa
- Agricultural Research Service, Systematic Entomology Laboratory, United States Department of Agriculture, Beltsville, MD 20705
| | - Gary Bauchan
- Agricultural Research Service, Soybean Genomics & Improvement Laboratory, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, MD 20705
| | - Connor Gulbronson
- Agricultural Research Service, Floral and Nursery Plant Research Unit, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, MD 20705
| | - Joseph D Mowery
- Agricultural Research Service, Soybean Genomics & Improvement Laboratory, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, MD 20705
| | - Allen Cohen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - David Lim
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Judith Joklik
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Joseph M Cicero
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611
| | - David Hawthorne
- Department of Entomology, University of Maryland, College Park, MD 20742
| | | |
Collapse
|
28
|
The Dynamics of Deformed Wing Virus Concentration and Host Defensive Gene Expression after Varroa Mite Parasitism in Honey Bees, Apis mellifera. INSECTS 2019; 10:insects10010016. [PMID: 30626033 PMCID: PMC6358901 DOI: 10.3390/insects10010016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
The synergistic interactions between the ectoparasitic mite Varroa destructor and Deformed wing virus (DWV) lead to the reduction in lifespan of the European honey bee Apis mellifera and often have been implicated in colony losses worldwide. However, to date, the underlying processes and mechanisms that form the multipartite interaction between the bee, mite, and virus have not been fully explained. To gain a better understanding of honey bees’ defense response to Varroa mite infestation and DWV infection, the DWV titers and transcription profiles of genes originating from RNAi, immunity, wound response, and homeostatic signaling pathways were monitored over a period of eight days. With respect to DWV, we observed low viral titers at early timepoints that coincided with high levels of Toll pathway transcription factor Dorsal, and its downstream immune effector molecules Hymenoptaecin, Apidaecin, Abaecin, and Defensin 1. However, we observed a striking increase in viral titers beginning after two days that coincided with a decrease in Dorsal levels and its corresponding immune effector molecules, and the small ubiquitin-like modifier (SUMO) ligase repressor of Dorsal, PIAS3. We observed a similar expression pattern for genes expressing transcripts for the RNA interference (Dicer/Argonaute), wound/homeostatic (Janus Kinase), and tissue growth (Map kinase/Wnt) pathways. Our results demonstrate that on a whole, honey bees are able to mount an immediate, albeit, temporally limited, immune and homeostatic response to Varroa and DWV infections, after which downregulation of these pathways leaves the bee vulnerable to expansive viral replication. The critical insights into the defense response upon Varroa and DWV challenges generated in this study may serve as a solid base for future research on the development of effective and efficient disease management strategies in honey bees.
Collapse
|
29
|
Amiri E, Seddon G, Zuluaga Smith W, Strand MK, Tarpy DR, Rueppell O. Israeli Acute Paralysis Virus: Honey Bee Queen⁻Worker Interaction and Potential Virus Transmission Pathways. INSECTS 2019; 10:E9. [PMID: 30626038 PMCID: PMC6359674 DOI: 10.3390/insects10010009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/14/2018] [Accepted: 08/28/2018] [Indexed: 11/23/2022]
Abstract
Queen loss or failure is an important cause of honey bee colony loss. A functional queen is essential to a colony, and the queen is predicted to be well protected by worker bees and other mechanisms of social immunity. Nevertheless, several honey bee pathogens (including viruses) can infect queens. Here, we report a series of experiments to test how virus infection influences queen⁻worker interactions and the consequences for virus transmission. We used Israeli acute paralysis virus (IAPV) as an experimental pathogen because it is relevant to bee health but is not omnipresent. Queens were observed spending 50% of their time with healthy workers, 32% with infected workers, and 18% without interaction. However, the overall bias toward healthy workers was not statistically significant, and there was considerable individual to individual variability. We found that physical contact between infected workers and queens leads to high queen infection in some cases, suggesting that IAPV infections also spread through close bodily contact. Across experiments, queens exhibited lower IAPV titers than surrounding workers. Thus, our results indicate that honey bee queens are better protected by individual and social immunity, but this protection is insufficient to prevent IAPV infections completely.
Collapse
Affiliation(s)
- Esmaeil Amiri
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Gregory Seddon
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Wendy Zuluaga Smith
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| | - Micheline K Strand
- Life Science Division, U.S. Army Research Office, Research Triangle Park, Durham, NC 27709-2211, USA.
| | - David R Tarpy
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695-7613, USA.
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402-6170, USA.
| |
Collapse
|
30
|
Abstract
Bees-including solitary, social, wild, and managed species-are key pollinators of flowering plant species, including nearly three-quarters of global food crops. Their ecological importance, coupled with increased annual losses of managed honey bees and declines in populations of key wild species, has focused attention on the factors that adversely affect bee health, including viral pathogens. Genomic approaches have dramatically expanded understanding of the diversity of viruses that infect bees, the complexity of their transmission routes-including intergenus transmission-and the diversity of strategies bees have evolved to combat virus infections, with RNA-mediated responses playing a prominent role. Moreover, the impacts of viruses on their hosts are exacerbated by the other major stressors bee populations face, including parasites, poor nutrition, and exposure to chemicals. Unraveling the complex relationships between viruses and their bee hosts will lead to improved understanding of viral ecology and management strategies that support better bee health.
Collapse
Affiliation(s)
- Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Infectious Disease Dynamics, and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology and Pollinator Health Center, Montana State University, Bozeman, Montana 59717, USA;
| |
Collapse
|
31
|
Wagoner KM, Spivak M, Rueppell O. Brood Affects Hygienic Behavior in the Honey Bee (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2520-2530. [PMID: 30212863 DOI: 10.1093/jee/toy266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Despite receiving much attention, the ectoparasitic mite Varroa destructor (Anderson and Trueman) and the pathogens it vectors remain critical threats to the health of the honey bee Apis mellifera (Linnaeus) (Hymenoptera: Apidae). One promising intervention approach is the breeding of hygienic honey bees, which have an improved ability to detect and remove unhealthy brood from the colony, and are thus more resistant to Varroa. While much hygienic behavior-related research has focused on enhanced adult honey bee olfaction, less attention has been paid to the olfactory signals that originate inside the brood cell, triggering hygienic removal. Here, we hypothesized that selection for hygienic behavior in honey bees has influenced brood signaling, predicting that: 1) in a common social environment, removal rates differ among brood with different selective breeding histories, and 2) the removal rates of brood positively correlate to the hygiene level of the brood's colony of origin. To test these predictions, we cross-fostered brood subjected to control, wound, or Varroa treatment in unselected (UNS), Minnesota Hygienic (HYG), and Varroa-Sensitive Hygienic (VSH) colonies, and monitored individual brood cells for hygienic removal. Results confirmed both predictions, as brood from hygienic colonies was more likely to be removed than brood from UNS colonies, regardless of where the brood was fostered. These findings suggest that hygiene-related brood signals complement previously identified characteristics of hygienic adults, constituting an important mechanism of social immunity in honey bees. Thus, selective breeding for honey bee hygienic behavior may be improved through the utilization of field assays containing compounds related to larval signaling.
Collapse
Affiliation(s)
- Kaira M Wagoner
- Department of Biology, University of North Carolina at Greensboro, Eberhart Building, Greensboro, NC
| | - Marla Spivak
- Department of Entomology, University of Minnesota, Hodson Hall, St. Paul, MN
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, Eberhart Building, Greensboro, NC
| |
Collapse
|
32
|
Potential associations between the mite Varroa destructor and other stressors in honeybee colonies (Apis mellifera L.) in temperate and subtropical climate from Argentina. Prev Vet Med 2018; 159:143-152. [DOI: 10.1016/j.prevetmed.2018.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022]
|
33
|
Abstract
Recently, it has become apparent that multiple factors are responsible for honey bee decline, including climate change, pests and pathogens, pesticides, and loss of foraging habitat. Of the large number of pathogens known to infect honey bees, very few are bacteria. Because adult workers abandon hives when diseased, many of their pathogens may go unnoticed. Here we characterized the virulence of Serratia marcescens strains isolated from honey bee guts and hemolymph. Our results indicate that S. marcescens, an opportunistic pathogen of many plants and animals, including humans, is a virulent opportunistic pathogen of honey bees, which could contribute to bee decline. Aside from the implications for honey bee health, the discovery of pathogenic S. marcescens strains in honey bees presents an opportunity to better understand how opportunistic pathogens infect and invade hosts. Although few honey bee diseases are known to be caused by bacteria, pathogens of adult worker bees may be underrecognized due to social immunity mechanisms. Specifically, infected adult bees typically abandon the hive or are removed by guards. Serratia marcescens, an opportunistic pathogen of many plants and animals, is often present at low abundance in the guts of honey bee workers and has recently been isolated from Varroa mites and from the hemolymph of dead and dying honey bees. However, the severity and prevalence of S. marcescens pathogenicity in honey bees have not been fully investigated. Here we characterized three S. marcescens strains isolated from the guts of honey bees and one previously isolated from hemolymph. In vivo tests confirmed that S. marcescens is pathogenic in workers. All strains caused mortality when a few cells were injected into the hemocoel, and the gut-isolated strains caused mortality when administered orally. In vitro assays and comparative genomics identified possible mechanisms of virulence of gut-associated strains. Expression of antimicrobial peptide and phenoloxidase genes was not elevated following infection, suggesting that these S. marcescens strains derived from honey bees can evade the immune response in their hosts. Finally, surveys from four locations in the United States indicated the presence of S. marcescens in the guts of over 60% of the worker bees evaluated. Taken together, these results suggest that S. marcescens is a widespread opportunistic pathogen of adult honey bees and that it may be highly virulent under some conditions such as perturbation of the normal gut microbiota or the presence of Varroa mites that puncture the integument, thereby enabling entry of bacterial cells.
Collapse
|
34
|
McMenamin AJ, Daughenbaugh KF, Parekh F, Pizzorno MC, Flenniken ML. Honey Bee and Bumble Bee Antiviral Defense. Viruses 2018; 10:E395. [PMID: 30060518 PMCID: PMC6115922 DOI: 10.3390/v10080395] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-κB mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Marie C Pizzorno
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA.
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
35
|
Mondet F, Rau A, Klopp C, Rohmer M, Severac D, Le Conte Y, Alaux C. Transcriptome profiling of the honeybee parasite Varroa destructor provides new biological insights into the mite adult life cycle. BMC Genomics 2018; 19:328. [PMID: 29728057 PMCID: PMC5936029 DOI: 10.1186/s12864-018-4668-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
Background The parasite Varroa destructor represents a significant threat to honeybee colonies. Indeed, development of Varroa infestation within colonies, if left untreated, often leads to the death of the colony. Although its impact on bees has been extensively studied, less is known about its biology and the functional processes governing its adult life cycle and adaptation to its host. We therefore developed a full life cycle transcriptomic catalogue in adult Varroa females and included pairwise comparisons with males, artificially-reared and non-reproducing females (10 life cycle stages and conditions in total). Results Extensive remodeling of the Varroa transcriptome was observed, with an upregulation of energetic and chitin metabolic processes during the initial and final phases of the life cycle (e.g. phoretic and post-oviposition stages), whereas during reproductive stages in brood cells genes showing functions related to transcriptional regulation were overexpressed. Several neurotransmitter and neuropeptide receptors involved in behavioural regulation, as well as active compounds of salivary glands, were also expressed at a higher level outside the reproductive stages. No difference was detected between artificially-reared phoretic females and their counterparts in colonies, or between females who failed to reproduce and females who successfully reproduced, indicating that phoretic individuals can be reared outside host colonies without impacting their physiology and that mechanisms underlying reproductive failure occur before oogenesis. Conclusions We discuss how these new findings reveal the remarkable adaptation of Varroa to its host biology and notably to the switch from living on adults to reproducing in sealed brood cells. By spanning the entire adult life cycle, our work captures the dynamic changes in the parasite gene expression and serves as a unique resource for deciphering Varroa biology and identifying new targets for mite control. Electronic supplementary material The online version of this article (10.1186/s12864-018-4668-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fanny Mondet
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France.
| | - Andrea Rau
- INRA, UMR 1313 GABI Génétique Animale et Biologie Intégrative, 78350, Jouy-en-Josas, France
| | - Christophe Klopp
- INRA, Genotoul Bioinfo, UR 875 MIAT Mathématiques et Informatique Appliquées de Toulouse, 31326, Castanet-Tolosan, France
| | - Marine Rohmer
- Institut de Génomique Fonctionnelle, UMR 5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, 34094, Montpellier, France
| | - Dany Severac
- Institut de Génomique Fonctionnelle, UMR 5203 CNRS, U661 INSERM, Universités Montpellier 1 & 2, 34094, Montpellier, France
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France
| | - Cedric Alaux
- INRA, UR 406 Abeilles et Environnement, 84914, Avignon, France.
| |
Collapse
|
36
|
Surlis C, Carolan JC, Coffey M, Kavanagh K. Quantitative proteomics reveals divergent responses in Apis mellifera worker and drone pupae to parasitization by Varroa destructor. JOURNAL OF INSECT PHYSIOLOGY 2018; 107:291-301. [PMID: 29273327 DOI: 10.1016/j.jinsphys.2017.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
Varroa destructor is a haemophagous ectoparasite of honeybees and is considered a major causal agent of colony losses in Europe and North America. Although originating in Eastern Asia where it parasitizes Apis cerana, it has shifted hosts to the western honeybee Apis mellifera on which it has a greater deleterious effect on the individual and colony level. To investigate this important host-parasite interaction and to determine whether Varroa causes different effects on different castes we conducted a label free quantitative proteomic analysis of Varroa-parasitized and non-parasitized drone and worker Apis mellifera pupae. 1195 proteins were identified in total, of which 202 and 250 were differentially abundant in parasitized drone and worker pupae, respectively. Both parasitized drone and worker pupae displayed reduced abundance in proteins associated with the cuticle, lipid transport and innate immunity. Proteins involved in metabolic processes were more abundant in both parasitized castes although the response in workers was more pronounced. A number of caste specific responses were observed including differential abundance of numerous cytoskeletal and muscle proteins, which were of higher abundance in parasitized drones in comparison to parasitized workers. Proteins involved in fatty acid and carbohydrate metabolism were more abundant in parasitized workers as were a large number of ribosomal proteins highlighting either potentially divergent responses to Varroa or a different strategy by the mite when parasitizing the different castes. This data improves our understanding of this interaction and may provide a basis for future studies into improvements to therapy and control of Varroasis.
Collapse
Affiliation(s)
- Carla Surlis
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - James C Carolan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mary Coffey
- Department of Life Sciences, University of Limerick, Limerick, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
37
|
Zaobidna EA, Żółtowska K, Łopieńska-Biernat E. Varroa destructor induces changes in the expression of immunity-related genes during the development of Apis mellifera worker and drone broods. Acta Parasitol 2017; 62:779-789. [PMID: 29035869 DOI: 10.1515/ap-2017-0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022]
Abstract
The ectoparasitic mite Varroa destructor has emerged as the major pest of honeybees. Despite extensive research efforts, the pathogenesis of varroosis has not been fully explained. Earlier studies suggested that V. destructor infestation leads to the suppression of the host's immune system. The aim of this study was to analyze the immune responses of 14 genes in the Toll signal transduction pathways, including effector genes of antimicrobial peptides (AMPs), in developing Apis mellifera workers and drones infested with V. destructor. Four developmental stages (L5 larvae, prepupae, and 2 pupal stages) and newly emerged imagines were analyzed. In workers, the most significant changes were observed in L5 larvae in the initial stages of infestation. A significant increase in the relative expression of 10 of the 14 analyzed genes, including defensin-1 and defensin-2, was observed in infested bees relative to non-infested individuals. The immune response in drones developed at a slower rate. The expression of genes regulating cytoplasmic signal transduction increased in prepupae, whereas the expression of defensin-1 and defensin-2 effector genes increased in P3 pupae with red eyes. The expression of many immunity-related genes was silenced in successive life stages and in imagines, and it was more profound in workers than in drones. The results indicate that V. destructor significantly influences immune responses regulated by the Toll signal transduction pathway in bees. In infested bees, the observed changes in Toll pathway genes varied between life stages and the sexes.
Collapse
|
38
|
Tesovnik T, Cizelj I, Zorc M, Čitar M, Božič J, Glavan G, Narat M. Immune related gene expression in worker honey bee (Apis mellifera carnica) pupae exposed to neonicotinoid thiamethoxam and Varroa mites (Varroa destructor). PLoS One 2017; 12:e0187079. [PMID: 29088251 PMCID: PMC5663428 DOI: 10.1371/journal.pone.0187079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
Varroa destructor is one of the most common parasites of honey bee colonies and is considered as a possible co-factor for honey bee decline. At the same time, the use of pesticides in intensive agriculture is still the most effective method of pest control. There is limited information about the effects of pesticide exposure on parasitized honey bees. Larval ingestion of certain pesticides could have effects on honey bee immune defense mechanisms, development and metabolic pathways. Europe and America face the disturbing phenomenon of the disappearance of honey bee colonies, termed Colony Collapse Disorder (CCD). One reason discussed is the possible suppression of honey bee immune system as a consequence of prolonged exposure to chemicals. In this study, the effects of the neonicotinoid thiamethoxam on honey bee, Apis mellifera carnica, pupae infested with Varroa destructor mites were analyzed at the molecular level. Varroa-infested and non-infested honey bee colonies received protein cakes with or without thiamethoxam. Nurse bees used these cakes as a feed for developing larvae. Samples of white-eyed and brown-eyed pupae were collected. Expression of 17 immune-related genes was analyzed by real-time PCR. Relative gene expression in samples exposed only to Varroa or to thiamethoxam or simultaneously to both Varroa and thiamethoxam was compared. The impact from the consumption of thiamethoxam during the larval stage on honey bee immune related gene expression in Varroa-infested white-eyed pupae was reflected as down-regulation of spaetzle, AMPs abaecin and defensin-1 and up-regulation of lysozyme-2. In brown-eyed pupae up-regulation of PPOact, spaetzle, hopscotch and basket genes was detected. Moreover, we observed a major difference in immune response to Varroa infestation between white-eyed pupae and brown-eyed pupae. The majority of tested immune-related genes were upregulated only in brown-eyed pupae, while in white-eyed pupae they were downregulated.
Collapse
Affiliation(s)
- Tanja Tesovnik
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Ivanka Cizelj
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Minja Zorc
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Manuela Čitar
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Janko Božič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Narat
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
- * E-mail:
| |
Collapse
|
39
|
Wu Y, Dong X, Kadowaki T. Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae. Front Microbiol 2017; 8:1558. [PMID: 28878743 PMCID: PMC5572262 DOI: 10.3389/fmicb.2017.01558] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 08/02/2017] [Indexed: 01/06/2023] Open
Abstract
Recent honey bee colony losses, particularly during the winter, have been shown to be associated with the presence of both ectoparasitic mites and Deformed Wing Virus (DWV). Whilst the role of Varroa destructor mites as a viral vector is well established, the role of Tropilaelaps mercedesae mites in viral transmission has not been fully investigated. In this study, we tested the effects that V. destructor and T. mercedesae infestation have on fluctuation of the DWV copy number and alteration of the virus variants in honey bees by characterizing individual pupae and their infesting mites. We observed that both mite species were associated with increased viral copy number in honey bee pupae. We found a positive correlation between DWV copy number in pupae and copy number in infesting mites, and the same DWV type A variant was present in either low or high copy number in both honey bee pupae and infesting V. destructor. These data also suggest that variant diversity is similar between honey bee pupae and the mites that infest them. These results support a previously proposed hypothesis that DWV suppresses the honey bee immune system when virus copy number reaches a specific threshold, promoting greater replication.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool UniversitySuzhou, China
| | - Xiaofeng Dong
- School of Life Sciences, Jiangsu Normal UniversityXuzhou, China
| | - Tatsuhiko Kadowaki
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool UniversitySuzhou, China
| |
Collapse
|
40
|
Zanni V, Galbraith DA, Annoscia D, Grozinger CM, Nazzi F. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:1-13. [PMID: 28595898 DOI: 10.1016/j.ibmb.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bee's transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here.
Collapse
Affiliation(s)
- Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy.
| | - David A Galbraith
- Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy.
| | - Christina M Grozinger
- Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy.
| |
Collapse
|
41
|
Brutscher LM, Daughenbaugh KF, Flenniken ML. Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci Rep 2017; 7:6448. [PMID: 28743868 PMCID: PMC5526946 DOI: 10.1038/s41598-017-06623-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/04/2017] [Indexed: 12/22/2022] Open
Abstract
Recent high annual losses of honey bee colonies are associated with many factors, including RNA virus infections. Honey bee antiviral responses include RNA interference and immune pathway activation, but their relative roles in antiviral defense are not well understood. To better characterize the mechanism(s) of honey bee antiviral defense, bees were infected with a model virus in the presence or absence of dsRNA, a virus associated molecular pattern. Regardless of sequence specificity, dsRNA reduced virus abundance. We utilized next generation sequencing to examine transcriptional responses triggered by virus and dsRNA at three time-points post-infection. Hundreds of genes exhibited differential expression in response to co-treatment of dsRNA and virus. Virus-infected bees had greater expression of genes involved in RNAi, Toll, Imd, and JAK-STAT pathways, but the majority of differentially expressed genes are not well characterized. To confirm the virus limiting role of two genes, including the well-characterized gene, dicer, and a probable uncharacterized cyclin dependent kinase in honey bees, we utilized RNAi to reduce their expression in vivo and determined that virus abundance increased, supporting their involvement in antiviral defense. Together, these results further our understanding of honey bee antiviral defense, particularly the role of a non-sequence specific dsRNA-mediated antiviral pathway.
Collapse
Affiliation(s)
- Laura M Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA.,Pollinator Health Center, Montana State University, Bozeman, MT, USA
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA. .,Department of Microbiology and Immunology, Montana State University, Bozeman, MT, USA. .,Pollinator Health Center, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
42
|
Owen R. Role of Human Action in the Spread of Honey Bee (Hymenoptera: Apidae) Pathogens. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:797-801. [PMID: 28383702 DOI: 10.1093/jee/tox075] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 05/24/2023]
Abstract
The increased annual losses in European honey bee (Apis mellifera) colonies in North America and some other countries is usually attributed to a range of factors including pathogens, poor nutrition, and insecticides. In this essay, I will argue that the global trade in honey bees and migratory beekeeping practices within countries has enabled pathogens to spread quickly. Beekeepers' management strategies have also contributed to the spread of pathogens as well as the development of resistance to miticides and antibiotics, and exacerbated by hobby beekeepers. The opportunities for arresting honey bee declines rest as strongly with individual beekeepers as they do with the dynamics of disease.
Collapse
Affiliation(s)
- Robert Owen
- Department of Biosciences, University of Melbourne, Carlton, Vic. 3010, Australia Corresponding author, e-mail:
| |
Collapse
|
43
|
Abbo PM, Kawasaki JK, Hamilton M, Cook SC, DeGrandi-Hoffman G, Li WF, Liu J, Chen YP. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera. INSECT SCIENCE 2017; 24:467-477. [PMID: 26990560 DOI: 10.1111/1744-7917.12335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2016] [Indexed: 05/21/2023]
Abstract
There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions.
Collapse
Affiliation(s)
- Pendo M Abbo
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | - Joshua K Kawasaki
- Department of Microbiology & Molecular Biology, Brigham Young University, Provo, Utah, USA
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Steven C Cook
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| | | | - Wen Feng Li
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Liu
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Ping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
44
|
Brettell LE, Martin SJ. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees. Sci Rep 2017; 7:45953. [PMID: 28393875 PMCID: PMC5385554 DOI: 10.1038/srep45953] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/08/2017] [Indexed: 01/10/2023] Open
Abstract
The ecto-parasitic mite Varroa destructor has transformed the previously inconsequential Deformed Wing Virus (DWV) into the most important honey bee viral pathogen responsible for the death of millions of colonies worldwide. Naturally, DWV persists as a low level covert infection transmitted between nest-mates. It has long been speculated that Varroa via immunosuppression of the bees, activate a covert infection into an overt one. Here we show that despite Varroa feeding on a population of 20-40 colonies for over 30 years on the remote island of Fernando de Noronha, Brazil no such activation has occurred and DWV loads have remained at borderline levels of detection. This supports the alternative theory that for a new vector borne viral transmission cycle to start, an outbreak of an overt infection must first occur within the host. Therefore, we predict that this honey bee population is a ticking time-bomb, protected by its isolated position and small population size. This unique association between mite and bee persists due to the evolution of low Varroa reproduction rates. So the population is not adapted to tolerate Varroa and DWV, rather the viral quasispecies has simply not yet evolved the necessary mutations to produce a virulent variant.
Collapse
Affiliation(s)
- L. E. Brettell
- School of Environment and Life Sciences, The University of Salford, Manchester, M5 4WT, UK
| | - S. J. Martin
- School of Environment and Life Sciences, The University of Salford, Manchester, M5 4WT, UK
| |
Collapse
|
45
|
Doublet V, Poeschl Y, Gogol-Döring A, Alaux C, Annoscia D, Aurori C, Barribeau SM, Bedoya-Reina OC, Brown MJF, Bull JC, Flenniken ML, Galbraith DA, Genersch E, Gisder S, Grosse I, Holt HL, Hultmark D, Lattorff HMG, Le Conte Y, Manfredini F, McMahon DP, Moritz RFA, Nazzi F, Niño EL, Nowick K, van Rij RP, Paxton RJ, Grozinger CM. Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens. BMC Genomics 2017; 18:207. [PMID: 28249569 PMCID: PMC5333379 DOI: 10.1186/s12864-017-3597-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/20/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. RESULTS We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. CONCLUSIONS Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions.
Collapse
Affiliation(s)
- Vincent Doublet
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK.
| | - Yvonne Poeschl
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Andreas Gogol-Döring
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Technische Hochschule Mittelhessen, Gießen, Germany
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Christian Aurori
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Seth M Barribeau
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Oscar C Bedoya-Reina
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, State College, PA, USA
- Present address: MRC IGMM, University of Edinburgh, Western General Hospital, Edinburgh, UK
- Present address: MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford, UK
| | - Mark J F Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - James C Bull
- Department of Biosciences, Swansea University, Swansea, UK
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - David A Galbraith
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
- Department of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Gisder
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Ivo Grosse
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Holly L Holt
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
- Department of Fisheries, Wildlife, and Conservation Biology, The Monarch Joint Venture, University of Minnesota, St. Paul, MN, USA
| | - Dan Hultmark
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - H Michael G Lattorff
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Present address: International Centre of Insect Physiology and Ecology (icipe), Environmental Health Theme, Nairobi, Kenya
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, Avignon, France
| | - Fabio Manfredini
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK
| | - Dino P McMahon
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Berlin, Germany
| | - Robin F A Moritz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Elina L Niño
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Katja Nowick
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, TFome Research Group, Bioinformatics Group, Interdisciplinary Center of Bioinformatics, University of Leipzig, Leipzig, Germany
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert J Paxton
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, State College, PA, USA
| |
Collapse
|
46
|
Rueppell O, Yousefi B, Collazo J, Smith D. Early life stress affects mortality rate more than social behavior, gene expression or oxidative damage in honey bee workers. Exp Gerontol 2017; 90:19-25. [PMID: 28122251 DOI: 10.1016/j.exger.2017.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/07/2017] [Accepted: 01/19/2017] [Indexed: 11/17/2022]
Abstract
Early life stressors can affect aging and life expectancy in positive or negative ways. Individuals can adjust their behavior and molecular physiology based on early life experiences but relatively few studies have connected such mechanisms to demographic patterns in social organisms. Sociality buffers individuals from environmental influences and it is unclear how much early life stress affects later life history. Workers of the honey bee (Apis mellifera L.) were exposed to two stressors, Varroa parasitism and Paraquat exposure, early in life. Consequences were measured at the molecular, behavioral, and demographic level. While treatments did not significantly affect levels of oxidative damage, expression of select genes, and titers of the common deformed wing virus, most of these measures were affected by age. Some of the age effects, such as declining levels of deformed wing virus and oxidative damage, were opposite to our predictions but may be explained by demographic selection. Further analyses suggested some influences of worker behavior on mortality and indicated weak treatment effects on behavior. The latter effects were inconsistent among the two experiments. However, mortality rate was consistently reduced by Varroa mite stress during development. Thus, mortality was more responsive to early life stress than our other response variables. The lack of treatment effects on these measures may be due to the social organization of honey bees that buffers the individual from the impact of stressful developmental conditions.
Collapse
Affiliation(s)
- Olav Rueppell
- Department of of Biology, 312 Eberhart Building, The University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27402, USA.
| | - Babak Yousefi
- Department of of Biology, 312 Eberhart Building, The University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27402, USA
| | - Juan Collazo
- Department of of Biology, 312 Eberhart Building, The University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27402, USA
| | - Daniel Smith
- Department of of Biology, 312 Eberhart Building, The University of North Carolina at Greensboro, 321 McIver Street, Greensboro, NC 27402, USA
| |
Collapse
|
47
|
Koleoglu G, Goodwin PH, Reyes-Quintana M, Hamiduzzaman MM, Guzman-Novoa E. Effect of Varroa destructor, Wounding and Varroa Homogenate on Gene Expression in Brood and Adult Honey Bees. PLoS One 2017; 12:e0169669. [PMID: 28081188 PMCID: PMC5232351 DOI: 10.1371/journal.pone.0169669] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/20/2016] [Indexed: 11/18/2022] Open
Abstract
Honey bee (Apis mellifera) gene expression related to immunity for hymenoptaecin (AmHym) and defensin-1 (AmDef-1), longevity for vitellogenin (AmVit2) and stem cell proliferation for poly U binding factor 68 kDa (AmPuf68) was compared following Varroa destructor parasitism, buffer injection and injection of V. destructor compounds in its homogenate. In adults, V. destructor parasitism decreased expression of all four genes, while buffer injection decreased expression of AmHym, AmPuf68 and AmVit2, and homogenate injection decreased expression of AmPuf68 and AmVit2 but increased expression of AmDef-1 relative to their respective controls. The effect of V. destructor parasitism in adults relative to the controls was not significantly different from buffer injection for AmHym and AmVit2 expression, and it was not significantly different from homogenate injection for AmPuf68 and AmVit2. In brood, V. destructor parasitism, buffer injection and homogenate injection decreased AmVit2 expression, whereas AmHym expression was decreased by V. destructor parasitism but increased by buffer and homogenate injection relative to the controls. The effect of varroa parasitism in brood was not significantly different from buffer or homogenate injection for AmPuf68 and AmVit2. Expression levels of the four genes did not correlate with detectable viral levels in either brood or adults. The results of this study indicate that the relative effects of V. destructor parasitism on honey bee gene expression are also shared with other types of stresses. Therefore, some of the effects of V. destructor on honey bees may be mostly due to wounding and injection of foreign compounds into the hemolymph of the bee during parasitism. Although both brood and adults are naturally parasitized by V. destructor, their gene expression responded differently, probably the result of different mechanisms of host responses during development.
Collapse
Affiliation(s)
- Gun Koleoglu
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Paul H. Goodwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Mariana Reyes-Quintana
- Departamento de Medicina y Zootecnia en Abejas, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de Mexico, Ciudad Universitaria, Mexico, Mexico
| | | | | |
Collapse
|
48
|
Pinnelli GR, Singh NK, Soroker V, Plettner E. Synthesis of Enantiopure Alicyclic Ethers and Their Activity on the Chemosensory Organ of the Ectoparasite of Honey Bees, Varroa destructor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8653-8658. [PMID: 27792333 DOI: 10.1021/acs.jafc.6b03492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The preparation of enantiopure conformationally restricted alicyclic ethers and their inhibitory activities on the chemosensory organ of the Varroa destructor, a parasite of honey bees, are reported in this article. We tested the effect of enantiopure ethers of cis-5-(2'-hydroxyethyl)cyclopent-2-en-1-ol on the Varroa chemosensory organ by electrophysiology, for their ability to inhibit the responses to two honey bee-produced odors that are important for the mite to locate its host: nurse bee head space odor and (E)-β-ocimene, a honey bee brood pheromone. Previous work with the racemic compounds showed that they suppress the mite's olfactory response to its bee host, which led to incorrect host choice. Based on a structure-activity relationship, we predicted that the two most active compounds-cis-1-butoxy-5-(2'-methoxyethyl)cyclopent-2-ene, cy{4,1}, and (cis-1-ethoxy-5-(2'ethoxyethyl)cyclopent-2-ene, cy{2,2}-could have opposite active enantiomers. Here we studied the enantiomers of both ethers, whose preparation involved enzymatic resolution of racemic diol cis-5-(2'-hydroxyethyl)cyclopent-2-en-1-ol using Lipase AK with vinyl acetate. The racemic diol was prepared from commercially available 2,5-norbornadiene. We observed that the responses of the chemosensory organ to honey bee head space volatiles were significantly decreased by both enantiomers of cy{4,1} and cy{2,2}, but that responses to (E)-β-ocimene were decreased significantly only by (+)-cy{4,1} (1R,5S) and (-)-cy{2,2} (1S,5R) and not by their respective enantiomers. The importance of this result is that the racemates could be used to inhibit olfactory detection of bee odors by mites, without a loss in activity relative to the more expensive enantiopure compounds.
Collapse
Affiliation(s)
- Govardhana R Pinnelli
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S6, Canada
| | - Nitin K Singh
- Agricultural Research Organization, Volcani Center , Bet Dagan 75359, Israel
| | - Victoria Soroker
- Agricultural Research Organization, Volcani Center , Bet Dagan 75359, Israel
| | - Erika Plettner
- Department of Chemistry, Simon Fraser University , Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
49
|
Affiliation(s)
- Laura M. Brutscher
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, Montana, United States of America
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| |
Collapse
|
50
|
Wegener J, Ruhnke H, Scheller K, Mispagel S, Knollmann U, Kamp G, Bienefeld K. Pathogenesis of varroosis at the level of the honey bee (Apis mellifera) colony. JOURNAL OF INSECT PHYSIOLOGY 2016; 91-92:1-9. [PMID: 27296894 DOI: 10.1016/j.jinsphys.2016.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/29/2016] [Accepted: 06/09/2016] [Indexed: 06/06/2023]
Abstract
The parasitic mite Varroa destructor, in interaction with different viruses, is the main cause of honey bee colony mortality in most parts of the world. Here we studied how effects of individual-level parasitization are reflected by the bee colony as a whole. We measured disease progression in an apiary of 24 hives with differing degree of mite infestation, and investigated its relationship to 28 biometrical, physiological and biochemical indicators. In early summer, when the most heavily infested colonies already showed reduced growth, an elevated ratio of brood to bees, as well as a strong presence of phenoloxidase/prophenoloxidase in hive bees were found to be predictors of the time of colony collapse. One month later, the learning performance of worker bees as well as the activity of glucose oxidase measured from head extracts were significantly linked to the timing of colony collapse. Colonies at the brink of collapse were characterized by reduced weight of winter bees and a strong increase in their relative body water content. Our data confirm the importance of the immune system, known from studies of individually-infested bees, for the pathogenesis of varroosis at colony level. However, they also show that single-bee effects cannot always be extrapolated to the colony as a whole. This fact, together with the prominent role of colony-level factors like the ratio between brood and bees for disease progression, stress the importance of the superorganismal dimension of Varroa research.
Collapse
Affiliation(s)
- J Wegener
- Bee Research Institute, F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany.
| | - H Ruhnke
- Bee Research Institute, F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - K Scheller
- Bee Research Institute, F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| | - S Mispagel
- AMP-Lab GmbH, Becherweg 9-11, 55128 Mainz, Germany
| | - U Knollmann
- AMP-Lab GmbH, Becherweg 9-11, 55128 Mainz, Germany
| | - G Kamp
- AMP-Lab GmbH, Becherweg 9-11, 55128 Mainz, Germany
| | - K Bienefeld
- Bee Research Institute, F.-Engels-Strasse 32, 16540 Hohen Neuendorf, Germany
| |
Collapse
|