1
|
Shirk BD, Heichel DL, Eccles LE, Rodgers LI, Lateef AH, Burke KA, Stoppel WL. Modifying Naturally Occurring, Nonmammalian-Sourced Biopolymers for Biomedical Applications. ACS Biomater Sci Eng 2024; 10:5915-5938. [PMID: 39259773 DOI: 10.1021/acsbiomaterials.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Natural biopolymers have a rich history, with many uses across the fields of healthcare and medicine, including formulations for wound dressings, surgical implants, tissue culture substrates, and drug delivery vehicles. Yet, synthetic-based materials have been more successful in translation due to precise control and regulation achievable during manufacturing. However, there is a renewed interest in natural biopolymers, which offer a diverse landscape of architecture, sustainable sourcing, functional groups, and properties that synthetic counterparts cannot fully replicate as processing and sourcing of these materials has improved. Proteins and polysaccharides derived from various sources (crustaceans, plants, insects, etc.) are highlighted in this review. We discuss the common types of polysaccharide and protein biopolymers used in healthcare and medicine, highlighting methods and strategies to alter structures and intra- and interchain interactions to engineer specific functions, products, or materials. We focus on biopolymers obtained from natural, nonmammalian sources, including silk fibroins, alginates, chitosans, chitins, mucins, keratins, and resilins, while discussing strategies to improve upon their innate properties and sourcing standardization to expand their clinical uses and relevance. Emphasis will be placed on methods that preserve the structural integrity and native biological functions of the biopolymers and their makers. We will conclude by discussing the untapped potential of new technologies to manipulate native biopolymers while controlling their secondary and tertiary structures, offering a perspective on advancing biopolymer utility in novel applications within biomedical engineering, advanced manufacturing, and tissue engineering.
Collapse
Affiliation(s)
- Bryce D Shirk
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Danielle L Heichel
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Lauren E Eccles
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Liam I Rodgers
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Ali H Lateef
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Kelly A Burke
- Department of Chemical Engineering, University of Connecticut, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269-3136, United States
| | - Whitney L Stoppel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Amarpuri G, Dhopatkar N, Blackledge TA, Dhinojwala A. Molecular Changes in Spider Viscid Glue As a Function of Relative Humidity Revealed Using Infrared Spectroscopy. ACS Biomater Sci Eng 2022; 8:3354-3360. [PMID: 35894694 DOI: 10.1021/acsbiomaterials.2c00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spider aggregate glue can absorb moisture from the atmosphere to reduce its viscosity and become tacky. The viscosity at which glue adhesion is maximized is remarkably similar across spider species, even though that viscosity is achieved at very different relative humidity (RH) values matching their diverse habitats. However, the molecular changes in the protein structure and the bonding state of water (both referred to here as molecular structure) with respect to the changes in RH are not known. We use attenuated total reflectance-infrared (ATR-IR) spectroscopy to probe the changes in the molecular structure of glue as a function of RH for three spider species from different habitats. We find that the glue retains bound water at lower RH and absorbs liquid-like water at higher RH. The absorption of liquid-like water at high RH plasticizes the glue and explains the decrease in glue viscosity. The changes to protein conformations as a function RH are either subtle or not detectable by IR spectroscopy. Importantly, the molecular changes are reversible over multiple cycles of RH change. Further, separation of glue constituents results in a different humidity response as compared to pristine glue, supporting the standing hypothesis that the glue constituents have a synergistic association that makes spider glue a functional adhesive. The results presented in this study provide further insights into the mechanism of the humidity-responsive adhesion of spider glue.
Collapse
Affiliation(s)
- Gaurav Amarpuri
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nishad Dhopatkar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Todd A Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
3
|
Properties of orb weaving spider glycoprotein glue change during Argiope trifasciata web construction. Sci Rep 2019; 9:20279. [PMID: 31889090 PMCID: PMC6937294 DOI: 10.1038/s41598-019-56707-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
An orb web’s prey capture thread relies on its glue droplets to retain insects until a spider can subdue them. Each droplet’s viscoelastic glycoprotein adhesive core extends to dissipate the forces of prey struggle as it transfers force to stiffer, support line flagelliform fibers. In large orb webs, switchback capture thread turns are placed at the bottom of the web before a continuous capture spiral progresses from the web’s periphery to its interior. To determine if the properties of capture thread droplets change during web spinning, we characterized droplet and glycoprotein volumes and material properties from the bottom, top, middle, and inner regions of webs. Both droplet and glycoprotein volume decreased during web construction, but there was a progressive increase in the glycoprotein’s Young’s modulus and toughness. Increases in the percentage of droplet aqueous material indicated that these increases in material properties are not due to reduced glycoprotein viscosity resulting from lower droplet hygroscopicity. Instead, they may result from changes in aqueous layer compounds that condition the glycoprotein. A 6-fold difference in glycoprotein toughness and a 70-fold difference in Young’s modulus across a web documents the phenotypic plasticity of this natural adhesive and its potential to inspire new materials.
Collapse
|
4
|
Blamires SJ, Sellers WI. Modelling temperature and humidity effects on web performance: implications for predicting orb-web spider ( Argiope spp.) foraging under Australian climate change scenarios. CONSERVATION PHYSIOLOGY 2019; 7:coz083. [PMID: 31832193 PMCID: PMC6899225 DOI: 10.1093/conphys/coz083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 05/11/2023]
Abstract
Phenotypic features extending beyond the body, or EPs, may vary plastically across environments. EP constructs, such as spider webs, vary in property across environments as a result of changes to the physiology of the animal or interactions between the environment and the integrity of the material from which the EP is manufactured. Due to the complexity of the interactions between EP constructs and the environment, the impact of climate change on EP functional integrity is poorly understood. Here we used a dynamic model to assess how temperature and humidity influence spider web major ampullate (MA) silk properties. MA silk is the silk that absorbs the impact of prey striking the web, hence our model provides a useful interpretation of web performance over the temperature (i.e. 20-55°C) and humidity (i.e. 15-100%) ranges assessed. Our results showed that extremely high or low humidity had direct negative effects on web capture performance, with changes in temperature likely having indirect effects. Undeniably, the effect of temperature on web architecture and its interactive effect with humidity on web tension and capture thread stickiness need to be factored into any further predictions of plausible climate change impacts. Since our study is the first to model plasticity in an EP construct's functionality and to extrapolate the results to predict climate change impacts, it stands as a template for future studies that endeavour to make predictions about the influence of climate change on animal EPs.
Collapse
Affiliation(s)
- S J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - W I Sellers
- School of Earth and Environmental Sciences, The University of Manchester, Williamson Building, Manchester M13 9PL, UK
| |
Collapse
|
5
|
Opell BD, Burba CM, Deva PD, Kin MHY, Rivas MX, Elmore HM, Hendricks ML. Linking properties of an orb-weaving spider's capture thread glycoprotein adhesive and flagelliform fiber components to prey retention time. Ecol Evol 2019; 9:9841-9854. [PMID: 31534698 PMCID: PMC6745672 DOI: 10.1002/ece3.5525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 07/05/2019] [Accepted: 07/16/2019] [Indexed: 11/07/2022] Open
Abstract
An orb web's adhesive capture spiral is responsible for prey retention. This thread is formed of regularly spaced glue droplets supported by two flagelliform axial lines. Each glue droplet features a glycoprotein adhesive core covered by a hygroscopic aqueous layer, which also covers axial lines between the droplets, making the entire thread responsive to environmental humidity.We characterized the effect of relative humidity (RH) on ability of Argiope aurantia and Argiope trifasciata thread arrays to retain houseflies and characterize the effect of humidity on their droplet properties. Using these data and those of Araneus marmoreus from a previous study, we then develop a regression model that correlated glycoprotein and flagelliform fiber properties with prey retention time. The model selection process included newly determined, humidity-specific Young's modulus and toughness values for the three species' glycoproteins.Argiope aurantia droplets are more hygroscopic than A. trifasciata droplets, causing the glycoprotein within A. aurantia droplets to become oversaturated at RH greater than 55% RH and their extension to decrease, whereas A. trifasciata droplet performance increases to 72% RH. This difference is reflected in species' prey retention times, with that of A. aurantia peaking at 55% RH and that of A. trifasciata at 72% RH.Fly retention time was explained by a regression model of five variables: glue droplet distribution, flagelliform fiber work of extension, glycoprotein volume, glycoprotein thickness, and glycoprotein Young's modulus.The material properties of both glycoprotein and flagelliform fibers appear to be phylogenetically constrained, whereas natural selection can more freely act on the amount of each material invested in a thread and on components of the thread's aqueous layer. Thus, it becomes easier to understand how natural selection can tune the performance of viscous capture threads by directing small changes in these components.
Collapse
Affiliation(s)
- Brent D. Opell
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
| | | | - Pritesh D. Deva
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
| | | | - Malik X. Rivas
- Department of Biological SciencesVirginia TechBlacksburgVAUSA
| | | | | |
Collapse
|
6
|
Guo Y, Chang Z, Guo HY, Fang W, Li Q, Zhao HP, Feng XQ, Gao H. Synergistic adhesion mechanisms of spider capture silk. J R Soc Interface 2019. [PMID: 29514984 DOI: 10.1098/rsif.2017.0894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
It is well known that capture silk, the main sticky component of the orb web of a spider, plays an important role in the spider's ability to capture prey via adhesion. However, the detailed mechanism with which the spider achieves its unparalleled high-adhesion performance remains elusive. In this work, we combine experiments and theoretical analysis to investigate the adhesion mechanisms of spider silk. In addition to the widely recognized adhesion effect of the sticky glue, we reveal a synergistic enhancement mechanism due to the elasticity of silk fibres. A balance between silk stiffness, strength and glue stickiness is crucial to endow the silk with superior adhesion, as well as outstanding energy absorption capacity and structural robustness. The revealed mechanisms deepen our understanding of the working principles of spider silk and suggest guidelines for biomimetic designs of spider-inspired adhesion and capture devices.
Collapse
Affiliation(s)
- Yang Guo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zheng Chang
- College of Science, China Agricultural University, Beijing 100083, People's Republic of China
| | - Hao-Yuan Guo
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Wei Fang
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qunyang Li
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China.,State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Hong-Ping Zhao
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xi-Qiao Feng
- AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China .,State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Huajian Gao
- School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation. G3-GENES GENOMES GENETICS 2019; 9:1909-1919. [PMID: 30975702 PMCID: PMC6553539 DOI: 10.1534/g3.119.400065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An individual orb weaving spider can spin up to seven different types of silk, each with unique functions and material properties. The capture spiral silk of classic two-dimensional aerial orb webs is coated with an amorphous glue that functions to retain prey that get caught in a web. This unique modified silk is partially comprised of spidroins (spider fibroins) encoded by two members of the silk gene family. The glue differs from solid silk fibers as it is a viscoelastic, amorphic, wet material that is responsive to environmental conditions. Most spidroins are encoded by extremely large, highly repetitive genes that cannot be sequenced using short read technology alone, as the repetitive regions are longer than read length. We sequenced for the first time the complete genomic Aggregate Spidroin 1 (AgSp1) and Aggregate Spidroin 2 (AgSp2) glue genes of orb weaving spider Argiope trifasciata using error-prone long reads to scaffold for high accuracy short reads. The massive coding sequences are 42,270 bp (AgSp1) and 20,526 bp (AgSp2) in length, the largest silk genes currently described. The majority of the predicted amino acid sequence of AgSp1 consists of two similar but distinct motifs that are repeated ∼40 times each, while AgSp2 contains ∼48 repetitions of an AgSp1-similar motif, interspersed by regions high in glutamine. Comparisons of AgSp repetitive motifs from orb web and cobweb spiders show regions of strict conservation followed by striking diversification. Glues from these two spider families have evolved contrasting material properties in adhesion (stickiness), extensibility (stretchiness), and elasticity (the ability of the material to resume its native shape), which we link to mechanisms established for related silk genes in the same family. Full-length aggregate spidroin sequences from diverse species with differing material characteristics will provide insights for designing tunable bio-inspired adhesives for a variety of unique purposes.
Collapse
|
8
|
Biomechanical properties of fishing lines of the glowworm Arachnocampa luminosa (Diptera; Keroplatidae). Sci Rep 2019; 9:3082. [PMID: 30816149 PMCID: PMC6395680 DOI: 10.1038/s41598-019-39098-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/09/2019] [Indexed: 11/29/2022] Open
Abstract
Animals use adhesive secretions in highly diverse ways, such as for settlement, egg anchorage, mating, active or passive defence, etc. One of the most interesting functions is the use of bioadhesives to capture prey, as the bonding has to be performed within milliseconds and often under unfavourable conditions. While much is understood about the adhesive and biomechanical properties of the threads of other hunters such as spiders, barely anything is documented about those of the New Zealand glowworm Arachnocampa luminosa. We analysed tensile properties of the fishing lines of the New Zealand glowworm Arachnocampa luminosa under natural and dry conditions and measured their adhesion energy to different surfaces. The capture system of A. luminosa is highly adapted to the prevailing conditions (13-15 °C, relative humidity of 98%) whereby the wet fishing lines only show a bonding ability at high relative humidity (>80%) with a mean adhesive energy from 20-45 N/m and a stronger adhesion to polar surfaces. Wet threads show a slightly higher breaking strain value than dried threads, whereas the tensile strength of wet threads was much lower. The analyses show that breaking stress and strain values in Arachnocampa luminosa were very low in comparison to related Arachnocampa species and spider silk threads but exhibit much higher adhesion energy values. While the mechanical differences between the threads of various Arachnocampa species might be consequence of the different sampling and handling of the threads prior to the tests, differences to spiders could be explained by habitat differences and differences in the material ultrastructure. Orb web spiders produce viscid silk consisting of β-pleated sheets, whereas Arachnocampa has cross-β-sheet crystallites within its silk. As a functional explanation, the low tear strength for A. luminosa comprises a safety mechanism and ensures the entire nest is not pulled down by prey which is too heavy.
Collapse
|
9
|
Jain D, Amarpuri G, Fitch J, Blackledge TA, Dhinojwala A. Role of Hygroscopic Low Molecular Mass Compounds in Humidity Responsive Adhesion of Spider’s Capture Silk. Biomacromolecules 2018; 19:3048-3057. [DOI: 10.1021/acs.biomac.8b00602] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dharamdeep Jain
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Gaurav Amarpuri
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Jordan Fitch
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Todd. A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325-3908, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| |
Collapse
|
10
|
Specific parasites indirectly influence niche occupation of non-hosts community members. Oecologia 2018; 188:343-353. [PMID: 29785698 DOI: 10.1007/s00442-018-4163-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/08/2018] [Indexed: 10/16/2022]
Abstract
The coexistence of phylogenetically related species is an attractive topic because of the potentially intense interspecific competition. The most often investigated mechanisms mediating coexistence of these species are environmental filtering and niche partitioning. However, the role of other factors, such as species-specific parasites, is still poorly understood. Along the riparian understory of a tropical forest, we explored niche occupation and coexistence between Chrysso intervales and Helvibis longicauda, two related syntopic web-building spiders. We also investigated the effect of H. longicauda mortality induced by a specific fungus parasite, Gibellula pulchra, on the dynamic of C. intervales spatial distribution. Coexistence was mediated mainly by a fine-scale horizontal spatial segregation. H. longicauda built webs almost exclusively close to the river, while C. intervales occupied adjacent areas (10-20 m away from margins). We also found differentiation in other niche dimensions that might allow coexistence, such as in plants occupied, height of web placement, width of leaves used for thread attachment and phenology. H. longicauda mortality caused by fungi was higher during winter than in summer. Consequently, the abundance of C. intervales increased at distances close to the river, indicating competitive release through a density-mediated indirect effect. This demonstrates how non-competitive specific-antagonists can indirectly affect other non-hosts competing community members and influence their spatial distribution in fine-scale ranges. We suggest that environmental filtering restricts H. longicauda to cooler regions; niche partitioning leads populations to occupy different vertical strata and competitive exclusion precludes C. intervales to reach river margins, generating an unusual horizontal zonation pattern.
Collapse
|
11
|
Opell BD, Jain D, Dhinojwala A, Blackledge TA. Tuning orb spider glycoprotein glue performance to habitat humidity. J Exp Biol 2018; 221:221/6/jeb161539. [DOI: 10.1242/jeb.161539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
ABSTRACT
Orb-weaving spiders use adhesive threads to delay the escape of insects from their webs until the spiders can locate and subdue the insects. These viscous threads are spun as paired flagelliform axial fibers coated by a cylinder of solution derived from the aggregate glands. As low molecular mass compounds (LMMCs) in the aggregate solution attract atmospheric moisture, the enlarging cylinder becomes unstable and divides into droplets. Within each droplet an adhesive glycoprotein core condenses. The plasticity and axial line extensibility of the glycoproteins are maintained by hygroscopic LMMCs. These compounds cause droplet volume to track changes in humidity and glycoprotein viscosity to vary approximately 1000-fold over the course of a day. Natural selection has tuned the performance of glycoprotein cores to the humidity of a species' foraging environment by altering the composition of its LMMCs. Thus, species from low-humidity habits have more hygroscopic threads than those from humid forests. However, at their respective foraging humidities, these species' glycoproteins have remarkably similar viscosities, ensuring optimal droplet adhesion by balancing glycoprotein adhesion and cohesion. Optimal viscosity is also essential for integrating the adhesion force of multiple droplets. As force is transferred to a thread's support line, extending droplets draw it into a parabolic configuration, implementing a suspension bridge mechanism that sums the adhesive force generated over the thread span. Thus, viscous capture threads extend an orb spider's phenotype as a highly integrated complex of large proteins and small molecules that function as a self-assembling, highly tuned, environmentally responsive, adhesive biomaterial. Understanding the synergistic role of chemistry and design in spider adhesives, particularly the ability to stick in wet conditions, provides insight in designing synthetic adhesives for biomedical applications.
Collapse
Affiliation(s)
- Brent D. Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Dharamdeep Jain
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Todd A. Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
12
|
Blamires SJ, Martens PJ, Kasumovic MM. Fitness consequences of plasticity in an extended phenotype. ACTA ACUST UNITED AC 2018; 221:jeb.167288. [PMID: 29361580 DOI: 10.1242/jeb.167288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/13/2017] [Indexed: 01/15/2023]
Abstract
Like regular phenotypes, extended phenotypes have demonstrable fitness advantages and their properties may vary plastically across environments. However, the fitness advantages of plasticity are only known for a select few extended phenotypes. It is known that the form and functions of spider orb webs can be manipulated by laboratory experiments. For instance, the physical and chemical properties of the spiral and gluey silks vary in property as protein intake varies. Orb web spiders thus represent good models for extended phenotypic plasticity studies. We performed experiments manipulating the protein intake of two vertically aligned orb web building spiders to determine whether variations in the chemical and physical properties of their spiral and gluey silk affect prey retention in their webs. We found in both spider species that individuals deprived of protein had a greater gluey silk glycoprotein core volume, and this correlated strongly with spiral thread stickiness and increased prey retention by the webs. Moreover, we found strong positive correlations between glue droplet volume and glycoprotein core volume for spiders in the protein-deprived treatment, but weaker correlations for protein-fed spiders. We interpreted these findings as the spiders investing more in glycoprotein when nutrient deprived. We attribute the associated increase in prey retention capacity as a fitness consequence of plasticity in the spiral properties.
Collapse
Affiliation(s)
- Sean J Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, University of New South Wales, Sydney 2052, Australia
| | - Penny J Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, University of New South Wales, Sydney 2052, Australia
| | - Michael M Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
13
|
Amarpuri G, Zhang C, Blackledge TA, Dhinojwala A. Adhesion modulation using glue droplet spreading in spider capture silk. J R Soc Interface 2018; 14:rsif.2017.0228. [PMID: 28490605 DOI: 10.1098/rsif.2017.0228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/19/2017] [Indexed: 11/12/2022] Open
Abstract
Orb web spiders use sticky capture spiral silk to retain prey in webs. Capture spiral silk is composed of an axial fibre of flagelliform silk covered with glue droplets that are arranged in a beads-on-a-string morphology that allows multiple droplets to simultaneously extend and resist pull off. Previous studies showed that the adhesion of capture silk is responsive to environmental humidity, increasing up to an optimum humidity that varied among different spider species. The maximum adhesion was hypothesized to occur when the viscoelasticity of the glue optimized contributions from glue spreading and bulk cohesion. In this study, we show how glue droplet shape during peeling contributes significantly to capture silk adhesion. Both overspreading and underspreading of glue droplets reduces adhesion through changes in crack propagation and failure regime. Understanding the mechanism of stimuli-responsive adhesion of spider capture silk will lead to new designs for smarter adhesives.
Collapse
Affiliation(s)
- Gaurav Amarpuri
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ci Zhang
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Todd A Blackledge
- Department of Biology, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| | - Ali Dhinojwala
- Department of Polymer Science, Integrated Bioscience Program, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
14
|
Opell BD, Buccella KE, Godwin MK, Rivas MX, Hendricks ML. Humidity-mediated changes in an orb spider's glycoprotein adhesive impact prey retention time. ACTA ACUST UNITED AC 2017; 220:1313-1321. [PMID: 28356367 DOI: 10.1242/jeb.148080] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 01/16/2017] [Indexed: 11/20/2022]
Abstract
Properties of the viscous prey capture threads of araneoid orb spiders change in response to their environment. Relative humidity (RH) affects the performance of the thread's hygroscopic droplets by altering the viscoelasticity of each droplet's adhesive glycoprotein core. Studies that have characterized this performance used smooth glass and steel surfaces and uniform forces. In this study, we tested the hypothesis that these changes in performance translate into differences in prey retention times. We first characterized the glycoprotein contact surface areas and maximum extension lengths of Araneus marmoreus droplets at 20%, 37%, 55%, 72% and 90% RH and then modeled the relative work required to initiate pull-off of a 4 mm thread span, concluding that this species' droplets and threads performed optimally at 72% RH. Next, we evaluated the ability of three equally spaced capture thread strands to retain a house fly at 37%, 55% and 72% RH. Each fly's struggle was captured in a video and bouts of active escape behavior were summed. House flies were retained 11 s longer at 72% RH than at 37% and 55% RH. This difference is ecologically significant because the short time after an insect strikes a web and before a spider begins wrapping it is an insect's only opportunity to escape from the web. Moreover, these results validate the mechanism by which natural selection can tune the performance of an orb spider's capture threads to the humidity of its habitat.
Collapse
Affiliation(s)
- Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Katrina E Buccella
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Meaghan K Godwin
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Malik X Rivas
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mary L Hendricks
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
15
|
Henneken J, Goodger JQ, Jones TM, Elgar MA. The potential role of web-based putrescine as a prey-attracting allomone. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
|
17
|
von Byern J, Dorrer V, Merritt DJ, Chandler P, Stringer I, Marchetti-Deschmann M, McNaughton A, Cyran N, Thiel K, Noeske M, Grunwald I. Characterization of the Fishing Lines in Titiwai (=Arachnocampa luminosa Skuse, 1890) from New Zealand and Australia. PLoS One 2016; 11:e0162687. [PMID: 27973586 PMCID: PMC5156358 DOI: 10.1371/journal.pone.0162687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/27/2016] [Indexed: 11/29/2022] Open
Abstract
Animals use adhesive secretions in a plethora of ways, either for attachment, egg anchorage, mating or as either active or passive defence. The most interesting function, however, is the use of adhesive threads to capture prey, as the bonding must be performed within milliseconds and under unsuitable conditions (movement of prey, variable environmental conditions, unfavourable attack angle, etc.) to be nonetheless successful. In the following study a detailed characterization of the prey capture system of the world-renowned glowworm group Arachnocampa from the macroscopic to the ultrastructural level is performed. The data reveal that the adhesive droplets consist mostly of water and display hygroscopic properties at varying humidity levels. The droplet core of Arachnocampa luminosa includes a certain amount of the elements sodium, sulphur and potassium (beside carbon, oxygen and nitrogen), while a different element composition is found in the two related species A. richardsae and A. tasmaniensis. Evidence for lipids, carbohydrates and proteins was negative on the histochemical level, however X-ray photoelectron spectroscopy confirm the presence of peptides within the droplet content. Different to earlier assumptions, the present study indicates that rather than oxalic acid, urea or uric acid are present in the adhesive droplets, presumably originating from the gut. Comparing the capture system in Arachnocampa with those of orb-spiders, large differences appear not only regarding the silky threads, but also, in the composition, hygroscopic properties and size of the mucous droplets.
Collapse
Affiliation(s)
- Janek von Byern
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria
- University of Vienna, Faculty of Life Science, Core Facility Cell Imaging & Ultrastructure Research, Vienna, Austria
- * E-mail:
| | - Victoria Dorrer
- Technical University Wien, Institute of Chemical Technologies and Analytics, Vienna, Austria
| | - David J. Merritt
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | | | - Ian Stringer
- Department of Conservation, Wellington, New Zealand
| | | | - Andrew McNaughton
- University of Otago, School of Medical Sciences, Department of Anatomy, Otago Centre for Confocal Microscopy, Otago, New Zealand
| | - Norbert Cyran
- University of Vienna, Faculty of Life Science, Core Facility Cell Imaging & Ultrastructure Research, Vienna, Austria
| | - Karsten Thiel
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Department of Adhesive Bonding Technology and Surfaces, Bremen, Germany
| | - Michael Noeske
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Department of Adhesive Bonding Technology and Surfaces, Bremen, Germany
| | - Ingo Grunwald
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials, Department of Adhesive Bonding Technology and Surfaces, Bremen, Germany
| |
Collapse
|
18
|
Stellwagen SD, Opell BD, Clouse ME. The impact of UVB radiation on the glycoprotein glue of orb-weaving spider capture thread. ACTA ACUST UNITED AC 2016; 218:2675-84. [PMID: 26333924 DOI: 10.1242/jeb.123067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many spider orb-webs are exposed to sunlight and the potentially damaging effects of ultraviolet B (UVB) radiation. We examined the effect of UVB on the viscoelastic glycoprotein core of glue droplets deposited on the prey capture threads of these webs, hypothesizing that webs built by species that occupy sunny habitats are less susceptible to UVB damage than are webs built by species that prefer shaded forest habitats or by nocturnal species. Threads were tested shortly after being collected in the early morning and after being exposed to UVB energy equivalent to a day of summer sun and three times this amount. Droplets kept in a dark chamber allowed us to evaluate post-production changes. Droplet volume was unaffected by treatments, indicating that UVB did not damage the hygroscopic compounds in the aqueous layer that covers droplets. UVB exposure did not affect energies of droplet extension for species from exposed and partially to mostly shaded habitats (Argiope aurantia, Leucauge venusta and Verrucosa arenata). However, UVB exposure reduced the energy of droplet extension in Micrathena gracilis from shaded forests and Neoscona crucifera, which forages at night. Only in L. venusta did the energy of droplet extension increase after the dark treatment, suggesting endogenous molecular alignment. This study adds UVB irradiation to the list of factors (humidity, temperature and strain rate) known to affect the performance of spider glycoprotein glue, factors that must be more fully understood if adhesives that mimic spider glycoprotein glue are to be produced.
Collapse
Affiliation(s)
- Sarah D Stellwagen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Brent D Opell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Mary E Clouse
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
19
|
Blamires SJ, Hasemore M, Martens PJ, Kasumovic MM. Diet-induced covariation between architectural and physicochemical plasticity in an extended phenotype. J Exp Biol 2016; 220:876-884. [DOI: 10.1242/jeb.150029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/14/2016] [Indexed: 01/09/2023]
Abstract
The adaptive benefits of extended phenotypic plasticity are imprecisely defined due to a paucity of experiments examining traits that are manipulable and measurable across environments. Spider webs are often used as models to explore the adaptive benefits of variations in extended phenotypes across environments. Nonetheless, our understanding of the adaptive nature of the plastic responses of spider webs is impeded when web architectures and silk physicochemical properties appear to co-vary. An opportunity to examine this co-variation is presented by modifying prey items while measuring web architectures and silk physiochemical properties. Here we performed two experiments to assess the nature of the association between web architectures and gluey silk properties when the orb web spider Argiope keyserlingi was fed a diet that varied in either mass and energy or prey size and feeding frequency. We found web architectures and gluey silk physicochemical properties to co-vary across treatments in both experiments. Specifically, web capture area co-varied with gluey droplet morphometrics, thread stickiness and salt concentrations when prey mass and energy were manipulated, and spiral spacing co-varied with gluey silk salt concentrations when prey size and feeding frequency were manipulated. We explained our results as A. keyserlingi plastically shifting its foraging strategy as multiple prey parameters simultaneously varied. We confirmed and extended previous work by showing that spiders use a variety of prey cues to concurrently adjust web and silk traits across different feeding regimes.
Collapse
Affiliation(s)
- Sean J. Blamires
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney 2052, Australia
| | - Matthew Hasemore
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney 2052, Australia
| | - Penny J. Martens
- Graduate School of Biomedical Engineering, Samuels Building F25, The University of New South Wales, Sydney 2052, Australia
| | - Michael M. Kasumovic
- Evolution & Ecology Research Centre, School of Biological, Earth & Environmental Sciences D26, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
20
|
Amarpuri G, Zhang C, Diaz C, Opell BD, Blackledge TA, Dhinojwala A. Spiders Tune Glue Viscosity to Maximize Adhesion. ACS NANO 2015; 9:11472-8. [PMID: 26513350 DOI: 10.1021/acsnano.5b05658] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Adhesion in humid conditions is a fundamental challenge to both natural and synthetic adhesives. Yet, glue from most spider species becomes stickier as humidity increases. We find the adhesion of spider glue, from five diverse spider species, maximizes at very different humidities that matches their foraging habitats. By using high-speed imaging and spreading power law, we find that the glue viscosity varies over 5 orders of magnitude with humidity for each species, yet the viscosity at maximal adhesion for each species is nearly identical, 10(5)-10(6) cP. Many natural systems take advantage of viscosity to improve functional response, but spider glue's humidity responsiveness is a novel adaptation that makes the glue stickiest in each species' preferred habitat. This tuning is achieved by a combination of proteins and hygroscopic organic salts that determines water uptake in the glue. We therefore anticipate that manipulation of polymer-salts interaction to control viscosity can provide a simple mechanism to design humidity responsive smart adhesives.
Collapse
Affiliation(s)
| | | | | | - Brent D Opell
- Department of Biological Sciences, Virginia Tech , Blacksburg, Virginia 24061, United States
| | | | | |
Collapse
|
21
|
Gregorič M, Agnarsson I, Blackledge TA, Kuntner M. Phylogenetic position and composition of Zygiellinae andCaerostris, with new insight into orb-web evolution and gigantism. Zool J Linn Soc 2015. [DOI: 10.1111/zoj.12281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matjaž Gregorič
- Institute of Biology; Scientific Research Centre; Slovenian Academy of Sciences and Arts; Novi trg 2 P. O. Box 306 SI-1001 Ljubljana Slovenia
- Integrated Bioscience Program; Department of Biology; University of Akron; Akron OH 44325-3908 USA
| | - Ingi Agnarsson
- Department of Biology; University of Vermont; Burlington VT USA
- Department of Entomology; National Museum of Natural History; Smithsonian Institution; Washington, DC USA
| | - Todd A. Blackledge
- Integrated Bioscience Program; Department of Biology; University of Akron; Akron OH 44325-3908 USA
| | - Matjaž Kuntner
- Institute of Biology; Scientific Research Centre; Slovenian Academy of Sciences and Arts; Novi trg 2 P. O. Box 306 SI-1001 Ljubljana Slovenia
- Department of Entomology; National Museum of Natural History; Smithsonian Institution; Washington, DC USA
- Centre for Behavioural Ecology and Evolution; College of Life Sciences; Hubei University; Wuhan Hubei China
| |
Collapse
|
22
|
Ubiquitous distribution of salts and proteins in spider glue enhances spider silk adhesion. Sci Rep 2015; 5:9030. [PMID: 25761668 PMCID: PMC4357010 DOI: 10.1038/srep09030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/09/2015] [Indexed: 11/09/2022] Open
Abstract
Modern orb-weaving spiders use micron-sized glue droplets on their viscid silk to retain prey in webs. A combination of low molecular weight salts and proteins makes the glue viscoelastic and humidity responsive in a way not easily achieved by synthetic adhesives. Optically, the glue droplet shows a heterogeneous structure, but the spatial arrangement of its chemical components is poorly understood. Here, we use optical and confocal Raman microscopy to show that salts and proteins are present ubiquitously throughout the droplet. The distribution of adhesive proteins in the peripheral region explains the superior prey capture performance of orb webs as it enables the entire surface area of the glue droplet to act as a site for prey capture. The presence of salts throughout the droplet explains the recent Solid-State NMR results that show salts directly facilitate protein mobility. Understanding the function of individual glue components and the role of the droplet's macro-structure can help in designing better synthetic adhesives for humid environments.
Collapse
|