1
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
2
|
Le Pogam A, O’Connor RS, Love OP, Drolet J, Régimbald L, Roy G, Laplante MP, Berteaux D, Tam A, Vézina F. Snow Buntings Maintain Winter-Level Cold Endurance While Migrating to the High Arctic. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.724876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Arctic breeding songbirds migrate early in the spring and can face winter environments requiring cold endurance throughout their journey. One such species, the snow bunting (Plectrophenax nivalis), is known for its significant thermogenic capacity. Empirical studies suggest that buntings can indeed maintain winter cold acclimatization into the migratory and breeding phenotypes when kept captive on their wintering grounds. This capacity could be advantageous not only for migrating in a cold environment, but also for facing unpredictable Arctic weather on arrival and during preparation for breeding. However, migration also typically leads to declines in the sizes of several body components linked to metabolic performance. As such, buntings could also experience some loss of cold endurance as they migrate. Here, we aimed to determine whether free-living snow buntings maintain a cold acclimatized phenotype during spring migration. Using a multi-year dataset, we compared body composition (body mass, fat stores, and pectoralis muscle thickness), oxygen carrying capacity (hematocrit) and metabolic performance (thermogenic capacity – Msum and maintenance energy expenditure – BMR) of birds captured on their wintering grounds (January–February, Rimouski, QC, 48°N) and during pre-breeding (April–May) in the Arctic (Alert, NU, 82°). Our results show that body mass, fat stores and Msum were similar between the two stages, while hematocrit and pectoralis muscle thickness were lower in pre-breeding birds than in wintering individuals. These results suggest that although tissue degradation during migration may affect flight muscle size, buntings are able to maintain cold endurance (i.e., Msum) up to their Arctic breeding grounds. However, BMR was higher during pre-breeding than during winter, suggesting higher maintenance costs in the Arctic.
Collapse
|
3
|
Le Pogam A, O'Connor RS, Love OP, Petit M, Régimbald L, Vézina F. Coping with the worst of both worlds: Phenotypic adjustments for cold acclimatization benefit northward migration and arrival in the cold in an Arctic‐breeding songbird. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Audrey Le Pogam
- Département de biologie, chimie et géographie Université du Québec à Rimouski Rimouski QC Canada
- Groupe de recherche sur les environnements nordiques BORÉAS Centre d'Études Nordiques Centre de la Science de la Biodiversité du Québec Rimouski QC Canada
| | - Ryan S. O'Connor
- Département de biologie, chimie et géographie Université du Québec à Rimouski Rimouski QC Canada
- Groupe de recherche sur les environnements nordiques BORÉAS Centre d'Études Nordiques Centre de la Science de la Biodiversité du Québec Rimouski QC Canada
| | - Oliver P. Love
- Department of Integrative Biology University of Windsor Windsor ON Canada
| | - Magali Petit
- Département de biologie, chimie et géographie Université du Québec à Rimouski Rimouski QC Canada
- Groupe de recherche sur les environnements nordiques BORÉAS Centre d'Études Nordiques Centre de la Science de la Biodiversité du Québec Rimouski QC Canada
| | - Lyette Régimbald
- Département de biologie, chimie et géographie Université du Québec à Rimouski Rimouski QC Canada
| | - François Vézina
- Département de biologie, chimie et géographie Université du Québec à Rimouski Rimouski QC Canada
- Groupe de recherche sur les environnements nordiques BORÉAS Centre d'Études Nordiques Centre de la Science de la Biodiversité du Québec Rimouski QC Canada
| |
Collapse
|
4
|
Swanson DL, Agin TJ, Zhang Y, Oboikovitz P, DuBay S. Metabolic Flexibility in Response to Within-Season Temperature Variability in House Sparrows. Integr Org Biol 2021; 2:obaa039. [PMID: 33791577 PMCID: PMC7810579 DOI: 10.1093/iob/obaa039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The climatic variability hypothesis (CVH) posits that more flexible phenotypes should provide a fitness advantage for organisms experiencing more variable climates. While typically applied across geographically separated populations, whether this principle applies across seasons or other conditions (e.g., open vs. sheltered habitats) which differ in climatic variability remains essentially unstudied. In north-temperate climates, climatic variability in winter usually exceeds that in summer, so extending the CVH to within-population seasonal variation predicts that winter phenotypes should be more flexible than summer phenotypes. We tested this prediction of the within-season extension of the CVH by acclimating summer and winter-collected house sparrows (Passer domesticus) to 24, 5, and -10°C and measuring basal metabolic rate (BMR) and summit metabolic rate (Msum = maximum cold-induced metabolic rate) before and after acclimation (Accl). To examine mechanistic bases for metabolic variation, we measured flight muscle and heart masses and citrate synthase and β-hydroxyacyl coA-dehydrogenase activities. BMR and Msum were higher for cold-acclimated than for warm-acclimated birds, and BMR was higher in winter than in summer birds. Contrary to our hypothesis of greater responses to cold Accl in winter birds, metabolic rates generally decreased over the Accl period for winter birds at all temperatures but increased at cold temperatures for summer birds. Flight muscle and heart masses were not significantly correlated with season or Accl treatment, except for supracoracoideus mass, which was lower at -10°C in winter, but flight muscle and heart masses were positively correlated with BMR and flight muscle mass was positively correlated with Msum. Catabolic enzyme activities were not clearly related to metabolic variation. Thus, our data suggest that predictions of the CVH may not be relevant when extended to seasonal temperature variability at the within-population scale. Indeed, these data suggest that metabolic rates are more prominently upregulated in summer than in winter in response to cold. Metabolic rates tended to decrease during Accl at all temperatures in winter, suggesting that initial metabolic rates at capture (higher in winter) influence metabolic Accl for captive birds.
Collapse
Affiliation(s)
- D L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - T J Agin
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Y Zhang
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - P Oboikovitz
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - S DuBay
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Jimeno B, Prichard MR, Landry D, Wolf C, Larkin B, Cheviron Z, Breuner C. Metabolic Rates Predict Baseline Corticosterone and Reproductive Output in a Free-Living Passerine. Integr Org Biol 2021; 2:obaa030. [PMID: 33791569 PMCID: PMC7794023 DOI: 10.1093/iob/obaa030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Organisms continuously face environmental fluctuations, and allocation of metabolic investment to meet changing energetic demands is fundamental to survival and reproductive success. Glucocorticoid (GC) hormones (e.g., corticosterone [CORT]) play an important role in energy acquisition and allocation in the face of environmental challenges, partly through mediation of energy metabolism. Although GCs and metabolic rate are expected to covary, surprisingly few empirical studies have demonstrated such relationships, especially in wild animals. Moreover, studies testing for associations between GCs and fitness generally do not account for among-individual differences in energy expenditure or energy allocation. We measured CORT (baseline and stress-induced) and metabolic traits (resting metabolic rate [RMR], cold-induced VO2max [Msum], and aerobic scope [the difference between Msum and RMR]) in female tree swallows (Tachycineta bicolor) during chick-rearing, and tested for their associations with several variables of reproductive performance. We found a positive relationship between RMR and baseline CORT, but no consistent associations between stress-induced CORT (SI-CORT) and Msum. This suggests that while baseline CORT may be a good indicator of an individual's baseline metabolic investment, SI-CORT responses are not associated with aerobic scope or the upper limits of aerobic performance. Furthermore, we found that metabolic traits were associated with reproductive performance: females with higher reproductive output showed higher Msum, and also tended to show higher RMR. Overall, these results suggest that metabolic traits are better predictors of reproductive output in tree swallows than CORT concentrations. They further point to the maximal aerobic capacity being higher in females investing more heavily in a current reproductive event, but whether this association reflects trade-offs between current and future reproductive efforts remains to be tested.
Collapse
Affiliation(s)
- Blanca Jimeno
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mackenzie R Prichard
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.,Department of Psychology, Emory University, Atlanta, GA 30322, USA
| | | | - Cole Wolf
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | | | - Zachary Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Creagh Breuner
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
6
|
Jimenez AG. Structural plasticity of the avian pectoralis: a case for geometry and the forgotten organelle. J Exp Biol 2020; 223:223/23/jeb234120. [DOI: 10.1242/jeb.234120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ABSTRACT
The avian pectoralis muscle demonstrates incredible plasticity. This muscle is the sole thermogenic organ of small passerine birds, and many temperate small passerines increase pectoralis mass in winter, potentially to increase heat production. Similarly, this organ can double in size prior to migration in migratory birds. In this Commentary, following the August Krogh principle, I argue that the avian pectoralis is the perfect tissue to reveal general features of muscle physiology. For example, in both mammals and birds, skeletal muscle fiber diameter is generally accepted to be within 10–100 µm. This size constraint is assumed to include reaction-diffusion limitations, coupled with metabolic cost savings associated with fiber geometry. However, avian muscle fiber structure has been largely ignored in this field, and the extensive remodeling of the avian pectoralis provides a system with which to investigate this. In addition, fiber diameter has been linked to whole-animal metabolic rates, although this has only been addressed in a handful of bird studies, some of which demonstrate previously unreported levels of plasticity and flexibility. Similarly, myonuclei, which are responsible for protein turnover within the fiber, have been forgotten in the avian literature. The few studies that have addressed myonuclear domain (MND) changes in avian muscle have found rates of change not previously seen in mammals. Both fiber diameter and MND have strong implications for aging rates; most aging mammals demonstrate muscular atrophy (a decrease in fiber diameter) and changes in MND. As I discuss here, these features are likely to differ in birds.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| |
Collapse
|
7
|
Roussel D, Le Coadic M, Rouanet JL, Duchamp C. Skeletal muscle metabolism in sea-acclimatized king penguins. I. Thermogenic mechanisms. J Exp Biol 2020; 223:jeb233668. [PMID: 32968000 DOI: 10.1242/jeb.233668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 12/25/2022]
Abstract
At fledging, king penguin juveniles undergo a major energetic challenge to overcome the intense and prolonged energy demands for thermoregulation and locomotion imposed by life in cold seas. Among other responses, sea acclimatization triggers fuel selection in skeletal muscle metabolism towards lipid oxidation in vitro, which is reflected by a drastic increase in lipid-induced thermogenesis in vivo However, the exact nature of skeletal muscle thermogenic mechanisms (shivering and/or non-shivering thermogenesis) remains undefined. The aim of the present study was to determine in vivo whether the capacity for non-shivering thermogenesis was enhanced by sea acclimatization. We measured body temperature, metabolic rate, heart rate and shivering activity in fully immersed king penguins (Aptenodytes patagonicus) exposed to water temperatures ranging from 12 to 29°C. Results from terrestrial pre-fledging juveniles were compared with those from sea-acclimatized immature penguins (hereafter 'immatures'). The capacity for thermogenesis in water was as effective in juveniles as in immatures, while the capacity for non-shivering thermogenesis was not reinforced by sea acclimatization. This result suggests that king penguins mainly rely on skeletal muscle contraction (shivering or locomotor activity) to maintain endothermy at sea. Sea-acclimatized immature penguins also exhibited higher shivering efficiency and oxygen pulse (amount of oxygen consumed or energy expended per heartbeat) than pre-fledging juvenile birds. Such increase in shivering and cardiovascular efficiency may favor a more efficient activity-thermoregulatory heat substitution providing penguins with the aptitude to survive the tremendous energetic challenge imposed by marine life in cold circumpolar oceans.
Collapse
Affiliation(s)
- Damien Roussel
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Marion Le Coadic
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Jean-Louis Rouanet
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Claude Duchamp
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
8
|
Roussel D, Marmillot V, Monternier PA, Bourguignon A, Toullec G, Romestaing C, Duchamp C. Skeletal muscle metabolism in sea-acclimatized king penguins. II. Improved efficiency of mitochondrial bioenergetics. J Exp Biol 2020; 223:jeb233684. [PMID: 32967994 DOI: 10.1242/jeb.233684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/10/2020] [Indexed: 08/25/2023]
Abstract
At fledging, juvenile king penguins (Aptenodytes patagonicus) must overcome the tremendous energetic constraints imposed by their marine habitat, including during sustained extensive swimming activity and deep dives in cold seawater. Both endurance swimming and skeletal muscle thermogenesis require high mitochondrial respiratory capacity while the submerged part of dive cycles repeatedly and greatly reduces oxygen availability, imposing a need for solutions to conserve oxygen. The aim of the present study was to determine in vitro whether skeletal muscle mitochondria become more 'thermogenic' to sustain heat production or more 'economical' to conserve oxygen in sea-acclimatized immature penguins (hereafter 'immatures') compared with terrestrial juveniles. Rates of mitochondrial oxidative phosphorylation were measured in permeabilized fibers and mitochondria from the pectoralis muscle. Mitochondrial ATP synthesis and coupling efficiency were measured in isolated muscle mitochondria. The mitochondrial activities of respiratory chain complexes and citrate synthase were also assessed. The results showed that respiration, ATP synthesis and respiratory chain complex activities in pectoralis muscles were increased by sea acclimatization. Furthermore, muscle mitochondria were on average 30-45% more energy efficient in sea-acclimatized immatures than in pre-fledging juveniles, depending on the respiratory substrate used (pyruvate, palmitoylcarnitine). Hence sea acclimatization favors the development of economical management of oxygen, decreasing the oxygen needed to produce a given amount of ATP. This mitochondrial phenotype may improve dive performance during the early marine life of king penguins, by extending their aerobic dive limit.
Collapse
Affiliation(s)
- Damien Roussel
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Vincent Marmillot
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Pierre-Axel Monternier
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Aurore Bourguignon
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Gaëlle Toullec
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Caroline Romestaing
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| | - Claude Duchamp
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France
| |
Collapse
|
9
|
Noakes MJ, McKechnie AE. Phenotypic flexibility of metabolic rate and evaporative water loss does not vary across a climatic gradient in an Afrotropical passerine bird. J Exp Biol 2020; 223:jeb220137. [PMID: 32165435 DOI: 10.1242/jeb.220137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 12/30/2022]
Abstract
Small birds inhabiting northern temperate and boreal latitudes typically increase metabolic rates during cold winters or acclimation to low air temperatures (Taccl). Recent studies suggest considerable variation in patterns of seasonal metabolic acclimatization in birds from subtropical and tropical regions with milder winters, but there remains a dearth of acclimation studies investigating metabolic flexibility among lower-latitude birds. We used short-term thermal acclimation experiments to investigate phenotypic flexibility in basal metabolic rate (BMR), thermoneutral evaporative water loss (EWL) and summit metabolism (Msum) in three populations of white-browed sparrow-weavers (Plocepasser mahali) along a climatic and aridity gradient. We allocated individuals to one of three Taccl treatments (5, 20 and 35°C; n=11 per population per Taccl) for 28 days, and measured post-acclimation BMR, EWL and Msum using flow-through respirometry. Our data reveal the expected pattern of lower BMR and EWL (∼12% and 25% lower, respectively) in birds at Taccl=35°C compared with cooler Taccl treatments, as observed in previous acclimation studies on subtropical birds. We found no variation in the reaction norms of BMR and EWL among populations in response to acclimation, suggesting previously documented differences in seasonal BMR acclimatization are the result of phenotypic flexibility. In contrast to higher-latitude species, Msum did not significantly vary in response to thermal acclimation. These findings support the idea that factors other than enhancing cold tolerance may be driving patterns of metabolic variation in subtropical birds.
Collapse
Affiliation(s)
- Matthew J Noakes
- DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
| | - Andrew E McKechnie
- DST-NRF Centre of Excellence at the FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria 0001, South Africa
- South African Research Chair in Conservation Physiology, South African National Biodiversity Institute, Pretoria 0001, South Africa
| |
Collapse
|
10
|
Carter WA, DeMoranville KJ, Pierce BJ, McWilliams SR. The effects of dietary linoleic acid and hydrophilic antioxidants on basal, peak, and sustained metabolism in flight-trained European starlings. Ecol Evol 2020; 10:1552-1566. [PMID: 32076533 PMCID: PMC7029098 DOI: 10.1002/ece3.6010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 01/05/2023] Open
Abstract
Dietary micronutrients have the ability to strongly influence animal physiology and ecology. For songbirds, dietary polyunsaturated fatty acids (PUFAs) and antioxidants are hypothesized to be particularly important micronutrients because of their influence on an individual's capacity for aerobic metabolism and recovery from extended bouts of exercise. However, the influence of specific fatty acids and hydrophilic antioxidants on whole-animal performance remains largely untested. We used diet manipulations to directly test the effects of dietary PUFA, specifically linoleic acid (18:2n6), and anthocyanins, a hydrophilic antioxidant, on basal metabolic rate (BMR), peak metabolic rate (PMR), and rates of fat catabolism, lean catabolism, and energy expenditure during sustained flight in a wind tunnel in European starlings (Sturnus vulgaris). BMR, PMR, energy expenditure, and fat metabolism decreased and lean catabolism increased over the course of the experiment in birds fed a high (32%) 18:2n6 diet, while birds fed a low (13%) 18:2n6 diet exhibited the reverse pattern. Additionally, energy expenditure, fat catabolism, and flight duration were all subject to diet-specific effects of whole-body fat content. Dietary antioxidants and diet-related differences in tissue fatty acid composition were not directly related to any measure of whole-animal performance. Together, these results suggest that the effect of dietary 18:2n6 on performance was most likely the result of the signaling properties of 18:2n6. This implies that dietary PUFA influence the energetic capabilities of songbirds and could strongly influence songbird ecology, given their availability in terrestrial systems.
Collapse
Affiliation(s)
- Wales A. Carter
- Department of Natural Resources ScienceUniversity of Rhode IslandKingstonRIUSA
| | | | | | - Scott R. McWilliams
- Department of Natural Resources ScienceUniversity of Rhode IslandKingstonRIUSA
| |
Collapse
|
11
|
Vézina F, Cornelius Ruhs E, O'Connor ES, Le Pogam A, Régimbald L, Love OP, Jimenez AG. Consequences of being phenotypically mismatched with the environment: rapid muscle ultrastructural changes in cold-shocked black-capped chickadees ( Poecile atricapillus). Am J Physiol Regul Integr Comp Physiol 2019; 318:R274-R283. [PMID: 31823671 DOI: 10.1152/ajpregu.00203.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Phenotypic flexibility has received considerable attention in the last decade; however, whereas many studies have reported amplitude of variation in phenotypic traits, much less attention has focused on the rate at which traits can adjust in response to sudden changes in the environment. We investigated whole animal and muscle phenotypic changes occurring in black-capped chickadees (Poecile atricapillus) acclimated to cold (-5°C) and warm (20°C) temperatures in the first 3 h following a 15°C temperature drop (over 3 h). Before the temperature change, cold-acclimated birds were consuming 95% more food, were carrying twice as much body fat, and had 23% larger pectoralis muscle fiber diameters than individuals kept at 20°C. In the 3 h following the temperature drop, these same birds altered their pectoralis muscle ultrastructure by increasing the number of capillaries per fiber area and the number of nuclei per millimeter of fiber by 22%, consequently leading to a 22% decrease in myonuclear domain (amount of cytoplasm serviced per nucleus), whereas no such changes were observed in the warm-acclimated birds. To our knowledge, this is the first demonstration of such a rapid adjustment in muscle fiber ultrastructure in vertebrates. These results support the hypothesis that chickadees maintaining a cold phenotype are better prepared than warm-phenotype individuals to respond to a sudden decline in temperature, such as what may be experienced in their natural wintering environment.
Collapse
Affiliation(s)
- François Vézina
- Départment de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'études Nordiques, Centre de la Science de la Biodiversité du Québec Université du Québec à Rimouski, Québec, Canada
| | - Emily Cornelius Ruhs
- Départment de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'études Nordiques, Centre de la Science de la Biodiversité du Québec Université du Québec à Rimouski, Québec, Canada
| | - Erin S O'Connor
- Department of Biology, Colgate University, Hamilton, New York
| | - Audrey Le Pogam
- Départment de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'études Nordiques, Centre de la Science de la Biodiversité du Québec Université du Québec à Rimouski, Québec, Canada
| | - Lyette Régimbald
- Départment de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BORÉAS, Centre d'études Nordiques, Centre de la Science de la Biodiversité du Québec Université du Québec à Rimouski, Québec, Canada
| | - Oliver P Love
- Department of Integrative Biology, University of Windsor, Ontario, Canada
| | | |
Collapse
|
12
|
Buttemer WA, Bauer S, Emmenegger T, Dimitrov D, Peev S, Hahn S. Moult-related reduction of aerobic scope in passerine birds. J Comp Physiol B 2019; 189:463-470. [DOI: 10.1007/s00360-019-01213-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 11/29/2022]
|
13
|
Kong X, Yao T, Zhou P, Kazak L, Tenen D, Lyubetskaya A, Dawes BA, Tsai L, Kahn BB, Spiegelman BM, Liu T, Rosen ED. Brown Adipose Tissue Controls Skeletal Muscle Function via the Secretion of Myostatin. Cell Metab 2018; 28:631-643.e3. [PMID: 30078553 PMCID: PMC6170693 DOI: 10.1016/j.cmet.2018.07.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/11/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
Skeletal muscle and brown adipose tissue (BAT) are functionally linked, as exercise increases browning via secretion of myokines. It is unknown whether BAT affects muscle function. Here, we find that loss of the transcription factor IRF4 in BAT (BATI4KO) reduces exercise capacity, mitochondrial function, ribosomal protein synthesis, and mTOR signaling in muscle and causes tubular aggregate formation. Loss of IRF4 induces myogenic gene expression in BAT, including the secreted factor myostatin, a known inhibitor of muscle function. Reducing myostatin via neutralizing antibodies or soluble receptor rescues the exercise capacity of BATI4KO mice. In addition, overexpression of IRF4 in brown adipocytes reduces serum myostatin and increases exercise capacity in muscle. Finally, mice housed at thermoneutrality have reduced IRF4 in BAT, lower exercise capacity, and elevated serum myostatin; these abnormalities are corrected by excising BAT. Collectively, our data point to an unsuspected level of BAT-muscle crosstalk driven by IRF4 and myostatin.
Collapse
Affiliation(s)
- Xingxing Kong
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| | - Ting Yao
- Division of Pediatric Endocrinology, Department of Pediatrics, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Peng Zhou
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lawrence Kazak
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Danielle Tenen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Anna Lyubetskaya
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Brian A Dawes
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Linus Tsai
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barbara B Kahn
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Bruce M Spiegelman
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Tiemin Liu
- Department of Endocrinology and Metabolism, State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Institute of Metabolism and Integrative Biology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200032, PR China; Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, PR China.
| | - Evan D Rosen
- Division of Endocrinology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
14
|
Large muscles are beneficial but not required for improving thermogenic capacity in small birds. Sci Rep 2018; 8:14009. [PMID: 30228279 PMCID: PMC6143541 DOI: 10.1038/s41598-018-32041-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/23/2018] [Indexed: 01/03/2023] Open
Abstract
It is generally assumed that small birds improve their shivering heat production capacity by developing the size of their pectoralis muscles. However, some studies have reported an enhancement of thermogenic capacity in the absence of muscle mass variation between seasons or thermal treatments. We tested the hypothesis that an increase in muscle mass is not a prerequisite for improving avian thermogenic capacity. We measured basal (BMR) and summit (Msum) metabolic rates of black capped chickadees (Poecile atricapillus) acclimated to thermoneutral (27 °C) and cold (-10 °C) temperatures and obtained body composition data from dissections. Cold acclimated birds consumed 44% more food, and had 5% and 20% higher BMR and Msum, respectively, compared to individuals kept at thermoneutrality. However, lean dry pectoralis and total muscle mass did not differ between treatments, confirming that the improvement of thermogenic capacity did not require an increase in skeletal muscle mass. Nevertheless, within temperature treatments, Msum was positively correlated with the mass of all measured muscles, including the pectoralis. Therefore, for a given acclimation temperature individuals with large muscles do benefit from muscle size in term of heat production but improving thermogenic capacity during cold acclimation likely requires an upregulation of cell functions.
Collapse
|
15
|
Cheviron ZA, Swanson DL. Comparative Transcriptomics of Seasonal Phenotypic Flexibility in Two North American Songbirds. Integr Comp Biol 2018; 57:1040-1054. [PMID: 29095984 DOI: 10.1093/icb/icx118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phenotypic flexibility allows organisms to reversibly alter their phenotypes to match the changing demands of seasonal environments. Because phenotypic flexibility is mediated, at least in part, by changes in gene regulation, comparative transcriptomic studies can provide insights into the mechanistic underpinnings of seasonal phenotypic flexibility, and the extent to which regulatory responses to changing seasons are conserved across species. To begin to address these questions, we sampled individuals of two resident North American songbird species, American goldfinch (Spinus tristis) and black-capped chickadee (Poecile atricapillus) in summer and winter to measure seasonal variation in pectoralis transcriptomic profiles and to identify conserved and species-specific elements of these seasonal profiles. We found that very few genes exhibited divergent responses to changes in season between species, and instead, a core set of over 1200 genes responded to season concordantly in both species. Moreover, several key metabolic pathways, regulatory networks, and gene functional classes were commonly recruited to induce seasonal phenotypic shifts in these species. The seasonal transcriptomic responses mirror winter increases in pectoralis mass and cellular metabolic intensity documented in previous studies of both species, suggesting that these seasonal phenotypic responses are due in part to changes in gene expression. Despite growing evidence of muscle nonshivering thermogenesis (NST) in young precocial birds, we did not find strong evidence of upregulation of genes putatively involved in NST during winter in either species, suggesting that seasonal modification of muscular NST is not a prominent contributor to winter increases in thermogenic capacity for adult passerine birds. Together, these results provide the first comprehensive overview of potential common regulatory mechanisms underlying seasonally flexible phenotypes in wild, free-ranging birds.
Collapse
Affiliation(s)
- Z A Cheviron
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - D L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
16
|
Zhang Y, Yap KN, Williams TD, Swanson DL. Experimental Increases in Foraging Costs Affect Pectoralis Muscle Mass and Myostatin Expression in Female, but Not Male, Zebra Finches (Taeniopygia guttata). Physiol Biochem Zool 2018; 91:849-858. [DOI: 10.1086/697153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Latimer CE, Cooper SJ, Karasov WH, Zuckerberg B. Does habitat fragmentation promote climate-resilient phenotypes? OIKOS 2018. [DOI: 10.1111/oik.05111] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christopher E. Latimer
- Dept of Forest and Wildlife Ecology; Univ. of Wisconsin-Madison; 226 Russell Labs 1630 Linden Drive Madison WI 53706 USA
| | | | - William H. Karasov
- Dept of Forest and Wildlife Ecology; Univ. of Wisconsin-Madison; 226 Russell Labs 1630 Linden Drive Madison WI 53706 USA
| | - Benjamin Zuckerberg
- Dept of Forest and Wildlife Ecology; Univ. of Wisconsin-Madison; 226 Russell Labs 1630 Linden Drive Madison WI 53706 USA
| |
Collapse
|
18
|
Yap KN, Serota MW, Williams TD. The Physiology of Exercise in Free-Living Vertebrates: What Can We Learn from Current Model Systems? Integr Comp Biol 2018; 57:195-206. [PMID: 28662569 DOI: 10.1093/icb/icx016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
SYNOPSIS Many behaviors crucial for survival and reproductive success in free-living animals, including migration, foraging, and escaping from predators, involve elevated levels of physical activity. However, although there has been considerable interest in the physiological and biomechanical mechanisms that underpin individual variation in exercise performance, to date, much work on the physiology of exercise has been conducted in laboratory settings that are often quite removed from the animal's ecology. Here we review current, laboratory-based model systems for exercise (wind or swim tunnels for migration studies in birds and fishes, manipulation of exercise associated with non-migratory activity in birds, locomotion in lizards, and wheel running in rodents) to identify common physiological markers of individual variation in exercise capacity and/or costs of increased activity. Secondly, we consider how physiological responses to exercise might be influenced by (1) the nature of the activity (i.e., voluntary or involuntary, intensity, and duration), and (2) resource acquisition and food availability, in the context of routine activities in free-living animals. Finally, we consider evidence that the physiological effects of experimentally-elevated activity directly affect components of fitness such as reproduction and survival. We suggest that developing more ecologically realistic laboratory systems, incorporating resource-acquisition, functional studies across multiple physiological systems, and a life-history framework, with reproduction and survival end-points, will help reveal the mechanisms underlying the consequences of exercise, and will complement studies in free-living animals taking advantage of new developments in wildlife-tracking.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| | - Mitchell W Serota
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British V5A 1S6, Canada, Columbia
| |
Collapse
|
19
|
Vézina F, Gerson AR, Guglielmo CG, Piersma T. The performing animal: causes and consequences of body remodeling and metabolic adjustments in red knots facing contrasting thermal environments. Am J Physiol Regul Integr Comp Physiol 2017; 313:R120-R131. [DOI: 10.1152/ajpregu.00453.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022]
Abstract
Using red knots ( Calidris canutus) as a model, we determined how changes in mass and metabolic activity of organs relate to temperature-induced variation in metabolic performance. In cold-acclimated birds, we expected large muscles and heart as well as improved oxidative capacity and lipid transport, and we predicted that this would explain variation in maximal thermogenic capacity (Msum). We also expected larger digestive and excretory organs in these same birds and predicted that this would explain most of the variation in basal metabolic rate (BMR). Knots kept at 5°C were 20% heavier and maintained 1.5 times more body fat than individuals kept in thermoneutral conditions (25°C). The birds in the cold also had a BMR up to 32% higher and a Msum 16% higher than birds at 25°C. Organs were larger in the cold, with muscles and heart being 9–20% heavier and digestive and excretory organs being 21–36% larger than at thermoneutrality. Rather than the predicted digestive and excretory organs, the cold-induced increase in BMR correlated with changes in mass of the heart, pectoralis, and carcass. Msum varied positively with the mass of the pectoralis, supracoracoideus, and heart, highlighting the importance of muscles and cardiac function in cold endurance. Cold-acclimated knots also expressed upregulated capacity for lipid transport across mitochondrial membranes [carnitine palmitoyl transferase (CPT)] in their pectoralis and leg muscles, higher lipid catabolism capacity in their pectoralis muscles [β-hydroxyacyl CoA-dehydrogenase (HOAD)], and elevated oxidative capacity in their liver and kidney (citrate synthase). These adjustments may have contributed to BMR through changes in metabolic intensity. Positive relationships among Msum, CPT, and HOAD in the heart also suggest indirect constraints on thermogenic capacity through limited cardiac capacity.
Collapse
Affiliation(s)
- François Vézina
- Département de Biologie, Chimie et Géographie, Groupe de Recherche sur les Environnements Nordiques BOREAS, Centre d’Études Nordiques, Centre de la Science de la Biodiversité du Québec, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | - Alexander R. Gerson
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Christopher G. Guglielmo
- Department of Biology, Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Theunis Piersma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems and Utrecht University, Den Burg, The Netherlands; and
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| |
Collapse
|
20
|
Zhang Y, Eyster K, Swanson DL. Context-dependent regulation of pectoralis myostatin and lipid transporters by temperature and photoperiod in dark-eyed juncos. Curr Zool 2017; 64:23-31. [PMID: 29492035 PMCID: PMC5809029 DOI: 10.1093/cz/zox020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/17/2017] [Indexed: 11/14/2022] Open
Abstract
A prominent example of seasonal phenotypic flexibility is the winter increase in thermogenic capacity (=summit metabolism, [Formula: see text]) in small birds, which is often accompanied by increases in pectoralis muscle mass and lipid catabolic capacity. Temperature or photoperiod may be drivers of the winter phenotype, but their relative impacts on muscle remodeling or lipid transport pathways are little known. We examined photoperiod and temperature effects on pectoralis muscle expression of myostatin, a muscle growth inhibitor, and its tolloid-like protein activators (TLL-1 and TLL-2), and sarcolemmal and intracellular lipid transporters in dark-eyed juncos Junco hyemalis. We acclimated winter juncos to four temperature (3 °C or 24 °C) and photoperiod [short-day (SD) = 8L:16D; long-day (LD) = 16L:8D] treatments. We found that myostatin, TLL-1, TLL-2, and lipid transporter mRNA expression and myostatin protein expression did not differ among treatments, but treatments interacted to influence lipid transporter protein expression. Fatty acid translocase (FAT/CD36) levels were higher for cold SD than for other treatments. Membrane-bound fatty acid binding protein (FABPpm) levels, however, were higher for the cold LD treatment than for cold SD and warm LD treatments. Cytosolic fatty acid binding protein (FABPc) levels were higher on LD than on SD at 3 °C, but higher on SD than on LD at 24 °C. Cold temperature groups showed upregulation of these lipid transporters, which could contribute to elevated Msum compared to warm groups on the same photoperiod. However, interactions of temperature or photoperiod effects on muscle remodeling and lipid transport pathways suggest that these effects are context-dependent.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA and
- Address correspondence to Yufeng Zhang. E-mail: , who is now at Department of Biological Science, Auburn University, Auburn, AL 36849, USA
| | - Kathleen Eyster
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, USA
| | - David L Swanson
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA and
| |
Collapse
|
21
|
Yap KN, Kim OR, Harris KC, Williams TD. Physiological effects of increased foraging effort in a small passerine. J Exp Biol 2017; 220:4282-4291. [DOI: 10.1242/jeb.160812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 09/21/2017] [Indexed: 01/04/2023]
Abstract
Foraging to obtain food, either for self-maintenance or at presumably elevated rates to provision offspring, is thought to be an energetically demanding activity but one that is essential for fitness (higher reproductive success and survival). Nevertheless, the physiological mechanisms that allow some individuals to support higher foraging performance, and the mechanisms underlying costs of high workload, remain poorly understood. We experimentally manipulated foraging behaviour in zebra finches (Taeniopygia guttata) using the technique described by Koetsier and Verhulst (2011). Birds in the “high foraging effort” (HF) group had to obtain food either while flying/hovering or by making repeated hops or jumps from the ground up to the feeder, behaviour typical of the extremely energetically-expensive foraging mode observed in many free-living small passerines. HF birds made significantly more trips to the feeder per 10min whereas control birds spent more time (perched) at the feeder. Despite this marked change in foraging behaviour we documented few short- or long-term effects of “training” (3 days and 90 days of “training” respectively) and some of these effects were sex-specific. There were no effects of treatment on BMR, hematocrit, hemoglobin, or plasma glycerol, triglyceride, glucose levels, and masses of kidney, crop, large intestine, small intestine, gizzard and liver. HF females had higher masses of flight muscle, leg muscle, heart and lung compared to controls. In contrast, HF males had lower heart mass than controls and there were no differences for other organs. When both sexes were pooled, there were no effects of treatment on body composition. Finally, birds in the HF treatment had higher levels of reactive oxygen metabolites (dROMs) and, consequently, although treatment did not affect total antioxidant capacity (OXY), birds in the HF treatment had higher oxidative stress.
Collapse
Affiliation(s)
- Kang Nian Yap
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Oh Run Kim
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Karilyn C. Harris
- Department of Psychology, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Tony D. Williams
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
22
|
Briga M, Verhulst S. Individual variation in metabolic reaction norms over ambient temperature causes low correlation between basal and standard metabolic rate. J Exp Biol 2017; 220:3280-3289. [DOI: 10.1242/jeb.160069] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/04/2017] [Indexed: 12/19/2022]
Abstract
Basal metabolic rate (BMR) is often assumed to be indicative of the energy turnover at ambient temperatures (Ta) below the thermoneutral zone (SMR), but this assumption has remained largely untested. Using a new statistical approach, we quantified the consistency in nocturnal metabolic rate across a temperature range in zebra finches (n=3,213 measurements on 407 individuals) living permanently in eight outdoor aviaries. Foraging conditions were either benign or harsh, and body mass and mass-adjusted BMRm and SMRm were lower in individuals living in a harsh foraging environment. The correlation between SMRm at different Tas was high (r=0.91), independent of foraging environment, showing that individuals are consistently ranked according to their SMRm. However, the correlations between BMRm and SMRm were always lower (average: 0.29; range: 0<r<0.50), in particular in the benign foraging environment. Variation in metabolic response to lower Ta at least in part reflected differential body temperature (Tb) regulation: early morning Tb was lower at low Ta's, and more so in individuals with a weaker metabolic response to lower Ta's. Our findings have implications for the use of BMR in the estimation of time-energy budgets and comparative analyses: we suggest that the use of metabolic rates at ecologically relevant ambient temperatures, such as the easily tractable SMR, will be more informative than the use of BMR as a proxy for energy turnover.
Collapse
Affiliation(s)
- Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
- Present address: Department of Biology, University of Turku, Vesilinnantie 5, 20014 Turku, Finland
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
23
|
Barceló G, Love OP, Vézina F. Uncoupling Basal and Summit Metabolic Rates in White-Throated Sparrows: Digestive Demand Drives Maintenance Costs, but Changes in Muscle Mass Are Not Needed to Improve Thermogenic Capacity. Physiol Biochem Zool 2016; 90:153-165. [PMID: 28277963 DOI: 10.1086/689290] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Avian basal metabolic rate (BMR) and summit metabolic rate (Msum) vary in parallel during cold acclimation and acclimatization, which implies a functional link between these variables. However, evidence suggests that these parameters may reflect different physiological systems acting independently. We tested this hypothesis in white-throated sparrows (Zonotrichia albicollis) acclimated to two temperatures (-8° and 28°C) and two diets (0% and 30% cellulose). We expected to find an uncoupling of Msum and BMR where Msum, a measure of maximal shivering heat production, would reflect muscle and heart mass variation and would respond only to temperature, while BMR would reflect changes in digestive and excretory organs in response to daily food intake, responding to both temperature and diet. We found that the gizzard, liver, kidneys, and intestines responded to treatments through a positive relationship with food intake. BMR was 15% higher in cold-acclimated birds and, as expected, varied with food intake and the mass of digestive and excretory organs. In contrast, although Msum was 19% higher in cold-acclimated birds, only heart mass responded to temperature (+18% in the cold). Pectoral muscles did not change in mass with temperature but were 8.2% lighter on the cellulose diet. Nevertheless, Msum varied positively with the mass of heart and skeletal muscles but only in cold-acclimated birds. Our results therefore suggest that an upregulation of muscle metabolic intensity is required for cold acclimation. This study increases support for the hypothesis that BMR and Msum reflect different physiological systems responding in parallel to constraints associated with cold environments.
Collapse
|
24
|
Swanson DL, King MO, Culver W, Zhang Y. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds. Physiol Biochem Zool 2016; 90:210-222. [PMID: 28277951 DOI: 10.1086/688956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (Msum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in Msum, we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.
Collapse
|
25
|
Zhang Y, Hood WR. Current versus future reproduction and longevity: a re-evaluation of predictions and mechanisms. J Exp Biol 2016; 219:3177-3189. [PMID: 27802148 PMCID: PMC5091378 DOI: 10.1242/jeb.132183] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative damage is predicted to be a mediator of trade-offs between current reproduction and future reproduction or survival, but most studies fail to support such predictions. We suggest that two factors underlie the equivocal nature of these findings: (1) investigators typically assume a negative linear relationship between current reproduction and future reproduction or survival, even though this is not consistently shown by empirical studies; and (2) studies often fail to target mechanisms that could link interactions between sequential life-history events. Here, we review common patterns of reproduction, focusing on the relationships between reproductive performance, survival and parity in females. Observations in a range of species show that performance between sequential reproductive events can decline, remain consistent or increase. We describe likely bioenergetic consequences of reproduction that could underlie these changes in fitness, including mechanisms that could be responsible for negative effects being ephemeral, persistent or delayed. Finally, we make recommendations for designing future studies. We encourage investigators to carefully consider additional or alternative measures of bioenergetic function in studies of life-history trade-offs. Such measures include reactive oxygen species production, oxidative repair, mitochondrial biogenesis, cell proliferation, mitochondrial DNA mutation and replication error and, importantly, a measure of the respiratory function to determine whether measured differences in bioenergetic state are associated with a change in the energetic capacity of tissues that could feasibly affect future reproduction or lifespan. More careful consideration of the life-history context and bioenergetic variables will improve our understanding of the mechanisms that underlie the life-history patterns of animals.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Wendy R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
26
|
Basal and maximal metabolic rates differ in their response to rapid temperature change among avian species. J Comp Physiol B 2016; 186:919-35. [DOI: 10.1007/s00360-016-1001-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/22/2016] [Accepted: 05/17/2016] [Indexed: 11/28/2022]
|
27
|
Wang JQ, Wang JJ, Wu XJ, Zheng WH, Liu JS. Short photoperiod increases energy intake, metabolic thermogenesis and organ mass in silky starlings Sturnus sericeus. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2016; 37:75-83. [PMID: 27029864 DOI: 10.13918/j.issn.2095-8137.2016.2.75] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Environmental cues play important roles in the regulation of an animal's physiology and behavior. One such cue, photoperiod, plays an important role in the seasonal acclimatization of birds. It has been demonstrated that an animal's body mass, basal metabolic rate (BMR), and energy intake, are all affected by photoperiod. The present study was designed to examine photoperiod induced changes in the body mass, metabolism and metabolic organs of the silky starling, Sturnus sericeus. Captive silky starlings increased their body mass and BMR during four weeks of acclimation to a short photoperiod. Birds acclimated to a short photoperiod also increased the mass of certain organs (liver, gizzard and small intestine), and both gross energy intake (GEI) and digestible energy intake (DEI), relative to those acclimated to a long photoperiod. Furthermore, BMR was positively correlated with body mass, liver mass, GEI and DEI. These results suggest that silky starlings increase metabolic thermogenesis when exposed to a short photoperiod by increasing their body and metabolic organ mass, and their GEI and DEI. These findings support the hypothesis that bird species from temperate climates typically display high phenotypic flexibility in thermogenic capacity.
Collapse
Affiliation(s)
- Jia-Qi Wang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Jia-Jia Wang
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Xu-Jian Wu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China
| | - Wei-Hong Zheng
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China
| | - Jin-Song Liu
- School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China.
| |
Collapse
|
28
|
Lipid-induced thermogenesis is up-regulated by the first cold-water immersions in juvenile penguins. J Comp Physiol B 2016; 186:639-50. [PMID: 26924130 DOI: 10.1007/s00360-016-0975-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/01/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
The passage from shore to marine life is a critical step in the development of juvenile penguins and is characterized by a fuel selection towards lipid oxidation concomitant to an enhancement of lipid-induced thermogenesis. However, mechanisms of such thermogenic improvement at fledging remain undefined. We used two different groups of pre-fledging king penguins (Aptenodytes patagonicus) to investigate the specific contribution of cold exposure during water immersion to lipid metabolism. Terrestrial penguins that had never been immersed in cold water were compared with experimentally cold-water immersed juveniles. Experimentally immersed penguins underwent ten successive immersions at approximately 9-10 °C for 5 h over 3 weeks. We evaluated adaptive thermogenesis by measuring body temperature, metabolic rate and shivering activity in fully immersed penguins exposed to water temperatures ranging from 12 to 29 °C. Both never-immersed and experimentally immersed penguins were able to maintain their homeothermy in cold water, exhibiting similar thermogenic activity. In vivo, perfusion of lipid emulsion at thermoneutrality induced a twofold larger calorigenic response in experimentally immersed than in never-immersed birds. In vitro, the respiratory rates and the oxidative phosphorylation efficiency of isolated muscle mitochondria were not improved with cold-water immersions. The present study shows that acclimation to cold water only partially reproduced the fuel selection towards lipid oxidation that characterizes penguin acclimatization to marine life.
Collapse
|
29
|
Nilsson JF, Nilsson JÅ. Fluctuating selection on basal metabolic rate. Ecol Evol 2016; 6:1197-202. [PMID: 26839687 PMCID: PMC4725447 DOI: 10.1002/ece3.1954] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 11/23/2022] Open
Abstract
BMR (Basal metabolic rate) is an important trait in animal life history as it represents a significant part of animal energy budgets. BMR has also been shown to be positively related to sustainable work rate and maximal thermoregulatory capacity. To this date, most of the studies have focused on the causes of interspecific and intraspecific variation in BMR, and fairly little is known about the fitness consequences of different metabolic strategies. In this study, we show that winter BMR affects local survival in a population of wild blue tits (Cyanistes caeruleus), but that the selection direction differs between years. We argue that this fluctuating selection is probably a consequence of varying winter climate with a positive relation between survival and BMR during cold and harsh conditions, but a negative relation during mild winters. This fluctuating selection can not only explain the pronounced variation in BMR in wild populations, but will also give us new insights into how energy turnover rates can shape the life‐history strategies of animals. Furthermore, the study shows that the process of global warming may cause directional selection for a general reduction in BMR, affecting the general life‐history strategy on the population level.
Collapse
Affiliation(s)
- Johan F Nilsson
- Department of Biology, Evolutionary Ecology Lund University Ecology Building SE-223 62 Lund Sweden
| | - Jan-Åke Nilsson
- Department of Biology, Evolutionary Ecology Lund University Ecology Building SE-223 62 Lund Sweden
| |
Collapse
|
30
|
Halsey LG. Do animals exercise to keep fit? J Anim Ecol 2016; 85:614-20. [DOI: 10.1111/1365-2656.12488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/27/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Lewis G. Halsey
- University of Roehampton Holybourne Avenue London SW15 4JD UK
| |
Collapse
|
31
|
Zhang Y, Carter T, Eyster K, Swanson DL. Acute cold and exercise training up-regulate similar aspects of fatty acid transport and catabolism in house sparrows (Passer domesticus). ACTA ACUST UNITED AC 2015; 218:3885-93. [PMID: 26486368 DOI: 10.1242/jeb.126128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/08/2015] [Indexed: 12/21/2022]
Abstract
Summit maximum thermoregulatory metabolic rate (Msum) and maximum exercise metabolic rate (MMR) both increase in response to acute cold or exercise training in birds. Because lipids are the main fuel supporting both thermogenesis and exercise in birds, adjustments to lipid transport and catabolic capacities may support elevated energy demands from cold and exercise training. To examine a potential mechanistic role for lipid transport and catabolism in organismal cross-training effects (exercise effects on both exercise and thermogenesis, and vice versa), we measured enzyme activities and mRNA and protein expression in pectoralis muscle for several key steps of lipid transport and catabolism pathways in house sparrows (Passer domesticus) during acute exercise and cold training. Both training protocols elevated pectoralis protein levels of fatty acid translocase (FAT/CD36), cytosolic fatty acid-binding protein, and citrate synthase (CS) activity. However, mRNA expression of FAT/CD36 and both mRNA and protein expression of plasma membrane fatty acid-binding protein did not change for either training group. CS activities in supracoracoideus, leg and heart, and carnitine palmitoyl transferase (CPT) and β-hydroxyacyl CoA-dehydrogenase activities in all muscles did not vary significantly with either training protocol. Both Msum and MMR were significantly positively correlated with CPT and CS activities. These data suggest that up-regulation of trans-sarcolemmal and intramyocyte lipid transport capacities and cellular metabolic intensities, along with previously documented increases in body and pectoralis muscle masses and pectoralis myostatin (a muscle growth inhibitor) levels, are common mechanisms underlying the training effects of both exercise and shivering in birds.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Travis Carter
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Kathleen Eyster
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, USA
| | - David L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|