1
|
de Greef E, Einfeldt AL, Miller PJO, Ferguson SH, Garroway CJ, Lefort KJ, Paterson IG, Bentzen P, Feyrer LJ. Genomics reveal population structure, evolutionary history, and signatures of selection in the northern bottlenose whale, Hyperoodon ampullatus. Mol Ecol 2022; 31:4919-4931. [PMID: 35947506 PMCID: PMC9804413 DOI: 10.1111/mec.16643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 01/05/2023]
Abstract
Information on wildlife population structure, demographic history, and adaptations are fundamental to understanding species evolution and informing conservation strategies. To study this ecological context for a cetacean of conservation concern, we conducted the first genomic assessment of the northern bottlenose whale, Hyperoodon ampullatus, using whole-genome resequencing data (n = 37) from five regions across the North Atlantic Ocean. We found a range-wide pattern of isolation-by-distance with a genetic subdivision distinguishing three subgroups: the Scotian Shelf, western North Atlantic, and Jan Mayen regions. Signals of elevated levels of inbreeding in the Endangered Scotian Shelf population indicate this population may be more vulnerable than the other two subgroups. In addition to signatures of inbreeding, evidence of local adaptation in the Scotian Shelf was detected across the genome. We found a long-term decline in effective population size for the species, which poses risks to their genetic diversity and may be exacerbated by the isolating effects of population subdivision. Protecting important habitat and migratory corridors should be prioritized to rebuild population sizes that were diminished by commercial whaling, strengthen gene flow, and ensure animals can move across regions in response to environmental changes.
Collapse
Affiliation(s)
- Evelien de Greef
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada,Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | | | | | | | - Colin J. Garroway
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Kyle J. Lefort
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Ian G. Paterson
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Laura J. Feyrer
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada,Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNova ScotiaCanada
| |
Collapse
|
2
|
Gutarra S, Stubbs TL, Moon BC, Palmer C, Benton MJ. Large size in aquatic tetrapods compensates for high drag caused by extreme body proportions. Commun Biol 2022; 5:380. [PMID: 35484197 PMCID: PMC9051157 DOI: 10.1038/s42003-022-03322-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/25/2022] [Indexed: 11/08/2022] Open
Abstract
Various Mesozoic marine reptile lineages evolved streamlined bodies and efficient lift-based swimming, as seen in modern aquatic mammals. Ichthyosaurs had low-drag bodies, akin to modern dolphins, but plesiosaurs were strikingly different, with long hydrofoil-like limbs and greatly variable neck and trunk proportions. Using computational fluid dynamics, we explore the effect of this extreme morphological variation. We find that, independently of their body fineness ratio, plesiosaurs produced more drag than ichthyosaurs and modern cetaceans of equal mass due to their large limbs, but these differences were not significant when body size was accounted for. Additionally, necks longer than twice the trunk length can substantially increase the cost of forward swimming, but this effect was cancelled out by the evolution of big trunks. Moreover, fast rates in the evolution of neck proportions in the long-necked elasmosaurs suggest that large trunks might have released the hydrodynamic constraints on necks thus allowing their extreme enlargement.
Collapse
Affiliation(s)
- Susana Gutarra
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
- Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Thomas L Stubbs
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Benjamin C Moon
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Colin Palmer
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Michael J Benton
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
3
|
Siegal E, Hooker SK, Isojunno S, Miller PJO. Beaked whales and state-dependent decision-making: how does body condition affect the trade-off between foraging and predator avoidance? Proc Biol Sci 2022; 289:20212539. [PMID: 35078370 PMCID: PMC8790365 DOI: 10.1098/rspb.2021.2539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/20/2021] [Indexed: 01/26/2023] Open
Abstract
Body condition is central to how animals balance foraging with predator avoidance-a trade-off that fundamentally affects animal fitness. Animals in poor condition may accept greater predation risk to satisfy current foraging 'needs', while those in good condition may be more risk averse to protect future 'assets'. These state-dependent behavioural predictions can help interpret responses to human activities, but are little explored in marine animals. This study investigates the influence of body condition on how beaked whales trade-off foraging and predator avoidance. Body density (indicating lipid-energy stores) was estimated for 15 foraging northern bottlenose whales tagged near Jan Mayen, Norway. Composite indices of foraging (diving and echolocation clicks) and anti-predation (long ascents, non-foraging dives and silent periods reducing predator eavesdropping) were negatively related. Experimental sonar exposures led to decreased foraging and increased risk aversion, confirming a foraging/perceived safety trade-off. However, lower lipid stores were not related to a decrease in predator avoidance versus foraging, i.e. worse condition animals did not prioritize foraging. Individual differences (personalities) or reproductive context could offer alternative explanations for the observed state-behaviour relationships. This study provides evidence of foraging/predator-avoidance trade-offs in a marine top predator and demonstrates that animals in worse condition might not always take more risks.
Collapse
Affiliation(s)
- Eilidh Siegal
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| | - Sascha K. Hooker
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| | - Saana Isojunno
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| | - Patrick J. O. Miller
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews KY16 8LB, UK
| |
Collapse
|
4
|
Williams CL, Ponganis PJ. Diving physiology of marine mammals and birds: the development of biologging techniques. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200211. [PMID: 34121464 PMCID: PMC8200650 DOI: 10.1098/rstb.2020.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2021] [Indexed: 11/12/2022] Open
Abstract
In the 1940s, Scholander and Irving revealed fundamental physiological responses to forced diving of marine mammals and birds, setting the stage for the study of diving physiology. Since then, diving physiology research has moved from the laboratory to the field. Modern biologging, with the development of microprocessor technology, recorder memory capacity and battery life, has advanced and expanded investigations of the diving physiology of marine mammals and birds. This review describes a brief history of the start of field diving physiology investigations, including the invention of the time depth recorder, and then tracks the use of biologging studies in four key diving physiology topics: heart rate, blood flow, body temperature and oxygen store management. Investigations of diving heart rates in cetaceans and O2 store management in diving emperor penguins are highlighted to emphasize the value of diving physiology biologging research. The review concludes with current challenges, remaining diving physiology questions and what technologies are needed to advance the field. This article is part of the theme issue 'Measuring physiology in free-living animals (Part I)'.
Collapse
Affiliation(s)
- Cassondra L. Williams
- National Marine Mammal Foundation, 2240 Shelter Island Drive, Suite 200, San Diego, CA 92106, USA
| | - Paul J. Ponganis
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093-0204, USA
| |
Collapse
|
5
|
Aoki K, Watanabe Y, Inamori D, Funasaka N, Sakamoto KQ. Towards non-invasive heart rate monitoring in free-ranging cetaceans: a unipolar suction cup tag measured the heart rate of trained Risso's dolphins. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200225. [PMID: 34176321 DOI: 10.1098/rstb.2020.0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heart rate monitoring in free-ranging cetaceans to understand their behavioural ecology and diving physiology is challenging. Here, we developed a simple, non-invasive method to monitor the heart rate of cetaceans in the field using an electrocardiogram-measuring device and a single suction cup equipped with an electrode. The unipolar suction cup was placed on the left lateral body surface behind the pectoral fin of Risso's dolphins (Grampus griseus) and a false killer whale (Pseudorca crassidens) in captivity; their heart rate was successfully monitored. We observed large heart rate oscillations corresponding to respiration in the motionless whales during surfacing (a false killer whale, mean 47 bpm, range 20-75 bpm; Risso's dolphins, mean ± s.d. 61 ± 15 bpm, range 28-120 bpm, n = 4 individuals), which was consistent with the sinus arrhythmia pattern (eupneic tachycardia and apneic bradycardia) observed in other cetaceans. Immediately after respiration, the heart rate rapidly increased to approximately twice that observed prior to the breath. Heart rate then gradually decreased at around 20-50 s and remained relatively constant until the next breath. Furthermore, we successfully monitored the heart rate of a free-swimming Risso's dolphin. The all-in-one suction cup device is feasible for field use without restraining animals and is helpful in further understanding the diving physiology of free-ranging cetaceans. This article is part of the theme issue 'Measuring physiology in free-living animals (Part II)'.
Collapse
Affiliation(s)
- Kagari Aoki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Yurie Watanabe
- Taiji Whale Museum and Aquarium, Wakayama 649-5171, Japan
| | - Daiki Inamori
- Taiji Whale Museum and Aquarium, Wakayama 649-5171, Japan
| | - Noriko Funasaka
- Taiji Whale Museum and Aquarium, Wakayama 649-5171, Japan.,Cetacean Research Center, Graduate School of Bioresources, Mie University, Mie 514-8507, Japan
| | - Kentaro Q Sakamoto
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| |
Collapse
|
6
|
Potvin J, Cade DE, Werth AJ, Shadwick RE, Goldbogen JA. Rorqual Lunge-Feeding Energetics Near and Away from the Kinematic Threshold of Optimal Efficiency. Integr Org Biol 2021; 3:obab005. [PMID: 34104873 PMCID: PMC8179629 DOI: 10.1093/iob/obab005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Humpback and blue whales are large baleen-bearing cetaceans, which use a unique prey-acquisition strategy—lunge feeding—to engulf entire patches of large plankton or schools of forage fish and the water in which they are embedded. Dynamically, and while foraging on krill, lunge-feeding incurs metabolic expenditures estimated at up to 20.0 MJ. Because of prey abundance and its capture in bulk, lunge feeding is carried out at high acquired-to-expended energy ratios of up to 30 at the largest body sizes (∼27 m). We use bio-logging tag data and the work-energy theorem to show that when krill-feeding at depth while using a wide range of prey approach swimming speeds (2–5 m/s), rorquals generate significant and widely varying metabolic power output during engulfment, typically ranging from 10 to 50 times the basal metabolic rate of land mammals. At equal prey field density, such output variations lower their feeding efficiency two- to three-fold at high foraging speeds, thereby allowing slow and smaller rorquals to feed more efficiently than fast and larger rorquals. The analysis also shows how the slowest speeds of harvest so far measured may be connected to the biomechanics of the buccal cavity and the prey’s ability to collectively avoid engulfment. Such minimal speeds are important as they generate the most efficient lunges. Sommaire Les rorquals à bosse et rorquals bleus sont des baleines à fanons qui utilisent une technique d’alimentation unique impliquant une approche avec élan pour engouffrer de larges quantités de plancton et bancs de petits poissons, ainsi que la masse d’eau dans laquelle ces proies sont situés. Du point de vue de la dynamique, et durant l’approche et engouffrement de krill, leurs dépenses énergétiques sont estimées jusqu’à 20.0 MJ. À cause de l’abondance de leurs proies et capture en masse, cette technique d’alimentation est effectuée à des rapports d’efficacité énergétique (acquise -versus- dépensée) estimés aux environs de 30 dans le cas des plus grandes baleines (27 m). Nous utilisons les données recueillies par des capteurs de bio-enregistrement ainsi que le théorème reliant l’énergie à l’effort pour démontrer comment les rorquals s’alimentant sur le krill à grandes profondeurs, et à des vitesses variant entre 2 et 5 m/s, maintiennent des taux de dépenses énergétiques entre 10 et 50 fois le taux métabolique basal des mammifères terrestres. À densités de proies égales, ces variations d’énergie utilisée peuvent réduire le rapport d’efficacité énergétique par des facteurs entre 2x et 3x, donc permettant aux petits et plus lents rorquals de chasser avec une efficacité comparable à celle des rorquals les plus grands et rapides. Notre analyse démontre aussi comment des vitesses d’approche plus lentes peuvent être reliées à la biomécanique de leur poche ventrale extensible, et à l’habilitée des proies à éviter d’être engouffrer. Ces minimums de vitesses sont importants car ils permettent une alimentation plus efficace énergétiquement.
Collapse
Affiliation(s)
- J Potvin
- Department of Physics, Saint Louis University, St. Louis, MO 63103, USA
| | - D E Cade
- Institute of Marine Sciences, University of California Santa Cruz, Sant Cruz, CA 95060, USA
| | - A J Werth
- Department of Biology, Hampden-Sydney College, Hampden-Sydney, VA 23943, USA
| | - R E Shadwick
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - J A Goldbogen
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
7
|
Gavrilchuk K, Lesage V, Fortune SME, Trites AW, Plourde S. Foraging habitat of North Atlantic right whales has declined in the Gulf of St. Lawrence, Canada, and may be insufficient for successful reproduction. ENDANGER SPECIES RES 2021. [DOI: 10.3354/esr01097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Climate-induced changes in calanoid copepod (Calanus spp.) availability in traditional feeding areas might explain why a large proportion of the North Atlantic right whale Eubalaena glacialis population has fed in the Gulf of St. Lawrence (Canada) in recent years. However, little is known about the distribution of copepods in the gulf, and whether their abundance is sufficient to energetically sustain right whales. We used a mechanistic modelling approach to predict areas within the gulf that have foraging potential for adult female right whales, based on the annual energetic needs of resting, pregnant and lactating females, and their theoretical prey density requirements. We identified suitable foraging areas for right whales by coupling a foraging bioenergetics model with a 12 yr data set (2006-2017) describing the abundance and 3-dimensional distribution of late-stage Calanus spp. in the gulf. Prey densities in the southern gulf (from Shediac Valley to the Magdalen Islands) supported all 3 reproductive states in most (≥6) years. However, foraging habitat became progressively sparse in the southern gulf over time, with noticeably less suitable habitat available after 2014. Few other potentially suitable foraging areas were identified elsewhere in the gulf. Overall, the availability of foraging habitat in the gulf varied considerably between years, and was higher for resting females than for pregnant and lactating females. Our findings are consistent with the recent low calving rates, and indicate that prey biomass in the Gulf of St. Lawrence may be insufficient in most years to support successful reproduction of North Atlantic right whales.
Collapse
Affiliation(s)
- K Gavrilchuk
- Fisheries and Oceans Canada, Mont-Joli, QC G5H 3Z4, Canada
| | - V Lesage
- Fisheries and Oceans Canada, Mont-Joli, QC G5H 3Z4, Canada
| | - SME Fortune
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - AW Trites
- Marine Mammal Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - S Plourde
- Fisheries and Oceans Canada, Mont-Joli, QC G5H 3Z4, Canada
| |
Collapse
|
8
|
Aoki K, Isojunno S, Bellot C, Iwata T, Kershaw J, Akiyama Y, Martín López LM, Ramp C, Biuw M, Swift R, Wensveen PJ, Pomeroy P, Narazaki T, Hall A, Sato K, Miller PJO. Aerial photogrammetry and tag-derived tissue density reveal patterns of lipid-store body condition of humpback whales on their feeding grounds. Proc Biol Sci 2021; 288:20202307. [PMID: 33499785 PMCID: PMC7893258 DOI: 10.1098/rspb.2020.2307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Monitoring the body condition of free-ranging marine mammals at different life-history stages is essential to understand their ecology as they must accumulate sufficient energy reserves for survival and reproduction. However, assessing body condition in free-ranging marine mammals is challenging. We cross-validated two independent approaches to estimate the body condition of humpback whales (Megaptera novaeangliae) at two feeding grounds in Canada and Norway: animal-borne tags (n = 59) and aerial photogrammetry (n = 55). Whales that had a large length-standardized projected area in overhead images (i.e. whales looked fatter) had lower estimated tissue body density (TBD) (greater lipid stores) from tag data. Linking both measurements in a Bayesian hierarchical model to estimate the true underlying (hidden) tissue body density (uTBD), we found uTBD was lower (-3.5 kg m-3) in pregnant females compared to adult males and resting females, while in lactating females it was higher (+6.0 kg m-3). Whales were more negatively buoyant (+5.0 kg m-3) in Norway than Canada during the early feeding season, possibly owing to a longer migration from breeding areas. While uTBD decreased over the feeding season across life-history traits, whale tissues remained negatively buoyant (1035.3 ± 3.8 kg m-3) in the late feeding season. This study adds confidence to the effectiveness of these independent methods to estimate the body condition of free-ranging whales.
Collapse
Affiliation(s)
- Kagari Aoki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Saana Isojunno
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Charlotte Bellot
- Department of Marine Biology, University of Neuchâtel, Neuchâtel 2000, Switzerland
| | - Takashi Iwata
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Joanna Kershaw
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Yu Akiyama
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Lucía M Martín López
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Asociación Ipar Perspective, Sopela 48600, Spain
| | - Christian Ramp
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Mingan Island Cetacean Study (MICS), St. Lambert, Quebec, Canada G0G 1V0
| | - Martin Biuw
- Fram Centre, Institute of Marine Research, Tromsø N-9296, Norway
| | - René Swift
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Paul J Wensveen
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.,Faculty of Life and Environmental Sciences, University of Iceland, 102 Reykjavik, Iceland
| | - Patrick Pomeroy
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Tomoko Narazaki
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Ailsa Hall
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 2778564, Japan
| | - Patrick J O Miller
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
9
|
Larramendi A, Paul GS, Hsu SY. A review and reappraisal of the specific gravities of present and past multicellular organisms, with an emphasis on tetrapods. Anat Rec (Hoboken) 2020; 304:1833-1888. [PMID: 33258532 DOI: 10.1002/ar.24574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/09/2022]
Abstract
The density, or specific gravity (SG), of organisms has numerous important implications for their form, function, ecology, and other facets of beings living and dead, and it is especially necessary to apply SG values that are as accurate as practical when estimating their masses which is itself a critical aspect of living things. Yet a comprehensive review and analysis of this notable subject of anatomy has never been conducted and published. This is such an effort, being as extensive as possible with the data on hand, bolstered by some additional observations, and new work focusing on extinct animals who densities are least unknown: pterosaurs and dinosaurs with extensive pneumatic complexes, including the most sophisticated effort to date for a sauropod. Often difficult to determine even via direct observation, techniques for obtaining the best possible SG data are explained and utilized, including observations of floating animals. Neutral specific gravity (NSG) is proposed as the most important value for tetrapods with respiratory tracts of fluctuating volume. SGs of organisms range from 0.08 to 2.6, plant tissues from 0.08 to 1.39, and vertebrates from about 0.75 (some giant pterosaurs) to 1.2 (those with heavy armor and/or skeletons). Tetrapod NSGs tend to be somewhat higher than widely thought, especially those theropod and sauropod dinosaurs and pterosaurs with air-sacs because respiratory system volume is usually measured at maximum inhalation in birds. Also discussed is evidence that the ratio of the mass of skeletons relative to total body mass has not been properly assayed in the past.
Collapse
Affiliation(s)
- Asier Larramendi
- Eofauna Scientific Research, Errondo 6, 10c, Donostia, Basque Country, 20010, Spain
| | | | - Shu-Yu Hsu
- Eofauna Scientific Research, Errondo 6, 10c, Donostia, Basque Country, 20010, Spain
| |
Collapse
|
10
|
Fahlman A, Sato K, Miller P. Improving estimates of diving lung volume in air-breathing marine vertebrates. ACTA ACUST UNITED AC 2020; 223:223/12/jeb216846. [PMID: 32587107 DOI: 10.1242/jeb.216846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The air volume in the respiratory system of marine tetrapods provides a store of O2 to fuel aerobic metabolism during dives; however, it can also be a liability, as the associated N2 can increase the risk of decompression sickness. In order to more fully understand the physiological limitations of different air-breathing marine vertebrates, it is therefore important to be able to accurately estimate the air volume in the respiratory system during diving. One method that has been used to do so is to calculate the air volume from glide phases - periods of movement during which no thrust is produced by the animal - which many species conduct during ascent periods, when gases are expanding owing to decreasing hydrostatic pressure. This method assumes that there is conservation of mass in the respiratory system, with volume changes only driven by pressure. In this Commentary, we use previously published data to argue that both the respiratory quotient and differences in tissue and blood gas solubility potentially alter the mass balance in the respiratory system throughout a dive. Therefore, near the end of a dive, the measured volume of gas at a given pressure may be 12-50% less than from the start of the dive; the actual difference will depend on the length of the dive, the cardiac output, the pulmonary shunt and the metabolic rate. Novel methods and improved understanding of diving physiology will be required to verify the size of the effects described here and to more accurately estimate the volume of gas inhaled at the start of a dive.
Collapse
Affiliation(s)
- Andreas Fahlman
- Global Diving Research Inc., Ottawa, ON, Canada, K2J 5E8 .,Fundación Oceanogràfic de la Comunitat Valenciana, Gran Vía Marqués del Turia 19, 46005 Valencia, Spain
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Patrick Miller
- SMRU (Sea Mammal Research Unit), University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
11
|
Castrillon J, Bengtson Nash S. Evaluating cetacean body condition; a review of traditional approaches and new developments. Ecol Evol 2020; 10:6144-6162. [PMID: 32607220 PMCID: PMC7319165 DOI: 10.1002/ece3.6301] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/19/2023] Open
Abstract
The ability to accurately gauge the body condition of free-swimming cetaceans is invaluable in population and conservation biology, due to the direct implications that this measure has on individual fitness, survival, and reproductive success. Furthermore, monitoring temporal change in body condition offers insight into foraging success over time, and therefore the health of the supporting ecosystem, as well as a species' resilience. These parameters are particularly relevant in the context of widespread and accelerated, climate-induced habitat change. There are, however, significant logistical challenges involved with research and monitoring of large cetaceans, which often preclude direct measure of body condition of live individuals. Consequently, a wide variety of indirect approaches, or proxies, for estimating energetic stores have been proposed over past decades. To date, no single, standardized, approach has been shown to serve as a robust estimation of body condition across species, age categories, and in both live and dead individuals. Nonetheless, it is clear that streamlining and advancing body condition measures would carry significant benefits for diverse areas of cetacean research and management. Here, we review traditional approaches and new applications for the evaluation of cetacean energetic reserves. Specific attention is given to the criteria of measure performance (sensitivity and accuracy), level of invasiveness, cost and effort required for implementation, as well as versatility e.g. applicability across different species, age groups, as well as living versus deceased animals. Measures have been benchmarked against these criteria in an effort to identify key candidates for further development, and key research priorities in the field.
Collapse
Affiliation(s)
- Juliana Castrillon
- Southern Ocean Persistent Organic Pollutants ProgramEnvironmental Futures Research Institute (EFRI)Griffith UniversityNathanQld.Australia
| | - Susan Bengtson Nash
- Southern Ocean Persistent Organic Pollutants ProgramEnvironmental Futures Research Institute (EFRI)Griffith UniversityNathanQld.Australia
| |
Collapse
|
12
|
A quantitative, hierarchical approach for detecting drift dives and tracking buoyancy changes in southern elephant seals. Sci Rep 2019; 9:8936. [PMID: 31222003 PMCID: PMC6586652 DOI: 10.1038/s41598-019-44970-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/29/2019] [Indexed: 11/08/2022] Open
Abstract
Foraging behaviour of marine predators inferred from the analysis of horizontal or vertical movements commonly lack quantitative information about foraging success. Several marine mammal species are known to perform dives where they passively drift in the water column, termed “drift” dives. The drift rate is determined by the animal’s buoyancy, which can be used to make inference regarding body condition. Long term dive records retrieved via satellite uplink are often summarized before transmission. This loss of resolution hampers identification of drift dives. Here, we develop a flexible, hierarchically structured approach to identify drift dives and estimate the drift rate from the summarized time-depth profiles that are increasingly available to the global research community. Based on high-resolution dive data from southern elephant seals, we classify dives as drift/non-drift and apply a summarization algorithm. We then (i) automatically generate dive groups based on inflection point ordering using a ‘Reverse’ Broken-Stick Algorithm, (ii) develop a set of threshold criteria to apply across groups, ensuring non-drift dives are most efficiently rejected, and (iii) finally implement a custom Kalman filter to retain the remaining dives that are within the seals estimated drifting time series. Validation with independent data sets shows our method retains approximately 3% of all dives, of which 88% are true drift dives. The drift rate estimates are unbiased, with the upper 95% quantile of the mean squared error between the daily averaged summarized profiles using our method (SDDR) and the observed daily averaged drift rate (ODDR) being only 0.0015. The trend of the drifting time-series match expectations for capital breeders, showing the lowest body condition commencing foraging trips and a progressive improvement as they remain at sea. Our method offers sufficient resolution to track small changes in body condition at a fine temporal scale. This approach overcomes a long-term challenge for large existing and ongoing data collections, with potential application across other drift diving species. Enabling robust identification of foraging success at sea offers a rare and valuable opportunity for monitoring marine ecosystem productivity in space and time by tracking the success of a top predator.
Collapse
|
13
|
Purser A, Herr H, Dreutter S, Dorschel B, Glud RN, Hehemann L, Hoge U, Jamieson AJ, Linley TD, Stewart HA, Wenzhöfer F. Depression chains in seafloor of contrasting morphology, Atacama Trench margin: a comment on Marsh et al. (2018). ROYAL SOCIETY OPEN SCIENCE 2019; 6:182053. [PMID: 31032050 PMCID: PMC6458411 DOI: 10.1098/rsos.182053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
This comment presents acoustic and visual data showing deep seafloor depression chains similar to those reported in Marsh et al. (R. Soc. open sci. 5: 180286), though from a different deep-sea setting. Marsh et al. present data collected during cruise JC120 from polymetallic nodule rich sites within the Clarion-Clipperton Fracture Zone (CCFZ), at water depths of between 3999 and 4258 m. Within this comment, we present data collected with equivalent acoustic and imaging devices on-board the RV Sonne (SO261-March/April 2018) from the Atacama Trench, approximately 4000 m depth, which shows comparable depression chains in the seafloor. In contrast with the CCFZ observations, our study area was wholly free of polymetallic nodules, an observation therefore weakening the 'ballast collection' by deep-sea diving mammals formation hypothesis discussed in their paper. We support their alternate hypothesis that if these features are indeed generated by deep-diving megafauna, then they are more likely the resultant traces of infauna feeding or marks made during opportunistic capture of benthic fish/cephalopods. We observed these potential prey fauna with lander and towed camera systems during the cruise, with example images of these presented here. Both the SO261 and JC120 cruises employed high-resolution sidescan systems at deployment altitudes seldom used routinely until the last few years during scientific deep-sea surveys. Given that both cruises found these depression chains in contrasting physical regions of the East Pacific, they may have a more ubiquitous distribution than at just these sites. Thus, the impacts of cetacean foraging behaviour on deep seafloor communities, and the potential relevance of these prey sources to deep-diving species, should be considered.
Collapse
Affiliation(s)
- Autun Purser
- Alfred Wegener Helmholz Institute of Polar and Marine Research, Bremerhaven, Germany
| | - Helena Herr
- Alfred Wegener Helmholz Institute of Polar and Marine Research, Bremerhaven, Germany
- Center of Natural History, University of Hamburg, Hamburg, Germany
| | - Simon Dreutter
- Alfred Wegener Helmholz Institute of Polar and Marine Research, Bremerhaven, Germany
| | - Boris Dorschel
- Alfred Wegener Helmholz Institute of Polar and Marine Research, Bremerhaven, Germany
| | - Ronnie N. Glud
- Department of Biology, University of Southern Denmark, 5230 Odense, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Laura Hehemann
- Alfred Wegener Helmholz Institute of Polar and Marine Research, Bremerhaven, Germany
| | - Ulrich Hoge
- Alfred Wegener Helmholz Institute of Polar and Marine Research, Bremerhaven, Germany
| | - Alan J. Jamieson
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Thomas D. Linley
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | | | - Frank Wenzhöfer
- Alfred Wegener Helmholz Institute of Polar and Marine Research, Bremerhaven, Germany
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
14
|
Narazaki T, Isojunno S, Nowacek DP, Swift R, Friedlaender AS, Ramp C, Smout S, Aoki K, Deecke VB, Sato K, Miller PJO. Body density of humpback whales (Megaptera novaengliae) in feeding aggregations estimated from hydrodynamic gliding performance. PLoS One 2018; 13:e0200287. [PMID: 30001369 PMCID: PMC6042725 DOI: 10.1371/journal.pone.0200287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/22/2018] [Indexed: 02/04/2023] Open
Abstract
Many baleen whales undertake annual fasting and feeding cycles, resulting in substantial changes in their body condition, an important factor affecting fitness. As a measure of lipid-store body condition, tissue density of a few deep diving marine mammals has been estimated using a hydrodynamic glide model of drag and buoyancy forces. Here, we applied the method to shallow-diving humpback whales (Megaptera novaeangliae) in North Atlantic and Antarctic feeding aggregations. High-resolution 3-axis acceleration, depth and speed data were collected from 24 whales. Measured values of acceleration during 5 s glides were fitted to a hydrodynamic glide model to estimate unknown parameters (tissue density, drag term and diving gas volume) in a Bayesian framework. Estimated species-average tissue density (1031.6 ± 2.1 kg m-3, ±95% credible interval) indicates that humpback whale tissue is typically negatively buoyant although there was a large inter-individual variation ranging from 1025.2 to 1043.1 kg m-3. The precision of the individual estimates was substantially finer than the variation across different individual whales, demonstrating a progressive decrease in tissue density throughout the feeding season and comparably high lipid-store in pregnant females. The drag term (CDAm-1) was estimated to be relatively high, indicating a large effect of lift-related induced drag for humpback whales. Our results show that tissue density of shallow diving baleen whales can be estimated using the hydrodynamic gliding model, although cross-validation with other techniques is an essential next step. This method for estimating body condition is likely to be broadly applicable across a range of aquatic animals and environments.
Collapse
Affiliation(s)
- Tomoko Narazaki
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
- * E-mail:
| | - Saana Isojunno
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
| | - Douglas P. Nowacek
- Nicholas School of the Environment and Pratt School of Engineering, Duke University Marine Laboratory, Beaufort, North Carolina, United States of America
| | - Rene Swift
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
| | - Ari S. Friedlaender
- Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christian Ramp
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
- Mingan Island Cetacean Study, Longue-Pointe-de-Mingan, Québec, Canada
| | - Sophie Smout
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
| | - Kagari Aoki
- Sea Mammal Research Unit, University of St Andrews, Fife, United Kingdom
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | - Volker B. Deecke
- Department of Science, Natural Resources and Outdoor Studies, University of Cumbria, Ambleside, United Kingdom
| | - Katsufumi Sato
- Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba, Japan
| | | |
Collapse
|
15
|
Goldbogen JA, Madsen PT. The evolution of foraging capacity and gigantism in cetaceans. ACTA ACUST UNITED AC 2018; 221:221/11/jeb166033. [PMID: 29895582 DOI: 10.1242/jeb.166033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The extant diversity and rich fossil record of cetaceans provides an extraordinary evolutionary context for investigating the relationship between form, function and ecology. The transition from terrestrial to marine ecosystems is associated with a complex suite of morphological and physiological adaptations that were required for a fully aquatic mammalian life history. Two specific functional innovations that characterize the two great clades of cetaceans, echolocation in toothed whales (Odontoceti) and filter feeding in baleen whales (Mysticeti), provide a powerful comparative framework for integrative studies. Both clades exhibit gigantism in multiple species, but we posit that large body size may have evolved for different reasons and in response to different ecosystem conditions. Although these foraging adaptations have been studied using a combination of experimental and tagging studies, the precise functional drivers and consequences of morphological change within and among these lineages remain less understood. Future studies that focus at the interface of physiology, ecology and paleontology will help elucidate how cetaceans became the largest predators in aquatic ecosystems worldwide.
Collapse
Affiliation(s)
- J A Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA 93950, USA
| | - P T Madsen
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Høegh-Guldbergs Gade 6B, DK-8000 Aarhus C, Denmark
| |
Collapse
|
16
|
Aoki K, Sato K, Isojunno S, Narazaki T, Miller PJO. High diving metabolic rate indicated by high-speed transit to depth in negatively buoyant long-finned pilot whales. ACTA ACUST UNITED AC 2018; 220:3802-3811. [PMID: 29046419 DOI: 10.1242/jeb.158287] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/10/2017] [Indexed: 11/20/2022]
Abstract
To maximize foraging duration at depth, diving mammals are expected to use the lowest cost optimal speed during descent and ascent transit and to minimize the cost of transport by achieving neutral buoyancy. Here, we outfitted 18 deep-diving long-finned pilot whales with multi-sensor data loggers and found indications that their diving strategy is associated with higher costs than those of other deep-diving toothed whales. Theoretical models predict that optimal speed is proportional to (basal metabolic rate/drag)1/3 and therefore to body mass0.05 The transit speed of tagged animals (2.7±0.3 m s-1) was substantially higher than the optimal speed predicted from body mass (1.4-1.7 m s-1). According to the theoretical models, this choice of high transit speed, given a similar drag coefficient (median, 0.0035) to that in other cetaceans, indicated greater basal metabolic costs during diving than for other cetaceans. This could explain the comparatively short duration (8.9±1.5 min) of their deep dives (maximum depth, 444±85 m). Hydrodynamic gliding models indicated negative buoyancy of tissue body density (1038.8±1.6 kg m-3, ±95% credible interval, CI) and similar diving gas volume (34.6±0.6 ml kg-1, ±95% CI) to those in other deep-diving toothed whales. High diving metabolic rate and costly negative buoyancy imply a 'spend more, gain more' strategy of long-finned pilot whales, differing from that in other deep-diving toothed whales, which limits the costs of locomotion during foraging. We also found that net buoyancy affected the optimal speed: high transit speeds gradually decreased during ascent as the whales approached neutral buoyancy owing to gas expansion.
Collapse
Affiliation(s)
- Kagari Aoki
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 8LB, UK .,Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Katsufumi Sato
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Saana Isojunno
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| | - Tomoko Narazaki
- Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Patrick J O Miller
- Sea Mammal Research Unit, University of St Andrews, St Andrews, Fife KY16 8LB, UK
| |
Collapse
|
17
|
Cade DE, Barr KR, Calambokidis J, Friedlaender AS, Goldbogen JA. Determining forward speed from accelerometer jiggle in aquatic environments. J Exp Biol 2017; 221:jeb.170449. [DOI: 10.1242/jeb.170449] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/26/2017] [Indexed: 11/20/2022]
Abstract
How fast animals move is critical to understanding their energetic requirements, locomotor capacity, and foraging performance, yet current methods for measuring speed via animal-attached devices are not universally applicable. Here we present and evaluate a new method that relates forward speed to the stochastic motion of biologging devices since tag jiggle, the amplitude of the tag vibrations as measured by high sample rate accelerometers, increases exponentially with increasing speed. We successfully tested this method in a flow tank using two types of biologging devices and tested the method in situ on wild cetaceans spanning ∼3 to >20 m in length using two types of suction cup-attached and two types of dart-attached tag. This technique provides some advantages over other approaches for determining speed as it is device-orientation independent and relies only on a pressure sensor and a high sample rate accelerometer, sensors that are nearly universal across biologging device types.
Collapse
Affiliation(s)
- David E. Cade
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Kelly R. Barr
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
- Present address: Center for Tropical Research, Institute for the Environment and Sustainability, Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John Calambokidis
- Cascadia Research Collective, 218 1/2 W. 4th Avenue, Olympia, WA 98501, USA
| | - Ari S. Friedlaender
- Marine Mammal Institute, Hatfield Marine Science Center, Department of Fish and Wildlife, Oregon State University, Newport, OR 97365, USA
- Present address: Institute of Marine Sciences, University of California Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Jeremy A. Goldbogen
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| |
Collapse
|
18
|
Pabst DA, McLellan WA, Rommel SA. How to Build a Deep Diver: The Extreme Morphology of Mesoplodonts. Integr Comp Biol 2016; 56:1337-1348. [DOI: 10.1093/icb/icw126] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|