1
|
Bouisset G, Merienne H, Fourcassié V. Walking kinematics of ants carrying food in the mandibles versus gaster. J Exp Biol 2024; 227:jeb249350. [PMID: 39555852 DOI: 10.1242/jeb.249350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
The locomotor behavior of an animal strongly depends on the distribution of its body mass. Whenever changes occur in this distribution, the displacement of the body center of mass (CoM) may lead to a loss of balance. Ants are an interesting biological model with which to investigate how an animal copes with such changes because, when they transport food, their CoM may be displaced from its usual position. We studied the ant Formica rufa, whose diet consists mainly of liquid food, stored in the abdomen, but also includes prey transported in the mandibles. We investigated the kinematics of locomotion of the same individuals while walking unloaded and while transporting food internally or externally. We found that the kinematics of locomotion slightly differed in the two types of transport. Ants transporting food in their mandibles adopted a more erect posture and tended to be more often in static instability than ants transporting food internally. In addition, the amplitude of the vertical oscillations of their CoM was higher, which led to a jerky locomotion. However, owing to their erect position, the position of their overall CoM was actually not different from that of unloaded ants. Finally, the mechanical work achieved by ants to rise and accelerate their CoM was smaller in ants transporting food internally than in ants transporting food externally or in unloaded ants. This suggests that the morphology of F. rufa could make the transport of food in the gaster more mechanically efficient than the transport of food in the mandibles.
Collapse
Affiliation(s)
- Guillaume Bouisset
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Hugo Merienne
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| | - Vincent Fourcassié
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France
| |
Collapse
|
2
|
Brandt EE, Manyama MR, Nirody JA. Kinematics and coordination of moth flies walking on smooth and rough surfaces. Ann N Y Acad Sci 2024; 1537:64-73. [PMID: 38922707 DOI: 10.1111/nyas.15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The moth fly, Clogmia albipunctata, is a common synanthropic insect with a worldwide range that lives in nearly any area with moist, decaying organic matter. These habitats comprise both smooth, slippery substrates (e.g., bathroom drains) and heterogeneous, bumpy ground (e.g., soil in plant pots). By using terrain of varying levels of roughness, we focus specifically on how substrate roughness at the approximate size scale of the organism affects kinematics and coordination in adult moth flies. Finally, we compare and contrast our characterizations of locomotion in C. albipunctata with previous work of insect walking in naturalistic environments.
Collapse
Affiliation(s)
- Erin E Brandt
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Maria R Manyama
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| | - Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
O’Neil JN, Lauren Yung K, Difini G, Walker H, Bhamla MS. Tiny amphibious insects use tripod gait for seamless transition across land, water, and duckweed. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.587757. [PMID: 38617204 PMCID: PMC11014552 DOI: 10.1101/2024.04.02.587757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Insects exhibit remarkable adaptability in their locomotive strategies across diverse environments, a crucial trait for foraging, survival, and predator avoidance. Microvelia, tiny 2-3 mm insects that adeptly walk on water surfaces, exemplify this adaptability by using the alternating tripod gait in both aquatic and terrestrial terrains. These insects commonly inhabit low-flow ponds and streams cluttered with natural debris like leaves, twigs, and duckweed. Using high-speed imaging and pose-estimation software, we analyze Microvelia spp.'s movement across water, sandpaper (simulating land), and varying duckweed densities (10%, 25%, and 50% coverage). Our results reveal Microvelia maintain consistent joint angles and strides of their upper and hind legs across all duckweed coverages, mirroring those seen on sandpaper. Microvelia adjust the stride length of their middle legs based on the amount of duckweed present, decreasing with increased duckweed coverage and at 50% duckweed coverage, their middle legs' strides closely mimic their strides on sandpaper. Notably, Microvelia achieve speeds up to 56 body lengths per second on water, nearly double those observed on sandpaper and duckweed (both rough, frictional surfaces), highlighting their higher speeds on low friction surfaces such as the water's surface. This study highlights Microvelia's ecological adaptability, setting the stage for advancements in amphibious robotics that emulate their unique tripod gait for navigating complex terrains.
Collapse
Affiliation(s)
- Johnathan N. O’Neil
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Kai Lauren Yung
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Gaetano Difini
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Holden Walker
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - M. Saad Bhamla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, United States
| |
Collapse
|
4
|
Tang L, Wang C, Ma S, Li Y, Li B. Multidirectional Planar Motion Transmission on a Single-Motor Actuated Robot via Microscopic Galumphing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307738. [PMID: 38093662 PMCID: PMC10916667 DOI: 10.1002/advs.202307738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/22/2023] [Indexed: 12/20/2023]
Abstract
Insect-scale mobile robots can execute diverse arrays of tasks in confined spaces. Although most self-contained crawling robots integrate multiple actuators to ensure high flexibility, the intricate actuators restrict their miniaturization. Conversely, robots with a single actuator lack the requisite agility and precision for planar movements. Herein, a novel eccentric rotation-dependent multidirectional transmission is presented using a tilted eccentric motor and a simplistic two-legged structural configuration for planar locomotion. The speed of the eccentric motor is modulated to enable alternating microscopic jumps to propel the system, creating a mode of motion analogous to galumphing of seals. Upon modeling the motion dynamics and conducting experiments, the effectiveness of direct motion transmission is substantiated through microscopic galumphing encompassing left/right crawling and straight-forward crawling. Finally, a 1.2 g untethered robot is developed, which demonstrates enhanced straight crawling and spot turning, traverses narrow tunnels, and achieves precise movements. Therefore, the proposed motion-transmission technique provides a comprehensive set of innovative solutions of underactuated agile robots.
Collapse
Affiliation(s)
- Lingqi Tang
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
| | - Chenghao Wang
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
| | - Songsong Ma
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
| | - Yao Li
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
- Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive RoboticsHarbin Institute of TechnologyShenzhen518055China
| | - Bing Li
- School of Mechanical Engineering and AutomationHarbin Institute of TechnologyShenzhen518055China
- Guangdong Key Laboratory of Intelligent Morphing Mechanisms and Adaptive RoboticsHarbin Institute of TechnologyShenzhen518055China
- State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbin150001China
| |
Collapse
|
5
|
Scheibli L, Elsenhans T, Wolf H, Stemme T, Pfeffer SE. Influence of the pesticide flupyradifurone on mobility and physical condition of larval green lacewings. Sci Rep 2023; 13:19804. [PMID: 37957276 PMCID: PMC10643709 DOI: 10.1038/s41598-023-46135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Global pesticide use in agriculture is one reason for the rapid insect decline in recent years. The relatively new pesticide flupyradifurone is neurotoxic to pest insects but considered harmless to bees according to previous risk assessments. With this study, we aim to investigate lethal and sublethal effects of flupyradifurone on larvae of the beneficial arthropod Chrysoperla carnea. We treated the animals orally with field-realistic concentrations of flupyradifurone and examined lethality as well as effects on condition, mobility and locomotion. For the lethal dose 50, we determined a value of > 120-200 ng/mg (corresponding to a mean amount of 219 ng/larva) after 168 h. Abnormal behaviors such as trembling and comatose larvae were observed even at the lowest concentration applied (> 0-20 ng/mg, 59 ng/larva). Mobility analysis showed impaired activity patterns, resulting in acute hypoactivity at all pesticide concentrations and time-delayed hyperactivity in larvae treated with > 40-60 ng/mg (100 ng/larva) and > 80-100 ng/mg (120 ng/larva), respectively. Even locomotion as a fundamental behavioral task was negatively influenced throughout larval development. In conclusion, our results demonstrate that flupyradifurone impacts life and survival of lacewing larvae and may pose-despite its status as bee-friendly-a major threat to insect fauna and environment.
Collapse
Affiliation(s)
- Leonie Scheibli
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tabita Elsenhans
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | |
Collapse
|
6
|
Werkhausen A, Lundervold A, Gløersen Ø. Muscle function during cross-country skiing at different speed and incline conditions. J Exp Biol 2023; 226:jeb245474. [PMID: 37272292 DOI: 10.1242/jeb.245474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
The human musculoskeletal system is well adapted to use energy-efficient muscle-tendon mechanics during walking and running, but muscle behaviour during on-snow locomotion is unknown. Here, we examined muscle and muscle-tendon unit behaviour during diagonal-style cross-country roller skiing at three speed and incline conditions to examine whether skiers can exploit energy-saving mechanisms of the muscle-tendon unit. We assessed lower leg muscle and muscle-tendon unit mechanics and muscle activity in 13 high-level skiers during treadmill roller skiing using synchronised ultrasound, motion capture, electromyography and ski-binding force measurements. Participants skied using diagonal style at 2.5 and 3.5 m s-1 up 5 deg, and at 2.5 m s-1 up 10 deg. We found an uncoupling of muscle and joint behaviour during most parts of the propulsive kick phase in all conditions (P<0.01). Gastrocnemius muscle fascicles actively shortened ∼0.9 cm during the kick phase, while the muscle-tendon unit went through a stretch-shortening cycle. Peak muscle-tendon unit shortening velocity was 5 times faster than fascicle velocity (37.5 versus 7.4 cm s-1, P<0.01). Steeper incline skiing was achieved by greater muscle activity (24%, P=0.04) and slower fascicle shortening velocity (3.4 versus 4.5 cm s-1, P<0.01). Faster speed was achieved by greater peak muscle activity (23%, P<0.01) and no change in fascicle shortening velocity. Our data show that, during diagonal-style cross-county skiing, muscle behaviour is uncoupled from the joint movement, which enables beneficial contractile conditions and energy utilisation with different slopes and speeds. Active preloading at the end of the glide phase may facilitate these mechanisms.
Collapse
Affiliation(s)
- Amelie Werkhausen
- Norwegian School of Sport Sciences, Department of Physical Performance, 0863 Oslo, Norway
| | - Anders Lundervold
- Norwegian School of Sport Sciences, Department of Physical Performance, 0863 Oslo, Norway
| | - Øyvind Gløersen
- SINTEF Digital, Smart Sensors and Microsystems, 0373 Oslo, Norway
| |
Collapse
|
7
|
Nirody JA. Flexible locomotion in complex environments: the influence of species, speed and sensory feedback on panarthropod inter-leg coordination. J Exp Biol 2023; 226:297127. [PMID: 36912384 DOI: 10.1242/jeb.245111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Panarthropods (a clade containing arthropods, tardigrades and onychophorans) can adeptly move across a wide range of challenging terrains and their ability to do so given their relatively simple nervous systems makes them compelling study organisms. Studies of forward walking on flat terrain excitingly point to key features in inter-leg coordination patterns that seem to be 'universally' shared across panarthropods. However, when movement through more complex, naturalistic terrain is considered, variability in coordination patterns - from the intra-individual to inter-species level - becomes more apparent. This variability is likely to be due to the interplay between sensory feedback and local pattern-generating activity, and depends crucially on species, walking speed and behavioral goal. Here, I gather data from the literature of panarthropod walking coordination on both flat ground and across more complex terrain. This Review aims to emphasize the value of: (1) designing experiments with an eye towards studying organisms in natural environments; (2) thoughtfully integrating results from various experimental techniques, such as neurophysiological and biomechanical studies; and (3) ensuring that data is collected and made available from a wider range of species for future comparative analyses.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
Takahashi H. MEMS-Based Micro Sensors for Measuring the Tiny Forces Acting on Insects. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22208018. [PMID: 36298366 PMCID: PMC9609827 DOI: 10.3390/s22208018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 06/01/2023]
Abstract
Small insects perform agile locomotion, such as running, jumping, and flying. Recently, many robots, inspired by such insect performance, have been developed and are expected to be smaller and more maneuverable than conventional robots. For the development of insect-inspired robots, understanding the mechanical dynamics of the target insect is important. However, evaluating the dynamics via conventional commercialized force sensors is difficult because the exerted force and insect itself are tiny in strength and size. Here, we review force sensor devices, especially fabricated for measuring the tiny forces acting on insects during locomotion. As the force sensor, micro-force plates for measuring the ground reaction force and micro-force probes for measuring the flying force have mainly been developed. In addition, many such sensors have been fabricated via a microelectromechanical system (MEMS) process, due to the process precision and high sensitivity. In this review, we focus on the sensing principle, design guide, fabrication process, and measurement method of each sensor, as well as the technical challenges in each method. Finally, the common process flow of the development of specialized MEMS sensors is briefly discussed.
Collapse
Affiliation(s)
- Hidetoshi Takahashi
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
9
|
Liu Y, Chen Y, Feng B, Wang D, Liu T, Zhou H, Li H, Qu S, Yang W. S 2worm: A Fast-Moving Untethered Insect-Scale Robot With 2-DoF Transmission Mechanism. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2022.3176435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yide Liu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yanhong Chen
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Bo Feng
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Dongqi Wang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Taishan Liu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Haofei Zhou
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Hua Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Shaoxing Qu
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Wei Yang
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Tross J, Wolf H, Pfeffer SE. Influence of caste and subcaste characteristics in ant locomotion (Camponotus fellah). J Exp Biol 2022; 225:275528. [PMID: 35615922 DOI: 10.1242/jeb.243776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/20/2022] [Indexed: 11/20/2022]
Abstract
Worker polymorphism in ants has evolved repeatedly, with considerable differences in the morphometry of worker subcastes. Such body size differences and especially caste- and subcaste-specific characteristics might significantly influence locomotion. Therefore, we performed a comprehensive locomotion analysis along gradients in both body size and walking speed of Camponotus fellah worker subcastes, and of males, which have rarely been studied to date due to short life spans associated with mating flights. We provide a detailed description of the morphometry and size differences of C. fellah castes and subcastes and analyse locomotion in the different polymorphic groups in terms of absolute and relative walking speeds (mesosoma lengths per second). Our results reveal that body size and shape affect locomotion behaviour to different extents in the worker subcastes (minor workers, medias, major workers) and in males. Nevertheless, C. fellah ants use the same overall locomotion strategy, with males and major workers reaching considerably lower walking speeds than minors and medias. Body size thus mainly affects walking speed. Minor workers reach the highest relative velocities by high relative stride lengths in combination with large vertical and lateral COM oscillations and clearly higher stride frequencies of up to 25 Hz. Locomotion of males was characterised by clearly lower walking speeds, wider footprint positions, significant phase shifts and a notable dragging of the shorter hind legs. However, general walking parameters of males differed less from those of the female workers than expected due to division of labour in the colony.
Collapse
Affiliation(s)
- Johanna Tross
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
11
|
Tross J, Wolf H, Stemme T, Pfeffer SE. Locomotion in the pseudoscorpion Chelifer cancroides - forward, backward and upside down walking in an eight-legged arthropod. J Exp Biol 2022; 225:275033. [PMID: 35438154 DOI: 10.1242/jeb.243930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
While insect locomotion has been intensively studied, there are comparably few studies investigating octopedal walking behaviour, and very little is known about pseudoscorpions in particular. Therefore, we performed an extensive locomotion analysis during forward, backward and upside down walking in the cosmopolitan pseudoscorpion Chelifer cancroides. During forward locomotion, we observed C. cancroides to freeze locomotion frequently for short time periods. These microstops were barely visible to the naked eye with a duration of 100-200 ms. Our locomotion analysis revealed that C. cancroides performs a statically stable and highly coordinated alternating tetrapod gait during forward and backward walking, with almost complete inversion of the tetrapod schemes, but no rigidly fixed leg coordination during upside down walks with low walking speeds up to 4 body lengths per second. Highest speeds (up to 17 body lengths per second), mainly achieved by consistent leg coordination and strong phase shifts, were observed during backward locomotion (escape behaviour), while forward walking was characterised by lower speeds and phase shifts around 10% between two loosely coupled leg groups within one tetrapod. That is, during the movement of one tetrapod group, the last and the third leg are almost synchronous in their swing phases, as are the second and the first leg. A special role of the second leg pair was demonstrated, probably mainly for stability reasons and related to the large pedipalps.
Collapse
Affiliation(s)
- Johanna Tross
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | |
Collapse
|
12
|
Arroyave-Tobon S, Drapin J, Kaniewski A, Linares JM, Moretto P. Kinematic Modeling at the Ant Scale: Propagation of Model Parameter Uncertainties. Front Bioeng Biotechnol 2022; 10:767914. [PMID: 35299633 PMCID: PMC8921731 DOI: 10.3389/fbioe.2022.767914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/20/2022] [Indexed: 11/20/2022] Open
Abstract
Quadrupeds and hexapods are known by their ability to adapt their locomotive patterns to their functions in the environment. Computational modeling of animal movement can help to better understand the emergence of locomotive patterns and their body dynamics. Although considerable progress has been made in this subject in recent years, the strengths and limitations of kinematic simulations at the scale of small moving animals are not well understood. In response to this, this work evaluated the effects of modeling uncertainties on kinematic simulations at small scale. In order to do so, a multibody model of a Messor barbarus ant was developed. The model was built from 3D scans coming from X-ray micro-computed tomography. Joint geometrical parameters were estimated from the articular surfaces of the exoskeleton. Kinematic data of a free walking ant was acquired using high-speed synchronized video cameras. Spatial coordinates of 49 virtual markers were used to run inverse kinematics simulations using the OpenSim software. The sensitivity of the model’s predictions to joint geometrical parameters and marker position uncertainties was evaluated by means of two Monte Carlo simulations. The developed model was four times more sensitive to perturbations on marker position than those of the joint geometrical parameters. These results are of interest for locomotion studies of small quadrupeds, octopods, and other multi-legged animals.
Collapse
Affiliation(s)
- Santiago Arroyave-Tobon
- Institut Des Sciences Du Mouvement, Faculté Des Sciences Du Sport, Aix-Marseille Université, CNRS, Marseille, France
- *Correspondence: Santiago Arroyave-Tobon,
| | - Jordan Drapin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anton Kaniewski
- Institut Des Sciences Du Mouvement, Faculté Des Sciences Du Sport, Aix-Marseille Université, CNRS, Marseille, France
| | - Jean-Marc Linares
- Institut Des Sciences Du Mouvement, Faculté Des Sciences Du Sport, Aix-Marseille Université, CNRS, Marseille, France
| | - Pierre Moretto
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
13
|
Fukuhara A, Suda W, Kano T, Kobayashi R, Ishiguro A. Adaptive Interlimb Coordination Mechanism for Hexapod Locomotion Based on Active Load Sensing. Front Neurorobot 2022; 16:645683. [PMID: 35211001 PMCID: PMC8860975 DOI: 10.3389/fnbot.2022.645683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/05/2022] [Indexed: 11/29/2022] Open
Abstract
Insects can flexibly coordinate their limbs to adapt to various locomotor conditions, e.g., complex environments, changes in locomotion speed, and leg amputation. An interesting aspect of insect locomotion is that the gait patterns are not necessarily stereotypical but are often highly variable, e.g., searching behavior to obtain stable footholds in complex environments. Several previous studies have focused on the mechanism for the emergence of variable limb coordination patterns. However, the proposed mechanisms are complicated and the essential mechanism underlying insect locomotion remains elusive. To address this issue, we proposed a simple mathematical model for the mechanism of variable interlimb coordination in insect locomotion. The key idea of the proposed model is “decentralized active load sensing,” wherein each limb actively moves and detects the reaction force from the ground to judge whether it plays a pivotal role in maintaining the steady support polygon. Based on active load sensing, each limb stays in the stance phase when the limb is necessary for body support. To evaluate the proposed model, we conducted simulation experiments using a hexapod robot. The results showed that the proposed simple mechanism allows the hexapod robot to exhibit typical gait patterns in response to the locomotion speed. Furthermore, the proposed mechanism improves the adaptability of the hexapod robot for leg amputations and lack of footholds by changing each limb's walking and searching behavior in a decentralized manner based on the physical interaction between the body and the environment.
Collapse
Affiliation(s)
- Akira Fukuhara
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
- *Correspondence: Akira Fukuhara
| | - Wataru Suda
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Takeshi Kano
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| | - Ryo Kobayashi
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Akio Ishiguro
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan
| |
Collapse
|
14
|
Wöhrl T, Richter A, Guo S, Reinhardt L, Nowotny M, Blickhan R. Comparative analysis of a geometric and an adhesive righting strategy against toppling in inclined hexapedal locomotion. J Exp Biol 2021; 224:271172. [PMID: 34342358 DOI: 10.1242/jeb.242677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 11/20/2022]
Abstract
Animals are known to exhibit different walking behaviors in hilly habitats. For instance, cats, rats, squirrels, tree frogs, desert iguana, stick insects and desert ants were observed to lower their body height when traversing slopes, whereas mound-dwelling iguanas and wood ants tend to maintain constant walking kinematics regardless of the slope. This paper aims to understand and classify these distinct behaviors into two different strategies against toppling for climbing animals by looking into two factors: (i) the torque of the center of gravity (CoG) with respect to the critical tipping axis, and (ii) the torque of the legs, which has the potential to counterbalance the CoG torque. Our comparative locomotion analysis on level locomotion and inclined locomotion exhibited that primarily only one of the proposed two strategies was chosen for each of our sample species, despite the fact that a combined strategy could have reduced the animal's risk of toppling over even more. We found that Cataglyphis desert ants (species Cataglyphis fortis) maintained their upright posture primarily through the adjustment of their CoG torque (geometric strategy), and Formica wood ants (species Formica rufa), controlled their posture primarily by exerting leg torques (adhesive strategy). We further provide hints that the geometric strategy employed by Cataglyphis could increase the risk of slipping on slopes as the leg-impulse substrate angle of Cataglyphis hindlegs was lower than that of Formica hindlegs. In contrast, the adhesion strategy employed by Formica front legs not only decreased the risk of toppling but also explained the steeper leg-impulse substrate angle of Formica hindlegs which should relate to more bending of the tarsal structures and therefore to more microscopic contact points, potentially reducing the risk of hindleg slipping.
Collapse
Affiliation(s)
- Toni Wöhrl
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany.,Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Adrian Richter
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | - Shihui Guo
- School of Informatics, Xiamen University, Xiamen, 361005 Fujian Province, China
| | - Lars Reinhardt
- Motion Science, Friedrich Schiller University, 07749 Jena, Germany
| | - Manuela Nowotny
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University, 07743 Jena, Germany
| | | |
Collapse
|
15
|
Nirody JA. Universal Features in Panarthropod Inter-Limb Coordination during Forward Walking. Integr Comp Biol 2021; 61:710-722. [PMID: 34043783 PMCID: PMC8427173 DOI: 10.1093/icb/icab097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Terrestrial animals must often negotiate heterogeneous, varying environments. Accordingly, their locomotive strategies must adapt to a wide range of terrain, as well as to a range of speeds to accomplish different behavioral goals. Studies in Drosophila have found that inter-leg coordination patterns (ICPs) vary smoothly with walking speed, rather than switching between distinct gaits as in vertebrates (e.g., horses transitioning between trotting and galloping). Such a continuum of stepping patterns implies that separate neural controllers are not necessary for each observed ICP. Furthermore, the spectrum of Drosophila stepping patterns includes all canonical coordination patterns observed during forward walking in insects. This raises the exciting possibility that the controller in Drosophila is common to all insects, and perhaps more generally to panarthropod walkers. Here, we survey and collate data on leg kinematics and inter-leg coordination relationships during forward walking in a range of arthropod species, as well as include data from a recent behavioral investigation into the tardigrade Hypsibius exemplaris. Using this comparative dataset, we point to several functional and morphological features that are shared among panarthropods. The goal of the framework presented in this review is to emphasize the importance of comparative functional and morphological analyses in understanding the origins and diversification of walking in Panarthropoda. Introduction.
Collapse
Affiliation(s)
- Jasmine A Nirody
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10065, USA.,All Souls College, University of Oxford, Oxford, OX1 4AL, UK
| |
Collapse
|
16
|
Chun C, Biswas T, Bhandawat V. Drosophila uses a tripod gait across all walking speeds, and the geometry of the tripod is important for speed control. eLife 2021; 10:65878. [PMID: 33533718 PMCID: PMC7932689 DOI: 10.7554/elife.65878] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/22/2021] [Indexed: 01/23/2023] Open
Abstract
Changes in walking speed are characterized by changes in both the animal's gait and the mechanics of its interaction with the ground. Here we study these changes in walking Drosophila. We measured the fly's center of mass movement with high spatial resolution and the position of its footprints. Flies predominantly employ a modified tripod gait that only changes marginally with speed. The mechanics of a tripod gait can be approximated with a simple model - angular and radial spring-loaded inverted pendulum (ARSLIP) - which is characterized by two springs of an effective leg that become stiffer as the speed increases. Surprisingly, the change in the stiffness of the spring is mediated by the change in tripod shape rather than a change in stiffness of individual legs. The effect of tripod shape on mechanics can also explain the large variation in kinematics among insects, and ARSLIP can model these variations.
Collapse
Affiliation(s)
- Chanwoo Chun
- Department of Biology, Duke University, Durham, United States
| | - Tirthabir Biswas
- Department of Physics, Loyola University, New Orleans, United States.,Janelia Research Campus, Howard Medical Institute, Ashburn, United States
| | - Vikas Bhandawat
- School of Biomedical Engineering, Sciences and Health Systems, Drexel University, Duke Institute for Brain Sciences, Duke University, Durham, United States
| |
Collapse
|
17
|
Merienne H, Latil G, Moretto P, Fourcassié V. Dynamics of locomotion in the seed harvesting ant Messor barbarus: effect of individual body mass and transported load mass. PeerJ 2021; 9:e10664. [PMID: 33575127 PMCID: PMC7849507 DOI: 10.7717/peerj.10664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022] Open
Abstract
Ants are well-known for their amazing load carriage performances. Yet, the biomechanics of locomotion during load transport in these insects has so far been poorly investigated. Here, we present a study of the biomechanics of unloaded and loaded locomotion in the polymorphic seed-harvesting ant Messor barbarus (Linnaeus, 1767). This species is characterized by a strong intra-colonial size polymorphism with allometric relationships between the different body parts of the workers. In particular, big ants have much larger heads relative to their size than small ants. Their center of mass is thus shifted forward and even more so when they are carrying a load in their mandibles. We investigated the dynamics of the ant center of mass during unloaded and loaded locomotion. We found that during both unloaded and loaded locomotion, the kinetic energy and gravitational potential energy of the ant center of mass are in phase, which is in agreement with what has been described by other authors as a grounded-running gait. During unloaded locomotion, small and big ants do not display the same posture. However, they expend the same amount of mechanical energy to raise and accelerate their center of mass per unit of distance and per unit of body mass. While carrying a load, compared to the unloaded situation, ants seem to modify their locomotion gradually with increasing load mass. Therefore, loaded and unloaded locomotion do not involve discrete types of gait. Moreover, small ants carrying small loads expend less mechanical energy per unit of distance and per unit of body mass and their locomotion thus seem more mechanically efficient.
Collapse
Affiliation(s)
- Hugo Merienne
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Moretto
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Vincent Fourcassié
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
18
|
Leg loss decreases endurance and increases oxygen consumption during locomotion in harvestmen. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2020; 207:257-268. [DOI: 10.1007/s00359-020-01455-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022]
|
19
|
Clifton GT, Holway D, Gravish N. Vision does not impact walking performance in Argentine ants. ACTA ACUST UNITED AC 2020; 223:223/20/jeb228460. [PMID: 33067354 DOI: 10.1242/jeb.228460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/10/2020] [Indexed: 11/20/2022]
Abstract
Many walking insects use vision for long-distance navigation, but the influence of vision on rapid walking performance that requires close-range obstacle detection and directing the limbs towards stable footholds remains largely untested. We compared Argentine ant (Linepithema humile) workers in light versus darkness while traversing flat and uneven terrain. In darkness, ants reduced flat-ground walking speeds by only 5%. Similarly, the approach speed and time to cross a step obstacle were not significantly affected by lack of lighting. To determine whether tactile sensing might compensate for vision loss, we tracked antennal motion and observed shifts in spatiotemporal activity as a result of terrain structure but not illumination. Together, these findings suggest that vision does not impact walking performance in Argentine ant workers. Our results help contextualize eye variation across ants, including subterranean, nocturnal and eyeless species that walk in complete darkness. More broadly, our findings highlight the importance of integrating vision, proprioception and tactile sensing for robust locomotion in unstructured environments.
Collapse
Affiliation(s)
- Glenna T Clifton
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA .,Department of Biology, University of Portland, Portland, OR 97203, USA
| | - David Holway
- Division of Biological Science, Section of Ecology, Behavior and Evolution, University of California, San Diego , La Jolla, CA 92093, USA
| | - Nicholas Gravish
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
20
|
Clifton GT, Holway D, Gravish N. Uneven substrates constrain walking speed in ants through modulation of stride frequency more than stride length. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192068. [PMID: 32269814 PMCID: PMC7137955 DOI: 10.1098/rsos.192068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
Natural terrain is rarely flat. Substrate irregularities challenge walking animals to maintain stability, yet we lack quantitative assessments of walking performance and limb kinematics on naturally uneven ground. We measured how continually uneven 3D-printed substrates influence walking performance of Argentine ants by measuring walking speeds of workers from laboratory colonies and by testing colony-wide substrate preference in field experiments. Tracking limb motion in over 8000 videos, we used statistical models that associate walking speed with limb kinematic parameters to compare movement over flat versus uneven ground of controlled dimensions. We found that uneven substrates reduced preferred and peak walking speeds by up to 42% and that ants actively avoided uneven terrain in the field. Observed speed reductions were modulated primarily by shifts in stride frequency instead of stride length (flat R 2: 0.91 versus 0.50), a pattern consistent across flat and uneven substrates. Mixed effect modelling revealed that walking speeds on uneven substrates were accurately predicted based on flat walking data for over 89% of strides. Those strides that were not well modelled primarily involved limb perturbations, including missteps, active foot repositioning and slipping. Together these findings relate kinematic mechanisms underlying walking performance on uneven terrain to ecologically relevant measures under field conditions.
Collapse
Affiliation(s)
- G. T. Clifton
- Department of Mechanical and Aerospace Engineering, Behavior and Evolution, University of California, San Diego, USA
| | - D. Holway
- Division of Biological Science, Section of Ecology, Behavior and Evolution, University of California, San Diego, USA
| | - N. Gravish
- Department of Mechanical and Aerospace Engineering, Behavior and Evolution, University of California, San Diego, USA
| |
Collapse
|
21
|
Merienne H, Latil G, Moretto P, Fourcassié V. Walking kinematics in the polymorphic seed harvester ant Messor barbarus: influence of body size and load carriage. ACTA ACUST UNITED AC 2020; 223:jeb.205690. [PMID: 31836653 DOI: 10.1242/jeb.205690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 12/05/2019] [Indexed: 11/20/2022]
Abstract
Ants are famous in the animal kingdom for their amazing load-carrying performance. Yet, the mechanisms that allow these insects to maintain their stability when carrying heavy loads have been poorly investigated. Here, we present a study of the kinematics of unloaded and loaded locomotion in the polymorphic seed-harvesting ant Messor barbarus In this species, large ants have larger heads relative to their size than small ants. Hence, their center of mass is shifted forward, and even more so when they are carrying a load in their mandibles. We tested the hypothesis that this could lead to large ants being less statically stable than small ants, thus explaining their lower load-carrying ability. We found that large ants were indeed less statically stable than small ants when walking unloaded, but they were nonetheless able to adjust their stepping pattern to partly compensate for this instability. When ants were walking loaded on the other hand, there was no evidence of different locomotor behaviors in individuals of different sizes. Loaded ants, whatever their size, move too slowly to maintain their balance through dynamic stability. Rather, they seem to do so by clinging to the ground with their hind legs during part of a stride. We show through a straightforward model that allometric relationships have a minor role in explaining the differences in load-carrying ability between large ants and small ants, and that a simple scale effect is sufficient to explain these differences.
Collapse
Affiliation(s)
- Hugo Merienne
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 09, France
| | - Gérard Latil
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 09, France
| | - Pierre Moretto
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 09, France
| | - Vincent Fourcassié
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062 Toulouse Cedex 09, France
| |
Collapse
|
22
|
Pfeffer SE, Wahl VL, Wittlinger M, Wolf H. High-speed locomotion in the Saharan silver ant, Cataglyphis bombycina. J Exp Biol 2019; 222:222/20/jeb198705. [DOI: 10.1242/jeb.198705] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/29/2019] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The diurnal thermophilic Saharan silver ant, Cataglyphis bombycina, is the fastest of the North African Cataglyphis desert ant species. These highly mobile ants endure the extreme temperatures of their sand dune environment with outstanding behavioural, physiological and morphological adaptations. Surprisingly, C. bombycina has comparatively shorter legs than its well-studied sister species Cataglyphis fortis from salt pan habitats. This holds despite the somewhat hotter surface temperatures and the more yielding sand substrate. Here, we report that C. bombycina employs a different strategy in reaching high running speeds, outperforming the fastest known runs of the longer-legged C. fortis ants. Video analysis across a broad range of locomotor speeds revealed several differences to C. fortis. Shorter leg lengths are compensated for by high stride frequencies, ranging beyond 40 Hz. This is mainly achieved by a combination of short stance phases (down to 7 ms) and fast leg swing movements (up to 1400 mm s−1). The legs of one tripod group exhibit almost perfect synchrony in the timings of their lift-offs and touch-downs, and good tripod coordination is present over the entire walking speed range (tripod coordination strength values around 0.8). This near synchrony in leg movement may facilitate locomotion across the yielding sand dune substrate.
Collapse
Affiliation(s)
| | - Verena Luisa Wahl
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Matthias Wittlinger
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Institute of Biology I, University of Freiburg, Hauptstrasse 1, 79104 Freiburg, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
23
|
Silva-Pereyra V, Fábrica CG, Biancardi CM, Pérez-Miles F. Kinematics of male Eupalaestrus weijenberghi (Araneae, Theraphosidae) locomotion on different substrates and inclines. PeerJ 2019; 7:e7748. [PMID: 31579616 PMCID: PMC6766366 DOI: 10.7717/peerj.7748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/25/2019] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The mechanics and energetics of spider locomotion have not been deeply investigated, despite their importance in the life of a spider. For example, the reproductive success of males of several species is dependent upon their ability to move from one area to another. The aim of this work was to describe gait patterns and analyze the gait parameters of Eupalaestrus weijenberghi (Araneae, Theraphosidae) in order to investigate the mechanics of their locomotion and the mechanisms by which they conserve energy while traversing different inclinations and surfaces. METHODS Tarantulas were collected and marked for kinematic analysis. Free displacements, both level and on an incline, were recorded using glass and Teflon as experimental surfaces. Body segments of the experimental animals were measured, weighed, and their center of mass was experimentally determined. Through reconstruction of the trajectories of the body segments, we were able to estimate their internal and external mechanical work and analyze their gait patterns. RESULTS Spiders mainly employed a walk-trot gait. Significant differences between the first two pairs and the second two pairs were detected. No significant differences were detected regarding the different planes or surfaces with respect to duty factor, time lags, stride frequency, and stride length. However, postural changes were observed on slippery surfaces. The mechanical work required for traversing a level plane was lower than expected. In all conditions, the external work, and within it the vertical work, accounted for almost all of the total mechanical work. The internal work was extremely low and did not rise as the gradient increased. DISCUSSION Our results support the idea of considering the eight limbs functionally divided into two quadrupeds in series. The anterior was composed of the first two pairs of limbs, which have an explorative and steering purpose and the posterior was more involved in supporting the weight of the body. The mechanical work to move one unit of mass a unit distance is almost constant among the different species tested. However, spiders showed lower values than expected. Minimizing the mechanical work could help to limit metabolic energy expenditure that, in small animals, is relatively very high. However, energy recovery due to inverted pendulum mechanics only accounts for only a small fraction of the energy saved. Adhesive setae present in the tarsal, scopulae, and claw tufts could contribute in different ways during different moments of the step cycle, compensating for part of the energetic cost on gradients which could also help to maintain constant gait parameters.
Collapse
Affiliation(s)
- Valentina Silva-Pereyra
- Unidad de Investigación en Biomecánica de la Locomoción Humana, Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - C Gabriel Fábrica
- Unidad de Investigación en Biomecánica de la Locomoción Humana, Departamento de Biofísica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlo M. Biancardi
- Laboratorio de Biomecánica y Análisis del Movimiento, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República, Paysandú, Uruguay
| | - Fernando Pérez-Miles
- Sección Entomología, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
24
|
Humeau A, Piñeirua M, Crassous J, Casas J. Locomotion of Ants Walking up Slippery Slopes of Granular Materials. Integr Org Biol 2019; 1:obz020. [PMID: 33791535 PMCID: PMC7671155 DOI: 10.1093/iob/obz020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many insects encounter locomotory difficulties in walking up sand inclines. This is masterfully exploited by some species for building traps from which prey are rarely able to escape, as the antlion and its deadly pit. The aim of this work is to tear apart the relative roles of granular material properties and slope steepness on the insect leg kinematics, gait patterns, and locomotory stability. For this, we used factorial manipulative experiments with different granular media inclines and the ant Aphaenogaster subterranea. Our results show that its locomotion is similar on granular and solid media, while for granular inclined slopes we observe a loss of stability followed by a gait pattern transition from tripod to metachronal. This implies that neither the discrete nature nor the roughness properties of sand alone are sufficient to explain the struggling of ants on sandy slopes: the interaction between sand properties and slope is key. We define an abnormality index that allows us to quantify the locomotory difficulties of insects walking up a granular incline. The probability of its occurrence reveals the local slipping of the granular media as a consequence of the pressure exerted by the ant's legs. Our findings can be extended to other models presenting locomotory difficulties for insects, such as slippery walls of urns of pitcher plants. How small arthropods walking on granular and brittle materials solve their unique stability trade-off will require a thorough understanding of the transfer of energy from leg to substrate at the particle level.
Collapse
Affiliation(s)
- A Humeau
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS—Université François—Rabelais, Tours 37200, France
| | - M Piñeirua
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS—Université François—Rabelais, Tours 37200, France
| | - J Crassous
- Institut de Physique de Rennes (UMR UR1–CNRS 6251), Université Rennes 1, Campus de Beaulieu, Rennes F-35042, France
| | - J Casas
- Institut de Recherche sur la Biologie de l’Insecte, UMR 7261 CNRS—Université François—Rabelais, Tours 37200, France
- Institut Universitaire de France, Paris, 75231, France
| |
Collapse
|
25
|
Wu Y, Yim JK, Liang J, Shao Z, Qi M, Zhong J, Luo Z, Yan X, Zhang M, Wang X, Fearing RS, Full RJ, Lin L. Insect-scale fast moving and ultrarobust soft robot. Sci Robot 2019; 4:4/32/eaax1594. [PMID: 33137774 DOI: 10.1126/scirobotics.aax1594] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Mobility and robustness are two important features for practical applications of robots. Soft robots made of polymeric materials have the potential to achieve both attributes simultaneously. Inspired by nature, this research presents soft robots based on a curved unimorph piezoelectric structure whose relative speed of 20 body lengths per second is the fastest measured among published artificial insect-scale robots. The soft robot uses several principles of animal locomotion, can carry loads, climb slopes, and has the sturdiness of cockroaches. After withstanding the weight of an adult footstep, which is about 1 million times heavier than that of the robot, the system survived and continued to move afterward. The relatively fast locomotion and robustness are attributed to the curved unimorph piezoelectric structure with large amplitude vibration, which advances beyond other methods. The design principle, driving mechanism, and operating characteristics can be further optimized and extended for improved performances, as well as used for other flexible devices.
Collapse
Affiliation(s)
- Yichuan Wu
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China.,Berkeley Sensor and Actuator Center, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Justin K Yim
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Jiaming Liang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China.,Berkeley Sensor and Actuator Center, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Zhichun Shao
- Berkeley Sensor and Actuator Center, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Mingjing Qi
- Berkeley Sensor and Actuator Center, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA.,School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Junwen Zhong
- Berkeley Sensor and Actuator Center, University of California at Berkeley, Berkeley, CA 94720, USA. .,Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Zihao Luo
- Berkeley Sensor and Actuator Center, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Xiaojun Yan
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Min Zhang
- Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Xiaohao Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China.,Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Ronald S Fearing
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Robert J Full
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Integrative Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Liwei Lin
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China. .,Berkeley Sensor and Actuator Center, University of California at Berkeley, Berkeley, CA 94720, USA.,Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
26
|
Escalante I, Badger MA, Elias DO. Variation in movement: multiple locomotor gaits in Neotropical harvestmen. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ignacio Escalante
- Department of Environmental Sciences, Policy, & Management, University of California, Berkeley, Berkeley, CA, USA
| | - Marc A Badger
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Damian O Elias
- Department of Environmental Sciences, Policy, & Management, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
27
|
Bishop PJ, Clemente CJ, Weems RE, Graham DF, Lamas LP, Hutchinson JR, Rubenson J, Wilson RS, Hocknull SA, Barrett RS, Lloyd DG. Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds. J R Soc Interface 2018; 14:rsif.2017.0276. [PMID: 28724627 DOI: 10.1098/rsif.2017.0276] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
How extinct, non-avian theropod dinosaurs locomoted is a subject of considerable interest, as is the manner in which it evolved on the line leading to birds. Fossil footprints provide the most direct evidence for answering these questions. In this study, step width-the mediolateral (transverse) distance between successive footfalls-was investigated with respect to speed (stride length) in non-avian theropod trackways of Late Triassic age. Comparable kinematic data were also collected for humans and 11 species of ground-dwelling birds. Permutation tests of the slope on a plot of step width against stride length showed that step width decreased continuously with increasing speed in the extinct theropods (p < 0.001), as well as the five tallest bird species studied (p < 0.01). Humans, by contrast, showed an abrupt decrease in step width at the walk-run transition. In the modern bipeds, these patterns reflect the use of either a discontinuous locomotor repertoire, characterized by distinct gaits (humans), or a continuous locomotor repertoire, where walking smoothly transitions into running (birds). The non-avian theropods are consequently inferred to have had a continuous locomotor repertoire, possibly including grounded running. Thus, features that characterize avian terrestrial locomotion had begun to evolve early in theropod history.
Collapse
Affiliation(s)
- P J Bishop
- Geosciences Program, Queensland Museum, Brisbane, Australia .,School of Allied Health Sciences, Griffith University, Gold Coast, Australia.,Innovations in Health Technology, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - C J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, Australia.,School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - R E Weems
- Calvert Marine Museum, Solomons, USA.,Paleo Quest, Gainesville, FL, USA
| | - D F Graham
- School of Allied Health Sciences, Griffith University, Gold Coast, Australia.,Innovations in Health Technology, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - L P Lamas
- Structure and Motion Laboratory, Royal Veterinary College, Hatfield, UK.,Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - J R Hutchinson
- Structure and Motion Laboratory, Royal Veterinary College, Hatfield, UK
| | - J Rubenson
- College of Health and Human Development, Pennsylvania State University, University Park, PA, USA.,School of Human Sciences, University of Western Australia, Crawley, Australia
| | - R S Wilson
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - S A Hocknull
- Geosciences Program, Queensland Museum, Brisbane, Australia.,School of Allied Health Sciences, Griffith University, Gold Coast, Australia.,Innovations in Health Technology, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - R S Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, Australia.,Innovations in Health Technology, Menzies Health Institute Queensland, Southport, Queensland, Australia
| | - D G Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, Australia.,Innovations in Health Technology, Menzies Health Institute Queensland, Southport, Queensland, Australia.,School of Human Sciences, University of Western Australia, Crawley, Australia
| |
Collapse
|
28
|
Weihmann T, Brun PG, Pycroft E. Speed dependent phase shifts and gait changes in cockroaches running on substrates of different slipperiness. Front Zool 2017; 14:54. [PMID: 29225659 PMCID: PMC5719566 DOI: 10.1186/s12983-017-0232-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/28/2017] [Indexed: 01/29/2023] Open
Abstract
Background Many legged animals change gaits when increasing speed. In insects, only one gait change has been documented so far, from slow walking to fast running, which is characterised by an alternating tripod. Studies on some fast-running insects suggested a further gait change at higher running speeds. Apart from speed, insect gaits and leg co-ordination have been shown to be influenced by substrate properties, but the detailed effects of speed and substrate on gait changes are still unclear. Here we investigate high-speed locomotion and gait changes of the cockroach Nauphoeta cinerea, on two substrates of different slipperiness. Results Analyses of leg co-ordination and body oscillations for straight and steady escape runs revealed that at high speeds, blaberid cockroaches changed from an alternating tripod to a rather metachronal gait, which to our knowledge, has not been described before for terrestrial arthropods. Despite low duty factors, this new gait is characterised by low vertical amplitudes of the centre of mass (COM), low vertical accelerations and presumably reduced total vertical peak forces. However, lateral amplitudes and accelerations were higher in the faster gait with reduced leg synchronisation than in the tripod gait with distinct leg synchronisation. Conclusions Temporally distributed leg force application as resulting from metachronal leg coordination at high running speeds may be particularly useful in animals with limited capabilities for elastic energy storage within the legs, as energy efficiency can be increased without the need for elasticity in the legs. It may also facilitate locomotion on slippery surfaces, which usually reduce leg force transmission to the ground. Moreover, increased temporal overlap of the stance phases of the legs likely improves locomotion control, which might result in a higher dynamic stability.
Collapse
Affiliation(s)
- Tom Weihmann
- Department of Animal Physiology, Institute of Zoology, University of Cologne, Zülpicher Strasse 47b, 50674 Cologne, Germany
| | | | - Emily Pycroft
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
| |
Collapse
|
29
|
Oberst S, Bann G, Lai JCS, Evans TA. Cryptic termites avoid predatory ants by eavesdropping on vibrational cues from their footsteps. Ecol Lett 2017; 20:212-221. [PMID: 28111901 DOI: 10.1111/ele.12727] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/19/2016] [Accepted: 11/30/2016] [Indexed: 11/30/2022]
Abstract
Eavesdropping has evolved in many predator-prey relationships. Communication signals of social species may be particularly vulnerable to eavesdropping, such as pheromones produced by ants, which are predators of termites. Termites communicate mostly by way of substrate-borne vibrations, which suggest they may be able to eavesdrop, using two possible mechanisms: ant chemicals or ant vibrations. We observed termites foraging within millimetres of ants in the field, suggesting the evolution of specialised detection behaviours. We found the termite Coptotermes acinaciformis detected their major predator, the ant Iridomyrmex purpureus, through thin wood using only vibrational cues from walking, and not chemical signals. Comparison of 16 termite and ant species found the ants-walking signals were up to 100 times higher than those of termites. Eavesdropping on passive walking signals explains the predator detection and foraging behaviours in this ancient relationship, which may be applicable to many other predator-prey relationships.
Collapse
Affiliation(s)
- Sebastian Oberst
- Acoustics & Vibration Unit, School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, 2600, Australia.,CSIRO Ecosystem Sciences, Clunies Ross Street, Canberra, ACT, 2600, Australia
| | - Glen Bann
- Fenner School of Environment and Society, Australian National University, Canberra, ACT, 2600, Australia
| | - Joseph C S Lai
- Acoustics & Vibration Unit, School of Engineering and Information Technology, The University of New South Wales, Canberra, ACT, 2600, Australia
| | - Theodore A Evans
- School of Animal Biology, University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
30
|
Ramdya P, Thandiackal R, Cherney R, Asselborn T, Benton R, Ijspeert AJ, Floreano D. Climbing favours the tripod gait over alternative faster insect gaits. Nat Commun 2017; 8:14494. [PMID: 28211509 PMCID: PMC5321742 DOI: 10.1038/ncomms14494] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 01/04/2017] [Indexed: 01/09/2023] Open
Abstract
To escape danger or catch prey, running vertebrates rely on dynamic gaits with minimal ground contact. By contrast, most insects use a tripod gait that maintains at least three legs on the ground at any given time. One prevailing hypothesis for this difference in fast locomotor strategies is that tripod locomotion allows insects to rapidly navigate three-dimensional terrain. To test this, we computationally discovered fast locomotor gaits for a model based on Drosophila melanogaster. Indeed, the tripod gait emerges to the exclusion of many other possible gaits when optimizing fast upward climbing with leg adhesion. By contrast, novel two-legged bipod gaits are fastest on flat terrain without adhesion in the model and in a hexapod robot. Intriguingly, when adhesive leg structures in real Drosophila are covered, animals exhibit atypical bipod-like leg coordination. We propose that the requirement to climb vertical terrain may drive the prevalence of the tripod gait over faster alternative gaits with minimal ground contact. Numerous selective forces shape animal locomotion patterns and as a result, different animals evolved to use different gaits. Here, Ramdya et al. use live and in silico Drosophila, as well as an insect-model robot, to gain insights into the conditions that promote the ubiquitous tripod gait observed in most insects.
Collapse
Affiliation(s)
- Pavan Ramdya
- Laboratory of Intelligent Systems, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland.,Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Robin Thandiackal
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Raphael Cherney
- Laboratory of Intelligent Systems, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Thibault Asselborn
- Laboratory of Intelligent Systems, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne CH-1015, Switzerland
| | - Auke Jan Ijspeert
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| | - Dario Floreano
- Laboratory of Intelligent Systems, Institute of Microengineering, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
31
|
Wöhrl T, Reinhardt L, Blickhan R. Propulsion in hexapod locomotion: how do desert ants traverse slopes? ACTA ACUST UNITED AC 2017; 220:1618-1625. [PMID: 28183867 DOI: 10.1242/jeb.137505] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/07/2017] [Indexed: 11/20/2022]
Abstract
The employment of an alternating tripod gait to traverse uneven terrains is a common characteristic shared among many Hexapoda. Because this could be one specific cause for their ecological success, we examined the alternating tripod gait of the desert ant Cataglyphis fortis together with their ground reaction forces and weight-specific leg impulses for level locomotion and on moderate (±30 deg) and steep (±60 deg) slopes in order to understand mechanical functions of individual legs during inclined locomotion. There were three main findings from the experimental data. (1) The hind legs acted as the main brake (negative weight-specific impulse in the direction of progression) on both the moderate and steep downslopes while the front legs became the main motor (positive weight-specific impulse in the direction of progression) on the steep upslope. In both cases, the primary motor or brake was found to be above the centre of mass. (2) Normalised double support durations were prolonged on steep slopes, which could enhance the effect of lateral shear loading between left and right legs with the presence of direction-dependent attachment structures. (3) The notable directional change in the lateral ground reaction forces between the moderate and steep slopes implied the utilisation of different coordination programs in the extensor-flexor system.
Collapse
Affiliation(s)
- Toni Wöhrl
- Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
| | - Lars Reinhardt
- Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
| | - Reinhard Blickhan
- Friedrich Schiller University Jena, Seidelstraβe 20, 07749 Jena, Germany
| |
Collapse
|
32
|
Dallmann CJ, Dürr V, Schmitz J. Joint torques in a freely walking insect reveal distinct functions of leg joints in propulsion and posture control. Proc Biol Sci 2016; 283:rspb.2015.1708. [PMID: 26791608 DOI: 10.1098/rspb.2015.1708] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining the mechanical output of limb joints is critical for understanding the control of complex motor behaviours such as walking. In the case of insect walking, the neural infrastructure for single-joint control is well described. However, a detailed description of the motor output in form of time-varying joint torques is lacking. Here, we determine joint torques in the stick insect to identify leg joint function in the control of body height and propulsion. Torques were determined by measuring whole-body kinematics and ground reaction forces in freely walking animals. We demonstrate that despite strong differences in morphology and posture, stick insects show a functional division of joints similar to other insect model systems. Propulsion was generated by strong depression torques about the coxa-trochanter joint, not by retraction or flexion/extension torques. Torques about the respective thorax-coxa and femur-tibia joints were often directed opposite to fore-aft forces and joint movements. This suggests a posture-dependent mechanism that counteracts collapse of the leg under body load and directs the resultant force vector such that strong depression torques can control both body height and propulsion. Our findings parallel propulsive mechanisms described in other walking, jumping and flying insects, and challenge current control models of insect walking.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
33
|
Yanoviak SP, Silveri C, Stark AY, Van Stan JT, Levia DF. Surface roughness affects the running speed of tropical canopy ants. Biotropica 2016. [DOI: 10.1111/btp.12349] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Stephen P. Yanoviak
- Department of Biology University of Louisville 139 Life Sciences Building Louisville KY 40292 U.S.A
- Smithsonian Tropical Research Institute Apartado Postal 0843‐03092 Panamá Republic of Panama
| | - Cheryl Silveri
- Department of Biological Sciences University of Arkansas Fayetteville AR 72701 U.S.A
| | - Alyssa Y. Stark
- Department of Biology University of Louisville 139 Life Sciences Building Louisville KY 40292 U.S.A
| | - John T. Van Stan
- Department of Geology and Geography Georgia Southern University Statesboro GA 30460 U.S.A
| | - Delphis F. Levia
- Departments of Geography and Plant & Soil Sciences University of Delaware Newark DE 19716 U.S.A
| |
Collapse
|
34
|
Pfeffer SE, Wahl VL, Wittlinger M. How to find home backwards? Locomotion and inter-leg coordination during rearward walking of Cataglyphis fortis desert ants. J Exp Biol 2016; 219:2110-8. [DOI: 10.1242/jeb.137778] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022]
Abstract
ABSTRACT
For insects, flexibility in the performance of terrestrial locomotion is a vital part of facing the challenges of their often unpredictable environment. Arthropods such as scorpions and crustaceans can switch readily from forward to backward locomotion, but in insects this behaviour seems to be less common and, therefore, is only poorly understood. Here we present an example of spontaneous and persistent backward walking in Cataglyphis desert ants that allows us to investigate rearward locomotion within a natural context. When ants find a food item that is too large to be lifted up and to be carried in a normal forward-faced orientation, they will drag the load walking backwards to their home nest. A detailed examination of this behaviour reveals a surprising flexibility of the locomotor output. Compared with forward walks with regular tripod coordination, no main coordination pattern can be assigned to rearward walks. However, we often observed leg-pair-specific stepping patterns. The front legs frequently step with small stride lengths, while the middle and the hind legs are characterized by less numerous but larger strides. But still, these specializations show no rigidly fixed leg coupling, nor are they strictly embedded within a temporal context; therefore, they do not result in a repetitive coordination pattern. The individual legs act as separate units, most likely to better maintain stability during backward dragging.
Collapse
Affiliation(s)
- Sarah E. Pfeffer
- Institute of Neurobiology, University of Ulm, Ulm D-89069, Germany
| | - Verena L. Wahl
- Institute of Neurobiology, University of Ulm, Ulm D-89069, Germany
| | | |
Collapse
|
35
|
Ahmed AH, Menon C. On the static structural design of climbing robots: part 2. ROBOTICS AND BIOMIMETICS 2015; 2:5. [PMID: 26640756 PMCID: PMC4659851 DOI: 10.1186/s40638-015-0031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/10/2015] [Indexed: 11/10/2022]
Abstract
This manuscript is the second of two parts of a work investigating optimal configurations of legged climbing robots while loitering on vertical surfaces. In this Part 2, a structural analysis based on the finite element method, specifically the stiffness method, is performed to address the problem. Parameters that are investigated in this Part 2 include the inclination of both the body and the legs of the robot. Outcomes of the performed study are validated by analyzing the posture of 150 ants when loitering on vertical surfaces. The obtained validation ensures the predictions of the developed structural model are correct and can be used to identify optimal configurations of legged robots when loitering on vertical surfaces.
Collapse
Affiliation(s)
- Ausama Hadi Ahmed
- MENRVA Research Group, School of Engineering Science, Simon Fraser University, Burnaby, BC V5A1S6 Canada
| | - Carlo Menon
- MENRVA Research Group, School of Engineering Science, Simon Fraser University, Burnaby, BC V5A1S6 Canada
| |
Collapse
|
36
|
Blickhan R, Andrada E, Müller R, Rode C, Ogihara N. Positioning the hip with respect to the COM: Consequences for leg operation. J Theor Biol 2015; 382:187-97. [PMID: 26142948 DOI: 10.1016/j.jtbi.2015.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 06/05/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
In bipedal runners and hoppers the hip is not located at the center of mass in the sagittal projection. This displacement influences operation and energetics of the leg attached to the hip. To investigate this influence in a first step a simple conservative bouncing template is developed in which a heavy trunk is suspended to a massless spring at a pivot point above the center of mass. This model describes the orientation of the ground reaction forces observed in experiments on running birds. In a second step it is assumed that an effective telescope leg with its hip fixed to the trunk remote from the COM generates the same ground reaction forces as those predicted by the template. For this effective leg the influence of hip placement on leg operation and energetics is investigated. Placing the hip directly below, at, or above the pivot point results in high axial energy storage. Posterior placement increases axial losses and hip work whereas anterior placement would require axial work and absorption at the hip. Shifting the hip far posteriorly as observed in some birds can lead to the production of pure extension torques throughout the stance phase. It is proposed that the relative placement of the hip with respect to the center of mass is an important measure to modify effective leg operation with possible implications for balancing the trunk and the control of legged motion systems.
Collapse
Affiliation(s)
| | - Emanuel Andrada
- Science of Motion, Friedrich Schiller University Jena, Germany; Institut für Spezielle Zoologie und Evolutionsbiologie mit Phyletischem Museum, Friedrich Schiller University Jena, Germany
| | - Roy Müller
- Science of Motion, Friedrich Schiller University Jena, Germany
| | - Christian Rode
- Science of Motion, Friedrich Schiller University Jena, Germany
| | - Naomichi Ogihara
- Department of Mechanical Engineering, Keio University, Yokohama, Japan
| |
Collapse
|
37
|
Walking and running in the desert ant Cataglyphis fortis. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:645-56. [PMID: 25829304 PMCID: PMC4439428 DOI: 10.1007/s00359-015-0999-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 12/03/2022]
Abstract
Path integration, although inherently error-prone, is a common navigation strategy in animals, particularly where environmental orientation cues are rare. The desert ant Cataglyphis fortis is a prominent example, covering large distances on foraging excursions. The stride integrator is probably the major source of path integration errors. A detailed analysis of walking behaviour in Cataglyphis is thus of importance for assessing possible sources of errors and potential compensation strategies. Zollikofer (J Exp Biol 192:95–106, 1994a) demonstrated consistent use of the tripod gait in Cataglyphis, and suggested an unexpectedly constant stride length as a possible means of reducing navigation errors. Here, we extend these studies by more detailed analyses of walking behaviour across a large range of walking speeds. Stride length increases linearly and stride amplitude of the middle legs increases slightly linearly with walking speed. An initial decrease of swing phase duration is observed at lower velocities with increasing walking speed. Then it stays constant across the behaviourally relevant range of walking speeds. Walking speed is increased by shortening of the stance phase and of the stance phase overlap. At speeds larger than 370 mms−1, the stride frequency levels off, the duty factor falls below 0.5, and Cataglyphis transitions to running with aerial phases.
Collapse
|