1
|
Quach KT, Hughes GA, Chalasani SH. Interdependence between SEB-3 receptor and NLP-49 peptides shifts across predator-induced defensive behavioral modes in Caenorhabditis elegans. eLife 2025; 13:RP98262. [PMID: 40163376 PMCID: PMC11957542 DOI: 10.7554/elife.98262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Prey must balance predator avoidance with feeding, a central dilemma in prey refuge theory. Additionally, prey must assess predatory imminence-how close threats are in space and time. Predatory imminence theory classifies defensive behaviors into three defense modes: pre-encounter, post-encounter, and circa-strike, corresponding to increasing levels of threat--suspecting, detecting, and contacting a predator. Although predatory risk often varies in spatial distribution and imminence, how these factors intersect to influence defensive behaviors is poorly understood. Integrating these factors into a naturalistic environment enables comprehensive analysis of multiple defense modes in consistent conditions. Here, we combine prey refuge and predatory imminence theories to develop a model system of nematode defensive behaviors, with Caenorhabditis elegans as prey and Pristionchus pacificus as predator. In a foraging environment comprised of a food-rich, high-risk patch and a food-poor, low-risk refuge, C. elegans innately exhibits circa-strike behaviors. With experience, it learns post- and pre-encounter behaviors that proactively anticipate threats. These defense modes intensify with predator lethality, with only life-threatening predators capable of eliciting all three modes. SEB-3 receptors and NLP-49 peptides, key stress regulators, vary in their impact and interdependence across defense modes. Overall, our model system reveals fine-grained insights into how stress-related signaling regulates defensive behaviors.
Collapse
Affiliation(s)
- Kathleen T Quach
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Gillian A Hughes
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| | - Sreekanth H Chalasani
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
2
|
Roca M, Eren GG, Böger L, Didenko O, Lo WS, Scholz M, Lightfoot JW. Evolution of sensory systems underlies the emergence of predatory feeding behaviours in nematodes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.644997. [PMID: 40196577 PMCID: PMC11974876 DOI: 10.1101/2025.03.24.644997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Sensory systems are the primary interface between an organism and its environment with changes in selectivity or sensitivity representing key events in behavioural evolution. Here, we explored the molecular modifications influencing sensory perception across the nematode phyla. Pristionchus pacificus is a predatory species and has evolved contact-dependent sensing and teeth-like structures to attack prey. Using mutants defective for mechanosensory neuron function, we found an expanded role for this sensory modality in efficient predation alongside its canonical function in sensing aversive touch. To identify the precise mechanism involved in this tactile divergence we generated mutations in 26 canonical mechanosensory genes and tested their function using a combination of behavioural assays, automated behavioural tracking and machine learning. While mechanosensory defects were observed in several mutants, Ppa-mec-6 mutants specifically also induced predation deficiencies. Previously, a similar phenotype was observed in a chemosensory defective mutant and we found a synergistic influence on predation in mutants lacking both sensory inputs. Importantly, both chemosensory and mechanosensory receptor expression converge on the same environmentally exposed IL2 neurons revealing these as the primary mechanism for sensing prey. Thus, predation evolved through the co-option of both mechanosensory and chemosensory systems which act synergistically to shape the evolution of complex behavioural traits.
Collapse
Affiliation(s)
- Marianne Roca
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Güniz Göze Eren
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Leonard Böger
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Olena Didenko
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| | - Wen-Sui Lo
- Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Monika Scholz
- Max Planck Research Group Neural Information Flow, Max Planck Institute for Neurobiology of Behavior - caesar, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - James W Lightfoot
- Max Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior - caesar, Bonn, Germany
| |
Collapse
|
3
|
Kotowska AM, Hiramatsu F, Alexander MR, Scurr DJ, Lightfoot JW, Chauhan VM. Surface Lipids in Nematodes are Influenced by Development and Species-specific Adaptations. J Am Chem Soc 2025; 147:6439-6449. [PMID: 39936408 PMCID: PMC11869268 DOI: 10.1021/jacs.4c12519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025]
Abstract
The surface of an organism is a dynamic interface that continually adapts to its environment. In nematodes, the cuticle forms a complex boundary that protects against the physicochemical pressures. However, the precise molecular composition and function of this surface remain largely unexplored. By utilizing 3D-OrbiSIMS, an advanced surface-sensitive mass spectrometry method, we directly characterized the molecular composition of the outermost regions (∼50 nm) of Caenorhabditis elegans and Pristionchus pacificus to improve the understanding of species-specific surface lipid composition and its potential roles in nematode biology. We found that nematode surfaces consist of a lipid-dominated landscape (>81% C. elegans and >69% P. pacificus of all surveyed chemistries) with distinct compositions, which enrich in granularity and complexity through development. The surface lipids are also species-specific, potentially highlighting distinct molecular compositions that are derived from diverging evolutionary paths. By exploring the effect of mutations on lipid production, we found the peroxisomal fatty acid β-oxidation component daf-22 is essential for defining the surface molecular fingerprint. This pathway is conserved across species in producing distinct chemical profiles, indicating its fundamental role in lipid metabolism and maintaining the surface integrity and function. Furthermore, we discovered that variations in surface lipids of C. elegans daf-22 larvae contribute to significantly increased susceptibility to predation by P. pacificus. Therefore, our findings reveal that nematode surface lipids are developmentally dependent, species-specific, and fundamental in interspecies interactions. These insights pave the way for further exploration into the physiological and behavioral significance of surface lipids.
Collapse
Affiliation(s)
- Anna M. Kotowska
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - Fumie Hiramatsu
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Morgan R. Alexander
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - David J. Scurr
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| | - James W. Lightfoot
- Max
Planck Research Group Genetics of Behavior, Max Planck Institute for Neurobiology of Behavior−caesar, Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Veeren M. Chauhan
- Advanced
Materials & Healthcare Technologies Division, School of Pharmacy, University of Nottingham, University Park, NG7 2RD Nottingham, U.K.
| |
Collapse
|
4
|
Nicholson RM, Levis NA, Ragsdale EJ. Genetic regulators of a resource polyphenism interact to couple predatory morphology and behaviour. Proc Biol Sci 2024; 291:20240153. [PMID: 38835272 DOI: 10.1098/rspb.2024.0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Phenotypic plasticity often requires the coordinated response of multiple traits observed individually as morphological, physiological or behavioural. The integration, and hence functionality, of this response may be influenced by whether and how these component traits share a genetic basis. In the case of polyphenism, or discrete plasticity, at least part of the environmental response is categorical, offering a simple readout for determining whether and to what degree individual components of a plastic response can be decoupled. Here, we use the nematode Pristionchus pacificus, which has a resource polyphenism allowing it to be a facultative predator of other nematodes, to understand the genetic integration of polyphenism. The behavioural and morphological consequences of perturbations to the polyphenism's genetic regulatory network show that both predatory activity and ability are strongly influenced by morphology, different axes of morphological variation are associated with different aspects of predatory behaviour, and rearing environment can decouple predatory morphology from behaviour. Further, we found that interactions between some polyphenism-modifying genes synergistically affect predatory behaviour. Our results show that the component traits of an integrated polyphenic response can be decoupled and, in principle, selected upon individually, and they suggest that multiple routes to functionally comparable phenotypes are possible.
Collapse
Affiliation(s)
- Rose M Nicholson
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Nicholas A Levis
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University , Bloomington, IN 47405, USA
| |
Collapse
|
5
|
Abstract
Numerous examples of different phenotypic outcomes in response to varying environmental conditions have been described across phyla, from plants to mammals. Here, we examine the impact of the environment on different developmental traits, focusing in particular on one key environmental variable, nutrient availability. We present advances in our understanding of developmental plasticity in response to food variation using the nematode Caenorhabditis elegans, which provides a near-isogenic context while permitting lab-controlled environments and analysis of wild isolates. We discuss how this model has allowed investigators not only to describe developmental plasticity events at the organismal level but also to zoom in on the tissues involved in translating changes in the environment into a plastic response, as well as the underlying molecular pathways, and sometimes associated changes in behaviour. Lastly, we also discuss how early life starvation experiences can be logged to later impact adult physiological traits, and how such memory could be wired.
Collapse
Affiliation(s)
- Sophie Jarriault
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| | - Christelle Gally
- Université de Strasbourg, CNRS, Inserm, IGBMC, Development and Stem Cells Department, UMR 7104 - UMR-S 1258, F-67400 Illkirch, France
| |
Collapse
|
6
|
Fatemi E, Jung C. Pathogenicity of the root lesion nematode Pratylenchus neglectus depends on pre-culture conditions. Sci Rep 2023; 13:19642. [PMID: 37949971 PMCID: PMC10638436 DOI: 10.1038/s41598-023-46551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023] Open
Abstract
The ability of a plant parasitic nematode to infect and reproduce within a host plant depends on its genotype and the environmental conditions before and during infection. We studied the culturing conditions of the root lesion nematode Pratylenchus neglectus to produce inoculum for plant infection tests. Nematodes were either cultivated on carrot calli for different periods or directly isolated from the roots of the host plants. After infection of wheat and barley plants in the greenhouse, nematodes were quantified by RT-qPCR and by visual counting of the nematodes. We observed drastically reduced infection rates after long-term (> 96 weeks) cultivation on carrot callus. In contrast, fresh isolates from cereal roots displayed much higher pathogenicity. We recommend using root lesion nematodes cultivated on carrot calli no longer than 48 weeks to guarantee uniform infection rates.
Collapse
Affiliation(s)
- Ehsan Fatemi
- Plant Breeding Institute, Christian-Albrechts University, Kiel, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts University, Kiel, Germany.
| |
Collapse
|
7
|
Röseler W, Collenberg M, Yoshida K, Lanz C, Sommer RJ, Rödelsperger C. The improved genome of the nematode Parapristionchus giblindavisi provides insights into lineage-specific gene family evolution. G3 (BETHESDA, MD.) 2022; 12:jkac215. [PMID: 35980151 PMCID: PMC9526060 DOI: 10.1093/g3journal/jkac215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
Nematodes such as Caenorhabditis elegans and Pristionchus pacificus are extremely successful model organisms for comparative biology. Several studies have shown that phenotypic novelty but also conserved processes are controlled by taxon-restricted genes. To trace back the evolution of such new or rapidly evolving genes, a robust phylogenomic framework is indispensable. Here, we present an improved version of the genome of Parapristionchus giblindavisi which is the only known member of the sister group of Pristionchus. Relative to the previous short-read assembly, the new genome is based on long reads and displays higher levels of contiguity, completeness, and correctness. Specifically, the number of contigs dropped from over 7,303 to 735 resulting in an N50 increase from 112 to 791 kb. We made use of the new genome to revisit the evolution of multiple gene families. This revealed Pristionchus-specific expansions of several environmentally responsive gene families and a Pristionchus-specific loss of the de novo purine biosynthesis pathway. Focusing on the evolution of sulfatases and sulfotransferases, which control the mouth form plasticity in P. pacificus, reveals differences in copy number and genomic configurations between the genera Pristionchus and Parapristionchus. Altogether, this demonstrates the utility of the P. giblindavisi genome to date and polarizes lineage-specific patterns.
Collapse
Affiliation(s)
- Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Maximilian Collenberg
- Department for Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Kohta Yoshida
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christa Lanz
- Department for Molecular Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology, 72076 Tübingen, Germany
| |
Collapse
|
8
|
Harry CJ, Messar SM, Ragsdale EJ. Comparative reconstruction of the predatory feeding structures of the polyphenic nematode Pristionchus pacificus. Evol Dev 2022; 24:16-36. [PMID: 35239990 PMCID: PMC9286642 DOI: 10.1111/ede.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
Abstract
Pristionchus pacificus is a nematode model for the developmental genetics of morphological polyphenism, especially at the level of individual cells. Morphological polyphenism in this species includes an evolutionary novelty, moveable teeth, which have enabled predatory feeding in this species and others in its family (Diplogastridae). From transmission electron micrographs of serial thin sections through an adult hermaphrodite of P. pacificus, we three‐dimensionally reconstructed all epithelial and myoepithelial cells and syncytia, corresponding to 74 nuclei, of its face, mouth, and pharynx. We found that the epithelia that produce the predatory morphology of P. pacificus are identical to Caenorhabditis elegans in the number of cell classes and nuclei. However, differences in cell form, spatial relationships, and nucleus position correlate with gross morphological differences from C. elegans and outgroups. Moreover, we identified fine‐structural features, especially in the anteriormost pharyngeal muscles, that underlie the conspicuous, left‐right asymmetry that characterizes the P. pacificus feeding apparatus. Our reconstruction provides an anatomical map for studying the genetics of polyphenism, feeding behavior, and the development of novel form in a satellite model to C. elegans. All cells making the dimorphic, novel form of an animal with cell constancy were identified. Although the number of cells is fully conserved, divergence in form and connectivity—including fixed asymmetries—sheds light on the origins of this trait.
Collapse
Affiliation(s)
- Clayton J Harry
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sonia M Messar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
9
|
Renahan T, Sommer RJ. Nematode Interactions on Beetle Hosts Indicate a Role of Mouth-Form Plasticity in Resource Competition. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.752695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Competition is rampant across kingdoms, arising over potential mates, food resources, and space availability. When faced with opponents, phenotypic plasticity proffers organisms indispensable advantageous strategies to outcompete rivals. This tactic is especially crucial on decaying insect hosts as myriad microbes and numerous nematodes struggle to establish thriving populations and ensure resource availability for future generations. Scarab beetles and their associated nematode symbionts on La Réunion Island have provided exceptional systems to study complicated cross-phylum interactions in soil, and recently we have identified a previously unexplored beetle host, Gymnogaster bupthalma, to be reliably co-infested with diplogastrids Pristionchus mayeri and Acrostichus spp. These nematodes maintain the capacity to plastically respond to environmental conditions by developing disparate mouth forms, a strict bacterial-feeding morph or an omnivorous morph that enables predation on other nematodes. In addition, under stressful settings these worms can enter an arrested development stage called dauer, non-feeding dispersal larvae that resume development into reproducing adults when conditions improve. By investigating this beetle-nematode system in a natural context, we uncovered a novel Pristionchus strategy, wherein dauer dispersal from the carcass is gradual and a reproducing population is sustained. Remarkably, usually preferential-bacterial morph P. mayeri develop as predators in populations dense with competitors.
Collapse
|
10
|
Renahan T, Lo WS, Werner MS, Rochat J, Herrmann M, Sommer RJ. Nematode biphasic 'boom and bust' dynamics are dependent on host bacterial load while linking dauer and mouth-form polyphenisms. Environ Microbiol 2021; 23:5102-5113. [PMID: 33587771 DOI: 10.1111/1462-2920.15438] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/06/2023]
Abstract
Cross-kingdom interactions involve dynamic processes that shape terrestrial ecosystems and represent striking examples of co-evolution. The multifaceted relationships of entomopathogenic nematodes with their insect hosts and symbiotic bacteria are well-studied cases of co-evolution and pathogenicity. In contrast, microbial interactions in soil after the natural death of insects and other invertebrates are minimally understood. In particular, the turnover and succession of nematodes and bacteria during insect decay have not been well documented - although it represents a rich ecological niche with multiple species interactions. Here, we utilize developmentally plastic nematode Pristionchus pacificus and its associated scarab beetles as models. On La Réunion Island, we collected rhinoceros beetle Oryctes borbonicus, induced death, and placed carcasses in cages both on the island and in a mock-natural environment in the laboratory controlling for high spatial and temporal resolution. Investigating nematode population density and dispersal dynamics, we were able to connect two imperative plasticities, dauer and mouth form. We observed a biphasic 'boom and bust' dispersal dynamic of dauer larvae that corresponds to bacterial load on carcasses but not bacterial type. Strikingly, all post-dauer adults have the predatory mouth form, demonstrating novel intricate interactions on decaying insect hosts. Thus, ecologically relevant survival strategies incorporate critical plastic traits.
Collapse
Affiliation(s)
- Tess Renahan
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany
| | - Wen-Sui Lo
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany
| | - Michael S Werner
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany.,Department of Biological Sciences, University of Utah, 257 South 1400 East, Salt Lake City, UT, 84112, USA
| | - Jacques Rochat
- Micropoda, 2 Rue De l'é'toile du Berger, Residence le Jardin des Épices, La Possession, La Réunion, 97419, France
| | - Matthias Herrmann
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck Ring 9, Tübingen, 720976, Germany
| |
Collapse
|
11
|
Ishita Y, Chihara T, Okumura M. Different combinations of serotonin receptors regulate predatory and bacterial feeding behaviors in the nematode Pristionchus pacificus. G3-GENES GENOMES GENETICS 2021; 11:6104620. [PMID: 33598706 PMCID: PMC8022940 DOI: 10.1093/g3journal/jkab011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022]
Abstract
Feeding behavior is one of the most fundamental behaviors in animals, and regulation of this behavior is critical for proper food intake. The nematode Pristionchus pacificus exhibits dimorphism in feeding behavior, bacterial feeding and predatory feeding on other nematodes, and the latter behavior is assumed to be an evolutionarily novel behavior. Both types of feeding behavior are modulated by serotonin; however, the downstream mechanism that modulates these behaviors is still to be clarified. Here, we focused on serotonin receptors and examined their expression patterns in P. pacificus. We also generated knockout mutants of the serotonin receptors using the CRISPR/Cas9 system and examined feeding behaviors. We found that Ppa-ser-5 mutants and the Ppa-ser-1; Ppa-ser-7 double mutant decreased predation. Detailed observation of the pharyngeal movement revealed that the Ppa-ser-1; Ppa-ser-7 double mutant reduces tooth movement, which is required for efficient predatory feeding. Conversely, Ppa-ser-7 and Ppa-mod-1 mutants decreased bacterial feeding. This study revealed that specific combinations of serotonin receptors are essential for the modulation of these distinct feeding behaviors, providing insight into the evolution of neural pathways to regulate novel feeding behavior.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| |
Collapse
|
12
|
Rödelsperger C, Ebbing A, Sharma DR, Okumura M, Sommer RJ, Korswagen HC. Spatial Transcriptomics of Nematodes Identifies Sperm Cells as a Source of Genomic Novelty and Rapid Evolution. Mol Biol Evol 2021; 38:229-243. [PMID: 32785688 PMCID: PMC8480184 DOI: 10.1093/molbev/msaa207] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Divergence of gene function and expression during development can give rise to phenotypic differences at the level of cells, tissues, organs, and ultimately whole organisms. To gain insights into the evolution of gene expression and novel genes at spatial resolution, we compared the spatially resolved transcriptomes of two distantly related nematodes, Caenorhabditis elegans and Pristionchus pacificus, that diverged 60-90 Ma. The spatial transcriptomes of adult worms show little evidence for strong conservation at the level of single genes. Instead, regional expression is largely driven by recent duplication and emergence of novel genes. Estimation of gene ages across anatomical structures revealed an enrichment of novel genes in sperm-related regions. This provides first evidence in nematodes for the "out of testis" hypothesis that has been previously postulated based on studies in Drosophila and mammals. "Out of testis" genes represent a mix of products of pervasive transcription as well as fast evolving members of ancient gene families. Strikingly, numerous novel genes have known functions during meiosis in Caenorhabditis elegans indicating that even universal processes such as meiosis may be targets of rapid evolution. Our study highlights the importance of novel genes in generating phenotypic diversity and explicitly characterizes gene origination in sperm-related regions. Furthermore, it proposes new functions for previously uncharacterized genes and establishes the spatial transcriptome of Pristionchus pacificus as a catalog for future studies on the evolution of gene expression and function.
Collapse
Affiliation(s)
- Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Annabel Ebbing
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht,
The Netherlands
| | - Devansh Raj Sharma
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hendrik C Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht,
The Netherlands
- Developmental Biology, Department of Biology, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht,
The Netherlands
| |
Collapse
|
13
|
Han Z, Lo WS, Lightfoot JW, Witte H, Sun S, Sommer RJ. Improving Transgenesis Efficiency and CRISPR-Associated Tools Through Codon Optimization and Native Intron Addition in Pristionchus Nematodes. Genetics 2020; 216:947-956. [PMID: 33060138 PMCID: PMC7768246 DOI: 10.1534/genetics.120.303785] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
A lack of appropriate molecular tools is one obstacle that prevents in-depth mechanistic studies in many organisms. Transgenesis, clustered regularly interspaced short palindromic repeats (CRISPR)-associated engineering, and related tools are fundamental in the modern life sciences, but their applications are still limited to a few model organisms. In the phylum Nematoda, transgenesis can only be performed in a handful of species other than Caenorhabditis elegans, and additionally, other species suffer from significantly lower transgenesis efficiencies. We hypothesized that this may in part be due to incompatibilities of transgenes in the recipient organisms. Therefore, we investigated the genomic features of 10 nematode species from three of the major clades representing all different lifestyles. We found that these species show drastically different codon usage bias and intron composition. With these findings, we used the species Pristionchus pacificus as a proof of concept for codon optimization and native intron addition. Indeed, we were able to significantly improve transgenesis efficiency, a principle that may be usable in other nematode species. In addition, with the improved transgenes, we developed a fluorescent co-injection marker in P. pacificus for the detection of CRISPR-edited individuals, which helps considerably to reduce associated time and costs.
Collapse
Affiliation(s)
- Ziduan Han
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - Wen-Sui Lo
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - James W Lightfoot
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - Hanh Witte
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - Shuai Sun
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology, Tuebingen 72076, Germany
| |
Collapse
|
14
|
Quach KT, Chalasani SH. Intraguild predation between Pristionchus pacificus and Caenorhabditis elegans: a complex interaction with the potential for aggressive behaviour. J Neurogenet 2020; 34:404-419. [PMID: 33054476 PMCID: PMC7836027 DOI: 10.1080/01677063.2020.1833004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
The related nematodes Pristionchus pacificus and Caenorhabditis elegans both eat bacteria for nutrition and are therefore competitors when they exploit the same bacterial resource. In addition to competing with each other, P. pacificus is a predator of C. elegans larval prey. These two relationships together form intraguild predation, which is the killing and sometimes eating of potential competitors. In killing C. elegans, the intraguild predator P. pacificus may achieve dual benefits of immediate nutrition and reduced competition for bacteria. Recent studies of P. pacificus have characterized many aspects of its predatory biting behaviour as well as underlying molecular and genetic mechanisms. However, little has been explored regarding the potentially competitive aspect of P. pacificus biting C. elegans. Moreover, aggression may also be implicated if P. pacificus intentionally bites C. elegans with the goal of reducing competition for bacteria. The aim of this review is to broadly outline how aggression, predation, and intraguild predation relate to each other, as well as how these concepts may be applied to future studies of P. pacificus in its interactions with C. elegans.
Collapse
Affiliation(s)
- Kathleen T. Quach
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sreekanth H. Chalasani
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Theska T, Sieriebriennikov B, Wighard SS, Werner MS, Sommer RJ. Geometric morphometrics of microscopic animals as exemplified by model nematodes. Nat Protoc 2020; 15:2611-2644. [PMID: 32632318 DOI: 10.1038/s41596-020-0347-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022]
Abstract
While a host of molecular techniques are utilized by evolutionary developmental (evo-devo) biologists, tools for quantitative evaluation of morphology are still largely underappreciated, especially in studies on microscopic animals. Here, we provide a standardized protocol for geometric morphometric analyses of 2D landmark data sets using a combination of the geomorph and Morpho R packages. Furthermore, we integrate clustering approaches to identify group structures within such datasets. We demonstrate our protocol by performing exemplary analyses on stomatal shapes in the model nematodes Caenorhabditis and Pristionchus. Image acquisition for 80 worms takes 3-4 d, while the entire data analysis requires 10-30 min. In theory, this approach is adaptable to all microscopic model organisms to facilitate a thorough quantification of shape differences within and across species, adding to the methodological toolkit of evo-devo studies on morphological evolution and novelty.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.,Department of Biology, New York University, New York, NY, USA
| | - Sara S Wighard
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Michael S Werner
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
16
|
Teething during sleep: Ultrastructural analysis of pharyngeal muscle and cuticular grinder during the molt in Caenorhabditis elegans. PLoS One 2020; 15:e0233059. [PMID: 32433687 PMCID: PMC7239488 DOI: 10.1371/journal.pone.0233059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/27/2020] [Indexed: 11/26/2022] Open
Abstract
Complex extracellular structures exist throughout phylogeny, but the dynamics of their formation and dissolution are often opaque. One example is the pharyngeal grinder of the nematode Caenorhabditis elegans, an extracellular structure that ruptures bacteria during feeding. During each larval transition stage, called lethargus, the grinder is replaced with one of a larger size. Here, we characterize at the ultrastructural level the deconstruction of the larval grinder and the construction of the adult grinder during the fourth larval stage (L4)-to-adult transition. Early in L4 lethargus, pharyngeal muscle cells trans-differentiate from contractile to secretory cells, as evidenced by the appearance of clear and dense core vesicles and disruptions in sarcomere organization. This is followed, within minutes, by the dissolution of the L4 grinder and the formation and maturation of the adult grinder. Components of the nascent adult grinder are deposited basally, and are separated from the dissolving larval grinder by a visible apical layer. The complete grinder is a lamellated extracellular matrix comprised of five layers. Following grinder formation, pharyngeal muscle cells regain ultrastructural contractile properties, and muscle contractions resume. Our findings add to our understanding of how complex extracellular structures assemble and dissemble.
Collapse
|
17
|
Nakayama KI, Ishita Y, Chihara T, Okumura M. Screening for CRISPR/Cas9-induced mutations using a co-injection marker in the nematode Pristionchus pacificus. Dev Genes Evol 2020; 230:257-264. [PMID: 32030512 DOI: 10.1007/s00427-020-00651-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/28/2020] [Indexed: 01/09/2023]
Abstract
CRISPR/Cas9 genome-editing methods are used to reveal functions of genes and molecular mechanisms underlying biological processes in many species, including nematodes. In evolutionary biology, the nematode Pristionchus pacificus is a satellite model and has been used to understand interesting phenomena such as phenotypic plasticity and self-recognition. In P. pacificus, CRISPR/Cas9-mediated mutations are induced by microinjecting a guide RNA (gRNA) and Cas9 protein into the gonads. However, mutant screening is laborious and time-consuming due to the absence of visual markers. In this study, we established a Co-CRISPR strategy by using a dominant roller marker in P. pacificus. We found that heterozygous mutations in Ppa-prl-1 induced the roller phenotype, which can be used as an injection marker. After the co-injection of Ppa-prl-1 gRNA, target gRNA, and the Cas9 protein, roller progeny and their siblings were examined using the heteroduplex mobility assay and DNA sequencing. We found that some of the roller and non-roller siblings had mutations at the target site. We used varying Cas9 concentrations and found that a higher concentration of Cas9 did not increase genome-editing events. The Co-CRISPR strategy promotes the screening for genome-editing events and will facilitate the development of new genome-editing methods in P. pacificus.
Collapse
Affiliation(s)
- Ken-Ichi Nakayama
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Yuuki Ishita
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
18
|
Ishita Y, Chihara T, Okumura M. Serotonergic modulation of feeding behavior in Caenorhabditis elegans and other related nematodes. Neurosci Res 2020; 154:9-19. [DOI: 10.1016/j.neures.2019.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
|
19
|
Dong C, Weadick CJ, Truffault V, Sommer RJ. Convergent evolution of small molecule pheromones in Pristionchus nematodes. eLife 2020; 9:55687. [PMID: 32338597 PMCID: PMC7224695 DOI: 10.7554/elife.55687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
The small molecules that mediate chemical communication between nematodes-so-called 'nematode-derived-modular-metabolites' (NDMMs)-are of major interest because of their ability to regulate development, behavior, and life-history. Pristionchus pacificus nematodes produce an impressive diversity of structurally complex NDMMs, some of which act as primer pheromones that are capable of triggering irreversible developmental switches. Many of these NDMMs have only ever been found in P. pacificus but no attempts have been made to study their evolution by profiling closely related species. This study brings a comparative perspective to the biochemical study of NDMMs through the systematic MS/MS- and NMR-based analysis of exo-metabolomes from over 30 Pristionchus species. We identified 36 novel compounds and found evidence for the convergent evolution of complex NDMMs in separate branches of the Pristionchus phylogeny. Our results demonstrate that biochemical innovation is a recurrent process in Pristionchus nematodes, a pattern that is probably typical across the animal kingdom.
Collapse
Affiliation(s)
- Chuanfu Dong
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Cameron J Weadick
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
20
|
Akduman N, Lightfoot JW, Röseler W, Witte H, Lo WS, Rödelsperger C, Sommer RJ. Bacterial vitamin B 12 production enhances nematode predatory behavior. ISME JOURNAL 2020; 14:1494-1507. [PMID: 32152389 PMCID: PMC7242318 DOI: 10.1038/s41396-020-0626-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
Although the microbiota is known to affect host development, metabolism, and immunity, its impact on host behavior is only beginning to be understood. In order to better characterize behavior modulation by host-associated microorganisms, we investigated how bacteria modulate complex behaviors in the nematode model organism Pristionchus pacificus. This nematode is a predator that feeds on the larvae of other nematodes, including Caenorhabditis elegans. By growing P. pacificus on different bacteria and testing their ability to kill C. elegans, we reveal large differences in killing efficiencies, with a Novosphingobium species showing the strongest enhancement. This enhanced killing was not accompanied by an increase in feeding, which is a phenomenon known as surplus killing, whereby predators kill more prey than necessary for sustenance. Our RNA-seq data demonstrate widespread metabolic rewiring upon exposure to Novosphingobium, which facilitated screening of bacterial mutants with altered transcriptional responses. We identified bacterial production of vitamin B12 as an important cause of such enhanced predatory behavior. Although vitamin B12 is an essential cofactor for detoxification and metabolite biosynthesis, shown previously to accelerate development in C. elegans, supplementation with this enzyme cofactor amplified surplus killing in P. pacificus, whereas mutants in vitamin B12-dependent pathways reduced surplus killing. By demonstrating that production of vitamin B12 by host-associated microbiota can affect complex host behaviors, we reveal new connections between animal diet, microbiota, and nervous system.
Collapse
Affiliation(s)
- Nermin Akduman
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Ring 9, 72076, Tübingen, Germany
| | - James W Lightfoot
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Ring 9, 72076, Tübingen, Germany
| | - Waltraud Röseler
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Ring 9, 72076, Tübingen, Germany
| | - Hanh Witte
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Ring 9, 72076, Tübingen, Germany
| | - Wen-Sui Lo
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Ring 9, 72076, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Ring 9, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max Planck Institute for Developmental Biology, Max Planck Ring 9, 72076, Tübingen, Germany.
| |
Collapse
|
21
|
Moreno E, Lightfoot JW, Lenuzzi M, Sommer RJ. Cilia drive developmental plasticity and are essential for efficient prey detection in predatory nematodes. Proc Biol Sci 2019; 286:20191089. [PMID: 31575374 PMCID: PMC6790756 DOI: 10.1098/rspb.2019.1089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/16/2019] [Indexed: 01/08/2023] Open
Abstract
Cilia are complex organelles involved in a broad array of functions in eukaryotic organisms. Nematodes employ cilia for environmental sensing, which shapes developmental decisions and influences morphologically plastic traits and adaptive behaviours. Here, we assess the role of cilia in the nematode Pristionchus pacificus, and determine their importance in regulating the developmentally plastic mouth-form decision in addition to predatory feeding and self-recognition behaviours, all of which are not present in Caenorhabditis elegans. An analysis of a multitude of cilia-related mutants including representatives of the six protein subcomplexes required in intraflagellar transport (IFT) plus the regulatory factor X transcription factor daf-19 revealed that cilia are essential for processing the external cues influencing the mouth-form decision and for the efficient detection of prey. Surprisingly, we observed that loss-of-function mutations in the different IFT components resulted in contrasting mouth-form phenotypes and different degrees of predation deficiencies. This observation supports the idea that perturbing different IFT subcomplexes has different effects on signalling downstream of the cilium. Finally, self-recognition was maintained in the cilia deficient mutants tested, indicating that the mechanisms triggering self-recognition in P. pacificus may not require the presence of fully functional cilia.
Collapse
Affiliation(s)
| | | | | | - Ralf J. Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Max-Planck-Ring 9, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Bui LT, Ragsdale EJ. Multiple plasticity regulators reveal targets specifying an induced predatory form in nematodes. Mol Biol Evol 2019; 36:2387-2399. [PMID: 31364718 DOI: 10.1093/molbev/msz171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
The ability to translate a single genome into multiple phenotypes, or developmental plasticity, defines how phenotype derives from more than just genes. However, to study the evolutionary targets of plasticity and their evolutionary fates, we need to understand how genetic regulators of plasticity control downstream gene expression. Here, we have identified a transcriptional response specific to polyphenism (i.e., discrete plasticity) in the nematode Pristionchus pacificus. This species produces alternative resource-use morphs - microbivorous and predatory forms, differing in the form of their teeth, a morphological novelty - as influenced by resource availability. Transcriptional profiles common to multiple polyphenism-controlling genes in P. pacificus reveal a suite of environmentally sensitive loci, or ultimate target genes, that make up an induced developmental response. Additionally, in vitro assays show that one polyphenism regulator, the nuclear receptor (NR) NHR-40, physically binds to promoters with putative HNF4⍺ (the NR class including NHR-40) binding sites, suggesting this receptor may directly regulate genes that describe alternative morphs. Among differentially expressed genes were morph-limited genes, highlighting factors with putative "on-off" function in plasticity regulation. Further, predatory morph-biased genes included candidates - namely, all four P. pacificus homologs of Hsp70, which have HNF4⍺ motifs - whose natural variation in expression matches phenotypic differences among P. pacificus wild isolates. In summary, our study links polyphenism regulatory loci to the transcription producing alternative forms of a morphological novelty. Consequently, our findings establish a platform for determining how specific regulators of morph-biased genes may influence selection on plastic phenotypes.
Collapse
Affiliation(s)
- Linh T Bui
- Department of Biology, Indiana University, Bloomington, IN
| | | |
Collapse
|
23
|
Lightfoot JW, Wilecki M, Rödelsperger C, Moreno E, Susoy V, Witte H, Sommer RJ. Small peptide–mediated self-recognition prevents cannibalism in predatory nematodes. Science 2019; 364:86-89. [DOI: 10.1126/science.aav9856] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
Self-recognition is observed abundantly throughout the natural world, regulating diverse biological processes. Although ubiquitous, often little is known of the associated molecular machinery, and so far, organismal self-recognition has never been described in nematodes. We investigated the predatory nematode Pristionchus pacificus and, through interactions with its prey, revealed a self-recognition mechanism acting on the nematode surface, capable of distinguishing self-progeny from closely related strains. We identified the small peptide SELF-1, which is composed of an invariant domain and a hypervariable C terminus, as a key component of self-recognition. Modifications to the hypervariable region, including single–amino acid substitutions, are sufficient to eliminate self-recognition. Thus, the P. pacificus self-recognition system enables this nematode to avoid cannibalism while promoting the killing of competing nematodes.
Collapse
|
24
|
Feeding state sculpts a circuit for sensory valence in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2019; 116:1776-1781. [PMID: 30651312 DOI: 10.1073/pnas.1807454116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hunger affects the behavioral choices of all animals, and many chemosensory stimuli can be either attractive or repulsive depending on an animal's hunger state. Although hunger-induced behavioral changes are well documented, the molecular and cellular mechanisms by which hunger modulates neural circuit function to generate changes in chemosensory valence are poorly understood. Here, we use the CO2 response of the free-living nematode Caenorhabditis elegans to elucidate how hunger alters valence. We show that CO2 response valence shifts from aversion to attraction during starvation, a change that is mediated by two pairs of interneurons in the CO2 circuit, AIY and RIG. The transition from aversion to attraction is regulated by biogenic amine signaling. Dopamine promotes CO2 repulsion in well-fed animals, whereas octopamine promotes CO2 attraction in starved animals. Biogenic amines also regulate the temporal dynamics of the shift from aversion to attraction such that animals lacking octopamine show a delayed shift to attraction. Biogenic amine signaling regulates CO2 response valence by modulating the CO2-evoked activity of AIY and RIG. Our results illuminate a new role for biogenic amine signaling in regulating chemosensory valence as a function of hunger state.
Collapse
|
25
|
Werner MS, Claaßen MH, Renahan T, Dardiry M, Sommer RJ. Adult Influence on Juvenile Phenotypes by Stage-Specific Pheromone Production. iScience 2018; 10:123-134. [PMID: 30513394 PMCID: PMC6279967 DOI: 10.1016/j.isci.2018.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022] Open
Abstract
Many animal and plant species respond to population density by phenotypic plasticity. To investigate if specific age classes and/or cross-generational signaling affect density-dependent plasticity, we developed a dye-based method to differentiate co-existing nematode populations. We applied this method to Pristionchus pacificus, which develops a predatory mouth form to exploit alternative resources and kill competitors in response to high population densities. Remarkably, adult, but not juvenile, crowding induces the predatory morph in other juveniles. High-performance liquid chromatography-mass spectrometry of secreted metabolites combined with genetic mutants traced this result to the production of stage-specific pheromones. In particular, the P. pacificus-specific di-ascaroside#1 that induces the predatory morph is induced in the last juvenile stage and young adults, even though mouth forms are no longer plastic in adults. Cross-generational signaling between adults and juveniles may serve as an indication of rapidly increasing population size, arguing that age classes are an important component of phenotypic plasticity.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Marc H Claaßen
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Tess Renahan
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Mohannad Dardiry
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen 72076, Germany.
| |
Collapse
|
26
|
Sieriebriennikov B, Sommer RJ. Developmental Plasticity and Robustness of a Nematode Mouth-Form Polyphenism. Front Genet 2018; 9:382. [PMID: 30254664 PMCID: PMC6141628 DOI: 10.3389/fgene.2018.00382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/27/2018] [Indexed: 11/23/2022] Open
Abstract
In the last decade, case studies in plants and animals provided increasing insight into the molecular mechanisms of developmental plasticity. When complemented with evolutionary and ecological analyses, these studies suggest that plasticity represents a mechanism facilitating adaptive change, increasing diversity and fostering the evolution of novelty. Here, we summarize genetic, molecular and evolutionary studies on developmental plasticity of feeding structures in nematodes, focusing on the model organism Pristionchus pacificus and its relatives. Like its famous cousin Caenorhabditis elegans, P. pacificus reproduces as a self-fertilizing hermaphrodite and can be cultured in the laboratory on E. coli indefinitely with a four-day generation time. However, in contrast to C. elegans, Pristionchus worms show more complex feeding structures in adaptation to their life history. Pristionchus nematodes live in the soil and are reliably found in association with scarab beetles, but only reproduce after the insects’ death. Insect carcasses usually exist only for a short time period and their turnover is partially unpredictable. Strikingly, Pristionchus worms can have two alternative mouth-forms; animals are either stenostomatous (St) with a single tooth resulting in strict bacterial feeding, or alternatively, they are eurystomatous (Eu) with two teeth allowing facultative predation. Laboratory-based studies revealed a regulatory network that controls the irreversible decision of individual worms to adopt the St or Eu form. These studies revealed that a developmental switch controls the mouth-form decision, confirming long-standing theory about the role of switch genes in developmental plasticity. Here, we describe the current understanding of P. pacificus mouth-form regulation. In contrast to plasticity, robustness describes the property of organisms to produce unchanged phenotypes despite environmental perturbations. While largely opposite in principle, the relationship between developmental plasticity and robustness has only rarely been tested in particular study systems. Based on a study of the Hsp90 chaperones in nematodes, we suggest that robustness and plasticity are indeed complementary concepts. Genetic switch networks regulating plasticity require robustness to produce reproducible responses to the multitude of environmental inputs and the phenotypic output requires robustness because the range of possible phenotypic outcomes is constrained. Thus, plasticity and robustness are actually not mutually exclusive, but rather complementary concepts.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Max Planck Institute for Developmental Biology, Department of Integrative Evolutionary Biology, Tübingen, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology, Department of Integrative Evolutionary Biology, Tübingen, Germany
| |
Collapse
|
27
|
Namdeo S, Moreno E, Rödelsperger C, Baskaran P, Witte H, Sommer RJ. Two independent sulfation processes regulate mouth-form plasticity in the nematode Pristionchus pacificus. Development 2018; 145:145/13/dev166272. [PMID: 29967123 DOI: 10.1242/dev.166272] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/17/2018] [Indexed: 12/15/2022]
Abstract
Sulfation of biomolecules, like phosphorylation, is one of the most fundamental and ubiquitous biochemical modifications with important functions during detoxification. This process is reversible, involving two enzyme classes: a sulfotransferase, which adds a sulfo group to a substrate; and a sulfatase that removes the sulfo group. However, unlike phosphorylation, the role of sulfation in organismal development is poorly understood. In this study, we find that two independent sulfation events regulate the development of mouth morphology in the nematode Pristionchus pacificus. This nematode has the ability to form two alternative mouth morphologies depending on environmental cues, an example of phenotypic plasticity. We found that, in addition to a previously described sulfatase, a sulfotransferase is involved in regulating the mouth-form dimorphism in P. pacificus However, it is unlikely that both of these sulfation-associated enzymes act upon the same substrates, as they are expressed in different cell types. Furthermore, animals mutant in genes encoding both enzymes show condition-dependent epistatic interactions. Thus, our study highlights the role of sulfation-associated enzymes in phenotypic plasticity of mouth structures in Pristionchus.
Collapse
Affiliation(s)
- Suryesh Namdeo
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Eduardo Moreno
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Praveen Baskaran
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Hanh Witte
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| | - Ralf J Sommer
- Max Planck Institute for Developmental Biology, Department for Integrative Evolutionary Biology, Max-Planck-Ring 9, 72076 Tuebingen, Germany
| |
Collapse
|
28
|
Akduman N, Rödelsperger C, Sommer RJ. Culture-based analysis of Pristionchus-associated microbiota from beetles and figs for studying nematode-bacterial interactions. PLoS One 2018; 13:e0198018. [PMID: 29864131 PMCID: PMC5986141 DOI: 10.1371/journal.pone.0198018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/12/2018] [Indexed: 12/20/2022] Open
Abstract
The interplay with bacteria is of crucial importance for the interaction of multicellular organisms with their environments. Studying the associations between the nematode model organisms Caenorhabditis elegans and Pristionchus pacificus with bacteria constitutes a powerful system to investigate these interactions at a mechanistic level. P. pacificus is found in association with scarab beetles in nature and recent studies revealed the succession and dynamics of this nematode and its microbiome during the decomposition of one particular host species, the rhinoceros beetle Oryctes borbonicus on La Réunion Island. However, these studies were performed using culture-free methods, with no attempt made to establish bacterial cultures from the beetle-nematode ecosystem and to investigate the effects of these microbes on life history traits in P. pacificus. Here, we establish and characterize a collection of 136 bacterial strains that have been isolated from scarab beetles and figs, another Pristionchus-associated environment, as a resource for studying their effect on various nematode traits. Classification based on 16S sequencing identified members of four bacterial phyla with the class of Gammaproteobacteria representing the majority with 81 strains. Assessing the survival of P. pacificus on individual bacteria allowed us to propose candidate groups of pathogens such as Bacillaceae, Actinobacteria, and Serratia. In combination with chemoattraction data, it was revealed that P. pacificus is able to recognize and avoid certain groups of pathogens, but not others. Our collection of bacterial strains forms a natural resource to study the effects of bacterial diet on development and other traits. Furthermore, these results will form the basis of future studies to elucidate the molecular mechanisms of recognition and pathogenicity.
Collapse
Affiliation(s)
- Nermin Akduman
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Max-Planck-Ring 5, Tübingen, Germany
| | - Christian Rödelsperger
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Max-Planck-Ring 5, Tübingen, Germany
| | - Ralf J. Sommer
- Max Planck Institute for Developmental Biology, Department of Evolutionary Biology, Max-Planck-Ring 5, Tübingen, Germany
| |
Collapse
|
29
|
Serotonin Drives Predatory Feeding Behavior via Synchronous Feeding Rhythms in the Nematode Pristionchus pacificus. G3-GENES GENOMES GENETICS 2017; 7:3745-3755. [PMID: 28903981 PMCID: PMC5677172 DOI: 10.1534/g3.117.300263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Feeding behaviors in a wide range of animals are regulated by the neurotransmitter serotonin, although the exact neural circuits and associated mechanism are often unknown. The nematode Pristionchus pacificus can kill other nematodes by opening prey cuticles with movable teeth. Previous studies showed that exogenous serotonin treatment induces a predatory-like tooth movement and slower pharyngeal pumping in the absence of prey; however, physiological functions of serotonin during predation and other behaviors in P. pacificus remained completely unknown. Here, we investigate the roles of serotonin by generating mutations in Ppa-tph-1 and Ppa-bas-1, two key serotonin biosynthesis enzymes, and by genetic ablation of pharynx-associated serotonergic neurons. Mutations in Ppa-tph-1 reduced the pharyngeal pumping rate during bacterial feeding compared with wild-type. Moreover, the loss of serotonin or a subset of serotonergic neurons decreased the success of predation, but did not abolish the predatory feeding behavior completely. Detailed analysis using a high-speed camera revealed that the elimination of serotonin or the serotonergic neurons disrupted the timing and coordination of predatory tooth movement and pharyngeal pumping. This loss of synchrony significantly reduced the efficiency of successful predation events. These results suggest that serotonin has a conserved role in bacterial feeding and in addition drives the feeding rhythm of predatory behavior in Pristionchus.
Collapse
|
30
|
Riebesell M, Sommer RJ. Three-dimensional reconstruction of the pharyngeal gland cells in the predatory nematodePristionchus pacificus. J Morphol 2017; 278:1656-1666. [DOI: 10.1002/jmor.20739] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Metta Riebesell
- Department for Evolutionary Biology; Max-Planck Institute for Developmental Biology; Spemannstrasse 37, Tübingen 72076 Germany
| | - Ralf J. Sommer
- Department for Evolutionary Biology; Max-Planck Institute for Developmental Biology; Spemannstrasse 37, Tübingen 72076 Germany
| |
Collapse
|
31
|
Werner MS, Sieriebriennikov B, Loschko T, Namdeo S, Lenuzzi M, Dardiry M, Renahan T, Sharma DR, Sommer RJ. Environmental influence on Pristionchus pacificus mouth form through different culture methods. Sci Rep 2017; 7:7207. [PMID: 28775277 PMCID: PMC5543044 DOI: 10.1038/s41598-017-07455-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 06/28/2017] [Indexed: 12/29/2022] Open
Abstract
Environmental cues can impact development to elicit distinct phenotypes in the adult. The consequences of phenotypic plasticity can have profound effects on morphology, life cycle, and behavior to increase the fitness of the organism. The molecular mechanisms governing these interactions are beginning to be elucidated in a few cases, such as social insects. Nevertheless, there is a paucity of systems that are amenable to rigorous experimentation, preventing both detailed mechanistic insight and the establishment of a generalizable conceptual framework. The mouth dimorphism of the model nematode Pristionchus pacificus offers the rare opportunity to examine the genetics, genomics, and epigenetics of environmental influence on developmental plasticity. Yet there are currently no easily tunable environmental factors that affect mouth-form ratios and are scalable to large cultures required for molecular biology. Here we present a suite of culture conditions to toggle the mouth-form phenotype of P. pacificus. The effects are reversible, do not require the costly or labor-intensive synthesis of chemicals, and proceed through the same pathways previously examined from forward genetic screens. Different species of Pristionchus exhibit different responses to culture conditions, demonstrating unique gene-environment interactions, and providing an opportunity to study environmental influence on a macroevolutionary scale.
Collapse
Affiliation(s)
- Michael S Werner
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Bogdan Sieriebriennikov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Tobias Loschko
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Suryesh Namdeo
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Masa Lenuzzi
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Mohannad Dardiry
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Tess Renahan
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Devansh Raj Sharma
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany
| | - Ralf J Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, 72076, Tübingen, Germany.
| |
Collapse
|
32
|
Serobyan V, Sommer RJ. Developmental systems of plasticity and trans-generational epigenetic inheritance in nematodes. Curr Opin Genet Dev 2017; 45:51-57. [DOI: 10.1016/j.gde.2017.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 11/27/2022]
|
33
|
Sieriebriennikov B, Markov GV, Witte H, Sommer RJ. The Role of DAF-21/Hsp90 in Mouth-Form Plasticity in Pristionchus pacificus. Mol Biol Evol 2017; 34:1644-1653. [PMID: 28333289 PMCID: PMC5455966 DOI: 10.1093/molbev/msx106] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Phenotypic plasticity is increasingly recognized to facilitate adaptive change in plants and animals, including insects, nematodes, and vertebrates. Plasticity can occur as continuous or discrete (polyphenisms) variation. In social insects, for example, in ants, some species have workers of distinct size classes while in other closely related species variation in size may be continuous. Despite the abundance of examples in nature, how discrete morphs are specified remains currently unknown. In theory, polyphenisms might require robustness, whereby the distribution of morphologies would be limited by the same mechanisms that execute buffering from stochastic perturbations, a function attributed to heat-shock proteins of the Hsp90 family. However, this possibility has never been directly tested because plasticity and robustness are considered to represent opposite evolutionary principles. Here, we used a polyphenism of feeding structures in the nematode Pristionchus pacificus to test the relationship between robustness and plasticity using geometric morphometrics of 20 mouth-form landmarks. We show that reducing heat-shock protein activity, which reduces developmental robustness, increases the range of mouth-form morphologies. Specifically, elevated temperature led to a shift within morphospace, pharmacological inhibition of all Hsp90 genes using radicicol treatment increased shape variability in both mouth-forms, and CRISPR/Cas9-induced Ppa-daf-21/Hsp90 knockout had a combined effect. Thus, Hsp90 canalizes the morphologies of plastic traits resulting in discrete polyphenism of mouth-forms.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gabriel V. Markov
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC University of Paris 06, Roscoff, France
| | - Hanh Witte
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
34
|
Weadick CJ, Sommer RJ. Unexpected sex-specific post-reproductive lifespan in the free-living nematode Pristionchus exspectatus. Evol Dev 2017; 18:297-307. [PMID: 27870213 DOI: 10.1111/ede.12206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Patterns of senescence (or aging) can vary among life history traits and between the sexes, providing an opportunity to study variation in the aging process within a single species. We previously found that females of the nematode Pristionchus exspectatus outlive males by a substantial margin under laboratory conditions. Here, we show that sex-specific reproductive senescence unfolds in the opposite direction in this species, resulting in a prolonged period of female-specific post-reproductive survival: females lost the ability to reproduce at approximately 4.7 weeks despite a median lifespan of about 12.3 weeks under lab conditions, whereas males lost the ability to reproduce at approximately 6.6 weeks, roughly in line with their median lifespan of around 7.6 weeks. Interestingly, somatic senescence (declining crawling speed) only explained reproductive senescence in males, whereas females lost the ability to reproduce regardless of condition. However, we found that housing females with males significantly increased their mortality rate, indicating that female-specific post-reproductive survival is unlikely to occur in the wild. We discuss our results in light of evolutionary theories of post-reproductive survival and previous studies of nematode behavioral ecology, arguing that premature reproductive senescence may stem from sex-specific condition-dependent survival during the reproductive period. Given the proven lab tractability of Prisitonchus nematodes, our findings provide a foundation for integrative research that combines evolutionary ecology and molecular genetics in the study of sex-specific senescence and post-reproductive survival.
Collapse
Affiliation(s)
- Cameron J Weadick
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemmanstraße 37, Tübingen, 72076, Germany
| | - Ralf J Sommer
- Department of Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Spemmanstraße 37, Tübingen, 72076, Germany
| |
Collapse
|
35
|
Ancell H, Pires-daSilva A. Sex-specific lifespan and its evolution in nematodes. Semin Cell Dev Biol 2017; 70:122-129. [PMID: 28554570 DOI: 10.1016/j.semcdb.2017.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/03/2017] [Accepted: 05/18/2017] [Indexed: 12/22/2022]
Abstract
Differences between sexes of the same species in lifespan and aging rate are widespread. While the proximal and evolutionary causes of aging are well researched, the factors that contribute to sex differences in these traits have been less studied. The striking diversity of nematodes provides ample opportunity to study variation in sex-specific lifespan patterns associated with shifts in life history and mating strategy. Although the plasticity of these sex differences will make it challenging to generalize from invertebrate to vertebrate systems, studies in nematodes have enabled empirical evaluation of predictions regarding the evolution of lifespan. These studies have highlighted how natural and sexual selection can generate divergent patterns of lifespan if the sexes are subject to different rates or sources of mortality, or if trade-offs between complex traits and longevity are resolved differently in each sex. Here, we integrate evidence derived mainly from nematodes that addresses the molecular and evolutionary basis of sex-specific aging and lifespan. Ultimately, we hope to generate a clearer picture of current knowledge in this area, and also highlight the limitations of our understanding.
Collapse
Affiliation(s)
- Henry Ancell
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | |
Collapse
|
36
|
Meyer JM, Baskaran P, Quast C, Susoy V, Rödelsperger C, Glöckner FO, Sommer RJ. Succession and dynamics of Pristionchus nematodes and their microbiome during decomposition of Oryctes borbonicus on La Réunion Island. Environ Microbiol 2017; 19:1476-1489. [PMID: 28198090 DOI: 10.1111/1462-2920.13697] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/20/2016] [Accepted: 01/08/2017] [Indexed: 02/06/2023]
Abstract
Insects and nematodes represent the most species-rich animal taxa and they occur together in a variety of associations. Necromenic nematodes of the genus Pristionchus are found on scarab beetles with more than 30 species known from worldwide samplings. However, little is known about the dynamics and succession of nematodes and bacteria during the decomposition of beetle carcasses. Here, we study nematode and bacterial succession of the decomposing rhinoceros beetle Oryctes borbonicus on La Réunion Island. We show that Pristionchus pacificus exits the arrested dauer stage seven days after the beetles´ deaths. Surprisingly, new dauers are seen after 11 days, suggesting that some worms return to the dauer stage after one reproductive cycle. We used high-throughput sequencing of the 16S rRNA genes of decaying beetles, beetle guts and nematodes to study bacterial communities in comparison to soil. We find that soil environments have the most diverse bacterial communities. The bacterial community of living and decaying beetles are more stable but one single bacterial family dominates the microbiome of decaying beetles. In contrast, the microbiome of nematodes is relatively similar even across different families. This study represents the first characterization of the dynamics of nematode-bacterial interactions during the decomposition of insects.
Collapse
Affiliation(s)
- Jan M Meyer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| | - Praveen Baskaran
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| | - Christian Quast
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, 28359, Germany
| | - Vladislav Susoy
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| | - Christian Rödelsperger
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| | - Frank O Glöckner
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen, 28359, Germany
| | - Ralf J Sommer
- Max-Planck Institute for Developmental Biology, Spemannstrasse 37, Tübingen, 72076, Germany
| |
Collapse
|
37
|
Weeks JC, Roberts WM, Robinson KJ, Keaney M, Vermeire JJ, Urban JF, Lockery SR, Hawdon JM. Microfluidic platform for electrophysiological recordings from host-stage hookworm and Ascaris suum larvae: A new tool for anthelmintic research. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:314-328. [PMID: 27751868 PMCID: PMC5196495 DOI: 10.1016/j.ijpddr.2016.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/17/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022]
Abstract
The screening of candidate compounds and natural products for anthelmintic activity is important for discovering new drugs against human and animal parasites. We previously validated in Caenorhabditis elegans a microfluidic device (‘chip’) that records non-invasively the tiny electrophysiological signals generated by rhythmic contraction (pumping) of the worm's pharynx. These electropharyngeograms (EPGs) are recorded simultaneously from multiple worms per chip, providing a medium-throughput readout of muscular and neural activity that is especially useful for compounds targeting neurotransmitter receptors and ion channels. Microfluidic technologies have transformed C. elegans research and the goal of the current study was to validate hookworm and Ascaris suum host-stage larvae in the microfluidic EPG platform. Ancylostoma ceylanicum and A. caninum infective L3s (iL3s) that had been activated in vitro generally produced erratic EPG activity under the conditions tested. In contrast, A. ceylanicum L4s recovered from hamsters exhibited robust, sustained EPG activity, consisting of three waveforms: (1) conventional pumps as seen in other nematodes; (2) rapid voltage deflections, associated with irregular contractions of the esophagus and openings of the esophogeal-intestinal valve (termed a ‘flutter’); and (3) hybrid waveforms, which we classified as pumps. For data analysis, pumps and flutters were combined and termed EPG ‘events.’ EPG waveform identification and analysis were performed semi-automatically using custom-designed software. The neuromodulator serotonin (5-hydroxytryptamine; 5HT) increased EPG event frequency in A. ceylanicum L4s at an optimal concentration of 0.5 mM. The anthelmintic drug ivermectin (IVM) inhibited EPG activity in a concentration-dependent manner. EPGs from A. suum L3s recovered from pig lungs exhibited robust pharyngeal pumping in 1 mM 5HT, which was inhibited by IVM. These experiments validate the use of A. ceylanicum L4s and A. suum L3s with the microfluidic EPG platform, providing a new tool for screening anthelmintic candidates or investigating parasitic nematode feeding behavior. Pharyngeal pumping in nematodes generates an electropharyngeogram (EPG). The EPG provides a readout of the electrical activity of neurons and muscles. A microfluidic platform for recording EPGs was validated in parasitic nematodes. EPG activity and drug responses were characterized in host-stage larvae. Microfluidic EPG recordings provide a powerful new tool for anthelmintic research.
Collapse
Affiliation(s)
- Janis C Weeks
- Institute of Neuroscience and African Studies Program, University of Oregon, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | - William M Roberts
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | - Kristin J Robinson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | - Melissa Keaney
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| | - Jon J Vermeire
- Center for Discovery and Innovation in Parasitic Diseases, Dept. of Pathology and Laboratory Medicine, UC, San Francisco, USA.
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomic and Immunology Laboratory, Beltsville, MD, USA.
| | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| | - John M Hawdon
- Department of Microbiology, Immunology, and Tropical Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
38
|
Lightfoot JW, Wilecki M, Okumura M, Sommer RJ. Assaying Predatory Feeding Behaviors in Pristionchus and Other Nematodes. J Vis Exp 2016. [PMID: 27684744 PMCID: PMC5091989 DOI: 10.3791/54404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This protocol provides multiple methods for the analysis and quantification of predatory feeding behaviors in nematodes. Many nematode species including Pristionchus pacificus display complex behaviors, the most striking of which is the predation of other nematode larvae. However, as these behaviors are absent in the model organism Caenorhabditis elegans, they have thus far only recently been described in detail along with the development of reliable behavioral assays 1. These predatory behaviors are dependent upon phenotypically plastic but fixed mouth morphs making the correct identification and categorization of these animals essential. In P. pacificus there are two mouth types, the stenostomatous and eurystomatous morphs 2, with only the wide mouthed eurystomatous containing an extra tooth and being capable of killing other nematode larvae. Through the isolation of an abundance of size matched prey larvae and subsequent exposure to predatory nematodes, assays including both "corpse assays" and "bite assays" on correctly identified mouth morph nematodes are possible. These assays provide a means to rapidly quantify predation success rates and provide a detailed behavioral analysis of individual nematodes engaged in predatory feeding activities. In addition, with the use of a high-speed camera, visualization of changes in pharyngeal activity including tooth and pumping dynamics are also possible.
Collapse
Affiliation(s)
- James W Lightfoot
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology
| | - Martin Wilecki
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology
| | - Misako Okumura
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology
| | - Ralf J Sommer
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology;
| |
Collapse
|
39
|
Ragsdale EJ, Ivers NA. Specialization of a polyphenism switch gene following serial duplications in Pristionchus nematodes. Evolution 2016; 70:2155-66. [PMID: 27436344 DOI: 10.1111/evo.13011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 07/14/2016] [Indexed: 12/11/2022]
Abstract
Polyphenism is an extreme manifestation of developmental plasticity, requiring distinct developmental programs and the addition of a switch mechanism. Because the genetic basis of polyphenism switches has only begun to be understood, how their mechanisms arise is unclear. In the nematode Pristionchus pacificus, which has a mouthpart polyphenism specialized for alternative diets, a gene (eud-1) executing the polyphenism switch was recently identified as the product of lineage-specific duplications. Here, we infer the role of gene duplications in producing a switch gene. Using reverse genetics and population genetic analyses, we examine evidence for competing scenarios of degeneration and complementation, neutral evolution, and functional specialization. Of the daughter genes, eud-1 alone has assumed switch-like regulation of the mouth polyphenism. Measurements of life-history traits in single, double, and triple sulfatase mutants did not, given a benign environment, identify alternative or complementary roles for eud-1 paralogs. Although possible roles are still unknown, selection analyses of the sister species and 104 natural isolates of P. pacificus detected purifying selection on the genes, suggesting their functionality by their fixation and evolutionary maintenance. Our approach shows the tractability of reverse genetics in a nontraditional model system to study evolution by gene duplication.
Collapse
Affiliation(s)
- Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, Indiana, 47405.
| | - Nicholas A Ivers
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| |
Collapse
|
40
|
The Nuclear Hormone Receptor NHR-40 Acts Downstream of the Sulfatase EUD-1 as Part of a Developmental Plasticity Switch in Pristionchus. Curr Biol 2016; 26:2174-9. [PMID: 27451902 DOI: 10.1016/j.cub.2016.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/19/2016] [Accepted: 06/14/2016] [Indexed: 11/21/2022]
Abstract
Developmental plasticity, the ability of one genotype to produce distinct phenotypes in different environments, has been suggested to facilitate phenotypic diversification, and several examples in plants and animals support its macroevolutionary potential [1-8]. However, little is known about associated molecular mechanisms, because environmental effects on development are difficult to study by laboratory approaches. One promising system is the mouth dimorphism of the nematode Pristionchus pacificus [9-12]. Following an irreversible decision in larval development, these nematodes form moveable teeth that occur in either of two discrete morphs. The "eurystomatous" (Eu) form has a wide mouth and two teeth, allowing predatory feeding on other nematodes. In contrast, the alternative ("stenostomatous"; St) form has diminutive mouthparts that largely constrain its diet to microbes. The sulfatase EUD-1 was previously discovered to execute a polyphenism switch based on dosage of functional alleles [13] and confirmed a prediction of evolutionary theory about how developmental switches control plasticity [1, 3]. However, the genetic context of this single gene, and hence the molecular complexity of switch mechanisms, was previously unknown. Here we use a suppressor screen to identify factors downstream of eud-1 in mouth-form regulation. We isolated three dominant, X-linked mutants in the nuclear hormone receptor gene nhr-40 that are haploinsufficient. Both eud-1 nhr-40 double and nhr-40 single mutants are all Eu, whereas transgenic overexpression of nhr-40 does not restore the wild-type phenotype but instead results in nearly all-St lines. Thus, NHR-40 is part of a developmental switch, suggesting that switch mechanisms controlling plasticity consist of multi-component hormonal signaling systems.
Collapse
|
41
|
Stomatal Dimorphism of Neodiplogaster acaloleptae (Diplogastromorpha: Diplogastridae). PLoS One 2016; 11:e0155715. [PMID: 27196730 PMCID: PMC4873264 DOI: 10.1371/journal.pone.0155715] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 05/03/2016] [Indexed: 11/19/2022] Open
Abstract
Several genera belonging to the nematode family Diplogastridae show characteristic dimorphism in their feeding structures; specifically, they have microbial feeding stenostomatous and predatory eurystomatous morphs. A diplogastrid satellite model species, Pristionchus pacificus, and its close relatives have become a model system for studying this phenotypic plasticity, with intensive physiological and structural studies having been undertaken. However, the many other species that are morphologically and phylogenetically divergent from P. pacificus have not been examined to date. In the present study, the detailed stomatal structure and induction of dimorphism in Neodiplogaster acaloleptae were examined. N. acaloleptae has a fungal feeding stenostomatous morph and a predatory eurystomatous morph. The predatory morph was induced by starvation, high population density, and co-culturing with its potential prey, Caenorhabditis elegans. The feeding behavior of the stenostomatous and eurystomatous morphs of N. acaloleptae was confirmed, demonstrating that 1) the stomatal and pharyngeal movements of the two morphs were basically identical, and 2) the stomatal elements were protracted to cut open the hyphae and/or prey to feed when a N. acaloleptae flips its dorsal movable tooth dorsally and tilts its subventral stegostomatal cylinder ventrally, forming a pair of scissors to cut the food source. The stoma morphology of N. acaloleptae with a single movable tooth and a long stoma is markedly different from that of Pristionchus, which has two movable teeth and a short stoma. It is, however, similar to that of Mononchoides, tentatively a sister to Neodiplogaster.
Collapse
|
42
|
Susoy V, Sommer RJ. Stochastic and Conditional Regulation of Nematode Mouth-Form Dimorphisms. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Lightfoot JW, Chauhan VM, Aylott JW, Rödelsperger C. Comparative transcriptomics of the nematode gut identifies global shifts in feeding mode and pathogen susceptibility. BMC Res Notes 2016; 9:142. [PMID: 26944260 PMCID: PMC4779222 DOI: 10.1186/s13104-016-1886-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
Background The nematode Pristionchus pacificus has been established as a model for comparative studies using the well known Caenorhabditis elegans as a reference. Despite their relatedness, previous studies have revealed highly divergent development and a number of morphological differences including the lack of a pharyngal structure, the grinder, used to physically lyse the ingested bacteria in C. elegans. Results To complement current knowledge about developmental and ecological differences with a better understanding of their feeding modes, we have sequenced the intestinal transcriptomes of both nematodes. In total, we found 464 intestine-enriched genes in P. pacificus and 724 in C. elegans, of which the majority (66 %) has been identified by previous studies. Interestingly, only 15 genes could be identified with shared intestinal enrichment in both species, of which three genes are Hedgehog signaling molecules supporting a highly conserved role of this pathway for intestinal development across all metazoa. At the level of gene families, we find similar divergent trends with only five families displaying significant intestinal enrichment in both species. We compared our data with transcriptomic responses to various pathogens. Strikingly, C. elegans intestine-enriched genes showed highly significant overlaps with pathogen response genes whereas this was not the case for P. pacificus, indicating shifts in pathogen susceptibility that might be explained by altered feeding modes. Conclusions Our study reveals first insights into the evolution of feeding systems and the associated changes in intestinal gene expression that might have facilitated nematodes of the P. pacificus lineage to colonize new environments. These findings deepen our understanding about how morphological and genomic diversity is created during the course of evolution. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-1886-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James W Lightfoot
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstr. 35-39, Tübingen, Germany.
| | - Veeren M Chauhan
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Science Building, Nottingham, UK.
| | - Jonathan W Aylott
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Boots Science Building, Nottingham, UK.
| | - Christian Rödelsperger
- Department for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Spemannstr. 35-39, Tübingen, Germany.
| |
Collapse
|
44
|
Gilarte P, Kreuzinger-Janik B, Majdi N, Traunspurger W. Life-History Traits of the Model Organism Pristionchus pacificus Recorded Using the Hanging Drop Method: Comparison with Caenorhabditis elegans. PLoS One 2015; 10:e0134105. [PMID: 26247841 PMCID: PMC4527759 DOI: 10.1371/journal.pone.0134105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022] Open
Abstract
The nematode Pristionchus pacificus is of growing interest as a model organism in evolutionary biology. However, despite multiple studies of its genetics, developmental cues, and ecology, the basic life-history traits (LHTs) of P. pacificus remain unknown. In this study, we used the hanging drop method to follow P. pacificus at the individual level and thereby quantify its LHTs. This approach allowed direct comparisons with the LHTs of Caenorhabditis elegans recently determined using this method. When provided with 5×10(9) Escherichia coli cells ml(-1) at 20°C, the intrinsic rate of natural increase of P. pacificus was 1.125 (individually, per day); mean net production was 115 juveniles produced during the life-time of each individual, and each nematode laid an average of 270 eggs (both fertile and unfertile). The mean age of P. pacificus individuals at first reproduction was 65 h, and the average life span was 22 days. The life cycle of P. pacificus is therefore slightly longer than that of C. elegans, with a longer average life span and hatching time and the production of fewer progeny.
Collapse
Affiliation(s)
- Patricia Gilarte
- Animal Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | | | - Nabil Majdi
- Animal Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| | - Walter Traunspurger
- Animal Ecology, Bielefeld University, Konsequenz 45, 33615, Bielefeld, Germany
| |
Collapse
|