1
|
Flatt EE, Alderman SL. 11β-Hydroxysteroid dehydrogenase type 2 may mediate the stress-specific effects of cortisol on brain cell proliferation in adult zebrafish (Danio rerio). J Exp Biol 2024; 227:jeb248020. [PMID: 39092490 PMCID: PMC11418181 DOI: 10.1242/jeb.248020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Stress-induced increases in cortisol can stimulate or inhibit brain cell proliferation, but the mechanisms behind these opposing effects are unknown. We tested the hypothesis that 11β-hydroxysteroid dehydrogenase type 2 (Hsd11b2), a glucocorticoid-inactivating enzyme expressed in neurogenic regions of the adult zebrafish brain, mitigates cortisol-induced changes to brain cell proliferation, using one of three stress regimes: a single 1 min air exposure (acute stress), two air exposures spaced 24 h apart (repeat acute stress) or social subordination (chronic stress). Plasma cortisol was significantly elevated 15 min after air exposure and recovered within 24 h after acute and repeat acute stress, whereas subordinate fish exhibited significant and sustained elevations relative to dominant fish for 24 h. Following acute stress, brain hsd11b2 transcript abundance was elevated up to 6 h after a single air exposure but was unchanged by repeat acute stress or social subordination. A sustained increase in brain Hsd11b2 protein levels occurred after acute stress, but not after repeat or chronic stress. Following acute and repeat acute stress, brain pcna transcript abundance (a marker of cell proliferation) exhibited a prolonged elevation, but was unaffected by social subordination. Interestingly, the number of telencephalic BrdU+ cells increased in fish after a single air exposure but was unchanged by repeat acute stress. Following acute and repeat acute stress, fish expressed lower brain glucocorticoid and mineralocorticoid receptor (gr and mr) transcript abundance while subordinate fish exhibited no changes. Taken together, these results demonstrate stressor-specific regulation of Hsd11b2 in the zebrafish brain that could modulate rates of cortisol catabolism contributing to observed differences in brain cell proliferation.
Collapse
Affiliation(s)
- E. Emma Flatt
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| | - Sarah L. Alderman
- Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
2
|
Li Q, Ouyang J, Deng C, Zhou H, You J, Li G. Effects of dietary tryptophan supplementation on rectal temperature, humoral immunity, and cecal microflora composition of heat-stressed broilers. Front Vet Sci 2023; 10:1247260. [PMID: 37841460 PMCID: PMC10572358 DOI: 10.3389/fvets.2023.1247260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/13/2023] [Indexed: 10/17/2023] Open
Abstract
This trial aimed to determine the effects of tryptophan (Trp) on the rectal temperature, hormone, humoral immunity, and cecal microflora composition in broiler chickens under heat stress (HS). One hundred and eighty 18 days-old female Arbor Acres broilers were randomly divided into three treatment groups, with six replicates of ten birds in each replicate. The broilers were either raised under thermoneutral conditions (TN, 23 ± 1°C) or subjected to heat stress (34 ± 1°C for 8 h daily). The TN group received a basal diet, and another two heat-stressed groups were fed the basal diet (HS) or the basal diet supplemented with 0.18% Trp (HS + 0.18% Trp) for 21 consecutive days. The basal diet contained 0.18% Trp. Results revealed that HS increased the rectal temperature, serum epinephrine (EPI), and corticotropin-releasing hormone (CRH) concentrations (p < 0.05), reduced the bursal index, the levels of serum immunoglobulin A (IgA), IgG, IgM, and serotonin (5-HT) as well as the relative abundance of Actinobacteria in cecum (p < 0.05) compared with the TN group. Dietary supplementation of Trp decreased the rectal temperature, serum dopamine (DA), EPI, and the levels of CRH and L-kynurenine (p < 0.05), increased the bursal index, the levels of serum IgA, IgM, and 5-HT as well as the relative abundance of Ruminococcus torques group in cecum of heat-stressed broilers (p < 0.05) compared to HS group. In conclusion, dietary Trp supplementation decreased rectal temperature, improved cecal microbiota community and Trp metabolism, and enhanced humoral immunity of heat-stressed broilers.
Collapse
Affiliation(s)
- Qiufen Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
- Institute of Veterinary Drug, Jiangxi Agricultural University, Nanchang, China
| | - Jingxin Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| | - Chenxi Deng
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, China
| |
Collapse
|
3
|
Virtanen MI, Brinchmann MF, Patel DM, Iversen MH. Chronic stress negatively impacts wound healing, welfare, and stress regulation in internally tagged Atlantic salmon (Salmo salar). Front Physiol 2023; 14:1147235. [PMID: 37078022 PMCID: PMC10106625 DOI: 10.3389/fphys.2023.1147235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
The desire to understand fish welfare better has led to the development of live monitoring sensor tags embedded within individuals for long periods. Improving and understanding welfare must not come at the cost of impaired welfare due to a tag’s presence and implantation process. When welfare is compromised, the individual will experience negative emotions such as fear, pain, and distress, impacting the stress response. In this study, Atlantic salmon (Salmo salar) underwent surgical implantation of a dummy tag. Additionally, half of this group was introduced to daily crowding stress. Both groups and an untagged group were followed for 8 weeks using triplicate tanks per group. Sampling took place once a week, and where stress was given, it was conducted 24 h before sampling. Stress-related measurements were taken to understand if tagging caused chronic stress and explore the chronic stress response and its impact on wound healing. Primary stress response hormones measured included CRH, dopamine, adrenocorticotropic hormone, and cortisol. Secondary stress response parameters measured included glucose, lactate, magnesium, calcium, chloride, and osmolality. Tertiary stress response parameters measured included weight, length, and five fins for fin erosion. Wound healing was calculated by taking the incision length and width, the inflammation length and width, and the inside wound length and width. The wound healing process showed that stressed fish have a larger and longer-lasting inflammation period and a slower wound healing process, as seen from the inside wound. The tagging of Atlantic salmon did not cause chronic stress. In contrast, daily stress led to an allostatic overload type two response. ACTH was elevated in the plasma after 4 weeks, and cortisol followed elevation after 6 weeks, highlighting a breakdown of the stress regulation. Fin erosion was elevated alongside cortisol increase in the stressed group. This data suggests that tagging previously unstressed fish in a controlled environment does not negatively affect welfare regarding stress responses. It also indicates that stress delays wound healing and increases the inflammatory response, highlighting how continued stress causes a breakdown in some stress responses. Ultimately, the tagging of Atlantic salmon can be successful under certain conditions where proper healing is observed, tag retention is high, and chronic stress is not present, which could allow for the possible measurement of welfare indicators via smart-tags.
Collapse
|
4
|
Li H, Wang J, Zhang X, Hu Y, Liu Y, Ma Z. Comparing behavioral performance and physiological responses of Sebastes schlegelii with different aggressiveness. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1333-1347. [PMID: 36103021 DOI: 10.1007/s10695-022-01123-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
In fish, aggression has significant individual differences, and different personalities exhibit distinct behavioral performances and physiological stress responses. Under intensive culture conditions, Sebastes schlegelii juveniles display severe aggression and cannibalism, causing damage to fish welfare and economic loss. Herein, we investigated the alterations in behavioral performance and physiological stress indicators of Sebastes schlegelii juveniles with different aggressiveness. The results revealed that latency to the first movement, distance to center point, mobile frequency, and immobile frequency were significantly lower in high-aggressive individuals than low-aggressive individuals. In contrast, the immobile time was significantly higher in high-aggressive individuals compared to low-aggressive individuals. PCA was performed to identify the key parameters of fish behavior. From the results of PCA, position, motion state, and physical status could be used as behavioral screening indicators for individuals with different aggressiveness. The 5-HIAA/5-HT ratio was significantly lower in high-aggressive individuals than in low-aggressive individuals. Moreover, cortisol levels were positively correlated with immobile time, and the ratio of 5-HIAA/5-HT was significantly and positively correlated with the distance to the central point. These results suggested that individuals with different aggressiveness can be effectively distinguished in a short period of time according to behavioral factors such as position, motion state, and physical status. For a single measure, the distance to center point associated with brain monoaminergic activity may be a more direct factor. The results could be a non-invasive method to measure fish aggression and fish welfare, and then build on to improve fish welfare and enhance aquaculture management.
Collapse
Affiliation(s)
- Haixia Li
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Jie Wang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Xu Zhang
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Yu Hu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
| | - Ying Liu
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Ma
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China.
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, 116023, China.
| |
Collapse
|
5
|
Azeredo R, Machado M, Pereiro P, Barany A, Mancera JM, Costas B. Acute Inflammation Induces Neuroendocrine and Opioid Receptor Genes Responses in the Seabass Dicentrarchus labrax Brain. BIOLOGY 2022; 11:biology11030364. [PMID: 35336737 PMCID: PMC8945561 DOI: 10.3390/biology11030364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary It is generally accepted (in mammals and in teleost fish, too) that stressful conditions affect the performance of an immune response. What is still far from being known is at what extend does an immune process affects the neuroendocrine system. Vaccination for instance, is nowadays a common practice in aquaculture and little is known about its physiological implications other than immunization. Here is a first approach to the study of the European seabass’ brain gene expression patterns in response to a peripheral inflammatory process. Genes related to the stress response were focused, along with those related to the opioid system. Increased expression of certain genes suggests the activation of a stress response triggered by inflammatory signals. Additionally, contrasting expression patterns of the same gene (increased vs decreased) in the different brain regions (as well as the time needed for changes to happen) point at different functions. These results clearly show the reactivity of different brain responses to an immune response, highlighting the importance of further studies on downstream implications (behavior, feeding, welfare, reproduction). Abstract In fish, as observed in mammals, any stressful event affects the immune system to a larger or shorter extent. The neuroendocrine-immune axis is a bi-directional network of mobile compounds and their receptors that are shared between both systems (neuroendocrine and immune) and that regulate their respective responses. However, how and to what extent immunity modulates the neuroendocrine system is not yet fully elucidated. This study was carried out to understand better central gene expression response patterns in a high-valued farmed fish species to an acute peripheral inflammation, focusing on genes related to the hypothalamus-pituitary-interrenal axis and the opioid system. European seabass, Dicentrarchus labrax, were intra-peritoneally injected with either Freund’s Incomplete Adjuvant to induce a local inflammatory response or Hanks Balances Salt Solution to serve as the control. An undisturbed group was also included to take into account the effects due to handling procedures. To evaluate the outcomes of an acute immune response, fish were sampled at 4, 24, 48, and 72 h post-injection. The brain was sampled and dissected for isolation of different regions: telencephalon, optic tectum, hypothalamus, and pituitary gland. The expression of several genes related to the neuroendocrine response was measured by real-time PCR. Data were statistically analyzed by ANOVA and discriminant analyses to obtain these genes’ responsiveness for the different brain regions. Serotonergic receptors were upregulated in the telencephalon, whereas the optic tectum inhibited these transcription genes. The hypothalamus showed a somewhat delayed response in which serotonin and glucocorticoid receptors were concerned. Still, the hypothalamic corticotropin-releasing hormone played an important role in differentiating fish undergoing an inflammatory response from those not under such conditions. Opioid receptors gene expression increased in both the hypothalamus and the telencephalon, while in the optic tectum, most were downregulated. However, no changes in the pituitary gland were observed. The different brain regions under immune stimulation demonstrated clear, distinct responses regarding gene transcription rates as well as the time period needed for the effect to occur. Further, more integrative studies are required to associate functions to the evaluated genes more safely and better understand the triggering mechanisms.
Collapse
Affiliation(s)
- Rita Azeredo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Correspondence: (R.A.); (B.C.)
| | - Marina Machado
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
| | - Patricia Pereiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Investigaciones Marinas (IIM-CSIC), 36208 Vigo, Spain
| | - Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), University of Cadiz, 11519 Puerto Real, Spain; (A.B.); (J.M.M.)
| | - Benjamín Costas
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, 4450-208 Matosinhos, Portugal; (M.M.); (P.P.)
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade do Porto, 4050-313 Porto, Portugal
- Correspondence: (R.A.); (B.C.)
| |
Collapse
|
6
|
Geffroy B, Gesto M, Clota F, Aerts J, Darias MJ, Blanc MO, Ruelle F, Allal F, Vandeputte M. Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass. Sci Rep 2021; 11:13620. [PMID: 34193934 PMCID: PMC8245542 DOI: 10.1038/s41598-021-93116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/21/2021] [Indexed: 11/09/2022] Open
Abstract
In European sea bass (Dicentrarchus labrax), as in many other fish species, temperature is known to influence the sex of individuals, with more males produced at relatively high temperatures. It is however unclear to what extent growth or stress are involved in such a process, since temperature is known to influence both growth rate and cortisol production. Here, we designed an experiment aiming at reducing stress and affecting early growth rate. We exposed larvae and juveniles originating from both captive and wild parents to three different treatments: low stocking density, food supplemented with tryptophan and a control. Low stocking density and tryptophan treatment respectively increased and decreased early growth rate. Each treatment influenced the stress response depending on the developmental stage, although no clear pattern regarding the whole-body cortisol concentration was found. During sex differentiation, fish in the low-density treatment exhibited lower expression of gr1, gr2, mr, and crf in the hypothalamus when compared to the control group. Fish fed tryptophan displayed lower crf in the hypothalamus and higher level of serotonin in the telencephalon compared to controls. Overall, fish kept at low density produced significantly more females than both control and fish fed tryptophan. Parents that have been selected for growth for three generations also produced significantly more females than parents of wild origin. Our findings did not allow to detect a clear effect of stress at the group level and rather point out a key role of early sexually dimorphic growth rate in sex determination.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.
| | - Manuel Gesto
- Techn Section for Aquaculture, DTU Aqua, Technical University of Denmark, Willemoesvej 2, 9850, Hirtshals, Denmark
| | - Fréderic Clota
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Johan Aerts
- Stress Physiology Research Group, Faculty of Sciences, Ghent University, Ostend, Belgium
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marie-Odile Blanc
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Ruelle
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - François Allal
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France
| | - Marc Vandeputte
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Palavas-Les-Flots, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
7
|
Gauthier DT, Haines AN, Vogelbein WK. Elevated temperature inhibits Mycobacterium shottsii infection and Mycobacterium pseudoshottsii disease in striped bass Morone saxatilis. DISEASES OF AQUATIC ORGANISMS 2021; 144:159-174. [PMID: 33955854 DOI: 10.3354/dao03584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mycobacteriosis occurs with high prevalence in the wild striped bass Morone saxatilis of Chesapeake Bay, USA. Etiologic agents of mycobacteriosis in this system are dominated by Mycobacterium pseudoshottsii and Mycobacterium shottsii, both members of the M. ulcerans/M. marinum clade of mycobacteria. Striped bass occupying Chesapeake Bay during summer months where water temperatures regularly approach and occasionally exceed 30°C are thought to be near their thermal maximum, a condition hypothesized to drive high levels of disease and increased natural mortality due to temperature stress. M. shottsii and M. pseudoshottsii, however, do not grow or grow inconsistently at 30°C on artificial medium, potentially countering this hypothesis. In this work, we examine the effects of temperature (20, 25, and 30°C) on progression of experimental infections with M. shottsii and M. pseudoshottsii in striped bass. Rather than exacerbation of disease, increasing temperature resulted in attenuated bacterial density increase in the spleen and reduced pathology in the spleen and mesenteries of M. pseudoshottsii infected fish, and reduced bacterial densities in the spleen of M. shottsii infected fish. These findings indicate that M. pseudoshottsii and M. shottsii infections in Chesapeake Bay striped bass may be limited by the thermal tolerance of these mycobacteria, and that maximal disease progression may in fact occur at lower water temperatures.
Collapse
Affiliation(s)
- D T Gauthier
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | | | | |
Collapse
|
8
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
9
|
Burren A, Pietsch C. Distress Regulates Different Pathways in the Brain of Common Carp: A Preliminary Study. Animals (Basel) 2021; 11:ani11020585. [PMID: 33672436 PMCID: PMC7926896 DOI: 10.3390/ani11020585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/31/2022] Open
Abstract
In this study, a stress trial was conducted with common carp, one of the most important species in aquaculture worldwide, to identify relevant gene regulation pathways in different areas of the brain. Acute distress due to exposure to air significantly activated the expression of the immediate early gene c-fos in the telencephalon. In addition, evidence for regulation of the two corticotropin-releasing factor (crf) genes in relation to their binding protein (corticotropin-releasing hormone-binding protein, crh-bp) is presented in this preliminary study. Inferences on the effects of due to exposure to air were obtained by using point estimation, which allows the prediction of a single value. This constitutes the best description to date of the previously generally unknown effects of stress in different brain regions in carp. Furthermore, principal component analyses were performed to reveal possible regulation patterns in the different regions of the fish brain. In conclusion, these preliminary studies on gene regulation in the carp brain that has been influenced by exposure to a stressor reveal that a number of genes may be successfully used as markers for exposure to unfavourable conditions.
Collapse
|
10
|
Martorell-Ribera J, Venuto MT, Otten W, Brunner RM, Goldammer T, Rebl A, Gimsa U. Time-Dependent Effects of Acute Handling on the Brain Monoamine System of the Salmonid Coregonus maraena. Front Neurosci 2020; 14:591738. [PMID: 33343287 PMCID: PMC7746803 DOI: 10.3389/fnins.2020.591738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
The immediate stress response involves the activation of the monoaminergic neurotransmitter systems including serotonin, dopamine and noradrenaline in particular areas of the fish brain. We chose maraena whitefish as a stress-sensitive salmonid species to investigate the influence of acute and chronic handling on the neurochemistry of monoamines in the brain. Plasma cortisol was quantified to assess the activation of the stress axis. In addition, we analyzed the expression of 37 genes related to the monoamine system to identify genes that could be used as markers of neurophysiological stress effects. Brain neurochemistry responded to a single handling (1 min netting and chasing) with increased serotonergic activity 3 h post-challenge. This was accompanied by a modulated expression of monoaminergic receptor genes in the hindbrain and a significant increase of plasma cortisol. The initial response was compensated by an increased monoamine synthesis at 24 h post-challenge, combined with the modulated expression of serotonin-receptor genes and plasma cortisol concentrations returning to control levels. After 10 days of repeated handling (1 min per day), we detected a slightly increased noradrenaline synthesis and a down-regulated expression of dopamine-receptor genes without effect on plasma cortisol levels. In conclusion, the changes in serotonergic neurochemistry and selected gene-expression profiles, together with the initial plasma cortisol variation, indicate an acute response and a subsequent recovery phase with signs of habituation after 10 days of daily exposure to handling. Based on the basal expression patterns of particular genes and their significant regulation upon handling conditions, we suggest a group of genes as potential biomarkers that indicate handling stress on the brain monoamine systems.
Collapse
Affiliation(s)
- Joan Martorell-Ribera
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Marzia Tindara Venuto
- Glycobiology Group, Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Winfried Otten
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ronald M Brunner
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Tom Goldammer
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Alexander Rebl
- Fish Genetics Unit, Institute of Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Ulrike Gimsa
- Psychophysiology Unit, Institute of Behavioural Physiology, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
11
|
Filipsson K, Bergman E, Greenberg L, Österling M, Watz J, Erlandsson A. Temperature and predator-mediated regulation of plasma cortisol and brain gene expression in juvenile brown trout ( Salmo trutta). Front Zool 2020; 17:25. [PMID: 32874189 PMCID: PMC7456031 DOI: 10.1186/s12983-020-00372-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/20/2020] [Indexed: 12/01/2022] Open
Abstract
Background Temperature affects many aspects of performance in poikilotherms, including how prey respond when encountering predators. Studies of anti-predator responses in fish mainly have focused on behaviour, whereas physiological responses regulated through the hypothalamic-pituitary-interrenal axis have received little attention. We examined plasma cortisol and mRNA levels of stress-related genes in juvenile brown trout (Salmo trutta) at 3 and 8 °C in the presence and absence of a piscivorous fish (burbot, Lota lota). Results A redundancy analysis revealed that both water temperature and the presence of the predator explained a significant amount of the observed variation in cortisol and mRNA levels (11.4 and 2.8%, respectively). Trout had higher cortisol levels in the presence than in the absence of the predator. Analyses of individual gene expressions revealed that trout had significantly higher mRNA levels for 11 of the 16 examined genes at 3 than at 8 °C, and for one gene (retinol-binding protein 1), mRNA levels were higher in the presence than in the absence of the predator. Moreover, we found interaction effects between temperature and predator presence for two genes that code for serotonin and glucocorticoid receptors. Conclusions Our results suggest that piscivorous fish elicit primary stress responses in juvenile salmonids and that some of these responses may be temperature dependent. In addition, this study emphasizes the strong temperature dependence of primary stress responses in poikilotherms, with possible implications for a warming climate.
Collapse
Affiliation(s)
- Karl Filipsson
- River Ecology and Management, Department of Environmental and Life Sciences, Karlstad University, Universitetsgatan 2, SE-651 88 Karlstad, Sweden
| | - Eva Bergman
- River Ecology and Management, Department of Environmental and Life Sciences, Karlstad University, Universitetsgatan 2, SE-651 88 Karlstad, Sweden
| | - Larry Greenberg
- River Ecology and Management, Department of Environmental and Life Sciences, Karlstad University, Universitetsgatan 2, SE-651 88 Karlstad, Sweden
| | - Martin Österling
- River Ecology and Management, Department of Environmental and Life Sciences, Karlstad University, Universitetsgatan 2, SE-651 88 Karlstad, Sweden
| | - Johan Watz
- River Ecology and Management, Department of Environmental and Life Sciences, Karlstad University, Universitetsgatan 2, SE-651 88 Karlstad, Sweden
| | - Ann Erlandsson
- River Ecology and Management, Department of Environmental and Life Sciences, Karlstad University, Universitetsgatan 2, SE-651 88 Karlstad, Sweden
| |
Collapse
|
12
|
Lim CH, Soga T, Levavi-Sivan B, Parhar IS. Chronic Social Defeat Stress Up-Regulates Spexin in the Brain of Nile Tilapia (Oreochromis niloticus). Sci Rep 2020; 10:7666. [PMID: 32376994 PMCID: PMC7203209 DOI: 10.1038/s41598-020-64639-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Spexin (SPX), a neuropeptide evolutionarily conserved from fish to mammals, is widely distributed in the brain and peripheral tissues and associated with various physiological functions. Recently SPX has been suggested to be involved in neurological mechanism of stress. The current study investigates the involvement of SPX in chronic social defeat stress, using male teleost, the Nile tilapia (Oreochromis niloticus) as an animal model due to its distinct social hierarchy of dominant and subordinate relationship. The tilapia genome has SPX1a and SPX1b but has no SPX2. In the Nile tilapia, we localized SPX1a and SPX1b in the brain using in-situ hybridization. Next, using qPCR we examined gene expression of SPX1a and SPX1b in chronically stress (socially defeated) fish. SPX1a expressing cells were localized in the semicircular torus of the midbrain region and SPX1b expressing cells in the telencephalon. Chronically stress fish showed elevated plasma cortisol levels; with an upregulation of SPX1a and SPX1b gene expression in the brain compared to non-stress (control) fish. Since social defeat is a source of stress, the upregulated SPX mRNA levels during social defeat suggests SPX as a potentially inhibitory neuropeptide capable of causing detrimental changes in behaviour and physiology.
Collapse
Affiliation(s)
- Chor Hong Lim
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| | - Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia.
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Selangor, Malaysia
| |
Collapse
|
13
|
Höglund E, Korzan W, Åtland Å, Haraldstad T, Høgberget R, Mayer I, Øverli Ø. Neuroendocrine indicators of allostatic load reveal the impact of environmental acidification in fish. Comp Biochem Physiol C Toxicol Pharmacol 2020; 229:108679. [PMID: 31794875 DOI: 10.1016/j.cbpc.2019.108679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/11/2019] [Accepted: 11/28/2019] [Indexed: 01/19/2023]
Abstract
When mobilized from surrounding soils and binding to gills at moderately low pH, aluminum (Al) cations can adversely affect fish populations. Furthermore, acidification may lead to allostatic overload, a situation in which the costs of coping with chronic stress affects long-term survival and reproductive output and, ultimately, ecosystem health. The brain's serotonergic system plays a key role in neuroendocrine stress responses and allostatic processes. Here, we explored whether sublethal effects of Al in acidified water affects serotonergic neurochemistry and stress coping ability in a unique land-locked salmon population from Lake Bygelandsfjorden, in southern Norway. Fish were exposed to untreated water with pH 6.5 and 74 μg Al l-1 or acidified (pH 5.5) water with different aluminum concentrations ([Al]; 74-148 μg l-1) for 5-6 days. Afterward, effects on stress coping ability were investigated by analyzing plasma cortisol levels and telencephalic serotonergic neurochemistry before and after a standardized acute stress test. Before the stress test, positive dose-response relationships existed between [Al], serotonergic turnover rate and plasma cortisol. However, in acutely stressed fish, exposure to the highest [Al] resulted in reduced cortisol values compared with those exposed to lower concentrations, while the positive dose-response relationship between Al concentrations and serotonergic turnover rate persisted in baseline conditions. This suggests that fish exposed to the highest Al concentration were unable to mount a proper cortisol response to further acute stress, demonstrating that neuroendocrine indicators of allostatic load can be used to reveal sublethal effects of water acidification-and potentially, the environmental impacts of other factors.
Collapse
Affiliation(s)
- Erik Höglund
- Niva, Norsk institutt for vannforskning, Gaustadalléen 21, NO-0349 Oslo, Norway; Center of Coastal Research, University of Agder, 4604 Kristiansand, Norway.
| | - Wayne Korzan
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Åse Åtland
- Niva, Norsk institutt for vannforskning, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Tormod Haraldstad
- Niva, Norsk institutt for vannforskning, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Rolf Høgberget
- Niva, Norsk institutt for vannforskning, Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Ian Mayer
- Department of Production Animal Clinical Sciences, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Øyvind Øverli
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, 0454 Oslo, Norway
| |
Collapse
|
14
|
Kaur R, Jaggi AS, Bali A. Investigating the role of nitric oxide in stress adaptive process in electric foot shock stress-subjected mice. Int J Neurosci 2020; 131:116-127. [PMID: 32083948 DOI: 10.1080/00207454.2020.1733560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AIM The present study was designed to investigate the role of nitric oxide (NO) in the non-development of stress adaptation in high-intensity foot-shock stress (HIFS) subjected mice. METHODS Mice were subjected to low-intensity shocks (LIFS i.e. 0.5 mA) or HIFS (1.5 mA) for 5 days. Stress-induced behavioral changes were assessed by actophotometer, hole board, open field and social interaction tests. Biochemically, the serum corticosterone levels were measured as a marker of stress. L-arginine (100 mg/kg and 300 mg/kg), as NO donor, and L-NAME (10 mg/kg and 30 mg/kg), as nitric oxide synthase (NOS) inhibitor, were employed as pharmacological agents. RESULTS A single exposure of LIFS and HIFS produced behavioral and biochemical alterations. However, there was the restoration of behavioral and biochemical alterations on 5th day in response to repeated LIFS exposure suggesting the development of stress adaptation. However, no stress adaptation was observed in HIFS subjected mice. Administration of L-arginine (300 mg/kg) abolished the stress adaptive response in LIFS-subjected mice, while L-NAME (30 mg/kg) induced the development of stress adaptation in HIFS subjected mice. CONCLUSION It is concluded that an increase in the NO release may possibly impede the process of stress adaptation in HIFS-subjected mice.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Pharmacology, Akal College of Pharmacy and Technical Education Mastuana Sahib, Sangrur, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Anjana Bali
- Department of Pharmacology, Akal College of Pharmacy and Technical Education Mastuana Sahib, Sangrur, India
| |
Collapse
|
15
|
Johansen IB, Höglund E, Øverli Ø. Individual Variations and Coping Style. Anim Welf 2020. [DOI: 10.1007/978-3-030-41675-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Marlatt VL, Leung TYG, Calbick S, Metcalfe C, Kennedy C. Sub-lethal effects of a neonicotinoid, clothianidin, on wild early life stage sockeye salmon (Oncorhynchus nerka). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105335. [PMID: 31706209 DOI: 10.1016/j.aquatox.2019.105335] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/19/2019] [Accepted: 10/13/2019] [Indexed: 06/10/2023]
Abstract
One of the categories of environmental contaminants possibly contributing to declining sockeye salmon (Oncorhynchus nerka) in the Fraser River, British Columbia, Canada is pesticides. In this 4-month study, the effects of environmentally relevant concentrations of a waterborne neonicotinoid, clothianidin (0.15, 1.5, 15 and 150 μg/L), on embryonic, alevin and early swim-up fry sockeye salmon derived from four unique genetic crosses of the Pitt River, BC stock were investigated. There were no significant effects of clothianidin on survival, hatching, growth or deformities, although genetic variation significantly affected these endpoints. Clothianidin caused a significant 4.7-fold increase in whole body 17β-estradiol levels in swim-up fry after exposure to 0.15 μg/L, but no effects were observed on testosterone levels. In addition, hepatic expression of the gene encoding glucocorticoid receptor 2 was also impacted at the highest concentration of clothianidin tested, and was found to be ∼4-fold lower compared to the sockeye reared in control water. These results indicate additional examination of clothianidin and its effects on salmonid gonad development and the reproductive and stress endocrine axes in general, is warranted.
Collapse
Affiliation(s)
- Vicki Lee Marlatt
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.
| | - Tsz Yin Ginny Leung
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Sarah Calbick
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Chris Metcalfe
- Water Quality Centre, Trent University, Peterborough, ON, Canada; Institute for Watershed Science, Trent University, ON, Canada
| | - Christopher Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| |
Collapse
|
17
|
Khonmee J, Brown JL, Li MY, Somgird C, Boonprasert K, Norkaew T, Punyapornwithaya V, Lee WM, Thitaram C. Effect of time and temperature on stability of progestagens, testosterone and cortisol in Asian elephant blood stored with and without anticoagulant. CONSERVATION PHYSIOLOGY 2019; 7:coz031. [PMID: 31249688 PMCID: PMC6589992 DOI: 10.1093/conphys/coz031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/23/2019] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
The value of biological samples collected in the field is compromised if storage conditions result in analyte degradation, especially in warmer climates like Thailand. We evaluated the effects of time and temperature on immunoactive steroid hormone stability in Asian elephant (Elephas maximus) blood stored with and without an anti-coagulant before centrifugation. For each elephant (5 male, 5 female), whole blood was aliquoted (n = 2 ml each) into 13 red top (without anticoagulant) or purple top (with anticoagulant) tubes. One tube from each treatment was centrifuged immediately and the serum or plasma frozen at -20°C (Time 0, T0). The remaining 12 aliquots were divided into stored temperature groups: 4°C, room temperature (RT, ~22°C), and 37°C, and centrifuged after 6, 24, 48 and 62 h of storage. Serum and plasma concentrations of progestagens in females, testosterone in males and cortisol in both sexes were quantified by validated enzyme immunoassays. Steroid concentration differences from T0 were determined by a randomized complete block ANOVA and Dunnett's tests. The only evidence of hormone degradation was cortisol and testosterone concentrations in serum stored at 37°C. Testosterone concentrations declined by 34% at 48 h and 52% at 62 h, cortisol was decreased by 19% after 48 h and 27% after 62 h at 37°C, respectively. None of the other aliquots displayed significant changes over time at any temperature. In conclusion, steroids appear to be stable in blood for nearly 3 days at room or refrigeration temperatures before centrifugation; steroids in samples with ethylenediaminetetraacetic acid were particularly stable. However, warmer temperatures may negatively affect steroids stored without anti-coagulant, perhaps due to red blood cell metabolism. Thus, under field conditions with no access to cold or freezer temperatures, collection of plasma is a better choice for elephants up to at least 62 h before centrifugation.
Collapse
Affiliation(s)
- Jaruwan Khonmee
- Department of Veterinary Bioscience and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Canal Road, Chiang Mai, Thailand
- Center of Elephant and Wildlife Research, Chiang Mai University, Canal Road, Chiang Mai, Thailand
| | - Janine L Brown
- Center for Species Survival, Smithsonian Conservation Biology Institute, Remount Road, Front Royal, VA, USA
| | - Mu-Yao Li
- College of Veterinary Medicine, National Chung-Hsing University, Xingda Road, Taichung, Taiwan, R.O.C
| | - Chaleamchat Somgird
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Canal Road, Chiang Mai Thailand
- Center of Elephant and Wildlife Research, Chiang Mai University, Canal Road, Chiang Mai, Thailand
| | - Khajohnpat Boonprasert
- Center of Elephant and Wildlife Research, Chiang Mai University, Canal Road, Chiang Mai, Thailand
| | - Treepradab Norkaew
- Center of Elephant and Wildlife Research, Chiang Mai University, Canal Road, Chiang Mai, Thailand
| | - Veerasak Punyapornwithaya
- Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Canal Road, Chiang Mai, Thailand
| | - Wei-Ming Lee
- College of Veterinary Medicine, National Chung-Hsing University, Xingda Road, Taichung, Taiwan, R.O.C
| | - Chatchote Thitaram
- Department of Companion Animal and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Canal Road, Chiang Mai Thailand
- Center of Elephant and Wildlife Research, Chiang Mai University, Canal Road, Chiang Mai, Thailand
| |
Collapse
|
18
|
Azeredo R, Machado M, Martos-Sitcha JA, Martínez-Rodríguez G, Moura J, Peres H, Oliva-Teles A, Afonso A, Mancera JM, Costas B. Dietary Tryptophan Induces Opposite Health-Related Responses in the Senegalese Sole ( Solea senegalensis) Reared at Low or High Stocking Densities With Implications in Disease Resistance. Front Physiol 2019; 10:508. [PMID: 31118899 PMCID: PMC6504696 DOI: 10.3389/fphys.2019.00508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
High rearing densities are typical conditions of both inland and onshore intensive aquaculture units. Despite obvious drawbacks, this strategy is nonetheless used to increase production profits. Such conditions inflict stress on fish, reducing their ability to cope with disease, bringing producers to adopt therapeutic strategies. In an attempt to overcome deleterious effects of chronic stress, Senegalese sole, Solea senegalensis, held at low (LD) or high density (HD) were fed tryptophan-supplemented diets with final tryptophan content at two (TRP2) or four times (TRP4) the requirement level, as well as a control and non-supplemented diet (CTRL) for 38 days. Fish were sampled at the end of the feeding trial for evaluation of their immune status, and mortalities were recorded following intra-peritoneal infection with Photobacterium damselae subsp. piscicida. Blood was collected for analysis of the hematological profile and innate immune parameters in plasma. Pituitary and hypothalamus were sampled for the assessment of neuro-endocrine-related gene expression. During the feeding trial, fish fed TRP4 and held at LD conditions presented higher mortalities, whereas fish kept at HD seemed to benefit from this dietary treatment, as disease resistance increased over that of CTRL-fed fish. In accordance, cortisol level tended to be higher in fish fed both supplemented diets at LD compared to fish fed CTRL, but was lower in fish fed TRP4 than in those fed TRP2 under HD condition. Together with lower mRNA levels of proopiomelanocortin observed with both supplementation levels, these results suggest that higher levels of tryptophan might counteract stress-induced cortisol production, thereby rendering fish better prepared to cope with disease. Data regarding sole immune status showed no clear effects of tryptophan on leucocyte numbers, but TRP4-fed fish displayed inhibited alternative complement activity (ACH50) when held at LD, as opposed to their HD counterparts whose ACH50 was higher than that of CTRL-fed fish. In conclusion, while dietary tryptophan supplementation might have harmful effects in control fish, it might prove to be a promising strategy to overcome chronic stress-induced disease susceptibility in farmed Senegalese sole.
Collapse
Affiliation(s)
- Rita Azeredo
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Marina Machado
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Juan A Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, University of Cádiz, Cádiz, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Institute of Marine Sciences of Andalusia, Spanish National Research Council, Cádiz, Spain
| | - Joana Moura
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Helena Peres
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal
| | - Aires Oliva-Teles
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - António Afonso
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Juan M Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina, University of Cádiz, Cádiz, Spain
| | - Benjamín Costas
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
19
|
Magnoni LJ, Novais SC, Eding E, Leguen I, Lemos MFL, Ozório ROA, Geurden I, Prunet P, Schrama JW. Acute Stress and an Electrolyte- Imbalanced Diet, but Not Chronic Hypoxia, Increase Oxidative Stress and Hamper Innate Immune Status in a Rainbow Trout ( Oncorhynchus mykiss) Isogenic Line. Front Physiol 2019; 10:453. [PMID: 31068834 PMCID: PMC6491711 DOI: 10.3389/fphys.2019.00453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
In aquaculture, fish may be exposed to sub-optimal rearing conditions, which generate a stress response if full adaptation is not displayed. However, our current knowledge of several coexisting factors that may give rise to a stress response is limited, in particular when both chronic and acute stressors are involved. This study investigated changes in metabolic parameters, oxidative stress and innate immune markers in a rainbow trout (Oncorhynchus mykiss) isogenic line exposed to a combination of dietary (electrolyte-imbalanced diet, DEB 700 mEq Kg-1) and environmental (hypoxia, 4.5 mg O2 L-1) challenges and their respective controls (electrolyte-balanced diet, DEB 200 mEq Kg-1 and normoxia, 7.9 or mg O2 L-1) for 49 days. At the end of this period, fish were sampled or subjected to an acute stressor (2 min of handling/confinement) and then sampled. Feeding trout an electrolyte-imbalanced diet produced a reduction in blood pH, as well as increases in cortisol levels, hepato-somatic index (HSI) and total energy content in the liver. The ratio between the lactate dehydrogenase (LDH) and isocitrate dehydrogenase (IDH) activities decreased in the liver of trout fed the DEB 700 diet, but increased in the heart, suggesting a different modulation of metabolic capacity by the dietary challenge. Several markers of oxidative stress in the liver of trout, mainly related to the glutathione antioxidant system, were altered when fed the electrolyte-imbalanced diet. The dietary challenge was also associated with a decrease in the alternative complement pathway activity (ACH50) in plasma, suggesting an impaired innate immune status in that group. Trout subjected to the acute stressor displayed reduced blood pH values, higher plasma cortisol levels as well as increased levels of metabolic markers associated with oxidative stress in the liver. An interaction between diet and acute stressor was detected for oxidative stress markers in the liver of trout, showing that the chronic electrolyte-imbalance impairs the response of rainbow trout to handling/confinement. However, trout reared under chronic hypoxia only displayed changes in parameters related to energy use in both liver and heart. Taken together, these results suggest that trout displays an adaptative response to chronic hypoxia. Conversely, the dietary challenge profoundly affected fish homeostasis, resulting in an impaired physiological response leading to stress, which then placed constraints on a subsequent acute challenge.
Collapse
Affiliation(s)
- Leonardo J. Magnoni
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Sara C. Novais
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Ep Eding
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Isabelle Leguen
- Laboratoire de Physiologie et Génomique des Poissons, Institut National de la Recherche Agronomique, Rennes, France
| | - Marco F. L. Lemos
- MARE – Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | - Rodrigo O. A. Ozório
- CIIMAR – Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Matosinhos, Portugal
| | - Inge Geurden
- Nutrition Metabolisme Aquaculture (NuMeA)- Institut National de la Recherche Agronomique (INRA), Saint-Pée-sur-Nivelle, France
| | - Patrick Prunet
- Laboratoire de Physiologie et Génomique des Poissons, Institut National de la Recherche Agronomique, Rennes, France
| | - Johan W. Schrama
- Aquaculture and Fisheries Group, Wageningen Institute of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
20
|
Höglund E, Øverli Ø, Winberg S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Front Endocrinol (Lausanne) 2019; 10:158. [PMID: 31024440 PMCID: PMC6463810 DOI: 10.3389/fendo.2019.00158] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/22/2019] [Indexed: 12/16/2022] Open
Abstract
The essential amino acid L-tryptophan (Trp) is the precursor of the monoaminergic neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Numerous studies have shown that elevated dietary Trp has a suppressive effect on aggressive behavior and post-stress plasma cortisol concentrations in vertebrates, including teleosts. These effects are believed to be mediated by the brain serotonergic system, even though all mechanisms involved are not well understood. The rate of 5-HT biosynthesis is limited by Trp availability, but only in neurons of the hindbrain raphe area predominantly expressing the isoform TPH2 of the enzyme tryptophan hydroxylase (TPH). In the periphery as well as in brain areas expressing TPH1, 5-HT synthesis is probably not restricted by Trp availability. Moreover, there are factors affecting Trp influx to the brain. Among those are acute stress, which, in contrast to long-term stress, may result in an increase in brain Trp availability. The mechanisms behind this stress induced increase in brain Trp concentration are not fully understood but sympathetic activation is likely to play an important role. Studies in mammals show that only a minor fraction of Trp is utilized for 5-HT synthesis whereas a larger fraction of the Trp pool enters the kynurenic pathway. The first stage of this pathway is catalyzed by the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) and the extrahepatic enzyme indoleamine 2,3-dioxygenase (IDO), enzymes that are induced by glucocorticoids and pro-inflammatory cytokines, respectively. Thus, chronic stress and infections can shunt available Trp toward the kynurenic pathway and thereby lower 5-HT synthesis. In accordance with this, dietary fatty acids affecting the pro-inflammatory cytokines has been suggested to affect metabolic fate of Trp. While TDO seems to be conserved by evolution in the vertebrate linage, earlier studies suggested that IDO was only present mammals. However, recent phylogenic studies show that IDO paralogues are present within the whole vertebrate linage, however, their involvement in the immune and stress reaction in teleost fishes remains to be investigated. In this review we summarize the results from previous studies on the effects of dietary Trp supplementation on behavior and neuroendocrinology, focusing on possible mechanisms involved in mediating these effects.
Collapse
Affiliation(s)
- Erik Höglund
- Norwegian Institute of Water Research, Oslo, Norway
- Centre of Coastal Research, University of Agder, Kristiansand, Norway
| | - Øyvind Øverli
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Svante Winberg
- Behavioural Neuroendocrinology Group, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Higuchi Y, Soga T, Parhar IS. Social Defeat Stress Decreases mRNA for Monoamine Oxidase A and Increases 5-HT Turnover in the Brain of Male Nile Tilapia ( Oreochromis niloticus). Front Pharmacol 2019; 9:1549. [PMID: 30687104 PMCID: PMC6333864 DOI: 10.3389/fphar.2018.01549] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023] Open
Abstract
Stress induces various neurobiological responses and causes psychiatric disorders, including depression. Monoamine oxidase A (MAO-A) plays an important role in various functions of the brain, such as regulation of mood, anxiety and aggression, and dysregulation of MAO-A is observed in stress-related psychiatric disorders. This study addressed the question whether acute social stress induces changes to transcriptional and/or post-transcriptional regulation of MAO-A expression in the brain. Using male Nile tilapia (Oreochromis niloticus), we investigated whether acute social stress, induced by the presence of a dominant male fish, changes the expression of MAO-A. We measured gene expression of MAO-A by quantitative PCR, enzymatic activity of MAO-A by the luminescent method, and 5-HT and 5-HIAA levels by liquid chromatography–mass spectrometry in the brain of socially stressed and control fish. Socially stressed males showed decreased MAO-A mRNA levels, consistent MAO-A enzymatic activity, increased 5-HT turnover in the brain, and elevated plasma cortisol levels, compared to controls. Our results suggest that acute social stress suppresses the transcription of MAO-A gene, enhances 5-HT metabolism but does not affect the production of MAO-A protein.
Collapse
Affiliation(s)
- Yuki Higuchi
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Tomoko Soga
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
22
|
Wosnick N, Bendhack F, Leite RD, Morais RN, Freire CA. Benzocaine-induced stress in the euryhaline teleost, Centropomus parallelus and its implications for anesthesia protocols. Comp Biochem Physiol A Mol Integr Physiol 2018; 226:32-37. [PMID: 30056161 DOI: 10.1016/j.cbpa.2018.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 11/26/2022]
Abstract
The use of anesthetic in fish farming is a traditional practice which aims to reduce the stress caused by transport and handling. However, anesthesia-induction protocols are commonly established and implemented without proper physiological/behavioral evaluation. Additionally, concentration and time of exposure to the anesthetic are often set without considering species-specific responses. The fat snook (Centropomus parallelus) is a fish with great potential for aquaculture. Given its remarkable euryhalinity, it can grow in fresh- or seawater. Most studies on fat snook anesthesia tested natural compounds (essential oils) instead of traditional anesthetics. However, the use of benzocaine is much more common in the commercial sector, as it is easy to obtain and of relatively low cost. The present study aimed at analyzing the effects benzocaine exposure on glucose and cortisol plasma levels (two traditional stress markers in teleost fish), as well as on plasma osmolality, chloride and magnesium, (indicators of osmo-ionic allostasis) in animals acclimated to different salinities. Results showed that while osmo-ionic allostasis was strictly maintained across the treatments, time of anesthesia had a strong positive relationship to plasma cortisol and glucose, regardless the salinity of exposure and acclimation. The results are discussed as they relate to anesthesia protocols and how stress response generated by time of anesthesia may challenge farming flexibility.
Collapse
Affiliation(s)
- Natascha Wosnick
- Departamento de Fisiologia, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil.
| | - Fabiano Bendhack
- Centro de Estudos do Mar, Universidade Federal do Paraná, Pontal do Paraná, Brazil
| | - Renata D Leite
- Departamento de Zoologia, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Rosana N Morais
- Departamento de Fisiologia, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| | - Carolina A Freire
- Departamento de Fisiologia, Centro Politécnico, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
23
|
Early life stress induces long-term changes in limbic areas of a teleost fish: the role of catecholamine systems in stress coping. Sci Rep 2018; 8:5638. [PMID: 29618742 PMCID: PMC5884775 DOI: 10.1038/s41598-018-23950-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/20/2018] [Indexed: 01/05/2023] Open
Abstract
Early life stress (ELS) shapes the way individuals cope with future situations. Animals use cognitive flexibility to cope with their ever-changing environment and this is mainly processed in forebrain areas. We investigated the performance of juvenile gilthead seabream, previously subjected to an ELS regime. ELS fish showed overall higher brain catecholaminergic (CA) signalling and lower brain derived neurotrophic factor (bdnf) and higher cfos expression in region-specific areas. All fish showed a normal cortisol and serotonergic response to acute stress. Brain dopaminergic activity and the expression of the α2Α adrenergic receptor were overall higher in the fish homologue to the lateral septum (Vv), suggesting that the Vv is important in CA system regulation. Interestingly, ELS prevented post-acute stress downregulation of the α2Α receptor in the amygdala homologue (Dm3). There was a lack of post-stress response in the β2 adrenergic receptor expression and a downregulation in bdnf in the Dm3 of ELS fish, which together indicate an allostatic overload in their stress coping ability. ELS fish showed higher neuronal activity (cfos) post-acute stress in the hippocampus homologue (Dlv) and the Dm3. Our results show clear long-term effects on limbic systems of seabream that may compromise their future coping ability to environmental challenges.
Collapse
|
24
|
Kiilerich P, Servili A, Péron S, Valotaire C, Goardon L, Leguen I, Prunet P. Regulation of the corticosteroid signalling system in rainbow trout HPI axis during confinement stress. Gen Comp Endocrinol 2018; 258:184-193. [PMID: 28837788 DOI: 10.1016/j.ygcen.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/13/2017] [Accepted: 08/11/2017] [Indexed: 12/17/2022]
Abstract
This study aims to shed light on corticosteroid regulation of stress in teleost fish with focus on the corticosteroid signalling system. The role of the mineralocorticoid-like hormone 11-deoxycorticosterone (DOC) in fish is still enigmatic, as is the function of the mineralocorticoid receptor, MR. Low plasma DOC levels and ubiquitous tissue distribution of MR question the physiological relevance of the mineralocorticoid-axis. Furthermore, the particular purpose of each of the three corticosteroid receptors in fish, the glucocorticoid receptors, GR1 and GR2, and the MR, is still largely unknown. Therefore we investigate the regulation of cortisol and DOC in plasma and mRNA levels of MR, GR1 and GR2 in the HPI-axis tissues (hypothalamus, pituitary and interrenal gland) during a detailed confinement stress time-course. Here we show a sustained up-regulation of plasma DOC levels during a confinement stress time-course. However, the low DOC levels compared to cortisol measured in the plasma do not favour an activity of DOC through MR receptors. Furthermore, we show differential contribution of the CRs in regulation and control of HPI axis activity following confinement stress. Judged by the variation of mRNA levels negative feedback regulation of cortisol release occurs on the level of the pituitary via MR and on the level of the interrenal gland via GR2. Finally, asa significant effect of confinement stress on CR expressions was observed in the pituitary gland, we completed this experiment by demonstrating that corticosteroid receptors (GR1, GR2 and MR) are co-expressed in the ACTH cells located in the adenohypophysis. Overall, these data suggest the involvement of these receptors in the regulation of the HPI axis activity by cortisol.
Collapse
Affiliation(s)
- Pia Kiilerich
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France.
| | - Arianna Servili
- Ifremer, Unité de Physiologie Fonctionnelle des Organismes Marins, LEMAR UMR 6539, BP 70, Plouzané 29280, France
| | - Sandrine Péron
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Claudiane Valotaire
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Lionel Goardon
- INRA, UE937 Pisciculture expérimentale des Monts d'Arrée, 29450 Sizun, France
| | - Isabelle Leguen
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France
| | - Patrick Prunet
- INRA, UR1037, Fish Physiology and Genomics, Campus de Beaulieu, 35042 Rennes, France.
| |
Collapse
|
25
|
Samaras A, Espírito Santo C, Papandroulakis N, Mitrizakis N, Pavlidis M, Höglund E, Pelgrim TNM, Zethof J, Spanings FAT, Vindas MA, Ebbesson LOE, Flik G, Gorissen M. Allostatic Load and Stress Physiology in European Seabass ( Dicentrarchus labrax L.) and Gilthead Seabream ( Sparus aurata L.). Front Endocrinol (Lausanne) 2018; 9:451. [PMID: 30158900 PMCID: PMC6104477 DOI: 10.3389/fendo.2018.00451] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/23/2018] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to compare effects of increasing chronic stress load on the stress response of European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata) to identify neuroendocrine functions that regulate this response. Fish were left undisturbed (controls) or exposed to three levels of chronic stress for 3 weeks and then subjected to an acute stress test (ACT). Chronic stress impeded growth and decreased feed consumption in seabass, not in seabream. In seabass basal cortisol levels are high and increase with stress load; the response to a subsequent ACT decreases with increasing (earlier) load. Basal cortisol levels in seabream increase with the stress load, whereas the ACT induced a similar response in all groups. In seabass and seabream plasma α-MSH levels and brain stem serotonergic activity and turnover were similar and not affected by chronic stress. Species-specific molecular neuro-regional differences were seen. In-situ hybridization analysis of the early immediate gene cfos in the preoptic area showed ACT-activation in seabream; in seabass the expression level was not affected by ACT and seems constitutively high. In seabream, expression levels of telencephalic crf, crfbp, gr1, and mr were downregulated; the seabass hypothalamic preoptic area showed increased expression of crf and gr1, and decreased expression of mr, and this increased the gr1/mr ratio considerably. We substantiate species-specific physiological differences to stress coping between seabream and seabass at an endocrine and neuroendocrine molecular level. Seabass appear less resilient to stress, which we conclude from high basal activities of stress-related parameters and poor, or absent, responses to ACT. This comparative study reveals important aquaculture, husbandry, and welfare implications for the rearing of these species.
Collapse
Affiliation(s)
- Athanasios Samaras
- AquaLabs, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - Carlos Espírito Santo
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Nikos Papandroulakis
- AquaLabs, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | - Nikolaos Mitrizakis
- AquaLabs, Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Greece
| | | | - Erik Höglund
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Section for Aquaculture, National Institute of Aquatic Resources, Technical University of Denmark, Hirtshals, Denmark
| | - Thamar N. M. Pelgrim
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - F. A. Tom Spanings
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | | | | | - Gert Flik
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
- *Correspondence: Gert Flik
| | - Marnix Gorissen
- Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
26
|
Ketchesin KD, Stinnett GS, Seasholtz AF. Corticotropin-releasing hormone-binding protein and stress: from invertebrates to humans. Stress 2017; 20:449-464. [PMID: 28436309 PMCID: PMC7885796 DOI: 10.1080/10253890.2017.1322575] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Corticotropin-releasing hormone (CRH) is a key regulator of the stress response. This peptide controls the hypothalamic-pituitary-adrenal (HPA) axis as well as a variety of behavioral and autonomic stress responses via the two CRH receptors, CRH-R1 and CRH-R2. The CRH system also includes an evolutionarily conserved CRH-binding protein (CRH-BP), a secreted glycoprotein that binds CRH with subnanomolar affinity to modulate CRH receptor activity. In this review, we discuss the current literature on CRH-BP and stress across multiple species, from insects to humans. We describe the regulation of CRH-BP in response to stress, as well as genetic mouse models that have been utilized to elucidate the in vivo role(s) of CRH-BP in modulating the stress response. Finally, the role of CRH-BP in the human stress response is examined, including single nucleotide polymorphisms in the human CRHBP gene that are associated with stress-related affective disorders and addiction. Lay summary The stress response is controlled by corticotropin-releasing hormone (CRH), acting via CRH receptors. However, the CRH system also includes a unique CRH-binding protein (CRH-BP) that binds CRH with an affinity greater than the CRH receptors. In this review, we discuss the role of this highly conserved CRH-BP in regulation of the CRH-mediated stress response from invertebrates to humans.
Collapse
Affiliation(s)
- Kyle D. Ketchesin
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
| | - Gwen S. Stinnett
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
| | - Audrey F. Seasholtz
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Abstract
Comparative models suggest that effects of dietary tryptophan (Trp) on brain serotonin (5-hydroxytryptamine; 5-HT) neurochemistry and stress responsiveness are present throughout the vertebrate lineage. Moreover, hypothalamic 5-HT seems to play a central role in control of the neuroendocrine stress axis in all vertebrates. Still, recent fish studies suggest long-term effects of dietary Trp on stress responsiveness, which are independent of hypothalamic 5-HT. Here, we investigated if dietary Trp treatment may result in long-lasting effects on stress responsiveness, including changes in plasma cortisol levels and 5-HT neurochemistry in the telencephalon and hypothalamus of Atlantic salmon. Fish were fed diets containing one, two or three times the Trp content in normal feed for 1 week. Subsequently, fish were reintroduced to control feed and were exposed to acute crowding stress for 1 h, 8 and 21 d post Trp treatment. Generally, acute crowding resulted in lower plasma cortisol levels in fish treated with 3×Trp compared with 1×Trp- and 2×Trp-treated fish. The same general pattern was reflected in telencephalic 5-HTergic turnover, for which 3×Trp-treated fish showed decreased values compared with 2×Trp-treated fish. These long-term effects on post-stress plasma cortisol levels and concomitant 5-HT turnover in the telencephalon lends further support to the fact that the extrahypothalamic control of the neuroendocrine stress response is conserved within the vertebrate lineage. Moreover, they indicate that trophic/structural effects in the brain underlie the effects of dietary Trp treatment on stress reactivity.
Collapse
|