1
|
Wang L, Xie X, Huang F, Wei Q, Cai T, Yu N, Chen S, Wang F, Chen W, Chen CY, Li C, Ma L. An Engineered PfAgo with Wide Catalytic Temperature Range and Substrate Spectrum. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416631. [PMID: 40364725 DOI: 10.1002/advs.202416631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/04/2025] [Indexed: 05/15/2025]
Abstract
PfAgo, a thermophilic Argonaute nuclease from Pyrococcus furiosus, is widely used in various fields due to its high DNA-guided DNA cleavage activity. However, its high-temperature-dependent cleavage activity largely restricts its applications in moderate-temperature scenarios. In this study, PfAgo is engineered for cold adaptation based on its ternary complex structure and the attributes of cold-adapted enzymes, yielding a series of variants with better performance at moderate temperatures. Among those, mPfAgo (K617G, L618G) exhibits significantly promoted cleavage activity at 37 °C and a wider catalytic temperature range of 30-95 °C. Its high-temperature cleavage activity is also greatly improved, enabling its application in DNA detection with attomolar sensitivity in the presence of Mg2+. Additionally, mPfAgo shows versatile cleavage activities, including DNA cleavage guided by 5'OH-gDNA, 5'P-gDNA, or 5'COOH-gDNA, as well as RNA cleavage with 5'OH-gDNA, 5'P-gDNA, 5'P-gRNA, or 5'COOH-gDNA as guides. Further analysis through far-UV CD spectra and DSF indicates that mPfAgo has a more flexible structure than wild-type PfAgo. Furthermore, this established strategy is applied to engineer TtdAgo, likewise obtaining its variants with enhanced moderate-temperature activity and expanded substrate spectrum. In summary, this work provides a novel method for the rational design of thermophilic Agos, thereby greatly expanding their application scopes.
Collapse
Affiliation(s)
- Longyu Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xiaochen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Fuyong Huang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Qiang Wei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Tianxin Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Na Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Shi Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Fei Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Wanping Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Chin-Yu Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Chunhua Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| |
Collapse
|
2
|
Nishiguchi T, Ishikawa A. Convergent Gene Duplication in Arctic and Antarctic Teleost Fishes. Zoolog Sci 2025; 42. [PMID: 39932755 DOI: 10.2108/zs240098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/01/2024] [Indexed: 05/08/2025]
Abstract
Teleost fishes have independently colonized polar regions multiple times, facing many physiological and biochemical challenges due to frigid temperatures. Although increased gene copy numbers can contribute to adaptive evolution in extreme environments, it remains unclear which categories of genes exhibit increased copy numbers associated with polar colonization. Using 104 species of ray-finned fishes, we systematically identified genes with a significant correlation between copy number and polar colonization after phylogenetic correction. Several genes encoding extracellular glycoproteins, including zona pellucida (ZP) proteins, which increase their copy number in Antarctic notothenioid fishes, exhibited elevated copy numbers across multiple polar fish lineages. Additionally, some genes reported to be highly expressed under cold stress, such as cold-inducible RNA-binding protein (CIRBP), had significantly increased copy numbers in polar fishes. Further analysis will provide a fundamental basis for understanding the role of gene duplication in polar adaptations.
Collapse
Affiliation(s)
- Tomoya Nishiguchi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan,
| | - Asano Ishikawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan,
| |
Collapse
|
3
|
Shi L, Zang C, Liu Z, Zhao G. Molecular mechanisms of natural antifreeze phenomena and their application in cryopreservation. Biotechnol Bioeng 2024; 121:3655-3671. [PMID: 39210560 DOI: 10.1002/bit.28832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Cryopreservation presents a critical challenge due to cryo-damage, such as crystallization and osmotic imbalances that compromise the integrity of biological tissues and cells. In contrast, various organisms in nature exhibit remarkable freezing tolerance, leveraging complex molecular mechanisms to survive extreme cold. This review explores the adaptive strategies of freeze-tolerant species, including the regulation of specific genes, proteins, and metabolic pathways, to enhance survival in low-temperature environments. We then discuss recent advancements in cryopreservation technologies that aim to mimic these natural phenomena to preserve cellular and tissue integrity. Special focus is given to the roles of glucose metabolism, microRNA expression, and cryoprotective protein modulation in improving cryopreservation outcomes. The insights gained from studying natural antifreeze mechanisms offer promising directions for advancing cryopreservation techniques, with potential applications in medical, agricultural, and conservation fields. Future research should aim to further elucidate these molecular mechanisms to develop more effective and reliable cryopreservation methods.
Collapse
Affiliation(s)
- Lingyu Shi
- Department of Electronic Engineering and Information Sciences, University of Science and Technology of China, Hefei, China
| | - Chuanbao Zang
- Yinfeng Cryomedicine Technology Co., Ltd., Jinan, China
| | - Zhicheng Liu
- Yinfeng Cryomedicine Technology Co., Ltd., Jinan, China
| | - Gang Zhao
- Department of Electronic Engineering and Information Sciences, University of Science and Technology of China, Hefei, China
| |
Collapse
|
4
|
Strader RN, Dowd SC, Blawas C, Mahoney RD, Patetta NC, Leslie J, Nye JA. Climate variability hypothesis is partially supported in thermal limits of juvenile Northwest Atlantic coastal fishes. JOURNAL OF FISH BIOLOGY 2023; 103:1452-1462. [PMID: 37650861 DOI: 10.1111/jfb.15533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
As ocean warming continues to impact marine species globally, there is a need to understand the mechanisms underlying shifts in abundance and distribution. There is growing evidence that upper and lower temperature tolerances rather than mean preferences explain range shifts, but the full thermal niche is unknown for many marine species and observational data are often ill-suited to estimate the upper and lower thermal tolerances. We quantified critical thermal maximum (CTmax ) and critical thermal minimum (CTmin ) using standard methods to quantify temperature limits and thermal ranges of 14 economically and ecologically important juvenile fish species on the US Atlantic coast. We then tested the climate variability hypothesis (CVH), which states that higher-latitude species should have a wider temperature tolerance due to higher climatic variability closer to the poles. Our findings generally support the CVH in the juvenile fishes that we evaluated. However, low-latitude species were not uniformly stenothermal. Rather, species with median occurrences across a wide range of latitudes had wide temperature tolerances, but only the tropical species we tested had more narrow ranges. These findings suggest that quantifying temperature tolerances may be used to predict which low-latitude species are most likely to shift in response to warming water and those that may be more sensitive to climate change in this region.
Collapse
Affiliation(s)
- Ryan N Strader
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Sally C Dowd
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Camryn Blawas
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Richard D Mahoney
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Natalie C Patetta
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Jaelyn Leslie
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| | - Janet A Nye
- Department of Earth Marine and Environmental Science, Institute of Marine Science, University of North Carolina Chapel Hill, Morehead City, North Carolina, USA
| |
Collapse
|
5
|
Nguyen PT, Lee S, Jeong J, Kim J, Han DW, Kim IC, Lee JH, Park J, Kim JH. Complete mitochondrial genome of Trematomus newnesi (Perciformes, Nototheniidae). Mitochondrial DNA B Resour 2023; 8:1196-1199. [PMID: 38196755 PMCID: PMC10776061 DOI: 10.1080/23802359.2023.2194456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/19/2023] [Indexed: 01/11/2024] Open
Abstract
The complete mitochondrial genome of Trematomus newnesi was sequenced using an Illumina platform. The 18,602 bp mitogenome contains 13 protein-coding genes, two rRNAs, and 23 tRNAs (tRNAMet is duplicated). The eight stop codons are TAA, TAG, CTT, GTA, AAT, ACT, AGG, and TTA. Two start codons ATG and GTG are present. The GC content is 44.4% and AT content is 55.6%. A phylogenetic tree was generated using 13 species from three families. The results showed that T. newnesi is closely related to Pagothenia borchgrevinki in Nototheniidae. This study provides fundamental data for further genetic evolutionary studies on T. newnesi.
Collapse
Affiliation(s)
- Phuong Thi Nguyen
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Daejeon, Korea
| | - Seungyeon Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Daejeon, Korea
| | - Jihye Jeong
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Jihun Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Daejeon, Korea
| | - Dong-Won Han
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Il-Chan Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
| | - Jun Hyuck Lee
- Polar Science, University of Science and Technology, Daejeon, Korea
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Inchon, Korea
| | - Jisoo Park
- Polar Science, University of Science and Technology, Daejeon, Korea
- Division of Ocean Sciences, Korea Polar Research Institute, Inchon, Korea
| | - Jin-Hyoung Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea
- Polar Science, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
6
|
Bista I, Wood JMD, Desvignes T, McCarthy SA, Matschiner M, Ning Z, Tracey A, Torrance J, Sims Y, Chow W, Smith M, Oliver K, Haggerty L, Salzburger W, Postlethwait JH, Howe K, Clark MS, William Detrich H, Christina Cheng CH, Miska EA, Durbin R. Genomics of cold adaptations in the Antarctic notothenioid fish radiation. Nat Commun 2023; 14:3412. [PMID: 37296119 PMCID: PMC10256766 DOI: 10.1038/s41467-023-38567-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/05/2023] [Indexed: 06/12/2023] Open
Abstract
Numerous novel adaptations characterise the radiation of notothenioids, the dominant fish group in the freezing seas of the Southern Ocean. To improve understanding of the evolution of this iconic fish group, here we generate and analyse new genome assemblies for 24 species covering all major subgroups of the radiation, including five long-read assemblies. We present a new estimate for the onset of the radiation at 10.7 million years ago, based on a time-calibrated phylogeny derived from genome-wide sequence data. We identify a two-fold variation in genome size, driven by expansion of multiple transposable element families, and use the long-read data to reconstruct two evolutionarily important, highly repetitive gene family loci. First, we present the most complete reconstruction to date of the antifreeze glycoprotein gene family, whose emergence enabled survival in sub-zero temperatures, showing the expansion of the antifreeze gene locus from the ancestral to the derived state. Second, we trace the loss of haemoglobin genes in icefishes, the only vertebrates lacking functional haemoglobins, through complete reconstruction of the two haemoglobin gene clusters across notothenioid families. Both the haemoglobin and antifreeze genomic loci are characterised by multiple transposon expansions that may have driven the evolutionary history of these genes.
Collapse
Affiliation(s)
- Iliana Bista
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK.
- Naturalis Biodiversity Center, Leiden, 2333 CR, the Netherlands.
| | - Jonathan M D Wood
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Thomas Desvignes
- University of Oregon, Institute of Neuroscience, 1254 University of Oregon, 13th Avenue, Eugene, OR, 97403, USA
| | - Shane A McCarthy
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Michael Matschiner
- University of Oslo, Natural History Museum, University of Oslo, Sars' gate 1, 0562, Oslo, Norway
- University of Zurich, Department of Palaeontology and Museum, University of Zurich, Karl-Schmid-Strasse 4, 8006, Zurich, Switzerland
| | - Zemin Ning
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - James Torrance
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Ying Sims
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - William Chow
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Michelle Smith
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Karen Oliver
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Walter Salzburger
- University of Basel, Zoological Institute, Department of Environmental Sciences, Vesalgasse 1, 4051, Basel, Switzerland
| | - John H Postlethwait
- University of Oregon, Institute of Neuroscience, 1254 University of Oregon, 13th Avenue, Eugene, OR, 97403, USA
| | - Kerstin Howe
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Melody S Clark
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - H William Detrich
- Northeastern University, Department of Marine and Environmental Sciences, Marine Science Centre, 430 Nahant Rd., Nahant, MA, 01908, USA
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behaviour, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Eric A Miska
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Tennis Court Rd, Cambridge, CB2 1QN, UK
| | - Richard Durbin
- Wellcome Sanger Institute, Tree of Life, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK.
| |
Collapse
|
7
|
Cheng CHC, Rivera-Colón AG, Minhas BF, Wilson L, Rayamajhi N, Vargas-Chacoff L, Catchen JM. Chromosome-Level Genome Assembly and Circadian Gene Repertoire of the Patagonia Blennie Eleginops maclovinus-The Closest Ancestral Proxy of Antarctic Cryonotothenioids. Genes (Basel) 2023; 14:1196. [PMID: 37372376 DOI: 10.3390/genes14061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The basal South American notothenioid Eleginops maclovinus (Patagonia blennie or róbalo) occupies a uniquely important phylogenetic position in Notothenioidei as the singular closest sister species to the Antarctic cryonotothenioid fishes. Its genome and the traits encoded therein would be the nearest representatives of the temperate ancestor from which the Antarctic clade arose, providing an ancestral reference for deducing polar derived changes. In this study, we generated a gene- and chromosome-complete assembly of the E. maclovinus genome using long read sequencing and HiC scaffolding. We compared its genome architecture with the more basally divergent Cottoperca gobio and the derived genomes of nine cryonotothenioids representing all five Antarctic families. We also reconstructed a notothenioid phylogeny using 2918 proteins of single-copy orthologous genes from these genomes that reaffirmed E. maclovinus' phylogenetic position. We additionally curated E. maclovinus' repertoire of circadian rhythm genes, ascertained their functionality by transcriptome sequencing, and compared its pattern of gene retention with C. gobio and the derived cryonotothenioids. Through reconstructing circadian gene trees, we also assessed the potential role of the retained genes in cryonotothenioids by referencing to the functions of the human orthologs. Our results found E. maclovinus to share greater conservation with the Antarctic clade, solidifying its evolutionary status as the direct sister and best suited ancestral proxy of cryonotothenioids. The high-quality genome of E. maclovinus will facilitate inquiries into cold derived traits in temperate to polar evolution, and conversely on the paths of readaptation to non-freezing habitats in various secondarily temperate cryonotothenioids through comparative genomic analyses.
Collapse
Affiliation(s)
- Chi-Hing Christina Cheng
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Angel G Rivera-Colón
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Bushra Fazal Minhas
- Informatics Program, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Loralee Wilson
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Niraj Rayamajhi
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| | - Luis Vargas-Chacoff
- Laboratorio de Fisiología de Peces, Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia 5090000, Chile
- Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia 5090000, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad Austral de Chile, Valdivia 5090000, Chile
| | - Julian M Catchen
- Department of Evolution, Ecology and Behavior, University of Illinois, Urbana-Champaign, IL 61801, USA
| |
Collapse
|
8
|
Sukhovskaya IV, Lysenko LA, Fokina NN, Kantserova NP, Borvinskaya EV. Survival, Growth Performance, and Hepatic Antioxidant and Lipid Profiles in Infected Rainbow Trout ( Oncorhynchus mykiss) Fed a Diet Supplemented with Dihydroquercetin and Arabinogalactan. Animals (Basel) 2023; 13:ani13081345. [PMID: 37106908 PMCID: PMC10135201 DOI: 10.3390/ani13081345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Natural feed supplements have been shown to improve fish viability, health, and growth, and the ability to withstand multiple stressors related to intensive cultivation. We assumed that a dietary mix of plant-origin substances, such as dihydroquercetin, a flavonoid with antioxidative, anti-inflammatory, and antimicrobial properties, and arabinogalactan, a polysaccharide with immunomodulating activity, would promote fish stress resistance and expected it to have a protective effect against infectious diseases. Farmed rainbow trout fish, Oncorhynchus mykiss, received either a standard diet or a diet supplemented with 25 mg/kg of dihydroquercetin and 50 mg/kg of arabinogalactan during a feeding season, from June to November. The fish in the control and experimental groups were sampled twice a month (eight samplings in total) for growth variable estimations and tissue sampling. The hepatic antioxidant status was assessed via the quantification of molecular antioxidants, such as reduced glutathione and alpha-tocopherol rates, as well as the enzyme activity rates of peroxidase, catalase, and glutathione-S-transferase. The lipid and fatty acid compositions of the feed and fish liver were analyzed using thin-layer and high-performance liquid chromatography. The viability, size, and biochemical indices of the fish responded to the growth physiology, environmental variables such as the dissolved oxygen content and water temperature, and sporadic factors. Due to an outbreak of a natural bacterial infection in the fish stock followed by antibiotic treatment, a higher mortality rate was observed in the fish that received a standard diet compared to those fed supplemented feed. In the postinfection period, reduced dietary 18:2n-6 and 18:3n-3 fatty acid assimilation contents were detected in the fish that received the standard diet in contrast to the supplemented diet. By the end of the feeding season, an impaired antioxidant response, including reduced glutathione S-transferase activity and glutathione content, and a shift in the composition of membrane lipids, such as sterols, 18:1n-7 fatty acid, and phospholipids, were also revealed in fish fed the standard diet. Dietary supplementation with plant-origin substances, such as dihydroquercetin and arabinogalactan, decreases lethality in fish stocks, presumably though the stimulation of natural resistance in farmed fish, thereby increasing the economic efficacy during fish production. From the sustainable aquaculture perspective, natural additives also diminish the anthropogenic transformation of aquaculture-bearing water bodies and their ecosystems.
Collapse
Affiliation(s)
- Irina V Sukhovskaya
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Liudmila A Lysenko
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Natalia N Fokina
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Nadezhda P Kantserova
- Laboratory of Environmental Biochemistry, Institute of Biology, Karelian Research Centre of the Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | | |
Collapse
|
9
|
Bilyk KT, Zhuang X, Papetti C. Positive and Relaxed Selective Pressures Have Both Strongly Influenced the Evolution of Cryonotothenioid Fishes during Their Radiation in the Freezing Southern Ocean. Genome Biol Evol 2023; 15:evad049. [PMID: 36951069 PMCID: PMC10078794 DOI: 10.1093/gbe/evad049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/24/2023] Open
Abstract
Evolution in the chronic cold of the Southern Ocean has had a profound influence on the physiology of cryonotothenioid fishes. However, the suite of genetic changes underlying the physiological gains and losses in these fishes is still poorly surveyed. By identifying the genomic signatures of selection, this study aims to identify the functional classes of genes that have been changed following two major physiological transitions: the onset of freezing temperatures and the loss of hemoproteins. Looking at the changes that followed the onset of freezing temperatures, positive selective pressure was found among a set of broadly acting gene regulatory factors, suggesting a route through which cryonotothenioid gene expression has been retooled for life in the cold. Further, genes related to the cell cycle and cellular adhesion were found under positive selection suggesting that both present key challenges to life in freezing waters. By contrast, genes showing signatures of the relaxation of selective pressure showed a narrower biological impact, acting on genes related to mitochondrial function. Finally, although chronic cold-water temperatures appear correlated with substantial genetic change, the loss of hemoproteins resulted in little observable change in protein-coding genes relative to their red-blooded relatives. Combined, the influence of positive and relaxed selection shows that long-term exposure to cold has led to profound changes in cryonotothenioid genomes that may make it challenging for them to adapt to a rapidly changing climate.
Collapse
Affiliation(s)
- Kevin T Bilyk
- Department of Biology, Montclair State University, New Jersey
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville
| | | |
Collapse
|
10
|
Molina AN, Pulgar JM, Rezende EL, Carter MJ. Heat tolerance of marine ectotherms in a warming Antarctica. GLOBAL CHANGE BIOLOGY 2023; 29:179-188. [PMID: 36045500 DOI: 10.1111/gcb.16402] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Global warming is affecting the Antarctic continent in complex ways. Because Antarctic organisms are specialized to living in the cold, they are vulnerable to increasing temperatures, although quantitative analyses of this issue are currently lacking. Here we compiled a total of 184 estimates of heat tolerance belonging to 39 marine species and quantified how survival is affected concomitantly by the intensity and duration of thermal stress. Species exhibit thermal limits displaced toward colder temperatures, with contrasting strategies between arthropods and fish that exhibit low tolerance to acute heat challenges, and brachiopods, echinoderms, and molluscs that tend to be more sensitive to chronic exposure. These differences might be associated with mobility. A dynamic mortality model suggests that Antarctic organisms already encounter temperatures that might be physiologically stressful and indicate that these ecological communities are indeed vulnerable to ongoing rising temperatures.
Collapse
Affiliation(s)
- Andrés N Molina
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José M Pulgar
- Departamento de Ecología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Enrico L Rezende
- Departamento de Ecología, Facultad de Ciencias Biológicas, Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio J Carter
- Departamento de Ecología, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
11
|
Thermal physiology integrated species distribution model predicts profound habitat fragmentation for estuarine fish with ocean warming. Sci Rep 2022; 12:21781. [PMID: 36526639 PMCID: PMC9758224 DOI: 10.1038/s41598-022-25419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Species distribution models predict a poleward migration for marine ectotherms with ocean warming. However, a key limitation in current species distribution models (SDM) is that they do not account for population-specific heterogeneity in physiological responses to temperature change resulting from local adaptations and acclimatization. To address this gap, we developed a novel, Physiology Integrated BioClimate Model (PIBCM) that combines habitat-specific metabolic thermal physiological tolerance of a species into a bioclimate envelope model. Using a downscaling approach, we also established a fine-resolution coastal sea-surface temperature data set for 2050-2080, that showed a high degree of location-specific variability in future thermal regimes. Combining predicted temperature data with the PIBCM model, we estimated habitat distribution for a highly eurythermal intertidal minnow, the Atlantic killifish (Fundulus heteroclitus), a species that likely presents a best-case-scenario for coastal vertebrates. We show that the killifish northern boundary shifts southwards, while distinct habitat fragmentation occurs in the southern sub-population (due to migration of adjacent fish populations to the nearest metabolically optimal thermal habitat). When compared to current SDMs (e.g., AquaMaps), our results emphasize the need for thermal physiology integrated range shift models and indicate that habitat fragmentation for coastal fishes may reshape nursery habitats for many commercially and ecologically important species.
Collapse
|
12
|
Rafeeq H, Hussain A, Shabbir S, Ali S, Bilal M, Sher F, Iqbal HMN. Esterases as emerging biocatalysts: Mechanistic insights, genomic and metagenomic, immobilization, and biotechnological applications. Biotechnol Appl Biochem 2022; 69:2176-2194. [PMID: 34699092 DOI: 10.1002/bab.2277] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023]
Abstract
Esterase enzymes are a family of hydrolases that catalyze the breakdown and formation of ester bonds. Esterases have gained a prominent position in today's world's industrial enzymes market. Due to their unique biocatalytic attributes, esterases contribute to environmentally sustainable design approaches, including biomass degradation, food and feed industry, dairy, clothing, agrochemical (herbicides, insecticides), bioremediation, biosensor development, anticancer, antitumor, gene therapy, and diagnostic purposes. Esterases can be isolated by a diverse range of mammalian tissues, animals, and microorganisms. The isolation of extremophilic esterases increases the interest of researchers in the extraction and utilization of these enzymes at the industrial level. Genomic, metagenomic, and immobilization techniques have opened innovative ways to extract esterases and utilize them for a longer time to take advantage of their beneficial activities. The current study discusses the types of esterases, metagenomic studies for exploring new esterases, and their biomedical applications in different industrial sectors.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Sumaira Shabbir
- Department of Zoology, Wildlife, and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Sabir Ali
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
13
|
Molecular and thermodynamic mechanisms for protein adaptation. EUROPEAN BIOPHYSICS JOURNAL 2022; 51:519-534. [DOI: 10.1007/s00249-022-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
|
14
|
A comparative and ontogenetic examination of mitochondrial function in Antarctic notothenioid species. J Comp Physiol B 2022; 192:737-750. [PMID: 36104549 PMCID: PMC9550766 DOI: 10.1007/s00360-022-01461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022]
Abstract
Notothenioidei fishes have evolved under stable cold temperatures; however, ocean conditions are changing globally, with polar regions poised to experience the greatest changes in environmental factors, such as warming. These stressors have the potential to dramatically affect energetic demands, and the persistence of the notothenioids will be dependent on metabolic capacity, or the ability to match energy supply with energy demand, to restore homeostasis in the face of changing climate conditions. In this study we examined aerobic metabolic capacity in three species, Trematomus bernacchii, T. pennellii and T. newnesi, and between two life stages, juvenile and adult, by assessing mitochondrial function of permeabilized cardiac fibers. Respiratory capacity differed among the adult notothenioids in this study, with greater oxidative phosphorylation (OXPHOS) respiration in the pelagic T. newnesi than the benthic T. bernacchii and T. pennellii. The variation in mitochondrial respiratory capacity was likely driven by differences in the mitochondrial content, as measured by citrate synthase activity, which was the highest in T. newnesi. In addition to high OXPHOS, T. newnesi exhibited lower LEAK respiration, resulting in greater mitochondrial efficiency than either T. bernacchii or T. pennellii. Life stage largely had an effect on mitochondrial efficiency and excess complex IV capacity, but there were little differences in OXPHOS respiration and electron transfer capacity, pointing to a lack of significant differences in the metabolic capacity between juveniles and adults. Overall, these results demonstrate species-specific differences in cardiac metabolic capacity, which may influence the acclimation potential of notothenioid fishes to changing environmental conditions.
Collapse
|
15
|
Katyal G, Ebanks B, Dowle A, Shephard F, Papetti C, Lucassen M, Chakrabarti L. Quantitative Proteomics and Network Analysis of Differentially Expressed Proteins in Proteomes of Icefish Muscle Mitochondria Compared with Closely Related Red-Blooded Species. BIOLOGY 2022; 11:biology11081118. [PMID: 35892974 PMCID: PMC9330239 DOI: 10.3390/biology11081118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Antarctic icefish are unusual in that they are the only vertebrates that survive without the protein haemoglobin. One way to try and understand the biological processes that support this anomaly is to record how proteins are regulated in these animals and to compare what we find to closely related Antarctic fish that do still retain haemoglobin. The part of the cell that most clearly utilises oxygen, which is normally transported by haemoglobin, is the mitochondrion. Therefore, we chose to catalogue all the proteins and their relative quantities in the mitochondria (pl.) from two different muscle types in two species of icefish and two species of red-blooded notothenioids. We used an approach called mass spectrometry to reveal relative amounts of the proteins from the muscles of each fish. We present analysis that shows how the connections and relative quantities of proteins differ between these species. Abstract Antarctic icefish are extraordinary in their ability to thrive without haemoglobin. We wanted to understand how the mitochondrial proteome has adapted to the loss of this protein. Metabolic pathways that utilise oxygen are most likely to be rearranged in these species. Here, we have defined the mitochondrial proteomes of both the red and white muscle of two different icefish species (Champsocephalus gunnari and Chionodraco rastrospinosus) and compared these with two related red-blooded Notothenioids (Notothenia rossii, Trematomus bernacchii). Liquid Chromatography-Mass spectrometry (LC-MS/MS) was used to generate and examine the proteomic profiles of the two groups. We recorded a total of 91 differentially expressed proteins in the icefish red muscle mitochondria and 89 in the white muscle mitochondria when compared with the red-blooded related species. The icefish have a relatively higher abundance of proteins involved with Complex V of oxidative phosphorylation, RNA metabolism, and homeostasis, and fewer proteins for striated muscle contraction, haem, iron, creatine, and carbohydrate metabolism. Enrichment analyses showed that many important pathways were different in both red muscle and white muscle, including the citric acid cycle, ribosome machinery and fatty acid degradation. Life in the Antarctic waters poses extra challenges to the organisms that reside within them. Icefish have successfully inhabited this environment and we surmise that species without haemoglobin uniquely maintain their physiology. Our study highlights the mitochondrial protein pathway differences between similar fish species according to their specific tissue oxygenation idiosyncrasies.
Collapse
Affiliation(s)
- Gunjan Katyal
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Brad Ebanks
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Adam Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York YO10 5DD, UK;
| | - Freya Shephard
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
| | - Chiara Papetti
- Biology Department, University of Padova, Via U. Bassi, 58/b, 35121 Padova, Italy;
| | | | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington LE12 5RD, UK; (G.K.); (B.E.); (F.S.)
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Liverpool L7 8TX, UK
- Correspondence:
| |
Collapse
|
16
|
Giordano D, Verde C, Corti P. Nitric Oxide Production and Regulation in the Teleost Cardiovascular System. Antioxidants (Basel) 2022; 11:957. [PMID: 35624821 PMCID: PMC9137985 DOI: 10.3390/antiox11050957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Nitric Oxide (NO) is a free radical with numerous critical signaling roles in vertebrate physiology. Similar to mammals, in the teleost system the generation of sufficient amounts of NO is critical for the physiological function of the cardiovascular system. At the same time, NO amounts are strictly controlled and kept within basal levels to protect cells from NO toxicity. Changes in oxygen tension highly influence NO bioavailability and can modulate the mechanisms involved in maintaining the NO balance. While NO production and signaling appears to have general similarities with mammalian systems, the wide range of environmental adaptations made by fish, particularly with regards to differing oxygen availabilities in aquatic habitats, creates a foundation for a variety of in vivo models characterized by different implications of NO production and signaling. In this review, we present the biology of NO in the teleost cardiovascular system and summarize the mechanisms of NO production and signaling with a special emphasis on the role of globin proteins in NO metabolism.
Collapse
Affiliation(s)
- Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy; (D.G.); (C.V.)
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121 Napoli, Italy
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
17
|
Guillen AC, Borges ME, Herrerias T, Kandalski PK, de Souza MRDP, Donatti L. Gradual increase of temperature trigger metabolic and oxidative responses in plasma and body tissues in the Antarctic fish Notothenia rossii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:337-354. [PMID: 35149921 DOI: 10.1007/s10695-021-01044-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Antarctica is considered a thermally stable ecosystem; however, climate studies point to increases in water temperatures in this region. These thermal changes may affect the biological processes and promote metabolic changes in the adapted organisms that live in this region, rendering the animals more vulnerable to oxidative damage. This study assessed the effect of acclimation temperature on the levels of stress response markers in plasma, kidney, gill, liver, and brain tissues of Notothenia rossii subjected to gradual temperature changes of 0.5 °C/day until reaching temperatures of 2, 4, 6, and 8 °C. Under the effect of the 0.5 °C/day acclimation rate, gill tissue showed increased glutathione-S-transferase (GST) activity; kidney tissue showed increased H+-ATPase activity. In the liver, there was also an increase in GSH. In plasma, gradual decreases in the concentrations of total proteins and globulins were observed. These responses indicate a higher production of reactive oxygen species ROS, an imbalance in energy demand, and a lack in protein synthesis. Gradual increase in temperature may cause opposite responses to the thermal shock model in N. rossii.
Collapse
Affiliation(s)
| | | | | | | | | | - Lucélia Donatti
- Department of Cell Biology, Federal University of Parana, Curitiba, Parana, Brazil
| |
Collapse
|
18
|
Climate drives long-term change in Antarctic Silverfish along the western Antarctic Peninsula. Commun Biol 2022; 5:104. [PMID: 35115634 PMCID: PMC8813954 DOI: 10.1038/s42003-022-03042-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
Over the last half of the 20th century, the western Antarctic Peninsula has been one of the most rapidly warming regions on Earth, leading to substantial reductions in regional sea ice coverage. These changes are modulated by atmospheric forcing, including the Amundsen Sea Low (ASL) pressure system. We utilized a novel 25-year (1993-2017) time series to model the effects of environmental variability on larvae of a keystone species, the Antarctic Silverfish (Pleuragramma antarctica). Antarctic Silverfish use sea ice as spawning habitat and are important prey for penguins and other predators. We show that warmer sea surface temperature and decreased sea ice are associated with reduced larval abundance. Variability in the ASL modulates both sea surface temperature and sea ice; a strong ASL is associated with reduced larvae. These findings support a narrow sea ice and temperature tolerance for adult and larval fish. Further regional warming predicted to occur during the 21st century could displace populations of Antarctic Silverfish, altering this pelagic ecosystem.
Collapse
|
19
|
Rizzotti D, Manfrin C, Gerdol M, Greco S, Santovito G, Giulianini PG. Morphological analysis of erythrocytes of an Antarctic teleost under heat stress: Bias of the stabling effect. J Therm Biol 2022; 103:103139. [PMID: 35027197 DOI: 10.1016/j.jtherbio.2021.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/01/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The stenothermal Antarctic fish that live in the coastal waters of the Terra Nova Bay (Ross Sea) are rarely exposed to temperatures above zero during the year. We tested whether a slight temperature rise of 1.5 °C affects a sensitive biomarker such as erythrocytes morphology in sections of blood pellets of a small demersal notothen. The erythrocytes' shape descriptors showed significant or highly significant differences temporally from the capture of fish to the conclusion of the experiment. Surprisingly, the erythrocyte's morphology did not show significant differences between the two experimental conditions, returning similar results in control fish stabled at -0.9 °C and in the fish treated at +0.6 °C, although the values of the shape descriptors were often lower in the latter. This study demonstrates the critical issues of comparative physiology in the study of extremely sensitive organisms, such as the fish of the High Antarctic Zone. Moreover, the stabling effect inside the aquarium facilities appears to significantly obscure the effects of the experimental heat treatment.
Collapse
Affiliation(s)
- Damiano Rizzotti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | | |
Collapse
|
20
|
Somero GN. The Goldilocks Principle: A Unifying Perspective on Biochemical Adaptation to Abiotic Stressors in the Sea. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:1-23. [PMID: 34102065 DOI: 10.1146/annurev-marine-022521-102228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability of marine organisms to thrive over wide ranges of environmental stressors that perturb structures of proteins, nucleic acids, and lipids illustrates the effectiveness of adaptation at the biochemical level. A critical role of these adaptations is to achieve a proper balance between structural rigidity, which is necessary for maintaining three-dimensional conformation, and flexibility, which is required to allow changes in conformation during function. The Goldilocks principle refers to this balancing act, wherein structural stability and functional properties are poised at values that are just right for the environment the organism faces. Achieving this balance involves changes in macromolecular sequence and adaptive change in the composition of the aqueous or lipid milieu in which macromolecules function. This article traces the development of the field of biochemical adaptation throughout my career and shows how comparative studies of marine animals from diverse habitats have shed light on fundamental properties of life common to all organisms.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA;
| |
Collapse
|
21
|
Ou M, Huang R, Yang C, Gui B, Luo Q, Zhao J, Li Y, Liao L, Zhu Z, Wang Y, Chen K. Chromosome-level genome assemblies of Channa argusandChanna maculata and comparative analysis of their temperature adaptability. Gigascience 2021; 10:giab070. [PMID: 34673930 PMCID: PMC8529964 DOI: 10.1093/gigascience/giab070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Channa argus and Channa maculata are the main cultured species of the snakehead fish family, Channidae. The relationship between them is close enough that they can mate; however, their temperature adaptability is quite different. RESULTS In this study, we sequenced and assembled the whole genomes of C. argus and C. maculata and obtained chromosome-level genome assemblies of 630.39 and 618.82 Mb, respectively. Contig N50 was 13.20 and 21.73 Mb, and scaffold N50 was 27.66 and 28.37 Mb, with 28,054 and 24,115 coding genes annotated for C. argus and C. maculata, respectively. Our analyses showed that C. argus and C. maculata have 24 and 21 chromosomes, respectively. Three pairs of chromosomes in C. argus correspond to 3 chromosomes in C. maculata, suggesting that 3 chromosomal fusion events occurred in C. maculata. Comparative analysis of their gene families showed that some immune-related genes were unique or expandable to C. maculata, such as genes related to herpes simplex infection. Analysis of the transcriptome differences related to temperature adaptation revealed that the brain and liver of C. argus rapidly produced more differentially expressed genes than C. maculata. Genes in the FoxO signalling pathway were significantly enriched in C. argus during the cooling process (P < 0.05), and the expression of 3 transcription factor genes in this pathway was significantly different between C. argus and C. maculata (P < 0.01). CONCLUSIONS C. maculata may have higher resistance to certain diseases, whereas C. argus has a faster and stronger response to low-temperature stress and thus has better adaptability to a low-temperature environment. This study provides a high-quality genome research platform for follow-up studies of Channidae and provides important clues regarding differences in the low-temperature adaptations of fish.
Collapse
Affiliation(s)
- Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Rong Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Cheng Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
22
|
O'Brien KM, Joyce W, Crockett EL, Axelsson M, Egginton S, Farrell AP. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate. J Exp Biol 2021; 224:268390. [PMID: 34042975 DOI: 10.1242/jeb.220129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Warming in the region of the Western Antarctic Peninsula is occurring at an unprecedented rate, which may threaten the survival of Antarctic notothenioid fishes. Herein, we review studies characterizing thermal tolerance and cardiac performance in notothenioids - a group that includes both red-blooded species and the white-blooded, haemoglobinless icefishes - as well as the relevant biochemistry associated with cardiac failure during an acute temperature ramp. Because icefishes do not feed in captivity, making long-term acclimation studies unfeasible, we focus only on the responses of red-blooded notothenioids to warm acclimation. With acute warming, hearts of the white-blooded icefish Chaenocephalus aceratus display persistent arrhythmia at a lower temperature (8°C) compared with those of the red-blooded Notothenia coriiceps (14°C). When compared with the icefish, the enhanced cardiac performance of N. coriiceps during warming is associated with greater aerobic capacity, higher ATP levels, less oxidative damage and enhanced membrane integrity. Cardiac performance can be improved in N. coriiceps with warm acclimation to 5°C for 6-9 weeks, accompanied by an increase in the temperature at which cardiac failure occurs. Also, both cardiac mitochondrial and microsomal membranes are remodelled in response to warm acclimation in N. coriiceps, displaying homeoviscous adaptation. Overall, cardiac performance in N. coriiceps is malleable and resilient to warming, yet thermal tolerance and plasticity vary among different species of notothenioid fishes; disruptions to the Antarctic ecosystem driven by climate warming and other anthropogenic activities endanger the survival of notothenioids, warranting greater protection afforded by an expansion of marine protected areas.
Collapse
Affiliation(s)
- Kristin M O'Brien
- Institute of Arctic Biology , University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA
| | - William Joyce
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Stuart Egginton
- School of Biomedical Sciences , University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
23
|
Ansaloni F, Gerdol M, Torboli V, Fornaini NR, Greco S, Giulianini PG, Coscia MR, Miccoli A, Santovito G, Buonocore F, Scapigliati G, Pallavicini A. Cold Adaptation in Antarctic Notothenioids: Comparative Transcriptomics Reveals Novel Insights in the Peculiar Role of Gills and Highlights Signatures of Cobalamin Deficiency. Int J Mol Sci 2021; 22:ijms22041812. [PMID: 33670421 PMCID: PMC7918649 DOI: 10.3390/ijms22041812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/13/2023] Open
Abstract
Far from being devoid of life, Antarctic waters are home to Cryonotothenioidea, which represent one of the fascinating cases of evolutionary adaptation to extreme environmental conditions in vertebrates. Thanks to a series of unique morphological and physiological peculiarities, which include the paradigmatic case of loss of hemoglobin in the family Channichthyidae, these fish survive and thrive at sub-zero temperatures. While some of the distinctive features of such adaptations have been known for decades, our knowledge of their genetic and molecular bases is still limited. We generated a reference de novo assembly of the icefish Chionodraco hamatus transcriptome and used this resource for a large-scale comparative analysis among five red-blooded Cryonotothenioidea, the sub-Antarctic notothenioid Eleginops maclovinus and seven temperate teleost species. Our investigation targeted the gills, a tissue of primary importance for gaseous exchange, osmoregulation, ammonia excretion, and its role in fish immunity. One hundred and twenty genes were identified as significantly up-regulated in Antarctic species and surprisingly shared by red- and white-blooded notothenioids, unveiling several previously unreported molecular players that might have contributed to the evolutionary success of Cryonotothenioidea in Antarctica. In particular, we detected cobalamin deficiency signatures and discussed the possible biological implications of this condition concerning hematological alterations and the heavy parasitic loads typically observed in all Cryonotothenioidea.
Collapse
Affiliation(s)
- Federico Ansaloni
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- International School for Advanced Studies, 34136 Trieste, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- Correspondence:
| | - Valentina Torboli
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
| | - Nicola Reinaldo Fornaini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- Department of Cell Biology, Charles University, 12800 Prague, Czech Republic
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
| | - Piero Giulio Giulianini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
| | - Maria Rosaria Coscia
- Institute of Biochemistry and Cell Biology, National Research Council of Italy, 80131 Naples, Italy;
| | - Andrea Miccoli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (A.M.); (F.B.); (G.S.)
| | | | - Francesco Buonocore
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (A.M.); (F.B.); (G.S.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (A.M.); (F.B.); (G.S.)
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (F.A.); (V.T.); (N.R.F.); (S.G.); (P.G.G.); (A.P.)
- Anton Dohrn Zoological Station, 80122 Naples, Italy
- National Institute of Oceanography and Experimental Geophysics, 34010 Trieste, Italy
| |
Collapse
|
24
|
Schoville SD, Simon S, Bai M, Beethem Z, Dudko RY, Eberhard MJB, Frandsen PB, Küpper SC, Machida R, Verheij M, Willadsen PC, Zhou X, Wipfler B. Comparative transcriptomics of ice-crawlers demonstrates cold specialization constrains niche evolution in a relict lineage. Evol Appl 2021; 14:360-382. [PMID: 33664782 PMCID: PMC7896716 DOI: 10.1111/eva.13120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/25/2020] [Accepted: 08/17/2020] [Indexed: 12/26/2022] Open
Abstract
Key changes in ecological niche space are often critical to understanding how lineages diversify during adaptive radiations. However, the converse, or understanding why some lineages are depauperate and relictual, is more challenging, as many factors may constrain niche evolution. In the case of the insect order Grylloblattodea, highly conserved thermal breadth is assumed to be closely tied to their relictual status, but has not been formerly tested. Here, we investigate whether evolutionary constraints in the physiological tolerance of temperature can help explain relictualism in this lineage. Using a comparative transcriptomics approach, we investigate gene expression following acute heat and cold stress across members of Grylloblattodea and their sister group, Mantophasmatodea. We additionally examine patterns of protein evolution, to identify candidate genes of positive selection. We demonstrate that cold specialization in Grylloblattodea has been accompanied by the loss of the inducible heat shock response under both acute heat and cold stress. Additionally, there is widespread evidence of selection on protein-coding genes consistent with evolutionary constraints due to cold specialization. This includes positive selection on genes involved in trehalose transport, metabolic function, mitochondrial function, oxygen reduction, oxidative stress, and protein synthesis. These patterns of molecular adaptation suggest that Grylloblattodea have undergone evolutionary trade-offs to survive in cold habitats and should be considered highly vulnerable to climate change. Finally, our transcriptomic data provide a robust backbone phylogeny for generic relationships within Grylloblattodea and Mantophasmatodea. Major phylogenetic splits in each group relate to arid conditions driving biogeographical patterns, with support for a sister-group relationship between North American Grylloblatta and Altai-Sayan Grylloblattella, and a range disjunction in Namibia splitting major clades within Mantophasmatodea.
Collapse
Affiliation(s)
| | - Sabrina Simon
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Ming Bai
- Key Laboratory of Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
| | - Zachary Beethem
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Biomedical SciencesSchool of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Roman Y. Dudko
- Institute of Systematics and Ecology of AnimalsSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
- Tomsk State UniversityTomskRussia
| | - Monika J. B. Eberhard
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Paul B. Frandsen
- Department of Plant & Wildlife SciencesBrigham Young UniversityProvoUTUSA
- Data Science LabOffice of the Chief Information OfficerSmithsonian InstitutionWashingtonDCU.S.A
| | - Simon C. Küpper
- Zoological Institute and MuseumGeneral Zoology and Zoological SystematicsUniversity of GreifswaldGreifswaldGermany
| | - Ryuichiro Machida
- Sugadaira Research StationMountain Science CenterUniversity of TsukubaUeda, NaganoJapan
| | - Max Verheij
- Biosystematics GroupWageningen University & ResearchPB WageningenThe Netherlands
| | - Peter C. Willadsen
- Department of EntomologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Department of Entomology and Plant PathologyNorth Carolina State UniversityCampus Box 7613RaleighNCUSA
| | - Xin Zhou
- Department of EntomologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | | |
Collapse
|
25
|
Bilyk KT, Zhuang X, Vargas-Chacoff L, Cheng CHC. Evolution of chaperome gene expression and regulatory elements in the antarctic notothenioid fishes. Heredity (Edinb) 2020; 126:424-441. [PMID: 33149264 DOI: 10.1038/s41437-020-00382-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
Confined within the cold-stable Southern Ocean, Antarctic notothenioid fishes have undergone an evolutionary loss of the inducible heat shock response (HSR), while facing perpetual low-temperature challenges to cellular proteostasis. This study examines how evolution in chronic cold has affected the shared cellular apparatus that mediates proteostasis under normal and heat stressed states. To deduce Antarctic-specific changes, we compared native expression levels across the full suite of chaperome genes and assessed the structural integrity of two crucial HSR regulators - Heat Shock Factor 1 (HSF1) that activates HSR, and heat shock elements (HSEs), the binding sites for HSF1 - between Antarctic fishes and the basal temperate notothenioid Eleginops maclovinus. Native expression levels of Antarctic fish chaperomes showed very modest changes overall, contrary to the common view of constitutive upregulation in the cold. Only a few cytosolic HSP70 genes showed greater transcription, with only the ancestrally-inducible HSPA6 strongly upregulated across all Antarctic species. Additionally, the constant cold has apparently not relaxed the selective pressures on maintaining HSF1 and HSEs in Antarctic fish. Instead, we found HSF1 experienced intensified selective pressure, with conserved sequence changes in Antarctic species suggesting optimization for non-heat-stress functional roles. HSEs of the HSP70 gene family have largely remained conserved in canonical sequence motifs and copy numbers as in E. maclovinus, showing limited impact of relaxed selective pressure. This study shows that evolution in chronic cold has led to both subtle and distinctive changes in the cellular apparatus for proteostasis and HSR, with functional consequences amenable to experimental evaluation.
Collapse
Affiliation(s)
- Kevin T Bilyk
- Department of Biology, Montclair State University, 1 Normal Ave., Montclair, NJ, 07043, USA.
| | - Xuan Zhuang
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Luis Vargas-Chacoff
- Instituto de Ciencias Marinas y Limnológicas, Laboratorio de Fisiología de Peces, Centro Fondap de Investigación de Altas Latitudes (IDEAL), Universidad Austral de Chile, Valdivia, Chile
| | - C-H Christina Cheng
- Department of Evolution, Ecology, and Behavior, University of Illinois, Urbana-Champaign, IL, 61801, USA.
| |
Collapse
|
26
|
Ern R, Chung D, Frieder CA, Madsen N, Speers-Roesch B. Oxygen-dependence of upper thermal limits in crustaceans from different thermal habitats. J Therm Biol 2020; 93:102732. [PMID: 33077143 DOI: 10.1016/j.jtherbio.2020.102732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/21/2020] [Accepted: 09/13/2020] [Indexed: 10/23/2022]
Abstract
The critical thermal maximum (CTMAX) is the temperature at which animals exhibit loss of motor response because of a temperature-induced collapse of vital physiological systems. A central mechanism hypothesised to underlie the CTMAX of water-breathing ectotherms is insufficient tissue oxygen supply for vital maintenance functions because of a temperature-induced collapse of the cardiorespiratory system. The CTMAX of species conforming to this hypothesis should decrease with declining water oxygen tension (PO2) because they have oxygen-dependent upper thermal limits. However, recent studies have identified a number of fishes and crustaceans with oxygen-independent upper thermal limits, their CTMAX unchanged in progressive aquatic hypoxia. The previous studies, which were performed separately on cold-water, temperate and tropical species, suggest the oxygen-dependence of upper thermal limits and the acute thermal sensitivity of the cardiorespiratory system increases with decreasing habitat temperature. Here we directly test this hypothesis by assessing the oxygen-dependence of CTMAX in the polar Antarctic krill (Euphausia superba), as well as the temperate Baltic prawn (Palaemon adspersus) and brown shrimp (Crangon crangon). We found that P. adspersus and C. crangon maintain CTMAX in progressive hypoxia down to 40 mmHg, and that only E. superba have oxygen-dependent upper thermal limits at normoxia. In E. superba, the observed decline in CTMAX with water PO2 is further supported by heart-rate measurements showing a plateauing, and subsequent decline and collapse of heart performance at CTMAX. Our results support the hypothesis that the oxygen-dependence of upper thermal limits in water-breathing ectotherms and the acute thermal sensitivity of their cardiorespiratory system increases with decreasing habitat temperature.
Collapse
Affiliation(s)
- Rasmus Ern
- Aalborg University, Department of Chemistry and Bioscience, Denmark.
| | - Dillon Chung
- National Heart Lung and Blood Institute, National Institutes of Health, United States
| | - Christina A Frieder
- University of Southern California, Department of Biological Sciences, United States
| | - Niels Madsen
- Aalborg University, Department of Chemistry and Bioscience, Denmark
| | - Ben Speers-Roesch
- University of New Brunswick, Saint John, Department of Biological Sciences, Canada
| |
Collapse
|
27
|
Thermal sensitivity of cell metabolism of different Antarctic fish species mirrors organism temperature tolerance. Polar Biol 2020. [DOI: 10.1007/s00300-020-02752-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractDespite cold adaptation, Antarctic fish show lower growth than expected from the van’t Hoff’s Q10 rule. Protein synthesis is one of the main energy-consuming processes, which is downregulated under energy deficiency. Considering the effect of temperature on growth performance, we tested if temperature-dependent cellular energy allocation to protein synthesis correlates with temperature-dependent whole-animal growth and thus thermal tolerance. Cell respiration and energy expenditure for protein synthesis were determined in hepatocytes of the circumpolar-distributed Antarctic eelpout Pachycara brachycephalum after warm acclimation (0 °C vs 5 °C) and, of two notothenioids the sub-Antarctic Lepidonotothen squamifrons and the high-Antarctic icefish Chionodraco hamatus. We used intermittent-flow respirometry to analyse cellular response to acute warming from 5 to 10 °C (P. brachycephalum) and from 1 to 5 °C (L. squamifrons, C. hamatus). Warming-induced rise in respiration was similar between 0- and 5 °C-acclimated P. brachycephalum and between L. squamifrons and C. hamatus. Irrespective of acclimation, warming decreased energy expenditure for protein synthesis in P. brachycephalum, which corresponds to reduced whole-animal growth at temperatures > 5 °C. Warming doubled energy expenditure for protein synthesis in L. squamifrons but had no effect on C. hamatus indicating that L. squamifrons might benefit from warmer waters. The species-specific temperature effect on energy expenditure for protein synthesis is discussed to mirror thermal sensitivity of whole-animal growth performance, thereby paralleling the degree of cold adaptation. Clearly more data are necessary including measurements at narrower temperature steps particularly for C. hamatus and an increased species’ number per ecotype to reinforce presented link between cellular and whole-animal thermal sensitivity.
Collapse
|
28
|
O'Brien KM, Rix AS, Grove TJ, Sarrimanolis J, Brooking A, Roberts M, Crockett EL. Characterization of the hypoxia-inducible factor-1 pathway in hearts of Antarctic notothenioid fishes. Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110505. [PMID: 32966875 DOI: 10.1016/j.cbpb.2020.110505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1α and HIF-1β subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 ± 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 ± 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1α were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1α increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming.
Collapse
Affiliation(s)
- K M O'Brien
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America.
| | - A S Rix
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America
| | - T J Grove
- Department of Biology, Valdosta State University, Valdosta, GA 31698, United States of America
| | - J Sarrimanolis
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America
| | - A Brooking
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America
| | - M Roberts
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America
| | - E L Crockett
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States of America
| |
Collapse
|
29
|
Somero GN. The cellular stress response and temperature: Function, regulation, and evolution. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:379-397. [PMID: 31944627 DOI: 10.1002/jez.2344] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/11/2019] [Accepted: 01/02/2020] [Indexed: 01/18/2023]
Abstract
The cellular stress response (CSR) is critical for enabling organisms to cope with thermal damage to proteins, nucleic acids, and membranes. It is a graded response whose properties vary with the degree of cellular damage. Molecular damage has positive, as well as negative, function-perturbing effects. Positive effects include crucial regulatory interactions that orchestrate involvement of the different components of the CSR. Thermally unfolded proteins signal for rapid initiation of transcription of genes encoding heat shock proteins (HSPs), central elements of the heat shock response (HSR). Thermal disruption of messenger RNA (mRNA) secondary structures in untranslated regions leads to the culling of the mRNA pool: thermally labile mRNAs for housekeeping proteins are degraded by exonucleases; heat-resistant mRNAs for stress proteins like HSPs then can monopolize the translational apparatus. Thus, proteins and RNA function as "cellular thermometers," and evolved differences in their thermal stabilities enable rapid initiation of the CSR whenever cell temperature rises significantly above the normal thermal range of a species. Covalent DNA damage, which may result from increased production of reactive oxygen species, is temperature-dependent; its extent may determine cellular survival. High levels of stress that exceed capacities for molecular repair can lead to proteolysis, inhibition of cell division, and programmed cell death (apoptosis). Onset of these processes may occur later in the stress period, after initiation of the HSR, to allow HSPs opportunity to restore protein homeostasis. Delay of these energy costly processes may also result from shortfalls in availability of adenosine triphosphate and reducing power during times of peak stress.
Collapse
Affiliation(s)
- George N Somero
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, California
| |
Collapse
|
30
|
Daane JM, Giordano D, Coppola D, di Prisco G, Detrich HW, Verde C. Adaptations to environmental change: Globin superfamily evolution in Antarctic fishes. Mar Genomics 2019; 49:100724. [PMID: 31735579 DOI: 10.1016/j.margen.2019.100724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
The ancient origins and functional versatility of globins make them ideal subjects for studying physiological adaptation to environmental change. Our goals in this review are to describe the evolution of the vertebrate globin gene superfamily and to explore the structure/function relationships of hemoglobin, myoglobin, neuroglobin and cytoglobin in teleost fishes. We focus on the globins of Antarctic notothenioids, emphasizing their adaptive features as inferred from comparisons with human proteins. We dedicate this review to Guido di Prisco, our co-author, colleague, friend, and husband of C.V. Ever thoughtful, creative, and enthusiastic, Guido spearheaded study of the structure, function, and evolution of the hemoglobins of polar fishes - this review is testimony to his wide-ranging contributions. Throughout his career, Guido inspired younger scientists to embrace polar biological research, and he challenged researchers of all ages to explore evolutionary adaptation in the context of global climate change. Beyond his scientific contributions, we will miss his warmth, his culture, and his great intellect. Guido has left an outstanding legacy, one that will continue to inspire us and our research.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
31
|
Corliss BA, Delalio LJ, Stevenson Keller TC, Keller AS, Keller DA, Corliss BH, Beers JM, Peirce SM, Isakson BE. Vascular Expression of Hemoglobin Alpha in Antarctic Icefish Supports Iron Limitation as Novel Evolutionary Driver. Front Physiol 2019; 10:1389. [PMID: 31780954 PMCID: PMC6861181 DOI: 10.3389/fphys.2019.01389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/24/2019] [Indexed: 12/16/2022] Open
Abstract
Frigid temperatures of the Southern Ocean are known to be an evolutionary driver in Antarctic fish. For example, many fish have reduced red blood cell (RBC) concentration to minimize vascular resistance. Via the oxygen-carrying protein hemoglobin, RBCs contain the vast majority of the body's iron, which is known to be a limiting nutrient in marine ecosystems. Since lower RBC levels also lead to reduced iron requirements, we hypothesize that low iron availability was an additional evolutionary driver of Antarctic fish speciation. Antarctic Icefish of the family Channichthyidae are known to have an extreme alteration of iron metabolism due to loss of RBCs and two iron-binding proteins, hemoglobin and myoglobin. Loss of hemoglobin is considered a maladaptive trait allowed by relaxation of predator selection since extreme adaptations are required to compensate for the loss of oxygen-carrying capacity. However, iron dependency minimization may have driven hemoglobin loss instead of a random evolutionary event. Given the variety of functions that hemoglobin serves in the endothelium, we suspected the protein corresponding to the 3' truncated Hbα fragment (Hbα-3'f) that was not genetically excluded by icefish may still be expressed as a protein. Using whole mount confocal microscopy, we show that Hbα-3'f is expressed in the vascular endothelium of icefish retina, suggesting this Hbα fragment may still serve an important role in the endothelium. These observations support a novel hypothesis that iron minimization could have influenced icefish speciation with the loss of the iron-binding portion of Hbα in Hbα-3'f, as well as hemoglobin β and myoglobin.
Collapse
Affiliation(s)
- Bruce A Corliss
- Biomedical Engineering Department, University of Virginia, Charlottesville, VA, United States
| | - Leon J Delalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - T C Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Alexander S Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | | | - Bruce H Corliss
- Graduate School of Oceanography, University of Rhode Island, Kingston, RI, United States
| | - Jody M Beers
- Department of Biology, College of Charleston, Charleston, SC, United States
| | - Shayn M Peirce
- Biomedical Engineering Department, University of Virginia, Charlottesville, VA, United States
| | - Brant E Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States.,Department of Molecular Physiology and Biophysics, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
32
|
Kim BM, Ahn DH, Kang S, Jeong J, Jo E, Kim BK, Kim JH, Park H. Skin transcriptome profiling reveals the distinctive molecular effects of temperature changes on Antarctic bullhead notothen. Mol Cell Toxicol 2019. [DOI: 10.1007/s13273-019-0020-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Brijs J, Axelsson M, Rosengren M, Jutfelt F, Gräns A. Extreme blood boosting capacity of an Antarctic fish represents an adaptation to life in a sub-zero environment. J Exp Biol 2019; 223:jeb.218164. [DOI: 10.1242/jeb.218164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/18/2019] [Indexed: 11/20/2022]
Abstract
Blood doping, the practice of boosting the oxygen carrying capacity of blood, is an illegal strategy used by human athletes to enhance aerobic capacity and athletic performance. Interestingly, the practice of boosting blood oxygen carrying capacity is also naturally prevalent in the animal kingdom via the splenic release of stored erythrocytes. Here we demonstrate that an Antarctic notothenioid fish, the bald notothen (Pagothenia borchgrevinki), is a master of this practice. Due to the sub-zero environment these fish inhabit, they sequester a large proportion of erythrocytes in the spleen during times of inactivity to reduce the energetic and physiological costs associated with continuously pumping highly viscous blood around the body. However, in response to metabolically demanding situations (i.e. exercise and feeding), these fish contract the spleen to eject stored erythrocytes into circulation, which boosts blood oxygen carrying capacity by up to 207% (c.f. exercise-induced increases of ∼40-60% in a range of other vertebrates and ∼5-25% in blood-doping athletes). By evaluating cardiorespiratory differences between splenectomized (unable to release erythrocytes from the spleen) and sham-operated individuals, we demonstrate the metabolic benefits (i.e. aerobic scope increased 103%) and the cardiovascular trade-offs (i.e. ventral aortic blood pressure and cardiac workload increased 12% and 30%, respectively) associated with the splenic blood boosting strategy. In conclusion, this strategy provides bald notothens with an extraordinary facultative aerobic scope that enables an active lifestyle in the extreme Antarctic marine environment, while minimizing the energetic and physiological costs of transporting highly viscous blood during times of reduced energetic demand.
Collapse
Affiliation(s)
- Jeroen Brijs
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Gothenburg, 405 30, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Malin Rosengren
- Department of Marine Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Fredrik Jutfelt
- Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Gothenburg, 405 30, Sweden
| |
Collapse
|
34
|
Núñez-Pons L, Avila C, Romano G, Verde C, Giordano D. UV-Protective Compounds in Marine Organisms from the Southern Ocean. Mar Drugs 2018; 16:E336. [PMID: 30223486 PMCID: PMC6165330 DOI: 10.3390/md16090336] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/20/2022] Open
Abstract
Solar radiation represents a key abiotic factor in the evolution of life in the oceans. In general, marine, biota-particularly in euphotic and dysphotic zones-depends directly or indirectly on light, but ultraviolet radiation (UV-R) can damage vital molecular machineries. UV-R induces the formation of reactive oxygen species (ROS) and impairs intracellular structures and enzymatic reactions. It can also affect organismal physiologies and eventually alter trophic chains at the ecosystem level. In Antarctica, physical drivers, such as sunlight, sea-ice, seasonality and low temperature are particularly influencing as compared to other regions. The springtime ozone depletion over the Southern Ocean makes organisms be more vulnerable to UV-R. Nonetheless, Antarctic species seem to possess analogous UV photoprotection and repair mechanisms as those found in organisms from other latitudes. The lack of data on species-specific responses towards increased UV-B still limits the understanding about the ecological impact and the tolerance levels related to ozone depletion in this region. The photobiology of Antarctic biota is largely unknown, in spite of representing a highly promising reservoir in the discovery of novel cosmeceutical products. This review compiles the most relevant information on photoprotection and UV-repair processes described in organisms from the Southern Ocean, in the context of this unique marine polar environment.
Collapse
Affiliation(s)
- Laura Núñez-Pons
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
| | - Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, and Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| | - Giovanna Romano
- Department of Marine Biotechnology (Biotech), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italia.
| | - Cinzia Verde
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| | - Daniela Giordano
- Department of Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), 80121 Villa Comunale, Napoli, Italy.
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy.
| |
Collapse
|
35
|
Joyce W, Egginton S, Farrell AP, Crockett EL, O'Brien KM, Axelsson M. Exploring nature's natural knockouts: in vivo cardiorespiratory performance of Antarctic fishes during acute warming. ACTA ACUST UNITED AC 2018; 221:jeb.183160. [PMID: 29967219 DOI: 10.1242/jeb.183160] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/25/2018] [Indexed: 01/09/2023]
Abstract
We tested the hypothesis that blackfin icefish (Chaenocephalus aceratus), one of the six species in the family Channichthyidae (the icefishes) that do not express haemoglobin and myoglobin, lack regulatory cardiovascular flexibility during acute warming and activity. The experimental protocols were designed to optimize the surgical protocol and minimize stress. First, minimally invasive heart rate (fH) measurements were made during a thermal ramp until cardiac failure in C. aceratus and compared with those from the closely related red-blooded black rockcod (Notothenia coriiceps). Then, integrative cardiovascular adjustments were more extensively studied using flow probes and intravascular catheters in C. aceratus during acute warming (from 0 to 8°C) at rest and after imposed activity. Chaenocephalus aceratus had a lower routine fH than N. coriiceps (9 beats min-1 versus 14 beats min-1) and a lower peak fH during acute warming (38 beats min-1 versus 55 beats min-1) with a similar cardiac breakpoint temperature (13 and 14°C, respectively). Routine cardiac output (Q̇) for C. aceratus at ∼0°C was much lower (26.6 ml min-1 kg-1) than previously reported, probably because fish in the present study had a low fH (12 beats min-1) indicative of a high routine vagal tone and low stress. Chaenocephalus aceratus increased oxygen consumption during acute warming and with activity. Correspondingly, Q̇ increased considerably (maximally 86.3 ml min-1 kg-1), as did vascular conductance (5-fold). Thus, unlike earlier suggestions, these data provide convincing evidence that icefish can mount a well-developed cardiovascular regulation of heart rate, cardiac output and vascular conductance, and this regulatory capacity provides flexibility during acute warming.
Collapse
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Anthony P Farrell
- Department of Zoology, and Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC 45, Canada
| | | | - Kristin M O'Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775-7000, USA
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, 4139 90 Gothenburg, Sweden
| |
Collapse
|
36
|
Truzzi C, Illuminati S, Antonucci M, Scarponi G, Annibaldi A. Heat shock influences the fatty acid composition of the muscle of the Antarctic fish Trematomus bernacchii. MARINE ENVIRONMENTAL RESEARCH 2018; 139:122-128. [PMID: 29776593 DOI: 10.1016/j.marenvres.2018.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/20/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
In the Ross Sea region (average temperature of -1.87 °C), shelf water warming up to +0.8-+1.4 °C is predicted by 2200, so there is an urgent need to understand how organisms can respond to rising temperatures. In this study, we analyzed the effect of a heat shock on the fatty acid (FAs) composition of muscle of the Antarctic teleost Trematomus bernacchii, caught in Terra Nova Bay (Ross Sea), and held in fish tanks at 0, +1 or +2 °C, for 1, 5 and 10 days. In general, heat shock produced, beyond a reduction in total lipid content correlated to the temperature, an increase in the percentage of saturated FAs, and a decrease in mono-unsaturated FAs; however, the level of poly-unsaturated FAs did not seem to directly correlate with temperature. Principal component analysis indicated that both temperature and exposure time affect the composition of FAs in the muscle probably through an alteration of the metabolic pathways of FAs. In this study, we demonstrated that T. bernacchii was capable to rapidly acclimatize to a heat shock. This study contributes to increasing knowledge on the effect of temperature on the lipid composition of T. bernacchii and is complementary to previous studies on the gene expression and biochemistry of this species face multiple stressors.
Collapse
Affiliation(s)
- C Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - S Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - M Antonucci
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - G Scarponi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy
| | - A Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
37
|
Saavedra HG, Wrabl JO, Anderson JA, Li J, Hilser VJ. Dynamic allostery can drive cold adaptation in enzymes. Nature 2018; 558:324-328. [PMID: 29875414 PMCID: PMC6033628 DOI: 10.1038/s41586-018-0183-2] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 05/01/2018] [Indexed: 11/19/2022]
Abstract
Adaptation of organisms to environmental niches is a hallmark of evolution. One prevalent example is that of thermal adaptation, wherein two descendants evolve at different temperature extremes1,2. Underlying the physiological differences between such organisms are changes in enzymes catalyzing essential reactions3, with orthologues from each organism undergoing adaptive mutations that preserve similar catalytic rates at their respective physiological temperatures 4,5. The sequence changes responsible for these adaptive differences, however, are often at surface exposed sites distant from the substrate binding site, leaving the active site of the enzyme structurally unperturbed6,7. How such changes are allosterically propagated to the active site, to modulate activity, is not known. Here we show that entropy-tuning changes can be engineered into distal sites of Escherichia coli adenylate kinase (AK) to quantitatively assess the role of dynamics in determining affinity, turnover, and the role in driving adaptation. The results not only reveal a dynamics-based allosteric tuning mechanism, but also uncover a spatial separation of the control of key enzymatic parameters. Fluctuations in one mobile domain (i.e. the LID) control substrate affinity, while dynamic attenuation in the other (i.e. the AMPbd) affects rate-limiting conformational changes governing enzyme turnover. Dynamics-based regulation may thus represent an elegant, widespread, and previously unrealized evolutionary adaptation mechanism that fine-tunes biological function without altering the ground state structure. Furthermore, because rigid-body conformational changes in both domains were thought to be rate limiting for turnover8,9, these adaptation studies reveal a new paradigm for understanding the relationship between dynamics and turnover in AK.
Collapse
Affiliation(s)
- Harry G Saavedra
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - James O Wrabl
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy A Anderson
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jing Li
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Vincent J Hilser
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA. .,T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
38
|
Red blood cells, compasses and snap shots. Blood Cells Mol Dis 2018; 71:67-70. [PMID: 29599084 DOI: 10.1016/j.bcmd.2018.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
|
39
|
Davis BE, Flynn EE, Miller NA, Nelson FA, Fangue NA, Todgham AE. Antarctic emerald rockcod have the capacity to compensate for warming when uncoupled from CO 2 -acidification. GLOBAL CHANGE BIOLOGY 2018; 24:e655-e670. [PMID: 29155460 DOI: 10.1111/gcb.13987] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/03/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co-occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade-offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO2 treatments (~450, ~850, and ~1,200 μatm PCO2 ) at two temperatures (-1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [fH ] and ventilation rate [fV ]), metabolic rate (M˙O2), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, fH , fV and M˙O2 significantly increased with warming, but not with elevated PCO2 . Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade-offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as fV , M˙O2, and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO2 . Sustained increases in fV and M˙O2 after 28 days exposure to elevated PCO2 indicate additive (fV ) and synergistic (M˙O2) interactions occurred in combination with warming. Stressor-induced energetic trade-offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change.
Collapse
Affiliation(s)
- Brittany E Davis
- Department of Animal Science, University of California Davis, Davis, CA, USA
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Erin E Flynn
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Nathan A Miller
- Department of Animal Science, University of California Davis, Davis, CA, USA
- Romberg Tiburon Center, San Francisco State University, Tiburon, CA, USA
| | - Frederick A Nelson
- Department of Animal Science, University of California Davis, Davis, CA, USA
- Department of Biology, Howard University, Washington, DC, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Anne E Todgham
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
40
|
Head Kidney Transcriptome Analysis and Characterization for the Sub-Antarctic Notothenioid Fish Eleginops maclovinus. FISHES 2018. [DOI: 10.3390/fishes3010008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Joyce W, Axelsson M, Egginton S, Farrell AP, Crockett EL, O’Brien KM. The effects of thermal acclimation on cardio-respiratory performance in an Antarctic fish ( Notothenia coriiceps). CONSERVATION PHYSIOLOGY 2018; 6:coy069. [PMID: 30568798 PMCID: PMC6291619 DOI: 10.1093/conphys/coy069] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/13/2018] [Accepted: 11/26/2018] [Indexed: 05/21/2023]
Abstract
The Southern Ocean has experienced stable, cold temperatures for over 10 million years, yet particular regions are currently undergoing rapid warming. To investigate the impacts of warming on cardiovascular oxygen transport, we compared the cardio-respiratory performance in an Antarctic notothenioid (Notothenia coriiceps) that was maintained at 0 or 5°C for 6.0-9.5 weeks. When compared at the fish's respective acclimation temperature, the oxygen consumption rate and cardiac output were significantly higher in 5°C-acclimated than 0°C-acclimated fish. The 2.7-fold elevation in cardiac output in 5°C-acclimated fish (17.4 vs. 6.5 ml min-1 kg-1) was predominantly due to a doubling of stroke volume, likely in response to increased cardiac preload, as measured by higher central venous pressure (0.15 vs. 0.08 kPa); tachycardia was minor (29.5 vs. 25.2 beats min-1). When fish were acutely warmed, oxygen consumption rate increased by similar amounts in 0°C- and 5°C-acclimated fish at equivalent test temperatures. In both acclimation groups, the increases in oxygen consumption rate during acute heating were supported by increased cardiac output achieved by elevating heart rate, while stroke volume changed relatively little. Cardiac output was similar between both acclimation groups until 12°C when cardiac output became significantly higher in 5°C-acclimated fish, driven largely by their higher stroke volume. Although cardiac arrhythmias developed at a similar temperature (~14.5°C) in both acclimation groups, the hearts of 5°C-acclimated fish continued to pump until significantly higher temperatures (CTmax for cardiac function 17.7 vs. 15.0°C for 0°C-acclimated fish). These results demonstrate that N. coriiceps is capable of increasing routine cardiac output during both acute and chronic warming, although the mechanisms are different (heart rate-dependent versus primarily stroke volume-dependent regulation, respectively). Cardiac performance was enhanced at higher temperatures following 5°C acclimation, suggesting cardiovascular function may not constrain the capacity of N. coriiceps to withstand a warming climate.
Collapse
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, Aarhus C, Denmark
- Corresponding author: Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark.
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Stuart Egginton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Anthony P Farrell
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | - Kristin M O’Brien
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
42
|
Flynn EE, Todgham AE. Thermal windows and metabolic performance curves in a developing Antarctic fish. J Comp Physiol B 2017; 188:271-282. [PMID: 28988313 DOI: 10.1007/s00360-017-1124-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
For ectotherms, temperature modifies the rate of physiological function across a temperature tolerance window depending on thermal history, ontogeny, and evolutionary history. Some adult Antarctic fishes, with comparatively narrow thermal windows, exhibit thermal plasticity in standard metabolic rate; however, little is known about the shape or breadth of thermal performance curves of earlier life stages of Antarctic fishes. We tested the effects of acute warming (- 1 to 8 °C) and temperature acclimation (2 weeks at - 1, 2, 4 °C) on survival and standard metabolic rate in early embryos of the dragonfish Gymnodraco acuticeps from McMurdo Sound, Ross Island, Antarctica. Contrary to predictions, embryos acclimated to warmer temperatures did not experience greater mortality and nearly all embryos survived acute warming to 8 °C. Metabolic performance curve height and shape were both significantly altered after 2 weeks of development at - 1 °C, with further increase in curve height, but not alteration of shape, with warm temperature acclimation. Overall metabolic rate temperature sensitivity (Q 10) from - 1 to 8 °C varied from 2.6 to 3.6, with the greatest thermal sensitivity exhibited by embryos at earlier developmental stages. Interclutch variation in metabolic rates, mass, and development of simultaneously collected embryos was also documented. Taken together, metabolic performance curves provide insight into the costs of early development under warming temperatures, with the potential for thermal sensitivity to be modified by dragonfish phenology and magnitude of seasonal changes in temperature.
Collapse
Affiliation(s)
- Erin E Flynn
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA
| | - Anne E Todgham
- Department of Animal Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
43
|
Klein RD, Borges VD, Rosa CE, Colares EP, Robaldo RB, Martinez PE, Bianchini A. Effects of increasing temperature on antioxidant defense system and oxidative stress parameters in the Antarctic fish Notothenia coriiceps and Notothenia rossii. J Therm Biol 2017; 68:110-118. [DOI: 10.1016/j.jtherbio.2017.02.016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
|
44
|
Unusual Antioxidant Properties of 26S Proteasome Isolated from Cold-Adapted Organisms. Int J Mol Sci 2017; 18:ijms18081605. [PMID: 28757562 PMCID: PMC5577997 DOI: 10.3390/ijms18081605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 11/17/2022] Open
Abstract
The oxidative challenge represents an important factor affecting the adaptive strategies in Antarctic fish, but their impact on the protein degradation machinery still remains unclear. The previous analysis of the first 26S proteasome from the Antarctic red-blooded fish Trematomus bernacchii, evidenced improved antioxidant functions necessary to counteract the environmental pro-oxidant conditions. The purpose of this work was to carry out a study on 26S proteasomes from the temperate red-blooded Dicenthrarcus labrax and the icefish Chionodraco hamatus in comparison with the isoform already described from T. bernacchii, to better elucidate the cold-adapted physiological functions of this complex. Therefore, the 26S isoforms were isolated and the complementary DNAs (cDNAs) codifying the catalytic subunits were cloned. The biochemical characterization of Antarctic 26S proteasomes revealed their significantly higher structural stability and resistance to H2O2 with respect to that of the temperate counterpart, as also suggested by a comparative modeling analysis of the catalytic subunits. Moreover, in contrast to that observed in T. bernacchii, the 26S systems from C. hamatus and D. labrax were incapable to hydrolyze oxidized proteins in a ubiquitin-independent manner. Therefore, the ‘uncommon’ properties displayed by the Antarctic 26S proteasomes can mirror the impact exercised by evolutionary pressure in response to richly oxygenated environments.
Collapse
|
45
|
Klein RD, Rosa CE, Colares EP, Robaldo RB, Martinez PE, Bianchini A. Antioxidant defense system and oxidative status in Antarctic fishes: The sluggish rockcod Notothenia coriiceps versus the active marbled notothen Notothenia rossii. J Therm Biol 2017; 68:119-127. [PMID: 28689713 DOI: 10.1016/j.jtherbio.2017.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 11/19/2022]
Abstract
Adaptive responses of antioxidant defense systems (ADS) to changes in increased levels of activity are critical, especially in Antarctic fishes. The benthopelagic marbled notothen (Notothenia rossii) shows higher spontaneous activity than the benthonic and sluggish rockcod (N. coriiceps). Therefore, we hypothesize that species-related responses of ADS would occur to counteract different rates of reactive oxygen species formation in these two Antarctic fish. Here we evaluated ADS and oxidative damage in tissues (brain, gills, liver and white muscle) of the two Antarctic fish. Despite no significant differences in lipid and protein oxidative damage were observed, we actually found species- and tissue-specific differences in ADS. Gill metallothionein-like proteins (MTLP) and liver reduced glutathione (GSH) concentrations were higher in N. coriiceps than in N. rossii. Brain and gill antioxidant capacity against peroxyl radicals (ACAP); gill enzyme [glutamate-cysteine ligase (GSL), superoxide dismutase (SOD) and catalase (CAT)] activity; liver GCL and SOD activity; and white muscle CAT activity were higher in N. rossii than in N. coriiceps. Therefore, the more active fish (N. rossii) maintains higher activities of enzymes involved in superoxide ions (O2.-) detoxification and GSH production in peripheral tissues (gills, liver and white muscle). This allows the more active fish (N. rossii) to keep levels of lipid and protein oxidative damage similar to those observed in the sluggish fish (N. coriiceps). It is worth noting that the more active fish also shows a higher brain antioxidant capacity, which could involve other non-enzymatic antioxidants like vitamins C and E. In contrast, N. coriiceps shows lower consumption of non-enzymatic antioxidants in peripheral tissues than N. coriiceps. As hypothesized, our results indicate that differences in ADS profiles between fish species are likely related to their habits and metabolic rates. This would imply in different fish abilities to deal with oxidative stress associated with increasing seawater temperature.
Collapse
Affiliation(s)
- Roberta Daniele Klein
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Carlos Eduardo Rosa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Elton Pinto Colares
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Ricardo Berteaux Robaldo
- Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário s/n, 96010-900 Pelotas, RS, Brazil
| | - Pablo Elias Martinez
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil
| | - Adalto Bianchini
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil; Instituto de Ciências Biológicas, Universidade Federal do Rio Grande, Avenida Itália km 8, 96203-900 Rio Grande, RS, Brazil.
| |
Collapse
|
46
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
47
|
Papetti C, Lucassen M, Pörtner HO. Integrated studies of organismal plasticity through physiological and transcriptomic approaches: examples from marine polar regions. Brief Funct Genomics 2016; 15:365-72. [PMID: 27345433 DOI: 10.1093/bfgp/elw024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transcriptomic methods are now widely used in functional genomic research. The vast amount of information received from these studies comes along with the challenge of developing a precise picture of the functional consequences and the characteristic regulatory mechanisms. Here we assess recent studies in marine species and their adaptation to polar (and seasonal) cold and explore how they have been able to draw reliable conclusions from transcriptomic patterns on functional consequences in the organisms. Our analysis indicates that the interpretation of transcriptomic data suffers from insufficient understanding of the consequences for whole organism performance and fitness and comes with the risk of supporting only preliminary and superficial statements.We propose that the functional understanding of transcriptomic data may be improved by their tighter integration into overarching physiological concepts that support the more specific interpretation of the 'omics' data and, at the same time, can be developed further through embedding the transcriptomic phenomena observed. Such possibilities have not been fully exploited.In the context of thermal adaptation and limitation, we explore preliminary evidence that the concept of oxygen and capacity limited thermal tolerance (OCLTT) may provide sufficient complexity to guide the integration of such data and the development of associated functional hypotheses. At the same time, we identify a lack of methodological approaches linking genes and function to higher levels of integration, in terms of organism and ecosystem functioning, at temporal and geographical scales, to support more reliable conclusions and be predictive with respect to the effects of global changes.
Collapse
|
48
|
O'Brien KM. New Lessons from an Old Fish: What Antarctic Icefishes May Reveal about the Functions of Oxygen-Binding Proteins. Integr Comp Biol 2016; 56:531-41. [PMID: 27252192 DOI: 10.1093/icb/icw062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The loss of expression of the oxygen-binding protein hemoglobin (Hb) in the family Channichthyidae (suborder Notothenioidei) of Antarctic fishes is considered a disaptation that has persisted because of the unusual conditions prevailing in the Southern Ocean during the evolution of the family. The loss of expression of the intracellular oxygen-binding protein myoglobin (Mb) in heart ventricles is more of a conundrum because it occurred at four points during the radiation of the family, suggesting weakened selective pressure maintaining expression of the protein. Yet, studies have shown that when present, Mb enhances function. Here, I discuss potential reasons for weakened selective pressure maintaining Mb expression in light of the multiple functions proposed for Mb. Additionally, I discuss results from recent studies exploring the possibility that the loss of Hb and Mb may be advantageous because it reduces the production of reactive oxygen species, levels of oxidized proteins, and the energetic costs associated with replacing oxidatively damaged proteins.
Collapse
Affiliation(s)
- Kristin M O'Brien
- University of Alaska Fairbanks, Institute of Arctic Biology, Department of Biology and Wildlife, Fairbanks, AK 99775, USA
| |
Collapse
|
49
|
Egginton S, Campbell HA. Cardiorespiratory responses in an Antarctic fish suggest limited capacity for thermal acclimation. ACTA ACUST UNITED AC 2016; 219:1283-6. [PMID: 26944499 DOI: 10.1242/jeb.130963] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/16/2016] [Indexed: 01/09/2023]
Abstract
Polar fishes are at high risk from increasing seawater temperatures. Characterising the physiological responses to such changes may both clarify mechanisms that permit life under extreme conditions and identify limitations in the response to continued global warming. We hypothesised that Notothenia coriiceps would show physiological compensation after an acute exposure to 5°C, and following 6 weeks warm acclimation, compared with ambient temperature (0°C). However, initial tachycardia (22.4±2.8 versus 12.8±1.1 min(-1); P<0.01) was not reversed by acclimation (21.0±1.9 min(-1)). Hyperventilation (45.5±3.1 versus 21.4±2.4 breaths min(-1); P<0.001) showed a modest reduction following acclimation (38.0±2.9 min(-1); P<0.05), while resting oxygen consumption (0.52±0.08 mmol kg(-1) h(-1)) was acutely increased at 5°C (1.07±0.10 mmol kg(-1) h(-1); P<0.001) but unchanged with acclimation. Autonomic blockade showed initial responses were mainly of vagal origin, with little subsequent withdrawal or recovery in long-term heart rate variability after 6 weeks. Given the limited cardiorespiratory capacity to withstand sustained warming, effective physiological compensation probably requires a more prolonged acclimation period.
Collapse
Affiliation(s)
- Stuart Egginton
- Multidisciplinary Cardiovascular Research Centre, School of Biomedical Sciences, University of Leeds, Garstang 5.64, Clarendon Way, Leeds LS2 9JT, UK
| | - Hamish A Campbell
- School of the Environment, Charles Darwin University, Darwin, NT 0909, Australia
| |
Collapse
|
50
|
Papetti C, Windisch HS, La Mesa M, Lucassen M, Marshall C, Lamare MD. Non-Antarctic notothenioids: Past phylogenetic history and contemporary phylogeographic implications in the face of environmental changes. Mar Genomics 2015; 25:1-9. [PMID: 26610933 DOI: 10.1016/j.margen.2015.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
The non-Antarctic Notothenioidei families, Bovichtidae, Pseudaphritidae and Eleginopsidae, diverged early from the main notothenioid lineage. They are important in clarifying the early evolutionary processes that triggered notothenioid evolution in the Antarctic. The early-diverged group represents 8% of all notothenioid species and never established themselves on the Antarctic shelf. Most attention has been paid to the Antarctic notothenioids and their limited physiological tolerance to climate change and increased temperatures. In this review, we discuss key life history traits that are characteristic of the non-Antarctic early-diverged notothenioid taxa as well as the genetic resources and population differentiation information available for this group. We emphasise the population fitness and dynamics of these species and indicate how resource management and conservation of the group can be strengthened through an integrative approach. Both Antarctic waters and the non-Antarctic regions face rapid temperature rises combined with strong anthropogenic exploitation. While it is expected that early-diverged notothenioid species may have physiological advantages over high Antarctic species, it is difficult to predict how climate changes might alter the geographic range, behaviour, phenology and ultimately genetic variability of these species. It is possible, however, that their high degree of endemism and dependence on local environmental specificities to complete their life cycles might enhance their vulnerability.
Collapse
Affiliation(s)
- Chiara Papetti
- Section of Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany.
| | - Heidrun S Windisch
- Institute for Cell Biology and Zoology, Heinrich-Heine-University, Universitätsstrasse 1, Düsseldorf 40225, Germany.
| | - Mario La Mesa
- ISMAR-CNR, Istituto di Scienze Marine, Sede di Ancona, Largo Fiera della Pesca, 60125 Ancona, Italy.
| | - Magnus Lucassen
- Section of Integrative Ecophysiology, Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, Bremerhaven 27570, Germany.
| | - Craig Marshall
- Department of Biochemistry and Genetics, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Miles D Lamare
- Department of Marine Sciences, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|