1
|
Reis AB, Martínez LC, de Oliveira MS, Souza DDS, Gomes DS, Silva LLD, Serrão JE. Sublethal Effects Induced by a Cyflumetofen Formulation on Honeybee Apis mellifera L. Workers: Assessment of Midgut, Hypopharyngeal Glands, and Fat Body Integrity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2455-2465. [PMID: 39171958 DOI: 10.1002/etc.5980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024]
Abstract
Worldwide, both cultivated and wild plants are pollinated by the honey bee, Apis mellifera. Bee numbers are declining as a result of a variety of factors, including increased pesticide use. Cyflumetofen controls pest mites in some plantations pollinated by bees, which may be contaminated with residual sublethal concentrations of this pesticide, in nectar and pollen. We evaluated the effects of a sublethal concentration of a cyflumetofen formulation on the midgut, hypopharyngeal gland, and fat body of A. mellifera workers orally exposed for 72 h or 10 days. The midgut epithelium of treated bees presented digestive cells with cytoplasm vacuoles and some cell fragmentation, indicating autophagy and cell death. After being exposed to the cyflumetofen formulation for 72 h, the midgut showed a higher injury rate than the control bees, but after 10 days, the organs had recovered. In the hypopharyngeal gland of treated bees, the end apparatus was filled with secretion, suggesting that the acaricide interferes with the secretory regulation of this gland. Histochemical tests revealed differences in the treated bees in both exposure periods in the midgut and hypopharyngeal glands. The acaricide caused cytotoxic effects on the midgut digestive cells, with apical protrusions, plasma membrane rupture, and several vacuoles in the cytoplasm, features of cell degeneration. In the hypopharyngeal glands of the treated bees, the secretory cells presented small electron-dense and large electron-lucent secretory granules. The fat body cells had no changes in comparison with the control bees. In conclusion, the cyflumetofen formulation at sublethal concentrations causes damage to the midgut and the hypopharyngeal glands of honey bee, which may compromise the functions of these organs and colony fitness. Environ Toxicol Chem 2024;43:2455-2465. © 2024 SETAC.
Collapse
Affiliation(s)
- Aline Beatriz Reis
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | | | | | - Diego Dos Santos Souza
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Davy Soares Gomes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - Laryssa Lemos da Silva
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
| |
Collapse
|
2
|
Copeland DC, Maes PW, Mott BM, Anderson KE. Changes in gut microbiota and metabolism associated with phenotypic plasticity in the honey bee Apis mellifera. Front Microbiol 2022; 13:1059001. [PMID: 36569094 PMCID: PMC9788138 DOI: 10.3389/fmicb.2022.1059001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Honey bees exhibit an elaborate social structure based in part on an age-related division of labor. Young workers perform tasks inside the hive, while older workers forage outside the hive, tasks associated with distinct diets and metabolism. Critical to colony fitness, the work force can respond rapidly to changes in the environment or colony demography and assume emergency tasks, resulting in young foragers or old nurses. We hypothesized that both task and age affect the gut microbiota consistent with changes to host diet and physiology. We performed two experiments inducing precocious foragers and reverted nurses, then quantified tissue-specific gut microbiota and host metabolic state associated with nutrition, immunity and oxidative stress. In the precocious forager experiment, both age and ontogeny explained differences in midgut and ileum microbiota, but host gene expression was best explained by an interaction of these factors. Precocious foragers were nutritionally deficient, and incurred higher levels of oxidative damage relative to age-matched nurses. In the oldest workers, reverted nurses, the oxidative damage associated with age and past foraging was compensated by high Vitellogenin expression, which exceeded that of young nurses. Host-microbial interactions were evident throughout the dataset, highlighted by an age-based increase of Gilliamella abundance and diversity concurrent with increased carbonyl accumulation and CuZnSOD expression. The results in general contribute to an understanding of ecological succession of the worker gut microbiota, defining the species-level transition from nurse to forager.
Collapse
Affiliation(s)
- Duan C. Copeland
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, United States,Department of Microbiology, School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States,*Correspondence: Duan C. Copeland,
| | - Patrick W. Maes
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, United States,Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, United States
| | - Brendon M. Mott
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, United States
| | - Kirk E. Anderson
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ, United States,*Correspondence: Duan C. Copeland,
| |
Collapse
|
3
|
Colin T, Warren RJ, Quarrell SR, Allen GR, Barron AB. Evaluating the foraging performance of individual honey bees in different environments with automated field
RFID
systems. Ecosphere 2022. [DOI: 10.1002/ecs2.4088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Théotime Colin
- School of Life and Environmental Sciences The University of Sydney Sydney New South Wales Australia
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| | - Ryan J. Warren
- Tasmanian Institute of Agriculture University of Tasmania Hobart Tasmania Australia
| | - Stephen R. Quarrell
- Tasmanian Institute of Agriculture University of Tasmania Hobart Tasmania Australia
| | - Geoff R. Allen
- Tasmanian Institute of Agriculture University of Tasmania Hobart Tasmania Australia
| | - Andrew B. Barron
- Department of Biological Sciences Macquarie University Sydney New South Wales Australia
| |
Collapse
|
4
|
Chen YR, Tzeng DTW, Ting C, Hsu PS, Wu TH, Zhong S, Yang EC. Missing Nurse Bees-Early Transcriptomic Switch From Nurse Bee to Forager Induced by Sublethal Imidacloprid. Front Genet 2021; 12:665927. [PMID: 34220942 PMCID: PMC8248817 DOI: 10.3389/fgene.2021.665927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/12/2021] [Indexed: 01/20/2023] Open
Abstract
The environmental residue/sublethal doses of neonicotinoid insecticides are believed to generate a negative impact on pollinators, including honey bees. Here we report our recent investigation on how imidacloprid, one of the major neonicotinoids, affects worker bees by profiling the transcriptomes of various ages of bees exposed to different doses of imidacloprid during the larval stage. The results show that imidacloprid treatments during the larval stage severely altered the gene expression profiles and may induce precocious foraging. Differential expression of foraging regulators was found in 14-day-old treated adults. A high transcriptome similarity between larvae-treated 14-day-old adults and 20-day-old controls was also observed, and the similarity was positively correlated with the dose of imidacloprid. One parts per billion (ppb) of imidacloprid was sufficient to generate a long-term impact on the bee's gene expression as severe as with 50 ppb imidacloprid. The disappearance of nurse bees may be driven not only by the hive member constitution but also by the neonicotinoid-induced precocious foraging behavior.
Collapse
Affiliation(s)
- Yun-Ru Chen
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David T W Tzeng
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chieh Ting
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Pei-Shou Hsu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Gongguan, Taiwan
| | - Tzu-Hsien Wu
- Miaoli District Agricultural Research and Extension Station, Council of Agriculture, Executive Yuan, Gongguan, Taiwan
| | - Silin Zhong
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
5
|
Oi CA, Brown RL, da Silva RC, Wenseleers T. Reproduction and signals regulating worker policing under identical hormonal control in social wasps. Sci Rep 2020; 10:18971. [PMID: 33149171 PMCID: PMC7643062 DOI: 10.1038/s41598-020-76084-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
In social Hymenoptera, fertility and fertility signalling are often under identical hormonal control, and it has been suggested that such hormonal pleiotropies can help to maintain signal honesty. In the common wasp Vespula vulgaris, for example, fertile queens have much higher juvenile hormone (JH) titers than workers, and JH also controls the production of chemical fertility cues present on the females’ cuticle. To regulate reproductive division of labour, queens use these fertility cues in two distinct ways: as queen pheromones that directly suppress the workers’ reproduction as well as to mark queen eggs and enable the workers to recognize and police eggs laid by other workers. Here, we investigated the hormonal pleiotropy hypothesis by testing if experimental treatment with the JH analogue methoprene could enable the workers to lay eggs that evade policing. In support of this hypothesis, we find that methoprene-treated workers laid more eggs, and that the chemical profiles of their eggs were more queen-like, thereby causing fewer of their eggs to be policed compared to in the control. Overall, our results identify JH as a key regulator of both reproduction and the production of egg marking pheromones that mediate policing behaviour in eusocial wasps.
Collapse
Affiliation(s)
- Cintia Akemi Oi
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium.
| | - Robert L Brown
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | - Rafael Carvalho da Silva
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Prado A, Requier F, Crauser D, Le Conte Y, Bretagnolle V, Alaux C. Honeybee lifespan: the critical role of pre-foraging stage. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200998. [PMID: 33391795 PMCID: PMC7735337 DOI: 10.1098/rsos.200998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Assessing the various anthropogenic pressures imposed on honeybees requires characterizing the patterns and drivers of natural mortality. Using automated lifelong individual monitoring devices, we monitored worker bees in different geographical, seasonal and colony contexts creating a broad range of hive conditions. We measured their life-history traits and notably assessed whether lifespan is influenced by pre-foraging flight experience. Our results show that the age at the first flight and onset of foraging are critical factors that determine, to a large extent, lifespan. Most importantly, our results indicate that a large proportion (40%) of the bees die during pre-foraging stage, and for those surviving, the elapsed time and flight experience between the first flight and the onset of foraging is of paramount importance to maximize the number of days spent foraging. Once in the foraging stage, individuals experience a constant mortality risk of 9% and 36% per hour of foraging and per foraging day, respectively. In conclusion, the pre-foraging stage during which bees perform orientation flights is a critical driver of bee lifespan. We believe these data on the natural mortality risks in honeybee workers will help assess the impact of anthropogenic pressures on bees.
Collapse
Affiliation(s)
- Alberto Prado
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, UNAM Querétaro, Querétaro, Mexico
| | - Fabrice Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Didier Crauser
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| | - Yves Le Conte
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| | - Vincent Bretagnolle
- Centre d'Etudes Biologiques de Chizé, CNRS and La Rochelle University, UMR 7372, 79360 Beauvoir sur Niort, France
- LTSER Zone Atelier “Plaine & Val de Sèvre”, CNRS, F-79360 Villiers-en-Bois, France
| | - Cédric Alaux
- INRAE, Abeilles and Environnement, 84914 Avignon, France
| |
Collapse
|
7
|
Cunningham CB. Functional genomics of parental care of insects. Horm Behav 2020; 122:104756. [PMID: 32353447 DOI: 10.1016/j.yhbeh.2020.104756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Parental care was likely the first step most lineages made towards sociality. However, the molecular mechanisms that generate parental care are not broadly characterized. Insects are important as an evolutionary independent group from classic models of parental care, such as, house mice. They provide an opportunity to test the generality of our understanding. With this review, I survey the functional genomics of parental care of insects, summarize several recent advances in the broader framework for studying and understanding parental care, and finish with suggested priorities for further research. Although there are too few studies to draw definitive conclusions, I argue that natural selection appears to be rewiring existing gene networks to produce parental care, that the epigenetic mechanisms influencing parental care are not well understood, and, as an interesting early consensus, that genes strongly associated with carer/offspring interactions appear biased towards proteins that are secreted. I summarize the studies that have functionally validate candidate genes and highlight the increasing need to perform this work. I finish with arguments for both conceptual and practical changes moving forward. I argue that future work can increase the use of predictive frameworks, broaden its definition of conservation of mechanism to gene networks rather than single genes, and increase the use of more established comparative methods. I further highlight the practical considerations of standardizing analyses and reporting, increasing the sampling of both carers and offspring, better characterizing gene regulatory networks, better characterizing taxonomically restricted genes and any consistent role they have underpinning parental care, and using factorial designs to disentangle the influence of multiple variables on the expression of parental care.
Collapse
|
8
|
Colin T, Bruce J, Meikle WG, Barron AB. The development of honey bee colonies assessed using a new semi-automated brood counting method: CombCount. PLoS One 2018; 13:e0205816. [PMID: 30325960 PMCID: PMC6191133 DOI: 10.1371/journal.pone.0205816] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/02/2018] [Indexed: 11/25/2022] Open
Abstract
Precise, objective data on brood and honey levels in honey bee colonies can be obtained through the analysis of hive frame photographs. However, accurate analysis of all the frame photographs from medium- to large-scale experiments is time-consuming. This limits the number of hives than can be practically included in honeybee studies. Faster estimation methods exist but they significantly decrease precision and their use requires a larger sample size to maintain statistical power. To resolve this issue, we created 'CombCount' a python program that automatically detects uncapped cells to speed up measurements of capped brood and capped honey on photos of frames. CombCount does not require programming skills, it was designed to facilitate colony-level research in honeybees and to provide a fast, free, and accurate alternative to older methods based on visual estimations. Six observers measured the same photos of thirty different frames both with CombCount and by manually outlining the entire capped areas with ImageJ. The results obtained were highly similar between both the observers and the two methods, but measurements with CombCount were 3.2 times faster than with ImageJ (4 and 13 min per side of the frame, respectively) and all observers were faster when using CombCount rather than ImageJ. CombCount was used to measure the proportions of capped brood and capped honey on each frame of 16 hives over a year as they developed from packages to full-size colonies over about 60 days. Our data describe the formation of brood and honey stores during the establishment of a new colony.
Collapse
Affiliation(s)
- Théotime Colin
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Jake Bruce
- School of Electrical Engineering and Computer Science, Queensland University of Technology, Brisbane, Australia
| | - William G. Meikle
- Carl Hayden Bee Research Center, USDA-ARS, Tucson, Arizona, United States of America
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Cabirol A, Cope AJ, Barron AB, Devaud JM. Relationship between brain plasticity, learning and foraging performance in honey bees. PLoS One 2018; 13:e0196749. [PMID: 29709023 PMCID: PMC5927457 DOI: 10.1371/journal.pone.0196749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/18/2018] [Indexed: 12/16/2022] Open
Abstract
Brain structure and learning capacities both vary with experience, but the mechanistic link between them is unclear. Here, we investigated whether experience-dependent variability in learning performance can be explained by neuroplasticity in foraging honey bees. The mushroom bodies (MBs) are a brain center necessary for ambiguous olfactory learning tasks such as reversal learning. Using radio frequency identification technology, we assessed the effects of natural variation in foraging activity, and the age when first foraging, on both performance in reversal learning and on synaptic connectivity in the MBs. We found that reversal learning performance improved at foraging onset and could decline with greater foraging experience. If bees started foraging before the normal age, as a result of a stress applied to the colony, the decline in learning performance with foraging experience was more severe. Analyses of brain structure in the same bees showed that the total number of synaptic boutons at the MB input decreased when bees started foraging, and then increased with greater foraging intensity. At foraging onset MB structure is therefore optimized for bees to update learned information, but optimization of MB connectivity deteriorates with foraging effort. In a computational model of the MBs sparser coding of information at the MB input improved reversal learning performance. We propose, therefore, a plausible mechanistic relationship between experience, neuroplasticity, and cognitive performance in a natural and ecological context.
Collapse
Affiliation(s)
- Amélie Cabirol
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
- * E-mail: (AC); (ABB)
| | - Alex J. Cope
- Department of Computer Science, University of Sheffield, Sheffield, South Yorkshire, United Kingdom
| | - Andrew B. Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- * E-mail: (AC); (ABB)
| | - Jean-Marc Devaud
- Research Center on Animal Cognition, Center for Integrative Biology, Toulouse University, CNRS, UPS, Toulouse, France
| |
Collapse
|
10
|
Huang ZY, Lin S, Ahn K. Methoprene does not affect juvenile hormone titers in honey bee (Apis mellifera) workers. INSECT SCIENCE 2018; 25:235-240. [PMID: 27763722 DOI: 10.1111/1744-7917.12411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Methoprene, a juvenile hormone (JH) analog, is a widely used insecticide that also accelerates behavioral development in honey bees (Apis mellifera). JH regulates the transition from nursing to foraging in adult worker bees, and treatment with JH or methoprene have both been shown to induce precocious foraging. To determine how methoprene changes honey bee behavior, we compared JH titers of methoprene-treated and untreated bees. Behavioral observations confirmed that methoprene treatment significantly increased the number of precocious foragers in 3 out of 4 colonies. In only 1 out of 4 colonies, however, was there a significant difference in JH titers between the methoprene-treated and control bees. Further, in all 4 colonies, there was no significant differences in JH titers between precocious and normal-aged foragers. These results suggest that methoprene did not directly affect the endogenous JH secreted by corpora allata. Because methoprene caused early foraging without changing workers' JH titers, we conclude that methoprene most likely acts directly on the JH receptors as a substitute for JH.
Collapse
Affiliation(s)
- Zachary Y Huang
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan, USA
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, USA
| | - Stephanie Lin
- High School Honors Science Program 2007, Michigan State University, East Lansing, Michigan, USA
| | - Kiheung Ahn
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
11
|
Thompson SJ, Pearce JM, Ramey AM. Vectors, Hosts, and Control Measures for Zika Virus in the Americas. ECOHEALTH 2017; 14:821-839. [PMID: 29150828 DOI: 10.1007/s10393-017-1277-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
We examine Zika virus (ZIKV) from an ecological perspective and with a focus on the Americas. We assess (1) the role of wildlife in ZIKV disease ecology, (2) how mosquito behavior and biology influence disease dynamics, and (3) how nontarget species and ecosystems may be impacted by vector control programs. Our review suggests that free-ranging, non-human primates may be involved in ZIKV transmission in the Old World; however, other wildlife species likely play a limited role in maintaining or transmitting ZIKV. In the Americas, a zoonotic cycle has not yet been definitively established. Understanding behaviors and habitat tolerances of Aedes aegypti and Aedes albopictus, two ZIKV competent vectors in the Americas, will allow more accurate modeling of disease spread and facilitate targeted and effective control efforts. Vector control efforts may have direct and indirect impacts to wildlife, particularly invertebrate feeding species; however, strategies could be implemented to limit detrimental ecological effects.
Collapse
Affiliation(s)
- Sarah J Thompson
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, USA.
| | - John M Pearce
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, USA
| | - Andrew M Ramey
- U.S. Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK, USA
| |
Collapse
|
12
|
Hakme E, Lozano A, Gómez-Ramos MM, Hernando MD, Fernández-Alba AR. Non-target evaluation of contaminants in honey bees and pollen samples by gas chromatography time-of-flight mass spectrometry. CHEMOSPHERE 2017; 184:1310-1319. [PMID: 28679151 DOI: 10.1016/j.chemosphere.2017.06.089] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
This work presents a non-targeted screening approach for the detection and quantitation of contaminants in bees and pollen, collected from the same hive, by GC-EI-ToF-MS. It consists of a spectral library datasets search using a compound database followed by a manual investigation and analytical standard confirmation together with semi-quantitation purposes. Over 20% of the compounds found automatically by the library search could not be confirmed manually. This number of false positive detections was mainly a consequence of an inadequate ion ratio criterion (±30%), not considered in the automatic searching procedure. Eight compounds were detected in bees and pollen. They include insecticides/acaricides (chlorpyrifos, coumaphos, fluvalinate-tau, chlorfenvinphos, pyridaben, and propyl cresol) at a concentration range of 1-1207 μg kg-1, herbicides (oxyfluorfen) at a concentration range of 212-1773 μg kg-1 and a growth regulator hormone (methoprene). Some compounds were detected only in pollen; such as herbicides (clomazone), insecticides/acaricides and fungicides used to control Varroa mites as benzylbenzoate, bufencarb, allethrin, permethrin, eugenol and cyprodinil. Additional compounds were detected only in bees: flamprop-methyl, 2-methylphenol (2-49 μg kg-1) and naphthalene (1-23 μg kg-1). The proposed method presents important advantages as it can avoid the use of an unachievable number of analytical standards considered target compounds "a priori" but not present in the analyzed samples.
Collapse
Affiliation(s)
- E Hakme
- University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120, Almería, Spain
| | - A Lozano
- University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120, Almería, Spain
| | - M M Gómez-Ramos
- University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120, Almería, Spain
| | - M D Hernando
- National Institute for Agricultural and Food Research and Technology (INIA), 28040, Madrid, Spain
| | - A R Fernández-Alba
- University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120, Almería, Spain.
| |
Collapse
|
13
|
Giehr J, Heinze J, Schrempf A. Group demography affects ant colony performance and individual speed of queen and worker aging. BMC Evol Biol 2017; 17:173. [PMID: 28764664 PMCID: PMC5540184 DOI: 10.1186/s12862-017-1026-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 07/26/2017] [Indexed: 11/10/2022] Open
Abstract
Background The performance and fitness of social societies mainly depends on the efficiency of interactions between reproductive individuals and helpers. Helpers need to react to the group’s requirements and to adjust their tasks accordingly, while the reproductive individual has to adjust its reproductive rate. Social insects provide a good system to study the interrelations between individual and group characteristics. In general, sterile workers focus on brood care and foraging while the queen lays eggs. Reproductive division of labor is determined by caste and not interchangeable as, e.g., in social mammals or birds. Hence, changing social and environmental conditions require a flexible response by each caste. In the ant Cardiocondyla obscurior, worker task allocation is based on age polyethism, with young workers focusing on brood care and old workers on foraging. Here, we examine how group age demography affects colony performance and fitness in colonies consisting of only old or young workers and a single old or young queen. We hypothesized that both groups will be fully functional, but that the forced task shift affects the individuals’ performance. Moreover, we expected reduced worker longevity in groups with only young workers due to precocious foraging but no effect on queen longevity depending on group composition. Results Neither the performance of queens nor that of workers declined strongly with time per se, but offspring number and weight were influenced by queen age and the interaction between queen and worker age. Individual residual life expectancy strongly depended on colony demography instead of physiological age. While worker age affected queen longevity only slightly, exposing old workers to the conditions of colony founding increased their life spans by up to 50% relative to workers that had emerged shortly before colony set-up. Conclusions The social environment strongly affected the tempo of aging and senescence in C. obscurior, highlighting the plasticity of life expectancy in social insects. Furthermore, colonies obtained the highest reproductive output when consisting of same-aged queens and workers independent of their physiological age. However, workers appeared to be able to adjust their behavior to the colony’s needs and not to suffer from age-dependent restrictions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1026-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Giehr
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany.
| | - Jürgen Heinze
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| | - Alexandra Schrempf
- Zoology/ Evolutionary Biology, University of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|
14
|
LaLone CA, Villeneuve DL, Wu-Smart J, Milsk RY, Sappington K, Garber KV, Housenger J, Ankley GT. Weight of evidence evaluation of a network of adverse outcome pathways linking activation of the nicotinic acetylcholine receptor in honey bees to colony death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:751-775. [PMID: 28126277 PMCID: PMC6156782 DOI: 10.1016/j.scitotenv.2017.01.113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 04/14/2023]
Abstract
Ongoing honey bee (Apis mellifera) colony losses are of significant international concern because of the essential role these insects play in pollinating crops. Both chemical and non-chemical stressors have been implicated as possible contributors to colony failure; however, the potential role(s) of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptors (nAChRs) in the central nervous system to eliminate pest insects. However, mounting evidence indicates that neonicotinoids also may adversely affect beneficial pollinators, such as the honey bee, via impairments on learning and memory, and ultimately foraging success. The specific mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. The objective of this review was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between activation of the physiological target site, the nAChR, and colony level consequences. Potential for exposure was not a consideration in AOP development and therefore this effort should not be considered a risk assessment. Nonetheless, development of the AOPs described herein has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect normal colony functions, causing colony instability and subsequent bee population failure. A putative AOP network was developed, laying the foundation for further insights as to the role of combined chemical and non-chemical stressors in impacting bee populations. Insights gained from the AOP network assembly, which more realistically represents multi-stressor impacts on honey bee colonies, are promising toward understanding common sensitive nodes in key biological pathways and identifying where mitigation strategies may be focused to reduce colony losses.
Collapse
Affiliation(s)
- Carlie A LaLone
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Judy Wu-Smart
- University of Nebraska-Lincoln, Department of Entomology, 105A Entomology Hall, Lincoln, NE 68583, USA
| | - Rebecca Y Milsk
- ORISE Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Keith Sappington
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Kristina V Garber
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Justin Housenger
- U.S. Environmental Protection Agency, Office of Pesticide Programs, Washington D.C. 20460, USA
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
15
|
Wang Y, Kaftanoglu O, Brent CS, Page RE, Amdam GV. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.). J Exp Biol 2016; 219:949-59. [DOI: 10.1242/jeb.130435] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/22/2015] [Indexed: 01/21/2023]
Abstract
ABSTRACT
Most organisms are constantly faced with environmental changes and stressors. In diverse organisms, there is an anticipatory mechanism during development that can program adult phenotypes. The adult phenotype would be adapted to the predicted environment that occurred during organism maturation. However, whether this anticipatory mechanism is present in eusocial species is questionable because eusocial organisms are largely shielded from exogenous conditions by their stable nest environment. In this study, we tested whether food deprivation during development of the honey bee (Apis mellifera), a eusocial insect model, can shift adult phenotypes to better cope with nutritional stress. After subjecting fifth instar worker larvae to short-term starvation, we measured nutrition-related morphology, starvation resistance, physiology, endocrinology and behavior in the adults. We found that the larval starvation caused adult honey bees to become more resilient toward starvation. Moreover, the adult bees were characterized by reduced ovary size, elevated glycogen stores and juvenile hormone (JH) titers, and decreased sugar sensitivity. These changes, in general, can help adult insects survive and reproduce in food-poor environments. Overall, we found for the first time support for an anticipatory mechanism in a eusocial species, the honey bee. Our results suggest that this mechanism may play a role in honey bee queen–worker differentiation and worker division of labor, both of which are related to the responses to nutritional stress.
Collapse
Affiliation(s)
- Ying Wang
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Osman Kaftanoglu
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Colin S. Brent
- US Department of Agriculture, Arid-Land Agricultural Research Center, Maricopa, AZ 85138, USA
| | - Robert E. Page
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Department of Entomology and Nematology, University of California Davis, Davis, CA 96616, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Gro V. Amdam
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Norwegian University of Life Sciences, Department of Ecology and Natural Resource Management, Aas, N-1432, Norway
| |
Collapse
|
16
|
Goñalons CM, Guiraud M, Sanchez MGDB, Farina WM. Insulin effects on honeybee appetitive behaviour. J Exp Biol 2016; 219:3003-3008. [DOI: 10.1242/jeb.143511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/15/2016] [Indexed: 01/09/2023]
Abstract
Worker honeybees (Apis mellifera L.) carry out multiple tasks throughout their adult lifespan. It has been suggested that the insulin/insulin-like signalling pathway participates in regulating behavioural maturation in eusocial insects. Insulin signalling increases as the honeybee worker transitions from nurse to food processor to forager. As behavioural shifts require differential usage of sensory modalities, our aim was to assess insulin effects on olfactory and gustatory responsiveness as well as on olfactory learning in preforaging honeybee workers of different ages. Adults were reared in the laboratory or in the hive. Immediately after being injected with insulin or vehicle (control), and focussing on the proboscis extension response, bees were tested for their spontaneous response to odours, sucrose responsiveness and ability to discriminate odours through olfactory conditioning. Bees injected with insulin have higher spontaneous odour responses. Sucrose responsiveness and odour discrimination are differentially affected by treatment according to age; whereas insulin increases gustatory responsiveness and diminishes learning abilities of younger workers, it has the opposite effect on older bees. As a summary, insulin can improve chemosensory responsiveness in young workers, but also worsens their learning abilities to discriminate odours. The insulin signalling pathway is responsive in young workers, although they are not yet initiating outdoor activities. Our results show strong age dependent effects of insulin on appetitive behaviour, which uncover differences in insulin signalling regulation throughout the honeybee worker's adulthood.
Collapse
Affiliation(s)
- Carolina Mengoni Goñalons
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CA de Buenos Aires, Argentina
| | - Marie Guiraud
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale, CNRS, Toulouse, France
| | | | - Walter M. Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CA de Buenos Aires, Argentina
| |
Collapse
|
17
|
Ushitani T, Perry CJ, Cheng K, Barron AB. Accelerated behavioural development changes fine-scale search behaviour and spatial memory in honey bees (Apis mellifera L.). ACTA ACUST UNITED AC 2015; 219:412-8. [PMID: 26596532 DOI: 10.1242/jeb.126920] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/12/2015] [Indexed: 11/20/2022]
Abstract
Normally, worker honey bees (Apis mellifera) begin foraging when more than 2 weeks old as adults, but if individual bees or the colony is stressed, bees often begin foraging precociously. Here, we examined whether bees that accelerated their behavioural development to begin foraging precociously differed from normal-aged foragers in cognitive performance. We used a social manipulation to generate precocious foragers from small experimental colonies and tested their performance in a free-flight visual reversal learning task, and a test of spatial memory. To assess spatial memory, bees were trained to learn the location of a small sucrose feeder within an array of three landmarks. In tests, the feeder and one landmark were removed and the search behaviour of the bees was recorded. Performance of precocious and normal-aged foragers did not differ in a visual reversal learning task, but the two groups showed a clear difference in spatial memory. Flight behaviour suggested normal-aged foragers were better able to infer the position of the removed landmark and feeder relative to the remaining landmarks than precocious foragers. Previous studies have documented the cognitive decline of old foragers, but this is the first suggestion of a cognitive deficit in young foragers. These data imply that worker honey bees continue their cognitive development during the adult stage. These findings may also help to explain why precocious foragers perform quite poorly as foragers and have a higher than normal loss rate.
Collapse
Affiliation(s)
- Tomokazu Ushitani
- Department of Cognitive and Information Sciences, Faculty of Letters, Chiba University, 1-33 Yayoi-cho, Inage, Chiba 263-8522, Japan
| | - Clint J Perry
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Ken Cheng
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|