1
|
Lötters S, Böning P, Bailon S, Castañeda JDB, Boistel R, Catenazzi A, Chaparro JC, Chávez G, Chujutalli A, Coen L, Coloma LA, Crawford AJ, Culebras J, Martínez JCC, Daza JM, Riva IDELA, Ellwein DJ, Ernst R, Flechas SV, Fouquet A, Guayasamin JM, Heine C, Jorge RF, Jung A, Jungfer KH, Kaffenberger N, Krehenwinkel H, Marca ELA, Lampo M, Rangel GFM, Orsen L, Paluh DJ, Gonzalez JLP, Perrin J, Riera ABQ, Reyes-Puig JP, Ross BRR, Rössler DC, Solano LAR, Salazar-Valenzuela D, Vazquez JCS, Sowinski M, Terán-Valdez A, Tovar-Ortiz A, Veith M, Venegas P, May RVON, Weitkamp T, Plewnia A. A roadmap for harlequin frog systematics, with a partial revision of Amazonian species related to Atelopus spumarius. Zootaxa 2025; 5571:1-76. [PMID: 40173732 DOI: 10.11646/zootaxa.5571.1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Indexed: 04/04/2025]
Abstract
Harlequin frogs, genus Atelopus, are a species-rich group of bufonid anurans from the Neotropics with more than 100 species. For nearly four decades now, this group has suffered from massive population declines. Almost all species are threatened with extinction, and many populations and several species are considered extinct or possibly extinct. This results in a limited sampling available for studies on harlequin frog systematics, especially in terms of molecular genetic information. However, efficient conservation of harlequin frogs requires an improved taxonomy. This is further complicated through the circumstance that many Atelopus species are relatively poor in external morphological characters combined with a high level of intra-specific character variation (e.g. coloration and body size). At the same time, cryptic diversity exists with well differentiated species (supported by osteology and molecular genetics) almost indistinguishable by external morphology. We compiled the largest dataset to date for mitochondrial (12S, 16S, cyt b) and nuclear (POMC, RAG1) markers and present a phylogeny (likelihood and Bayesian inference methods) including 152 samples from 104 populations scattered over the entire geographic range of the genus. Four allo- or parapatric main clades are distinguished: I. Sierra Nevada; II. Venezuelan-Andean; III. Andean-Chocó-Central American (with the ignescens and the varius-longirostris clades); and IV Amazonian (containing the tricolor and the flavescens-spumarius clades). The phylogenetic relationships within these clades remain to be resolved. Taxonomic implications included both splitting and lumping, but taxonomic action is here only taken for populations related to A. spumarius from western Amazonia. Besides redescriptions of A. spumarius sensu stricto and A. colomai, we describe two new species based on morphology, skull osteology and bioacoustics. Additional yet understudied populations from Amazonia may be allocated to these species or may represent additional undescribed taxa.
Collapse
|
2
|
Dos Santos Dias PH, Anganoy-Criollo M. Harlequin frog tadpoles-comparative buccopharyngeal morphology in the gastromyzophorous tadpoles of the genus Atelopus (Amphibia, Anura, Bufonidae), with discussion on the phylogenetic and evolutionary implication of characters. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:3. [PMID: 38252296 PMCID: PMC10803719 DOI: 10.1007/s00114-024-01889-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/30/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
The Neotropical genus Atelopus is the most diverse genus of bufonids comprising 99 species. Tadpoles of these frogs are readily distinguished based on the presence of a belly sucker, used by them to stay attached to rocks in fast-flowing streams. Despite their intriguing biology, information about their anatomy is scarce and many morphological systems are unknown. We describe the buccopharyngeal cavity of five Atelopus species. The Atelopus buccopharyngeal cavity is characterized by (1) presence of a pendulum-like papillae in the prenarial arena, (2) presence of a glandular zone in the prenarial arena, (3) narial vacuities, (4) conical median ridge, (5) absence of buccal roof arena papillae, (6) absence of buccal roof pustulations, (7) single pair of infralabial papillae, (8) absence of lingual papillae, and (9) absence of pustulations in the buccal floor. We propose that characters 1, 2, and 3 are new synapomorphies for the genus. We also propose that the presence of a single pair of infralabial papillae is a synapomorphy for bufonid. Finally, we discuss the convergent evolution of gastromyzophorous and suctorial tadpoles withing anurans.
Collapse
Affiliation(s)
- Pedro Henrique Dos Santos Dias
- Leibniz Institut Zur Analyse Des Biodiversitätswandels, Zoologisches Museum Hamburg, Zentrum Für Taxonomie Und Morphologie, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany.
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão No. 101, São Paulo, SP, CEP 05508-090, Brazil.
| | - Marvin Anganoy-Criollo
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, Rua Do Matão No. 101, São Paulo, SP, CEP 05508-090, Brazil
| |
Collapse
|
3
|
Abstract
The ability to sense and localize sound is so advantageous for survival that it is difficult to understand the almost 100 million year gap separating the appearance of early tetrapods and the emergence of an impedance-matching tympanic middle ear - which we normally regard as a prerequisite for sensitive hearing on land - in their descendants. Recent studies of hearing in extant atympanate vertebrates have provided significant insights into the ancestral state(s) and the early evolution of the terrestrial tetrapod auditory system. These reveal a mechanism for sound pressure detection and directional hearing in 'earless' atympanate vertebrates that may be generalizable to all tetrapods, including the earliest terrestrial species. Here, we review the structure and function of vertebrate tympanic middle ears and highlight the multiple acquisition and loss events that characterize the complex evolutionary history of this important sensory structure. We describe extratympanic pathways for sound transmission to the inner ear and synthesize findings from recent studies to propose a general mechanism for hearing in 'earless' atympanate vertebrates. Finally, we integrate these studies with research on tympanate species that may also rely on extratympanic mechanisms for acoustic reception of infrasound (<20 Hz) and with studies on human bone conduction mechanisms of hearing.
Collapse
Affiliation(s)
- Grace Capshaw
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | | - Catherine E. Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
4
|
Sadier A, Sears KE, Womack M. Unraveling the heritage of lost traits. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:107-118. [PMID: 33528870 DOI: 10.1002/jez.b.23030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/22/2022]
Abstract
We synthesize ontogenetic work spanning the past century that show evolutionarily lost structures are rarely entirely absent from earlier developmental stages. We discuss morphological and genetic insights from developmental studies reveal about the evolution of trait loss and regain.
Collapse
Affiliation(s)
- Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Molly Womack
- Department of Biology, Utah State University, Logan, Utah, USA
| |
Collapse
|
5
|
Bardua C, Fabre AC, Clavel J, Bon M, Das K, Stanley EL, Blackburn DC, Goswami A. Size, microhabitat, and loss of larval feeding drive cranial diversification in frogs. Nat Commun 2021; 12:2503. [PMID: 33947859 PMCID: PMC8096824 DOI: 10.1038/s41467-021-22792-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 03/25/2021] [Indexed: 02/02/2023] Open
Abstract
Habitat is one of the most important factors shaping organismal morphology, but it may vary across life history stages. Ontogenetic shifts in ecology may introduce antagonistic selection that constrains adult phenotype, particularly with ecologically distinct developmental phases such as the free-living, feeding larval stage of many frogs (Lissamphibia: Anura). We test the relative influences of developmental and ecological factors on the diversification of adult skull morphology with a detailed analysis of 15 individual cranial regions across 173 anuran species, representing every extant family. Skull size, adult microhabitat, larval feeding, and ossification timing are all significant factors shaping aspects of cranial evolution in frogs, with late-ossifying elements showing the greatest disparity and fastest evolutionary rates. Size and microhabitat show the strongest effects on cranial shape, and we identify a "large size-wide skull" pattern of anuran, and possibly amphibian, evolutionary allometry. Fossorial and aquatic microhabitats occupy distinct regions of morphospace and display fast evolution and high disparity. Taxa with and without feeding larvae do not notably differ in cranial morphology. However, loss of an actively feeding larval stage is associated with higher evolutionary rates and disparity, suggesting that functional pressures experienced earlier in ontogeny significantly impact adult morphological evolution.
Collapse
Affiliation(s)
- Carla Bardua
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Anne-Claire Fabre
- Department of Life Sciences, Natural History Museum, London, UK
- Paläontologisches Institut und Museum, Universität Zürich, Zürich, Switzerland
| | - Julien Clavel
- Department of Life Sciences, Natural History Museum, London, UK
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Margot Bon
- Department of Life Sciences, Natural History Museum, London, UK
| | - Kalpana Das
- Museum für Naturkunde, Leibniz Institut für Evolutions und Biodiversitätsforschung, Berlin, Germany
| | - Edward L Stanley
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Anjali Goswami
- Department of Life Sciences, Natural History Museum, London, UK.
| |
Collapse
|
6
|
Capshaw G, Soares D, Christensen-Dalsgaard J, Carr CE. Seismic sensitivity and bone conduction mechanisms enable extratympanic hearing in salamanders. J Exp Biol 2020; 223:jeb236489. [PMID: 33161383 PMCID: PMC7774885 DOI: 10.1242/jeb.236489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/01/2020] [Indexed: 11/20/2022]
Abstract
The tympanic middle ear is an adaptive sensory novelty that evolved multiple times in all the major terrestrial tetrapod groups to overcome the impedance mismatch generated when aerial sound encounters the air-skin boundary. Many extant tetrapod species have lost their tympanic middle ears, yet they retain the ability to detect airborne sound. In the absence of a functional tympanic ear, extratympanic hearing may occur via the resonant qualities of air-filled body cavities, sensitivity to seismic vibration, and/or bone conduction pathways to transmit sound from the environment to the ear. We used auditory brainstem response recording and laser vibrometry to assess the contributions of these extratympanic pathways for airborne sound in atympanic salamanders. We measured auditory sensitivity thresholds in eight species and observed sensitivity to low-frequency sound and vibration from 0.05-1.2 kHz and 0.02-1.2 kHz, respectively. We determined that sensitivity to airborne sound is not facilitated by the vibrational responsiveness of the lungs or mouth cavity. We further observed that, although seismic sensitivity probably contributes to sound detection under naturalistic scenarios, airborne sound stimuli presented under experimental conditions did not produce vibrations detectable to the salamander ear. Instead, threshold-level sound pressure is sufficient to generate translational movements in the salamander head, and these sound-induced head vibrations are detectable by the acoustic sensors of the inner ear. This extratympanic hearing mechanism mediates low-frequency sensitivity in vertebrate ears that are unspecialized for the detection of aerial sound pressure, and may represent a common mechanism for terrestrial hearing across atympanic tetrapods.
Collapse
Affiliation(s)
- G Capshaw
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - D Soares
- Department of Biological Sciences, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - J Christensen-Dalsgaard
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - C E Carr
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Stynoski JL, Womack MC, Trama FA, Coloma LA, Hoke KL. Whispers from vestigial nubbins: Arrested development provokes trait loss in toads. Evol Dev 2020; 23:5-18. [PMID: 33107688 DOI: 10.1111/ede.12356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/29/2022]
Abstract
Despite the use of acoustic communication, many species of toads (family Bufonidae) have lost parts of the tympanic middle ear, representing at least 12 independent evolutionary occurrences of trait loss. The comparative development of the tympanic middle ear in toads is poorly understood. Here, we compared middle ear development among two pairs of closely related toad species in the genera Atelopus and Rhinella that have (eared) or lack (earless) middle ear structures. We bred toads in Peru and Ecuador, preserved developmental series from tadpoles to juveniles, and examined ontogenetic timing and volume of the otic capsule, oval window, operculum, opercularis muscle, columella (stapes), and extracolumella in three-dimensional histological reconstructions. All species had similar ontogenesis of the otic capsule, oval window, operculum, and opercularis muscle. Moreover, cell clusters of primordial columella in the oval window appeared just before metamorphosis in both eared and earless lineages. However, in earless lineages, the cell clusters either remained as small nubbins or cell buds in the location of the columella footplate within the oval window or disappeared by juvenile and adult stages. Thus, columella growth began around metamorphosis in all species but was truncated and/or degenerated after metamorphosis in earless species, leaving earless adults with morphology typical of metamorphic anurans. Shifts in the timing or expression of biochemical pathways that regulate the extension or differentiation of the columella after metamorphosis may be the developmental mechanism underlying convergent trait loss among toad lineages.
Collapse
Affiliation(s)
- Jennifer L Stynoski
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Instituto Clodomiro Picado, Universidad de Costa Rica, Coronado, Costa Rica
| | - Molly C Womack
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Florencia A Trama
- Grupo de Investigación en Entomología y Medio Ambiente, Universidad San Ignacio de Loyola, Lima, Peru.,Centro de Capacitación en Conservación y Desarrollo Sostenible (CDS/CNEH-Perú), Oxapampa, Peru
| | - Luis A Coloma
- Centro Jambatu de Investigación y Conservación de Anfibios, Fundación Jambatu, Quito, Ecuador
| | - Kim L Hoke
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
8
|
Zeyl JN, den Ouden O, Köppl C, Assink J, Christensen-Dalsgaard J, Patrick SC, Clusella-Trullas S. Infrasonic hearing in birds: a review of audiometry and hypothesized structure-function relationships. Biol Rev Camb Philos Soc 2020; 95:1036-1054. [PMID: 32237036 DOI: 10.1111/brv.12596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
The perception of airborne infrasound (sounds below 20 Hz, inaudible to humans except at very high levels) has been documented in a handful of mammals and birds. While animals that produce vocalizations with infrasonic components (e.g. elephants) present conspicuous examples of potential use of infrasound in the context of communication, the extent to which airborne infrasound perception exists among terrestrial animals is unclear. Given that most infrasound in the environment arises from geophysical sources, many of which could be ecologically relevant, communication might not be the only use of infrasound by animals. Therefore, infrasound perception could be more common than currently realized. At least three bird species, each of which do not communicate using infrasound, are capable of detecting infrasound, but the associated auditory mechanisms are not well understood. Here we combine an evaluation of hearing measurements with anatomical observations to propose and evaluate hypotheses supporting avian infrasound detection. Environmental infrasound is mixed with non-acoustic pressure fluctuations that also occur at infrasonic frequencies. The ear can detect such non-acoustic pressure perturbations and therefore, distinguishing responses to infrasound from responses to non-acoustic perturbations presents a great challenge. Our review shows that infrasound could stimulate the ear through the middle ear (tympanic) route and by extratympanic routes bypassing the middle ear. While vibration velocities of the middle ear decline towards infrasonic frequencies, whole-body vibrations - which are normally much lower amplitude than that those of the middle ear in the 'audible' range (i.e. >20 Hz) - do not exhibit a similar decline and therefore may reach vibration magnitudes comparable to the middle ear at infrasonic frequencies. Low stiffness in the middle and inner ear is expected to aid infrasound transmission. In the middle ear, this could be achieved by large air cavities in the skull connected to the middle ear and low stiffness of middle ear structures; in the inner ear, the stiffness of round windows and cochlear partitions are key factors. Within the inner ear, the sizes of the helicotrema and cochlear aqueduct are expected to play important roles in shunting low-frequency vibrations away from low-frequency hair-cell sensors in the cochlea. The basilar papilla, the auditory organ in birds, responds to infrasound in some species, and in pigeons, infrasonic-sensitive neurons were traced back to the apical, abneural end of the basilar papilla. Vestibular organs and the paratympanic organ, a hair cell organ outside of the inner ear, are additional untested candidates for infrasound detection in birds. In summary, this review brings together evidence to create a hypothetical framework for infrasonic hearing mechanisms in birds and other animals.
Collapse
Affiliation(s)
- Jeffrey N Zeyl
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Olivier den Ouden
- R&D Seismology and Acoustics, Royal Netherlands Meteorological Institute (KNMI), Ministry of Infrastructure, Public Works and Water Management, De Bilt, 3730 AE, The Netherlands.,Faculty of Civil Engineering and Geosciences, Department of Geoscience and Engineering, Delft University of Technology, Delft, 2628 CN, The Netherlands
| | - Christine Köppl
- Cluster of Excellence "Hearing4all" and Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, 26129, Germany
| | - Jelle Assink
- R&D Seismology and Acoustics, Royal Netherlands Meteorological Institute (KNMI), Ministry of Infrastructure, Public Works and Water Management, De Bilt, 3730 AE, The Netherlands
| | | | - Samantha C Patrick
- School of Environmental Sciences, University of Liverpool, Liverpool, L69 3GP, UK
| | | |
Collapse
|