1
|
Popecki MS, Rogers RL, Archer-Hartmann SA, Wares JP, Stanger-Hall KF. The role of pigments in light color variation of the firefly Photinus pyralis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614534. [PMID: 39386434 PMCID: PMC11463521 DOI: 10.1101/2024.09.23.614534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Fireflies use bioluminescent signals to communicate with their mates. Luciferase has been thought to be the sole contributor to light color; however, populations of the Photinus pyralis firefly display variation in the color of their emitted signals yet have identical luciferase sequences. Here, we examined whether pigments could be present in the light organs of the twilight-active species P. pyralis and contribute to this variation. We detected patterns of expression that suggest ommochrome and pterin screening pigments are expressed in P. pyralis light organs and could filter light emitted by luciferase and play a role in signal tuning. There were no significant differences between the pigment gene expression of P. pyralis individuals with yellower and greener signals. Our study provides alternative mechanisms that could influence pigments in P. pyralis light organs that could also play a role in modifying signal color.
Collapse
|
2
|
Borrero J, Wright DS, Bacquet CN, Merrill RM. Oviposition behavior is not affected by ultraviolet light in a butterfly with sexually-dimorphic expression of a UV-sensitive opsin. Ecol Evol 2023; 13:e10243. [PMID: 37408633 PMCID: PMC10318619 DOI: 10.1002/ece3.10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Animal vision is important for mediating multiple complex behaviors. In Heliconius butterflies, vision guides fundamental behaviors such as oviposition, foraging, and mate choice. Color vision in Heliconius involves ultraviolet (UV), blue and long-wavelength-sensitive photoreceptors (opsins). Additionally, Heliconius possess a duplicated UV opsin, and its expression varies widely within the genus. In Heliconius erato, opsin expression is sexually dimorphic; only females express both UV-sensitive opsins, enabling UV wavelength discrimination. However, the selective pressures responsible for sex-specific differences in opsin expression and visual perception remain unresolved. Female Heliconius invest heavily in finding suitable hostplants for oviposition, a behavior heavily dependent on visual cues. Here, we tested the hypothesis that UV vision is important for oviposition in H. erato and Heliconius himera females by manipulating the availability of UV in behavioral experiments under natural conditions. Our results indicate that UV does not influence the number of oviposition attempts or eggs laid, and the hostplant, Passiflora punctata, does not reflect UV wavelengths. Models of H. erato female vision suggest only minimal stimulation of the UV opsins. Overall, these findings suggest that UV wavelengths do not directly affect the ability of Heliconius females to find suitable oviposition sites. Alternatively, UV discrimination could be used in the context of foraging or mate choice, but this remains to be tested.
Collapse
Affiliation(s)
- Jose Borrero
- Division of Evolutionary BiologyLMU MunichMunichGermany
| | | | | | | |
Collapse
|
3
|
Yeager J, Barnett JB. The influence of ultraviolet reflectance differs between conspicuous aposematic signals in neotropical butterflies and poison frogs. Ecol Evol 2021; 11:13633-13640. [PMID: 34707805 PMCID: PMC8525173 DOI: 10.1002/ece3.7942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/07/2022] Open
Abstract
Warning signals are often characterized by highly contrasting, distinctive, and memorable colors. Greater chromatic (hue) and achromatic (brightness) contrast have both been found to contribute to greater signal efficacy, making longwave colored signals (e.g., red and yellow), that are perceived by both chromatic and achromatic visual pathways, particularly common. Conversely, shortwave colors (e.g., blue and ultraviolet) do not contribute to luminance perception yet are also commonly found in warning signals. Our understanding of the role of UV in aposematic signals is currently incomplete as UV perception is not universal, and evidence for its utility is at best mixed. We used visual modeling to quantify how UV affects signal contrast in aposematic heliconiian butterflies and poison frogs both of which reflect UV wavelengths, occupy similar habitats, and share similar classes of predators. Previous work on butterflies has found that UV reflectance does not affect predation risk but is involved in mate choice. As the butterflies, but not the frogs, have UV-sensitive vision, the function of UV reflectance in poison frogs is currently unknown. We found that despite showing up strongly in UV photographs, UV reflectance only appreciably affected visual contrast in the butterflies. As such, these results support the notion that although UV reflectance is associated with intraspecific communication in butterflies, it appears to be nonfunctional in frogs. Consequently, our data highlight that we should be careful when assigning a selection-based benefit to the presence of UV reflectance.
Collapse
Affiliation(s)
- Justin Yeager
- Biodiversidad Medio Ambiente y SaludUniversidad de Las AméricasQuitoEcuador
| | - James B. Barnett
- Psychology, Neuroscience & BehaviourMcMaster UniversityHamiltonONCanada
| |
Collapse
|
4
|
Finkbeiner SD, Briscoe AD. True UV color vision in a female butterfly with two UV opsins. J Exp Biol 2021; 224:272299. [PMID: 34587624 DOI: 10.1242/jeb.242802] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/16/2021] [Indexed: 11/20/2022]
Abstract
In true color vision, animals discriminate between light wavelengths, regardless of intensity, using at least two photoreceptors with different spectral sensitivity peaks. Heliconius butterflies have duplicate UV opsin genes, which encode ultraviolet and violet photoreceptors, respectively. In Heliconius erato, only females express the ultraviolet photoreceptor, suggesting females (but not males) can discriminate between UV wavelengths. We tested the ability of H. erato, and two species lacking the violet receptor, Heliconius melpomene and Eueides isabella, to discriminate between 380 and 390 nm, and between 400 and 436 nm, after being trained to associate each stimulus with a sugar reward. We found that only H. erato females have color vision in the UV range. Across species, both sexes show color vision in the blue range. Models of H. erato color vision suggest that females have an advantage over males in discriminating the inner UV-yellow corollas of Psiguria flowers from their outer orange petals. Moreover, previous models ( McCulloch et al., 2017) suggested that H. erato males have an advantage over females in discriminating Heliconius 3-hydroxykynurenine (3-OHK) yellow wing coloration from non-3-OHK yellow wing coloration found in other heliconiines. These results provide some of the first behavioral evidence for female H. erato UV color discrimination in the context of foraging, lending support to the hypothesis ( Briscoe et al., 2010) that the duplicated UV opsin genes function together in UV color vision. Taken together, the sexually dimorphic visual system of H. erato appears to have been shaped by both sexual selection and sex-specific natural selection.
Collapse
Affiliation(s)
- Susan D Finkbeiner
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.,Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
5
|
Livraghi L, Hanly JJ, Van Bellghem SM, Montejo-Kovacevich G, van der Heijden ESM, Loh LS, Ren A, Warren IA, Lewis JJ, Concha C, Hebberecht L, Wright CJ, Walker JM, Foley J, Goldberg ZH, Arenas-Castro H, Salazar C, Perry MW, Papa R, Martin A, McMillan WO, Jiggins CD. Cortex cis-regulatory switches establish scale colour identity and pattern diversity in Heliconius. eLife 2021; 10:e68549. [PMID: 34280087 PMCID: PMC8289415 DOI: 10.7554/elife.68549] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
In Heliconius butterflies, wing colour pattern diversity and scale types are controlled by a few genes of large effect that regulate colour pattern switches between morphs and species across a large mimetic radiation. One of these genes, cortex, has been repeatedly associated with colour pattern evolution in butterflies. Here we carried out CRISPR knockouts in multiple Heliconius species and show that cortex is a major determinant of scale cell identity. Chromatin accessibility profiling and introgression scans identified cis-regulatory regions associated with discrete phenotypic switches. CRISPR perturbation of these regions in black hindwing genotypes recreated a yellow bar, revealing their spatially limited activity. In the H. melpomene/timareta lineage, the candidate CRE from yellow-barred phenotype morphs is interrupted by a transposable element, suggesting that cis-regulatory structural variation underlies these mimetic adaptations. Our work shows that cortex functionally controls scale colour fate and that its cis-regulatory regions control a phenotypic switch in a modular and pattern-specific fashion.
Collapse
Affiliation(s)
- Luca Livraghi
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Joseph J Hanly
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Steven M Van Bellghem
- Department of Biology, Centre for Applied Tropical Ecology and Conservation, University of Puerto RicoRio PiedrasPuerto Rico
| | | | - Eva SM van der Heijden
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Ling Sheng Loh
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Anna Ren
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | - Ian A Warren
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | - James J Lewis
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell UniversityIthacaUnited States
| | | | - Laura Hebberecht
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| | - Charlotte J Wright
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | - Jonah M Walker
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
| | | | - Zachary H Goldberg
- Cell & Developmental Biology, Division of Biological Sciences, UC San DiegoLa JollaUnited States
| | | | - Camilo Salazar
- Biology Program, Faculty of Natural Sciences, Universidad del RosarioBogotáColombia
| | - Michael W Perry
- Cell & Developmental Biology, Division of Biological Sciences, UC San DiegoLa JollaUnited States
| | - Riccardo Papa
- Department of Biology, Centre for Applied Tropical Ecology and Conservation, University of Puerto RicoRio PiedrasPuerto Rico
| | - Arnaud Martin
- The George Washington University Department of Biological Sciences, Science and Engineering HallWashingtonUnited States
| | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Downing St.CambridgeUnited Kingdom
- Smithsonian Tropical Research InstituteGamboaPanama
| |
Collapse
|
6
|
Meece M, Rathore S, Buschbeck EK. Stark trade-offs and elegant solutions in arthropod visual systems. J Exp Biol 2021; 224:224/4/jeb215541. [PMID: 33632851 DOI: 10.1242/jeb.215541] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vision is one of the most important senses for humans and animals alike. Diverse elegant specializations have evolved among insects and other arthropods in response to specific visual challenges and ecological needs. These specializations are the subject of this Review, and they are best understood in light of the physical limitations of vision. For example, to achieve high spatial resolution, fine sampling in different directions is necessary, as demonstrated by the well-studied large eyes of dragonflies. However, it has recently been shown that a comparatively tiny robber fly (Holcocephala) has similarly high visual resolution in the frontal visual field, despite their eyes being a fraction of the size of those of dragonflies. Other visual specializations in arthropods include the ability to discern colors, which relies on parallel inputs that are tuned to spectral content. Color vision is important for detection of objects such as mates, flowers and oviposition sites, and is particularly well developed in butterflies, stomatopods and jumping spiders. Analogous to color vision, the visual systems of many arthropods are specialized for the detection of polarized light, which in addition to communication with conspecifics, can be used for orientation and navigation. For vision in low light, optical superposition compound eyes perform particularly well. Other modifications to maximize photon capture involve large lenses, stout photoreceptors and, as has been suggested for nocturnal bees, the neural pooling of information. Extreme adaptations even allow insects to see colors at very low light levels or to navigate using the Milky Way.
Collapse
Affiliation(s)
- Michael Meece
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
7
|
Yeager J, Barnett JB. Ultraviolet components offer minimal contrast enhancement to an aposematic signal. Ecol Evol 2020; 10:13576-13582. [PMID: 33391663 PMCID: PMC7771128 DOI: 10.1002/ece3.6969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 12/03/2022] Open
Abstract
Aposematic and sexual signals are often characterized by bright, highly contrasting colors. Many species can see colors beyond the human visible spectrum, and ultraviolet (UV) reflection has been found to play an important role in communication and sexual selection. However, the role of UV in aposematic signals is poorly explored. Poison frogs frequently produce high-contrast signals that have been linked to both aposematism and intraspecific communication. Yet despite considerable efforts studying interspecific and intraspecific diversity in color, poison frogs are not known to perceive UV, and UV reflection of the integument has not been described. We report UV-reflective spots in a population of Oophaga sylvatica and quantify the effect of UV on visual contrast with models of avian vision. We found that the frogs are highly contrasting, but UV had a minimal effect on signal saliency. These data highlight the importance of considering UV reflectance within aposematic signals, but that UV should not necessarily be regarded as an independent signal.
Collapse
Affiliation(s)
- Justin Yeager
- Biodiversidad Medio Ambiente y SaludUniversidad de Las AméricasQuitoEcuador
| | - James B. Barnett
- Department of Psychology, Neuroscience & BehaviourMcMaster UniversityHamiltonONCanada
| |
Collapse
|
8
|
Allan SA, George J, Stelinski LL, Lapointe SL. Attributes of Yellow Traps Affecting Attraction of Diaphorina citri (Hemiptera: Liviidae). INSECTS 2020; 11:insects11070452. [PMID: 32708797 PMCID: PMC7412371 DOI: 10.3390/insects11070452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022]
Abstract
Laboratory assays were conducted to evaluate responses of Diaphorina citri to various aspects of visual cues associated with traps in an effort to improve trap effectiveness. Addition of white or UV violet but not yellow light-emitting diodes (LEDs) increased attraction to standard yellow adhesive traps moderately (11–17%), with no difference in attraction between white or UV violet LEDs. Addition of a black border on yellow traps enhanced collections. However, there were no differences between attraction to black patterns on traps. Comparisons were made between different commercial paints, some with UV-reflecting properties or fluorescence. A yellow paint with UV reflectance, used for painting bird decoys (decoy yellow), was more attractive than the standard yellow Olson sticky trap. Addition of white or green pigment to increase intensity or enhance green reflectance, respectively, did not increase attraction. Alteration of reflectance of Olson traps with addition of UV-reflecting or fluorescent pigments did not enhance attraction of D. citri. In field comparisons, decoy yellow and fluorescent yellow sticky traps were more attractive to D. citri than Olson yellow.
Collapse
Affiliation(s)
- Sandra A. Allan
- Center for Medical, Agricultural and Agricultural Entomology, Agricultural Research Service, United States Department of Agriculture, Gainesville, FL 32608, USA
- Correspondence:
| | - Justin George
- US Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 2001 South Rock Road, Fort Pierce, FL 34945, USA; (J.G.); (S.L.L.)
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL 33850, USA;
| | - Lukasz L. Stelinski
- Entomology and Nematology Department, Citrus Research and Education Center, University of Florida, 700 Experiment Station Rd, Lake Alfred, FL 33850, USA;
| | - Stephen L. Lapointe
- US Horticultural Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 2001 South Rock Road, Fort Pierce, FL 34945, USA; (J.G.); (S.L.L.)
| |
Collapse
|
9
|
Bian L, Cai XM, Luo ZX, Li ZQ, Chen ZM. Foliage Intensity is an Important Cue of Habitat Location for Empoasca onukii. INSECTS 2020; 11:insects11070426. [PMID: 32659987 PMCID: PMC7412280 DOI: 10.3390/insects11070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 11/02/2022]
Abstract
For many herbivorous insects, vision is more important than olfaction in the prealighting stage of host habitat location. Tea leafhoppers, Empoasca onukii (Hemiptera, Cicadellidae), are serious pests that preferentially inhabit the tender leaves of tea plants across China. Here, we investigated whether tea leafhoppers could distinguish foliage colors associated with different leaf ages and use this visual cue to guide suitable habitat location from short distances. Similar to honeybees, the adult E. onukii has an apposition type of compound eye, and each ommatidium has eight retinular cells, in which three spectral types of photoreceptors are distributed, with peak sensitivities at 356 nm (ultraviolet), 435 nm (blue), and 542 nm (green). Both changes in spectral intensity and hue of reflectance light of the host foliage were correlated with varying leaf age, and the intensity linearly decreased with increasing leaf age. Behavioral responses also showed that adult E. onukii could discriminate between the simulated colors of host foliage at different leaf ages without olfactory stimuli and selected the bright colors that strongly corresponded to those of tender leaves. The results suggest that, compared with the spectral composition (hue), the intensity of light reflectance from leaves at different ages is more important for adult leafhoppers when discriminating host foliage and could guide them to tender leaves at the top of tea shoots.
Collapse
Affiliation(s)
- Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Xiao Ming Cai
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Zong Xiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Zhao Qun Li
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
| | - Zong Mao Chen
- Tea Research Institute, Chinese Academy of Agricultural Science, 9 Meiling South Road, Xihu District, Hangzhou 310008, China; (L.B.); (X.M.C.); (Z.X.L.); (Z.Q.L.)
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, 9 Meiling South Road, Xihu District, Hangzhou 310008, China
- Correspondence: ; Tel.: +86-571-86650100
| |
Collapse
|
10
|
Stoddard MC, Eyster HN, Hogan BG, Morris DH, Soucy ER, Inouye DW. Wild hummingbirds discriminate nonspectral colors. Proc Natl Acad Sci U S A 2020; 117:15112-15122. [PMID: 32541035 PMCID: PMC7334476 DOI: 10.1073/pnas.1919377117] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many animals have the potential to discriminate nonspectral colors. For humans, purple is the clearest example of a nonspectral color. It is perceived when two color cone types in the retina (blue and red) with nonadjacent spectral sensitivity curves are predominantly stimulated. Purple is considered nonspectral because no monochromatic light (such as from a rainbow) can evoke this simultaneous stimulation. Except in primates and bees, few behavioral experiments have directly examined nonspectral color discrimination, and little is known about nonspectral color perception in animals with more than three types of color photoreceptors. Birds have four color cone types (compared to three in humans) and might perceive additional nonspectral colors such as UV+red and UV+green. Can birds discriminate nonspectral colors, and are these colors behaviorally and ecologically relevant? Here, using comprehensive behavioral experiments, we show that wild hummingbirds can discriminate a variety of nonspectral colors. We also show that hummingbirds, relative to humans, likely perceive a greater proportion of natural colors as nonspectral. Our analysis of plumage and plant spectra reveals many colors that would be perceived as nonspectral by birds but not by humans: Birds' extra cone type allows them not just to see UV light but also to discriminate additional nonspectral colors. Our results support the idea that birds can distinguish colors throughout tetrachromatic color space and indicate that nonspectral color perception is vital for signaling and foraging. Since tetrachromacy appears to have evolved early in vertebrates, this capacity for rich nonspectral color perception is likely widespread.
Collapse
Affiliation(s)
- Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544;
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
| | - Harold N Eyster
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Benedict G Hogan
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
| | - Dylan H Morris
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Edward R Soucy
- Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - David W Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224
- Department of Biology, University of Maryland, College Park, MD 20742
| |
Collapse
|
11
|
Lee G, Kong M, Park D, Park J, Jeong U. Electro-Photoluminescence Color Change for Deformable Visual Encryption. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907477. [PMID: 32319128 DOI: 10.1002/adma.201907477] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/27/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Although structural coloring and photoluminescence (PL) have been investigated for radiation-responsive color change, electroluminescence (EL) has not been used for the radiation-responsive system. An electro-photoluminescence (EPL) color change is presented here. The phosphors in the alternating current electroluminescence (ACEL) act simultaneously as electro-luminophores and photo-luminophores. The EPL chromaticity is systematically investigated depending on the ACEL frequency and UV intensity. It is found that the PL variation depending on UV intensity is the mechanism of the EPL color change. It is revealed that EL and PL can be controlled independently in the low electric field so that the EPL chromaticity can be adjusted by a linear combination of the EL color and the PL color. The EPL color-changing device is used as a deformable visual encryption system and a soft skin for a soft robotic rover, imitating the concealment and signaling functions in nature.
Collapse
Affiliation(s)
- Gilwoon Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Minsik Kong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Doowon Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Junho Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
12
|
Darragh K, Montejo‐Kovacevich G, Kozak KM, Morrison CR, Figueiredo CME, Ready JS, Salazar C, Linares M, Byers KJRP, Merrill RM, McMillan WO, Schulz S, Jiggins CD. Species specificity and intraspecific variation in the chemical profiles of Heliconius butterflies across a large geographic range. Ecol Evol 2020; 10:3895-3918. [PMID: 32489619 PMCID: PMC7244815 DOI: 10.1002/ece3.6079] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 02/01/2023] Open
Abstract
In many animals, mate choice is important for the maintenance of reproductive isolation between species. Traits important for mate choice and behavioral isolation are predicted to be under strong stabilizing selection within species; however, such traits can also exhibit variation at the population level driven by neutral and adaptive evolutionary processes. Here, we describe patterns of divergence among androconial and genital chemical profiles at inter- and intraspecific levels in mimetic Heliconius butterflies. Most variation in chemical bouquets was found between species, but there were also quantitative differences at the population level. We found a strong correlation between interspecific chemical and genetic divergence, but this correlation varied in intraspecific comparisons. We identified "indicator" compounds characteristic of particular species that included compounds already known to elicit a behavioral response, suggesting an approach for identification of candidate compounds for future behavioral studies in novel systems. Overall, the strong signal of species identity suggests a role for these compounds in species recognition, but with additional potentially neutral variation at the population level.
Collapse
Affiliation(s)
- Kathy Darragh
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanama CityPanama
| | | | | | - Colin R. Morrison
- Smithsonian Tropical Research InstitutePanama CityPanama
- Department of Integrative BiologyThe University of Texas at AustinAustinTXUSA
| | | | - Jonathan S. Ready
- Institute for Biological SciencesUniversidade Federal do ParáBelémBrazil
| | - Camilo Salazar
- Biology ProgramFaculty of Natural Sciences and MathematicsUniversidad del RosarioBogotaColombia
| | - Mauricio Linares
- Biology ProgramFaculty of Natural Sciences and MathematicsUniversidad del RosarioBogotaColombia
| | - Kelsey J. R. P. Byers
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Richard M. Merrill
- Smithsonian Tropical Research InstitutePanama CityPanama
- Division of Evolutionary BiologyFaculty of BiologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | | | - Stefan Schulz
- Institute of Organic ChemistryTechnische Universität BraunschweigBraunschweigGermany
| | - Chris D. Jiggins
- Department of ZoologyUniversity of CambridgeCambridgeUK
- Smithsonian Tropical Research InstitutePanama CityPanama
| |
Collapse
|
13
|
Catalán A, Briscoe AD, Höhna S. Drift and Directional Selection Are the Evolutionary Forces Driving Gene Expression Divergence in Eye and Brain Tissue of Heliconius Butterflies. Genetics 2019; 213:581-594. [PMID: 31467133 PMCID: PMC6781903 DOI: 10.1534/genetics.119.302493] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/24/2019] [Indexed: 01/05/2023] Open
Abstract
Investigating gene expression evolution over micro- and macroevolutionary timescales will expand our understanding of the role of gene expression in adaptation and speciation. In this study, we characterized the evolutionary forces acting on gene expression levels in eye and brain tissue of five Heliconius butterflies with divergence times of ∼5-12 MYA. We developed and applied Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to identify genes whose expression levels are evolving through drift, stabilizing selection, or a lineage-specific shift. We found that 81% of the genes evolve under genetic drift. When testing for branch-specific shifts in gene expression, we detected 368 (16%) shift events. Genes showing a shift toward upregulation have significantly lower gene expression variance than those genes showing a shift leading toward downregulation. We hypothesize that directional selection is acting in shifts causing upregulation, since transcription is costly. We further uncovered through simulations that parameter estimation of OU models is biased when using small phylogenies and only becomes reliable with phylogenies having ≥ 50 taxa. Therefore, we developed a new statistical test based on BM to identify highly conserved genes (i.e., evolving under strong stabilizing selection), which comprised 3% of the orthoclusters. In conclusion, we found that drift is the dominant evolutionary force driving gene expression evolution in eye and brain tissue in Heliconius Nevertheless, the higher proportion of genes evolving under directional than under stabilizing selection might reflect species-specific selective pressures on vision and the brain that are necessary to fulfill species-specific requirements.
Collapse
Affiliation(s)
- Ana Catalán
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, 75236, Sweden
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697
| | - Sebastian Höhna
- Division of Evolutionary Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, 80333 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| |
Collapse
|
14
|
Parnell AJ, Bradford JE, Curran EV, Washington AL, Adams G, Brien MN, Burg SL, Morochz C, Fairclough JPA, Vukusic P, Martin SJ, Doak S, Nadeau NJ. Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic Heliconius butterflies. J R Soc Interface 2019; 15:rsif.2017.0948. [PMID: 29669892 PMCID: PMC5938584 DOI: 10.1098/rsif.2017.0948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/26/2018] [Indexed: 11/17/2022] Open
Abstract
Iridescence is an optical phenomenon whereby colour changes with the illumination and viewing angle. It can be produced by thin film interference or diffraction. Iridescent optical structures are fairly common in nature, but relatively little is known about their production or evolution. Here we describe the structures responsible for producing blue-green iridescent colour in Heliconius butterflies. Overall the wing scale structures of iridescent and non-iridescent Heliconius species are very similar, both having longitudinal ridges joined by cross-ribs. However, iridescent scales have ridges composed of layered lamellae, which act as multilayer reflectors. Differences in brightness between species can be explained by the extent of overlap of the lamellae and their curvature as well as the density of ridges on the scale. Heliconius are well known for their Müllerian mimicry. We find that iridescent structural colour is not closely matched between co-mimetic species. Differences appear less pronounced in models of Heliconius vision than models of avian vision, suggesting that they are not driven by selection to avoid heterospecific courtship by co-mimics. Ridge profiles appear to evolve relatively slowly, being similar between closely related taxa, while ridge density evolves faster and is similar between distantly related co-mimics.
Collapse
Affiliation(s)
- Andrew J Parnell
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - James E Bradford
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | - Emma V Curran
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Adam L Washington
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK.,Department of Mechanical Engineering, University of Sheffield, Sheffield S3 7HQ, UK
| | - Gracie Adams
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Melanie N Brien
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| | - Stephanie L Burg
- Department of Physics and Astronomy, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH, UK
| | | | | | - Pete Vukusic
- Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK
| | - Simon J Martin
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Scott Doak
- Department of Materials, Loughborough University, Loughborough LE11 3TU, UK
| | - Nicola J Nadeau
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western bank, Sheffield S10 2TN, UK
| |
Collapse
|
15
|
Finkbeiner SD, Salazar PA, Nogales S, Rush CE, Briscoe AD, Hill RI, Kronforst MR, Willmott KR, Mullen SP. Frequency dependence shapes the adaptive landscape of imperfect Batesian mimicry. Proc Biol Sci 2019; 285:rspb.2017.2786. [PMID: 29618547 DOI: 10.1098/rspb.2017.2786] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/12/2018] [Indexed: 11/12/2022] Open
Abstract
Despite more than a century of biological research on the evolution and maintenance of mimetic signals, the relative frequencies of models and mimics necessary to establish and maintain Batesian mimicry in natural populations remain understudied. Here we investigate the frequency-dependent dynamics of imperfect Batesian mimicry, using predation experiments involving artificial butterfly models. We use two geographically distinct populations of Adelpha butterflies that vary in their relative frequencies of a putatively defended model (Adelpha iphiclus) and Batesian mimic (Adelpha serpa). We found that in Costa Rica, where both species share similar abundances, Batesian mimicry breaks down, and predators more readily attack artificial butterfly models of the presumed mimic, A. serpa By contrast, in Ecuador, where A. iphiclus (model) is significantly more abundant than A. serpa (mimic), both species are equally protected from predation. Our results provide compelling experimental evidence that imperfect Batesian mimicry is frequency-dependent on the relative abundance of models and mimics in natural populations, and contribute to the growing body of evidence that complex dynamics, such as seasonality or the availability of alternative prey, influence the evolution of mimetic traits.
Collapse
Affiliation(s)
- Susan D Finkbeiner
- Department of Biological Sciences, Boston University, Boston, MA 02215, USA .,Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Patricio A Salazar
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Sofía Nogales
- Department of Biology, Pontifica Universidad Católica del Ecuador, Quito, Ecuador
| | - Cassidi E Rush
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Ryan I Hill
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Marcus R Kronforst
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Keith R Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Sean P Mullen
- Department of Biological Sciences, Boston University, Boston, MA 02215, USA
| |
Collapse
|
16
|
Goutte S, Mason MJ, Antoniazzi MM, Jared C, Merle D, Cazes L, Toledo LF, El-Hafci H, Pallu S, Portier H, Schramm S, Gueriau P, Thoury M. Intense bone fluorescence reveals hidden patterns in pumpkin toadlets. Sci Rep 2019; 9:5388. [PMID: 30926879 PMCID: PMC6441030 DOI: 10.1038/s41598-019-41959-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/21/2019] [Indexed: 11/09/2022] Open
Abstract
The phenomenon of fluorescence can be used by animals to change effective colouration or patterning, potentially to serve functions including intra- and interspecific signalling. Initially believed to be restricted to marine animals, fluorescent colours are now being described in an increasing number of terrestrial species. Here, we describe unique, highly fluorescent patterns in two species of pumpkin toadlets (Brachycephalus ephippium and B. pitanga). We establish that the origin of the fluorescence lies in the dermal bone of the head and back, visible through a particularly thin skin. By comparing them to those of the closely related species Ischnocnema parva, we demonstrate that pumpkin toadlets' bones are exceptionally fluorescent. We characterize the luminescence properties of the toadlets' bones and discuss the potential function of fluorescent patterns in natural lighting conditions.
Collapse
Affiliation(s)
- Sandra Goutte
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil. .,New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates.
| | - Matthew J Mason
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Marta M Antoniazzi
- Laboratory of Cell Biology, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Carlos Jared
- Laboratory of Cell Biology, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Didier Merle
- Sorbonne Universités, CR2P (CNRS, MNHN, UPMC), Muséum national d'Histoire naturelle. CP38, 8, rue Buffon, 75005, Paris, France
| | - Lilian Cazes
- Sorbonne Universités, CR2P (CNRS, MNHN, UPMC), Muséum national d'Histoire naturelle. CP38, 8, rue Buffon, 75005, Paris, France
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, 13083-862, Brazil
| | - Hanane El-Hafci
- B2OA UMR 7052, Université Paris Diderot, Sorbonne Paris Cité, CNRS, F-75010, Paris, France.,B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, F- 94700, Maisons-Alfort, France.,COST, Université d'Orléans, 45100, Orléans, France
| | - Stéphane Pallu
- B2OA UMR 7052, Université Paris Diderot, Sorbonne Paris Cité, CNRS, F-75010, Paris, France.,B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, F- 94700, Maisons-Alfort, France.,COST, Université d'Orléans, 45100, Orléans, France
| | - Hugues Portier
- B2OA UMR 7052, Université Paris Diderot, Sorbonne Paris Cité, CNRS, F-75010, Paris, France.,B2OA UMR 7052, Ecole Nationale Vétérinaire d'Alfort, Université Paris-Est, F- 94700, Maisons-Alfort, France.,COST, Université d'Orléans, 45100, Orléans, France
| | - Stefan Schramm
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | - Pierre Gueriau
- IPANEMA, CNRS, ministère de la Culture; UVSQ, USR 3461, Université Paris-Saclay, F-91192, Gif-sur-Yvette, France.,Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015, Lausanne, Switzerland
| | - Mathieu Thoury
- IPANEMA, CNRS, ministère de la Culture; UVSQ, USR 3461, Université Paris-Saclay, F-91192, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Stoddard MC, Miller AE, Eyster HN, Akkaynak D. I see your false colours: how artificial stimuli appear to different animal viewers. Interface Focus 2018; 9:20180053. [PMID: 30603072 DOI: 10.1098/rsfs.2018.0053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 01/14/2023] Open
Abstract
The use of artificially coloured stimuli, especially to test hypotheses about sexual selection and anti-predator defence, has been common in behavioural ecology since the pioneering work of Tinbergen. To investigate the effects of colour on animal behaviour, many researchers use paints, markers and dyes to modify existing colours or to add colour to synthetic models. Because colour perception varies widely across species, it is critical to account for the signal receiver's vision when performing colour manipulations. To explore this, we applied 26 typical coloration products to different types of avian feathers. Next, we measured the artificially coloured feathers using two complementary techniques-spectrophotometry and digital ultraviolet--visible photography-and modelled their appearance to mammalian dichromats (ferret, dog), trichromats (honeybee, human) and avian tetrachromats (hummingbird, blue tit). Overall, artificial colours can have dramatic and sometimes unexpected effects on the reflectance properties of feathers, often differing based on feather type. The degree to which an artificial colour differs from the original colour greatly depends on an animal's visual system. 'White' paint to a human is not 'white' to a honeybee or blue tit. Based on our analysis, we offer practical guidelines for reducing the risk of introducing unintended effects when using artificial colours in behavioural experiments.
Collapse
Affiliation(s)
- Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Audrey E Miller
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Harold N Eyster
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Derya Akkaynak
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
18
|
Southcott L, Kronforst MR. Female mate choice is a reproductive isolating barrier in Heliconius butterflies. Ethology 2018; 124:862-869. [PMID: 31024190 PMCID: PMC6475913 DOI: 10.1111/eth.12818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022]
Abstract
In sexually reproducing organisms, speciation involves the evolution of reproductive isolating mechanisms that decrease gene flow. Premating reproductive isolation, often the result of mate choice, is a major obstacle to gene flow between species because it acts earlier in the life cycle than other isolating barriers. While female choice is often considered the default mode in animal species, research in the butterfly genus Heliconius, a frequent subject of speciation studies, has focused on male mate choice. We studied mate choice by H. cydno females by pairing them with either conspecific males or males of the closely related species H. pachinus. Significantly more intraspecific trials than interspecific trials resulted in mating. Because male courtship rates did not differ between the species when we excluded males that never courted, we attribute this difference to female choice. Females also performed more acceptance behaviours towards conspecific males. Premating isolation between these two species thus entails both male and female mate choice, and female choice may be an important factor in the origin of Heliconius species.
Collapse
Affiliation(s)
- Laura Southcott
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Marcus R Kronforst
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL
- Department of Ecology and Evolution, University of Chicago, Chicago, IL
| |
Collapse
|
19
|
Enhanced Clean-In-Place Monitoring Using Ultraviolet Induced Fluorescence and Neural Networks. SENSORS 2018; 18:s18113742. [PMID: 30400208 PMCID: PMC6263470 DOI: 10.3390/s18113742] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 11/28/2022]
Abstract
Clean-in-place (CIP) processes are extensively used to clean industrial equipment without the need for disassembly. In food manufacturing, cleaning can account for up to 70% of water use and is also a heavy user of energy and chemicals. Due to a current lack of real-time in-process monitoring, the non-optimal control of the cleaning process parameters and durations result in excessive resource consumption and periods of non-productivity. In this paper, an optical monitoring system is designed and realized to assess the amount of fouling material remaining in process tanks, and to predict the required cleaning time. An experimental campaign of CIP tests was carried out utilizing white chocolate as fouling medium. During the experiments, an image acquisition system endowed with a digital camera and ultraviolet light source was employed to collect digital images from the process tank. Diverse image segmentation techniques were considered to develop an image processing procedure with the aim of assessing the area of surface fouling and the fouling volume throughout the cleaning process. An intelligent decision-making support system utilizing nonlinear autoregressive models with exogenous inputs (NARX) Neural Network was configured, trained and tested to predict the cleaning time based on the image processing results. Results are discussed in terms of prediction accuracy and a comparative study on computation time against different image resolutions is reported. The potential benefits of the system for resource and time efficiency in food manufacturing are highlighted.
Collapse
|
20
|
Dell'Aglio DD, Troscianko J, McMillan WO, Stevens M, Jiggins CD. The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution 2018; 72:2156-2166. [PMID: 30129174 PMCID: PMC6221148 DOI: 10.1111/evo.13583] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/01/2018] [Accepted: 08/10/2018] [Indexed: 02/05/2023]
Abstract
Adaptive coloration is under conflicting selection pressures: choosing potential mates and warning signaling against visually guided predators. Different elements of the color signal may therefore be tuned by evolution for different functions. We investigated how mimicry in four pairs of Heliconius comimics is potentially seen both from the perspective of butterflies and birds. Visual sensitivities of eight candidate avian predators were predicted through genetic analysis of their opsin genes. Using digital image color analysis, combined with bird and butterfly visual system models, we explored how predators and conspecifics may visualize mimetic patterns. Ultraviolet vision (UVS) birds are able to discriminate between the yellow and white colors of comimics better than violet vision (VS) birds. For Heliconius vision, males and females differ in their ability to discriminate comimics. Female vision and red filtering pigments have a significant effect on the perception of the yellow forewing band and the red ventral forewing pattern. A behavioral experiment showed that UV cues are used in mating behavior; removal of such cues was associated with an increased tendency to approach comimics as compared to conspecifics. We have therefore shown that visual signals can act to both reduce the cost of confusion in courtship and maintain the advantages of mimicry.
Collapse
Affiliation(s)
- Denise Dalbosco Dell'Aglio
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, United Kingdom.,Smithsonian Tropical Research Institute, Panama City, Panama
| | - Jolyon Troscianko
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Martin Stevens
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
| | - Chris D Jiggins
- Butterfly Genetics Group, Department of Zoology, University of Cambridge, United Kingdom.,Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
21
|
Ghosh S, Mishra M. Fine nanostructural variation in the wing pattern of a moth Chiasmia eleonora Cramer (1780). J Biosci 2018. [DOI: 10.1007/s12038-018-9793-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Palmer DH, Tan YQ, Finkbeiner SD, Briscoe AD, Monteiro A, Kronforst MR. Experimental field tests of Batesian mimicry in the swallowtail butterfly Papilio polytes. Ecol Evol 2018; 8:7657-7666. [PMID: 30151179 PMCID: PMC6106175 DOI: 10.1002/ece3.4207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/09/2022] Open
Abstract
The swallowtail butterfly Papilio polytes is known for its striking resemblance in wing pattern to the toxic butterfly Pachliopta aristolochiae and is a focal system for the study of mimicry evolution. Papilio polytes females are polymorphic in wing pattern, with mimetic and nonmimetic forms, while males are monomorphic and nonmimetic. Past work invokes selection for mimicry as the driving force behind wing pattern evolution in P. polytes. However, the mimetic relationship between P. polytes and P. aristolochiae is not well understood. In order to test the mimicry hypothesis, we constructed paper replicas of mimetic and nonmimetic P. polytes and P. aristolochiae, placed them in their natural habitat, and measured bird predation on replicas. In initial trials with stationary replicas and plasticine bodies, overall predation was low and we found no differences in predation between replica types. In later trials with replicas mounted on springs and with live mealworms standing in for the butterfly's body, we found less predation on mimetic P. polytes replicas compared to nonmimetic P. polytes replicas, consistent with the predator avoidance benefits of mimicry. While our results are mixed, they generally lend support to the mimicry hypothesis as well as the idea that behavioral differences between the sexes contributed to the evolution of sexually dimorphic mimicry.
Collapse
Affiliation(s)
- Daniela H. Palmer
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoIllinois
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
| | - Yue Qian Tan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Susan D. Finkbeiner
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia
| | - Adriana D. Briscoe
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCalifornia
| | - Antónia Monteiro
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Marcus R. Kronforst
- Committee on Evolutionary BiologyUniversity of ChicagoChicagoIllinois
- Department of Ecology and EvolutionUniversity of ChicagoChicagoIllinois
| |
Collapse
|
23
|
Catalán A, Macias-Muñoz A, Briscoe AD. Evolution of Sex-Biased Gene Expression and Dosage Compensation in the Eye and Brain of Heliconius Butterflies. Mol Biol Evol 2018; 35:2120-2134. [DOI: 10.1093/molbev/msy111] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ana Catalán
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
- Section of Evolutionary Biology, Department of Biology II, Ludwig Maximilians Universität, Planegg-Martinsried, Germany
| | - Aide Macias-Muñoz
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA
| |
Collapse
|
24
|
Living Light 2018: Conference Report. Biomimetics (Basel) 2018; 3:biomimetics3020011. [PMID: 31105233 PMCID: PMC6352687 DOI: 10.3390/biomimetics3020011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 11/17/2022] Open
Abstract
Living Light is a biennial conference focused on all aspects of light–matter interaction in biological organisms with a broad, interdisciplinary outlook. The 2018 edition was held at the Møller Centre in Cambridge, UK, from April 11th to April 14th, 2018. Living Light’s main goal is to bring together researchers from different backgrounds (e.g., biologists, physicists and engineers) in order to discuss the current state of the field and sparkle new collaborations and new interdisciplinary projects. With over 90 national and international attendees, the 2018 edition of the conference was strongly multidisciplinary: oral and poster presentations encompassed a wide range of topics ranging from the evolution and development of structural colors in living organisms and their genetic manipulation to the study of fossil photonic structures.
Collapse
|
25
|
Lawrence JP, Noonan BP. Avian learning favors colorful, not bright, signals. PLoS One 2018; 13:e0194279. [PMID: 29566013 PMCID: PMC5864004 DOI: 10.1371/journal.pone.0194279] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 02/28/2018] [Indexed: 11/29/2022] Open
Abstract
A few colors, such as red and yellow, are commonly found in aposematic (warning) signaling across taxa, independent of evolutionary relationships. These colors have unique traits (i.e., hue, brightness) that aid in their differentiation, and perhaps, their effectiveness in promoting avoidance learning. This repeated use calls into question the influence of selection on specific warning colors adopted by aposematic prey-predator systems. To disentangle the influence of color characteristics on this process, we trained week-old chickens (Gallus gallus domesticus) to learn to avoid distasteful food that was associated with one of three color signals (yellow, white, red) that varied in both hue and in brightness in order to assess which of these traits most influenced their ability to learn avoidance. Our results show that while chicks learned to avoid all three colors, avoidance was based on the hue, not brightness of the different signals. We found that yellow was the most effective for avoidance learning, followed by red, and finally white. Our results suggest that while these three colors are commonly used in aposematic signaling, predators' ability to learn avoidance differs among them. These results may explain why yellow is among the most common signals across aposematic taxa.
Collapse
Affiliation(s)
- J. P. Lawrence
- University of Mississippi, Department of Biology, University, Mississippi United States of America
| | - Brice P. Noonan
- University of Mississippi, Department of Biology, University, Mississippi United States of America
| |
Collapse
|
26
|
Seymoure BM. Enlightening Butterfly Conservation Efforts: The Importance of Natural Lighting for Butterfly Behavioral Ecology and Conservation. INSECTS 2018; 9:E22. [PMID: 29439549 PMCID: PMC5872287 DOI: 10.3390/insects9010022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 11/16/2022]
Abstract
Light is arguably the most important abiotic factor for living organisms. Organisms evolved under specific lighting conditions and their behavior, physiology, and ecology are inexorably linked to light. Understanding light effects on biology could not be more important as present anthropogenic effects are greatly changing the light environments in which animals exist. The two biggest anthropogenic contributors changing light environments are: (1) anthropogenic lighting at night (i.e., light pollution); and (2) deforestation and the built environment. I highlight light importance for butterfly behavior, physiology, and ecology and stress the importance of including light as a conservation factor for conserving butterfly biodiversity. This review focuses on four parts: (1) Introducing the nature and extent of light. (2) Visual and non-visual light reception in butterflies. (3) Implications of unnatural lighting for butterflies across several different behavioral and ecological contexts. (4). Future directions for quantifying the threat of unnatural lighting on butterflies and simple approaches to mitigate unnatural light impacts on butterflies. I urge future research to include light as a factor and end with the hopeful thought that controlling many unnatural light conditions is simply done by flipping a switch.
Collapse
Affiliation(s)
- Brett M Seymoure
- Department of Biology and Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
27
|
Paris TM, Allan SA, Udell BJ, Stansly PA. Evidence of behavior-based utilization by the Asian citrus psyllid of a combination of UV and green or yellow wavelengths. PLoS One 2017; 12:e0189228. [PMID: 29236740 PMCID: PMC5728555 DOI: 10.1371/journal.pone.0189228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 11/21/2017] [Indexed: 12/02/2022] Open
Abstract
The Asian citrus psyllid, Diaphorina citri, vectors huanglongbing (HLB), the most serious disease affecting citrus globally. D. citri and HLB have spread to the major citrus growing regions of North America causing billions of dollars of damage in Florida alone. The visual behavior of D. citri is not well characterized and more knowledge is needed to improve attractive traps for monitoring and control of the D. citri. Bioassays were conducted to evaluate attraction to light transmitted through different colored filters. The addition of ultra-violet light (< 400 nm) enhanced attraction of D. citri to transparent visual targets made of green or yellow filters. However, attraction to blue targets was unaffected by UV light. This is the first study to demonstrate a phytophagous insect responding to a hue that is a combination of long and short wavelengths. Further testing is needed to determine how D. citri uses such discriminatory powers in the field. Our results further imply that D. citri utilize color vision, as the less intense yellow and green hues were chosen over white light. In summary, this research provides an increased understanding of D. citri visual behavior and can be used for the development of a more attractive D. citri trap than those currently available.
Collapse
Affiliation(s)
- Thomson M. Paris
- Entomology and Nematology Department, Southwest Citrus Research and Extension Center, Immokalee, Florida, United States of America
- US Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, Florida, United States of America
| | - Sandra A. Allan
- US Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, Florida, United States of America
- * E-mail:
| | - Bradley J. Udell
- US Department of Agriculture, Agricultural Research Service, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, Florida, United States of America
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Philip A. Stansly
- Entomology and Nematology Department, Southwest Citrus Research and Extension Center, Immokalee, Florida, United States of America
| |
Collapse
|
28
|
Lebhardt F, Desplan C. Retinal perception and ecological significance of color vision in insects. CURRENT OPINION IN INSECT SCIENCE 2017; 24:75-83. [PMID: 29208227 PMCID: PMC5726413 DOI: 10.1016/j.cois.2017.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 09/12/2017] [Indexed: 05/09/2023]
Abstract
Color vision relies on the ability to discriminate different wavelengths and is often improved in insects that inhabit well-lit, spectrally rich environments. Although the Opsin proteins themselves are sensitive to specific wavelength ranges, other factors can alter and further restrict the sensitivity of photoreceptors to allow for finer color discrimination and thereby more informed decisions while interacting with the environment. The ability to discriminate colors differs between insects that exhibit different life styles, between female and male eyes of the same species, and between regions of the same eye, depending on the requirements of intraspecific communication and ecological demands.
Collapse
Affiliation(s)
- Fleur Lebhardt
- Department of Biology, New York University, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, NY 10003, USA.
| |
Collapse
|
29
|
Wilts BD, Vey AJM, Briscoe AD, Stavenga DG. Longwing (Heliconius) butterflies combine a restricted set of pigmentary and structural coloration mechanisms. BMC Evol Biol 2017; 17:226. [PMID: 29162029 PMCID: PMC5699198 DOI: 10.1186/s12862-017-1073-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/15/2017] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Longwing butterflies, Heliconius sp., also called heliconians, are striking examples of diversity and mimicry in butterflies. Heliconians feature strongly colored patterns on their wings, arising from wing scales colored by pigments and/or nanostructures, which serve as an aposematic signal. RESULTS Here, we investigate the coloration mechanisms among several species of Heliconius by applying scanning electron microscopy, (micro)spectrophotometry, and imaging scatterometry. We identify seven kinds of colored scales within Heliconius whose coloration is derived from pigments, nanostructures or both. In yellow-, orange- and red-colored wing patches, both cover and ground scales contain wavelength-selective absorbing pigments, 3-OH-kynurenine, xanthommatin and/or dihydroxanthommatin. In blue wing patches, the cover scales are blue either due to interference of light in the thin-film lower lamina (e.g., H. doris) or in the multilayered lamellae in the scale ridges (so-called ridge reflectors, e.g., H. sara and H. erato); the underlying ground scales are black. In the white wing patches, both cover and ground scales are blue due to their thin-film lower lamina, but because they are stacked upon each other and at the wing substrate, a faint bluish to white color results. Lastly, green wing patches (H. doris) have cover scales with blue-reflecting thin films and short-wavelength absorbing 3-OH-kynurenine, together causing a green color. CONCLUSIONS The pigmentary and structural traits are discussed in relation to their phylogenetic distribution and the evolution of vision in this highly interesting clade of butterflies.
Collapse
Affiliation(s)
- Bodo D Wilts
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands.
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland.
| | - Aidan J M Vey
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
| | - Doekele G Stavenga
- Computational Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, NL-9747AG, Groningen, The Netherlands
| |
Collapse
|
30
|
McCulloch KJ, Yuan F, Zhen Y, Aardema ML, Smith G, Llorente-Bousquets J, Andolfatto P, Briscoe AD. Sexual Dimorphism and Retinal Mosaic Diversification following the Evolution of a Violet Receptor in Butterflies. Mol Biol Evol 2017; 34:2271-2284. [DOI: 10.1093/molbev/msx163] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
Knight K. For Heliconius’ eyes only. J Exp Biol 2017; 220:1163-1164. [DOI: 10.1242/jeb.159178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Finkbeiner SD, Briscoe AD, Mullen SP. Complex dynamics underlie the evolution of imperfect wing pattern convergence in butterflies. Evolution 2017; 71:949-959. [PMID: 28052323 DOI: 10.1111/evo.13165] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/27/2016] [Indexed: 01/18/2023]
Abstract
Adaptive radiation is characterized by rapid diversification that is strongly associated with ecological specialization. However, understanding the evolutionary mechanisms fueling adaptive diversification requires a detailed knowledge of how natural selection acts at multiple life-history stages. Butterflies within the genus Adelpha represent one of the largest and most diverse butterfly lineages in the Neotropics. Although Adelpha species feed on an extraordinary diversity of larval hosts, convergent evolution is widespread in this group, suggesting that selection for mimicry may contribute to adaptive divergence among species. To investigate this hypothesis, we conducted predation studies in Costa Rica using artificial butterfly facsimiles. Specifically, we predicted that nontoxic, palatable Adelpha species that do not feed on host plants in the family Rubiaceae would benefit from sharing a locally convergent wing pattern with the presumably toxic Rubiaceae-feeding species via reduced predation. Contrary to expectations, we found that the presumed mimic was attacked significantly more than its locally convergent model at a frequency paralleling attack rates on both novel and palatable prey. Although these data reveal the first evidence for protection from avian predators by the supposed toxic, Rubiaceae-feeding Adelpha species, we conclude that imprecise mimetic patterns have high costs for Batesian mimics in the tropics.
Collapse
Affiliation(s)
- Susan D Finkbeiner
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts, 02215
| | - Adriana D Briscoe
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, 92697
| | - Sean P Mullen
- Department of Biology, Boston University, 5 Cummington Mall, Boston, Massachusetts, 02215
| |
Collapse
|