1
|
Figus C, Carlson KJ, Bortolini E, Saers J, Seghi F, Sorrentino R, Bernardini F, Vazzana A, Erjavec I, Novak M, Tuniz C, Belcastro MG, Stock J, Ryan TM, Benazzi S. The Ontogeny of the Human Calcaneus: Insights From Morphological and Trabecular Changes During Postnatal Growth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e70007. [PMID: 39936218 PMCID: PMC11815546 DOI: 10.1002/ajpa.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVES To investigate the developmental changes in the human calcaneal internal and external morphology linked to the acquisition of mature bipedal locomotion. METHODS Seventy seven micro-CT scans of modern juvenile calcanei (from perinates to 15 years old) are employed. The chronological period spans from the Middle/Late Neolithic (4800-4500 BCE) to the 20th century. Through a comprehensive approach that comprises geometric morphometric methods and whole-bone trabecular analysis, the calcaneal growing morphology has been explored. RESULTS Morphological changes reflect the development of bipedal locomotion, showing its potential when tracking the major locomotor milestones. The calcaneal shape is immature and almost featureless during the first year of life. The internal architecture is dense and isotropic with numerous thin trabeculae closely packed together. The internal architecture changes to better adapt to variations in load stimulated by a more mature gait by increasing bone mass and alignment, with fewer and thicker struts. The external morphology shows its plasticity by increasing the surface area where greater strain is expected and changing the orientation of the articular facets. CONCLUSIONS Analysis of morphological changes in the growing calcaneus highlights the importance of an integrative methodology when exploring developmental bone plasticity. The changes in calcaneal internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from a more generalized morphology to a more adult-like one, reflecting major locomotor achievement. Our research shows that although initially genetically driven, calcaneal plasticity may display mechanical influences and provide precious information on tracking the main locomotor milestones.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Kristian J. Carlson
- Department of Integrative Anatomical Sciences, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa
| | | | - Jaap Saers
- Naturalis Biodiversity CenterLeidenCRthe Netherlands
| | - Francesca Seghi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Rita Sorrentino
- Department of Biological, Geological and Environmental Sciences—BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca’ FoscariVeneziaItaly
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Antonino Vazzana
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Igor Erjavec
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
| | - Mario Novak
- Centre for Applied BioanthropologyInstitute for Anthropological ResearchZagrebCroatia
- Department of Archaeology and Heritage, Faculty of HumanitiesUniversity of PrimorskaKoperSlovenia
| | - Claudio Tuniz
- Department of Humanistic StudiesUniversità Ca’ FoscariVeneziaItaly
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences—BigeaUniversity of BolognaBolognaItaly
| | - Jay Stock
- Department of AnthropologyWestern UniversityLondonOntarioCanada
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| |
Collapse
|
2
|
Skedros JG, Dayton MR, Bloebaum RD, Bachus KN, Cronin JT. Strain-mode-specific mechanical testing and the interpretation of bone adaptation in the deer calcaneus. J Anat 2024; 244:411-423. [PMID: 37953064 PMCID: PMC10862189 DOI: 10.1111/joa.13971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
The artiodactyl (deer and sheep) calcaneus is a model that helps in understanding how many bones achieve anatomical optimization and functional adaptation. We consider how the dorsal and plantar cortices of these bones are optimized in quasi-isolation (the conventional view) versus in the context of load sharing along the calcaneal shaft by "tension members" (the plantar ligament and superficial digital flexor tendon). This load-sharing concept replaces the conventional view, as we have argued in a recent publication that employs an advanced analytical model of habitual loading and fracture risk factors of the deer calcaneus. Like deer and sheep calcanei, many mammalian limb bones also experience prevalent bending, which seems problematic because the bone is weaker and less fatigue-resistant in tension than compression. To understand how bones adapt to bending loads and counteract deleterious consequences of tension, it is important to examine both strain-mode-specific (S-M-S) testing (compression testing of bone habitually loaded in compression; tension testing of bone habitually loaded in tension) and non-S-M-S testing. Mechanical testing was performed on individually machined specimens from the dorsal "compression cortex" and plantar "tension cortex" of adult deer calcanei and were independently tested to failure in one of these two strain modes. We hypothesized that the mechanical properties of each cortex region would be optimized for its habitual strain mode when these regions are considered independently. Consistent with this hypothesis, energy absorption parameters were approximately three times greater in S-M-S compression testing in the dorsal/compression cortex when compared to non-S-M-S tension testing of the dorsal cortex. However, inconsistent with this hypothesis, S-M-S tension testing of the plantar/tension cortex did not show greater energy absorption compared to non-S-M-S compression testing of the plantar cortex. When compared to the dorsal cortex, the plantar cortex only had a higher elastic modulus (in S-M-S testing of both regions). Therefore, the greater strength and capacity for energy absorption of the dorsal cortex might "protect" the weaker plantar cortex during functional loading. However, this conventional interpretation (i.e., considering adaptation of each cortex in isolation) is rejected when critically considering the load-sharing influences of the ligament and tendon that course along the plantar cortex. This important finding/interpretation has general implications for a better understanding of how other similarly loaded bones achieve anatomical optimization and functional adaptation.
Collapse
Affiliation(s)
- John G Skedros
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Michael R Dayton
- Department of Orthopedics, University of Colorado, Aurora, Colorado, USA
| | - Roy D Bloebaum
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Kent N Bachus
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
- Research Service, Veterans Affair Medical Center, Salt Lake City, Utah, USA
| | - John T Cronin
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Jing L, Xu J, Cai J, Huang S, Qiao X, Wan F. Morphologic and mechanical adaptive variations in Saiga tatarica calcaneus: A model for interpreting the bone functional adaptation of wild artiodactyl in captivity. Vet World 2024; 17:448-461. [PMID: 38595661 PMCID: PMC11000478 DOI: 10.14202/vetworld.2024.448-461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 04/11/2024] Open
Abstract
Background and Aim Captivity alters the locomotor behavior of wild artiodactyls and affects the mechanical loading of the calcaneus; however, the resulting adaptive changes in calcaneus morphology have not been sufficiently studied to date. This study aimed to investigate the morphological and mechanical adaptive variations in the calcaneus of Saiga tatarica to understand further the functional adaptation of the calcaneus in wild artiodactyl to captivity. Materials and Methods Paired calcanei from autopsy samples of six captive wild artiodactyls (S. tatarica) and six domesticated artiodactyls (Ovis aries) were divided into skeletally immature and mature groups using X-ray evaluation of growth plate closure. High-resolution microcomputed tomography revealed a calcaneal diaphyseal cross-section. The mechanical and nanomorphological characteristics of the trabecular bone were determined by atomic force microscopy. Results The percent cortical bone area (%CA), cortical thickness ratio (CTR), and Young's modulus (E) differed between species in the immature groups but not in the mature groups. S. tatarica had significantly higher growth rates for %CA, CTR, and E in the mid-shaft than O. aries (p < 0.05). Conclusion The calcaneus morphology of S. tatarica converges with that of domesticated O. aries during ontogeny. These results indicate that the calcaneus of wild artiodactyls can undergo potentially transitional changes during the short-term adaptation to captivity. The above parameters can be preliminarily identified as morphological signs of functional bone adaptation in artiodactyls.
Collapse
Affiliation(s)
- Libaihe Jing
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jie Xu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Jiao Cai
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Shan Huang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xinyu Qiao
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Fengqi Wan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| |
Collapse
|
4
|
Skedros JG, Cronin JT, Dayton MR, Bloebaum RD, Bachus KN. Exploration of the synergistic role of cortical thickness asymmetry ("Trabecular Eccentricity" concept) in reducing fracture risk in the human femoral neck and a control bone (Artiodactyl Calcaneus). J Theor Biol 2023; 567:111495. [PMID: 37068584 DOI: 10.1016/j.jtbi.2023.111495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 04/19/2023]
Abstract
The mechanobiology of the human femoral neck is a focus of research for many reasons including studies that aim to curb age-related bone loss that contributes to a near-exponential rate of hip fractures. Many believe that the femoral neck is often loaded in rather simple bending, which causes net tension stress in the upper (superior) femoral neck and net compression stress in its inferior aspect ("T/C paradigm"). This T/C loading regime lacks in vivo proof. The "C/C paradigm" is a plausible alternative simplified load history that is characterized by a gradient of net compression across the entire femoral neck; action of the gluteus medius and external rotators of the hip are important in this context. It is unclear which paradigm is at play in natural loading due to lack of in vivo bone strain data and deficiencies in understanding mechanisms and manifestations of bone adaptation in tension vs. compression. For these reasons, studies of the femoral neck would benefit from being compared to a 'control bone' that has been proven, by strain data, to be habitually loaded in bending. The artiodactyl (sheep and deer) calcaneus model has been shown to be a very suitable control in this context. However, the application of this control in understanding the load history of the femoral neck has only been attempted in two prior studies, which did not examine the interplay between cortical and trabecular bone, or potential load-sharing influences of tendons and ligaments. Our first goal is to compare fracture risk factors of the femoral neck in both paradigms. Our second goal is to compare and contrast the deer calcaneus to the human femoral neck in terms of fracture risk factors in the T/C paradigm (the C/C paradigm is not applicable in the artiodactyl calcaneus due to its highly constrained loading). Our third goal explores interplay between dorsal/compression and plantar/tension regions of the deer calcaneus and the load-sharing roles of a nearby ligament and tendon, with insights for translation to the femoral neck. These goals were achieved by employing the analytical model of Fox and Keaveny (J. Theoretical Biology 2001, 2003) that estimates fracture risk factors of the femoral neck. This model focuses on biomechanical advantages of the asymmetric distribution of cortical bone in the direction of habitual loading. The cortical thickness asymmetry of the femoral neck (thin superior cortex, thick inferior cortex) reflects the superior-inferior placement of trabecular bone (i.e., "trabecular eccentricity," TE). TE helps the femoral neck adapt to typical stresses and strains through load-sharing between superior and inferior cortices. Our goals were evaluated in the context of TE. Results showed the C/C paradigm has lower risk factors for the superior cortex and for the overall femoral neck, which is clinically relevant. TE analyses of the deer calcaneus revealed important synergism in load-sharing between the plantar/tension cortex and adjacent ligament/tendon, which challenges conventional understanding of how this control bone achieves functional adaptation. Comparisons with the control bone also exposed important deficiencies in current understanding of human femoral neck loading and its potential histocompositional adaptations.
Collapse
Affiliation(s)
- John G Skedros
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA; Research Service, Veterans Affairs Medical Center, Salt Lake City, UT, USA.
| | - John T Cronin
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA
| | - Michael R Dayton
- University of Colorado, Department of Orthopedics, Aurora, CO, USA
| | - Roy D Bloebaum
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA; Research Service, Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Kent N Bachus
- University of Utah, Department of Orthopaedics, Salt Lake City, UT, USA; Research Service, Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Neaux D, Harbers H, Blanc B, Ortiz K, Locatelli Y, Herrel A, Debat V, Cucchi T. The effect of captivity on craniomandibular and calcaneal ontogenetic trajectories in wild boar. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:575-585. [PMID: 35286754 DOI: 10.1002/jez.b.23130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Deciphering the plastic (i.e., nonheritable) changes induced by human control over wild animals in the archeological record is challenging. Previous studies detected morphological markers associated with captivity in the cranium, mandible, and calcaneus of adult wild boar (Sus scrofa) but the developmental trajectories leading up to these changes during ontogeny remain unknown. To assess the impact of growth in a captive environment on morphological structures during postnatal ontogeny, we used an experimental approach focusing on the same three structures and taxon. We investigated the form and size differences of captive-reared and wild-caught wild boar during growth using three-dimensional landmark-based geometric morphometrics. Our results provide evidence of an influence of captivity on the morphology of craniomandibular structures, as wild specimens are smaller than captive individuals at similar ages. The food resources inherent to anthropogenic environments may explain some of the observed differences between captive-reared and wild specimens. The calcaneus presents a different contrasted pattern of plasticity as captive and wild individuals differ in terms of form but not in terms of size. The physically more constrained nature of the calcaneus and the direct influence of mobility reduction on this bone may explain these discrepancies. These results provide new methodological perspectives for bioarchaeological approaches as they imply that the plastic mark of captivity can be observed in juvenile specimens in the same way it has been previously described in adults.
Collapse
Affiliation(s)
- Dimitri Neaux
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum National d'Histoire Naturelle CNRS, Paris, France
- Laboratoire Paléontologie Evolution Paléoécosystèmes Paléoprimatologie, UMR 7262, Université de Poitiers CNRS, Poitiers, France
| | - Hugo Harbers
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum National d'Histoire Naturelle CNRS, Paris, France
| | - Barbara Blanc
- Réserve Zoologique de la Haute-Touche, Muséum National d'Histoire Naturelle, Obterre, France
| | - Katia Ortiz
- Réserve Zoologique de la Haute-Touche, Muséum National d'Histoire Naturelle, Obterre, France
- Institut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle CNRS UPMC EPHE, UA, Paris, France
| | - Yann Locatelli
- Réserve Zoologique de la Haute-Touche, Muséum National d'Histoire Naturelle, Obterre, France
- Physiologie de la Reproduction et des Comportements, UMR 7247, INRAE CNRS Université de Tours IFCE, Nouzilly, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, UMR 7179, Muséum National d'Histoire Naturelle CNRS, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle CNRS UPMC EPHE, UA, Paris, France
| | - Thomas Cucchi
- Archéozoologie, Archéobotanique: Sociétés, Pratiques et Environnements, UMR 7209, Muséum National d'Histoire Naturelle CNRS, Paris, France
| |
Collapse
|
6
|
Tits A, Plougonven E, Blouin S, Hartmann MA, Kaux JF, Drion P, Fernandez J, van Lenthe GH, Ruffoni D. Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface. Sci Rep 2021; 11:16534. [PMID: 34400706 PMCID: PMC8367976 DOI: 10.1038/s41598-021-95917-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 12/19/2022] Open
Abstract
The enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.
Collapse
Affiliation(s)
- Alexandra Tits
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium
| | - Erwan Plougonven
- Chemical Engineering Department, University of Liège, Liège, Belgium
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Markus A Hartmann
- Ludwig Boltzmann Institute of Osteology, Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria
| | - Jean-François Kaux
- Department of Physical Medicine and Sports Traumatology, University of Liège and University Hospital of Liège, Liège, Belgium
| | - Pierre Drion
- Experimental Surgery Unit, GIGA and Credec, University of Liege, Liege, Belgium
| | - Justin Fernandez
- Auckland Bioengineering Institute and Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | | | - Davide Ruffoni
- Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, 4000, Liège, Belgium.
| |
Collapse
|
7
|
Harper CM, Ruff CB, Sylvester AD. Scaling and relative size of the human, nonhuman ape, and baboon calcaneus. Anat Rec (Hoboken) 2021; 305:100-122. [PMID: 33843151 DOI: 10.1002/ar.24642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 01/04/2023]
Abstract
Among human and nonhuman apes, calcaneal morphology exhibits significant variation that has been related to locomotor behavior. Due to its role in weight-bearing, however, both body size and locomotion may impact calcaneal morphology. Determining how calcaneal morphologies vary as a function of body size is thus vital to understanding calcaneal functional adaptation. Here, we study calcaneus allometry and relative size in humans (n = 120) and nonhuman primates (n = 278), analyzing these relationships in light of known locomotor behaviors. Twelve linear measures and three articular facet surface areas were collected on calcaneus surface models. Body mass was estimated using femoral head superoinferior breadth. Relationships between calcaneal dimensions and estimated body mass were analyzed across the sample using phylogenetic least squares regression analyses (PGLS). Differences between humans and pooled nonhuman primates were tested using RMA ANCOVAs. Among (and within) genera residual differences from both PGLS regressions and isometry were analyzed using ANOVAs with post hoc multiple comparison tests. The relationships between all but two calcaneus dimensions and estimated body mass exhibit phylogenetic signal at the smallest taxonomic scale. This signal disappears when reanalyzed at the genus level. Calcaneal morphology varies relative to both body size and locomotor behavior. Humans have larger calcanei for estimated body mass relative to nonhuman primates as a potential adaptation for bipedalism. More terrestrial taxa exhibit longer calcaneal tubers for body mass, increasing the triceps surae lever arm. Among nonhuman great apes, more arboreal taxa have larger cuboid facet surface areas for body mass, increasing calcaneocuboid mobility.
Collapse
Affiliation(s)
- Christine M Harper
- The Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, Baltimore, Maryland, USA.,Cooper Medical School of Rowan University, Department of Biomedical Sciences, Camden, New Jersey, USA
| | - Christopher B Ruff
- The Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, Baltimore, Maryland, USA
| | - Adam D Sylvester
- The Johns Hopkins University School of Medicine, Center for Functional Anatomy and Evolution, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Skedros JG, Su SC, Knight AN, Bloebaum RD, Bachus KN. Advancing the deer calcaneus model for bone adaptation studies: ex vivo strains obtained after transecting the tension members suggest an unrecognized important role for shear strains. J Anat 2018; 234:66-82. [PMID: 30411344 DOI: 10.1111/joa.12905] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2018] [Indexed: 12/15/2022] Open
Abstract
Sheep and deer calcanei are finding increased use as models for studies of bone adaptation, including advancing understanding of how the strain (deformation) environment influences the ontogenetic emergence of biomechanically relevant structural and material variations in cortical and trabecular bone. These artiodactyl calcanei seem ideal for these analyses because they function like simply loaded short-cantilevered beams with net compression and tension strains on the dorsal and plantar cortices, respectively. However, this habitual strain distribution requires more rigorous validation because it has been shown by limited in vivo and ex vivo strain measurements obtained during controlled ambulation (typically walking and trotting). The conception that these calcanei are relatively simply and habitually loaded 'tension/compression bones' could be invalid if infrequent, though biologically relevant, loads substantially change the location of the neutral axis (NA) that separates 'compression' and 'tension' regions. The effect on calcaneus strains of the tension members (plantar ligament and flexor tendon) is also not well understood and measuring strains after transecting them could reveal that they significantly modulate the strain distribution. We tested the hypothesis that the NA location previously described during simulated on-axis loads of deer calcanei would exhibit limited variations even when load perturbations are unusual (e.g. off-axis loads) or extreme (e.g. after transection of the tension members). We also examined regional differences in the predominance of the three strain modes (tension, compression, and shear) in these various load conditions in dorsal, plantar, medial, and lateral cortices. In addition to considering principal strains (tension and compression) and maximum shear strains, we also considered material-axis (M-A) shear strains. M-A shear strains are those that are aligned along the long axis of the bone and are considered to have greater biomechanical relevance than maximum shear strains because failure theories of composite materials and bone are often based on stresses or strains in the principal material directions. We used the same load apparatus from our prior study of mule deer calcanei. Results showed that although the NA rotated up to 8° medially and 15° laterally during these off-axis loads, it did not shift dramatically until after transection of all tension members. When comparing results based on maximum shear strain data vs. M-A shear strain data, the dominant strain mode changed only in the plantar cortex - as expected (in accordance with our a priori view) it was tension when M-A shear strains were considered (shear : tension = 0.2) but changed to dominant shear when maximum shear strain data were considered (shear : tension = 1.3). This difference leads to different conclusions and speculations regarding which specific strain modes and magnitudes most strongly influence the emergence of the marked mineralization and histomorphological differences in the dorsal vs. plantar cortices. Consequently, our prior simplification of the deer calcaneus model as a simply loaded 'tension/compression bone' (i.e. plantar/dorsal) might be incorrect. In vivo and in finite element analyses are needed to determine whether describing it as a 'shear-tension/compression' bone is more accurate. Addressing this question will help to advance the artiodactyl calcaneus as an experimental model for bone adaptation studies.
Collapse
Affiliation(s)
- John G Skedros
- Department of Orthopedics, University of Utah, Salt Lake City, UT, USA.,Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Rehabilitation Research and Development Service, VA Medical Center, Salt Lake City, UT, USA
| | - Steven C Su
- Department of Orthopedics, University of Utah, Salt Lake City, UT, USA.,Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Rehabilitation Research and Development Service, VA Medical Center, Salt Lake City, UT, USA
| | - Alex N Knight
- Rehabilitation Research and Development Service, VA Medical Center, Salt Lake City, UT, USA
| | - Roy D Bloebaum
- Rehabilitation Research and Development Service, VA Medical Center, Salt Lake City, UT, USA
| | - Kent N Bachus
- Department of Orthopedics, University of Utah, Salt Lake City, UT, USA.,Department of Veterans Affairs Medical Center, Salt Lake City, UT, USA
| |
Collapse
|
9
|
Bishop PJ, Hocknull SA, Clemente CJ, Hutchinson JR, Farke AA, Beck BR, Barrett RS, Lloyd DG. Cancellous bone and theropod dinosaur locomotion. Part I-an examination of cancellous bone architecture in the hindlimb bones of theropods. PeerJ 2018; 6:e5778. [PMID: 30402347 PMCID: PMC6215452 DOI: 10.7717/peerj.5778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/18/2018] [Indexed: 12/11/2022] Open
Abstract
This paper is the first of a three-part series that investigates the architecture of cancellous ('spongy') bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and has previously been used to infer locomotor biomechanics in extinct tetrapod vertebrates, especially primates. Despite great promise, cancellous bone architecture has remained little utilized for investigating locomotion in many other extinct vertebrate groups, such as dinosaurs. Documentation and quantification of architectural patterns across a whole bone, and across multiple bones, can provide much information on cancellous bone architectural patterns and variation across species. Additionally, this also lends itself to analysis of the musculoskeletal biomechanical factors involved in a direct, mechanistic fashion. On this premise, computed tomographic and image analysis techniques were used to describe and analyse the three-dimensional architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs for the first time. A comprehensive survey across many extant and extinct species is produced, identifying several patterns of similarity and contrast between groups. For instance, more stemward non-avian theropods (e.g. ceratosaurs and tyrannosaurids) exhibit cancellous bone architectures more comparable to that present in humans, whereas species more closely related to birds (e.g. paravians) exhibit architectural patterns bearing greater similarity to those of extant birds. Many of the observed patterns may be linked to particular aspects of locomotor biomechanics, such as the degree of hip or knee flexion during stance and gait. A further important observation is the abundance of markedly oblique trabeculae in the diaphyses of the femur and tibia of birds, which in large species produces spiralling patterns along the endosteal surface. Not only do these observations provide new insight into theropod anatomy and behaviour, they also provide the foundation for mechanistic testing of locomotor hypotheses via musculoskeletal biomechanical modelling.
Collapse
Affiliation(s)
- Peter J. Bishop
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
- Current affiliation: Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Scott A. Hocknull
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Andrew A. Farke
- Raymond M. Alf Museum of Paleontology at The Webb Schools, Claremont, CA, USA
| | - Belinda R. Beck
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Exercise and Human Performance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| |
Collapse
|
10
|
Bishop PJ, Hocknull SA, Clemente CJ, Hutchinson JR, Barrett RS, Lloyd DG. Cancellous bone and theropod dinosaur locomotion. Part II-a new approach to inferring posture and locomotor biomechanics in extinct tetrapod vertebrates. PeerJ 2018; 6:e5779. [PMID: 30402348 PMCID: PMC6215447 DOI: 10.7717/peerj.5779] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 09/18/2018] [Indexed: 01/31/2023] Open
Abstract
This paper is the second of a three-part series that investigates the architecture of cancellous bone in the main hindlimb bones of theropod dinosaurs, and uses cancellous bone architectural patterns to infer locomotor biomechanics in extinct non-avian species. Cancellous bone is widely known to be highly sensitive to its mechanical environment, and therefore has the potential to provide insight into locomotor biomechanics in extinct tetrapod vertebrates such as dinosaurs. Here in Part II, a new biomechanical modelling approach is outlined, one which mechanistically links cancellous bone architectural patterns with three-dimensional musculoskeletal and finite element modelling of the hindlimb. In particular, the architecture of cancellous bone is used to derive a single 'characteristic posture' for a given species-one in which bone continuum-level principal stresses best align with cancellous bone fabric-and thereby clarify hindlimb locomotor biomechanics. The quasi-static approach was validated for an extant theropod, the chicken, and is shown to provide a good estimate of limb posture at around mid-stance. It also provides reasonable predictions of bone loading mechanics, especially for the proximal hindlimb, and also provides a broadly accurate assessment of muscle recruitment insofar as limb stabilization is concerned. In addition to being useful for better understanding locomotor biomechanics in extant species, the approach hence provides a new avenue by which to analyse, test and refine palaeobiomechanical hypotheses, not just for extinct theropods, but potentially many other extinct tetrapod groups as well.
Collapse
Affiliation(s)
- Peter J. Bishop
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
- Current affiliation: Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Scott A. Hocknull
- Geosciences Program, Queensland Museum, Brisbane, QLD, Australia
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Christofer J. Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD, Australia
- School of Biological Sciences, University of Queensland, Brisbane, QLD, Australia
| | - John R. Hutchinson
- Structure and Motion Laboratory, Department of Comparative Biomedical Sciences, Royal Veterinary College, Hatfield, Hertfordshire, UK
| | - Rod S. Barrett
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| | - David G. Lloyd
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, Australia
- Gold Coast Orthopaedic Research, Engineering and Education Alliance, Menzies Health Institute Queensland, Gold Coast, QLD, Australia
| |
Collapse
|
11
|
Pathria MN, Chung CB, Resnick DL. Acute and Stress-related Injuries of Bone and Cartilage: Pertinent Anatomy, Basic Biomechanics, and Imaging Perspective. Radiology 2017; 280:21-38. [PMID: 27322971 DOI: 10.1148/radiol.16142305] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bone or cartilage, or both, are frequently injured related to either a single episode of trauma or repetitive overuse. The resulting structural damage is varied, governed by the complex macroscopic and microscopic composition of these tissues. Furthermore, the biomechanical properties of both cartilage and bone are not uniform, influenced by the precise age and activity level of the person and the specific anatomic location within the skeleton. Of the various histologic components that are found in cartilage and bone, the collagen fibers and bundles are most influential in transmitting the forces that are applied to them, explaining in large part the location and direction of the resulting internal stresses that develop within these tissues. Therefore, thorough knowledge of the anatomy, physiology, and biomechanics of normal bone and cartilage serves as a prerequisite to a full understanding of both the manner in which these tissues adapt to physiologic stresses and the patterns of tissue failure that develop under abnormal conditions. Such knowledge forms the basis for more accurate assessment of the diverse imaging features that are encountered following acute traumatic and stress-related injuries to the skeleton. (©) RSNA, 2016.
Collapse
Affiliation(s)
- Mini N Pathria
- From the Department of Radiology (M.N.P.) and Radiology Service, VA San Diego Healthcare System (C.B.C.), UC San Diego Medical Center, 200 W Arbor Dr, San Diego, CA 92103; and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Christine B Chung
- From the Department of Radiology (M.N.P.) and Radiology Service, VA San Diego Healthcare System (C.B.C.), UC San Diego Medical Center, 200 W Arbor Dr, San Diego, CA 92103; and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| | - Donald L Resnick
- From the Department of Radiology (M.N.P.) and Radiology Service, VA San Diego Healthcare System (C.B.C.), UC San Diego Medical Center, 200 W Arbor Dr, San Diego, CA 92103; and Department of Radiology, UCSD Teleradiology and Education Center, La Jolla, Calif (D.L.R.)
| |
Collapse
|
12
|
Keenan KE, Mears CS, Skedros JG. Utility of osteon circularity for determining species and interpreting load history in primates and nonprimates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 162:657-681. [PMID: 28121024 DOI: 10.1002/ajpa.23154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/31/2016] [Accepted: 12/02/2016] [Indexed: 11/07/2022]
Abstract
OBJECTIVES Histomorphological analyses of bones are used to estimate an individual's chronological age, interpret a bone's load history, and differentiate species. Among various histomorphological characteristics that can influence mechanical properties of cortical bone, secondary osteon (Haversian system) population density and predominant collagen fiber orientation are particularly important. Cross-sectional shape characteristics of secondary osteons (On.Cr = osteon circularity, On.El = osteon ellipticality) are considered helpful in these contexts, but more robust proof is needed. We sought to determine if variations in osteon shape characteristics are sufficient for accurately differentiating species, load-complexity categories, and regional habitual strain-mode distributions (e.g., tension vs. compression regions). MATERIALS AND METHODS Circularly polarized light images were obtained from 100-micron transverse sections from diaphyses of adult deer calcanei; sheep calcanei, radii, and tibiae; equine calcanei, radii, and third metacarpals (MC3s); chimpanzee femora; and human femora and fibulae. Osteon cross-sectional area (On.Ar), On.Cr, and On.El were quantified indiscriminately and in the contexts of load-complexity and regional strain-mode distributions. RESULTS On.Cr and On.El, when examined independently in terms of all data, or mean (nested) data, for each bone, exceeded 80% accuracy in the inter-species comparisons only with respect to distinguishing humans from nonhumans. Correct classification among the nonhuman species was <70%. When On.Cr and On.El were coupled together and with On.Ar in discriminant function analyses (nested and unnested data) there were high misclassifications in all but human vs. nonhuman comparisons. DISCUSSION Frequent misclassifications in nonhuman comparisons might reflect influences of habitual load complexity and/or strain-mode distributions, or other factors not accounted for by these two considerations.
Collapse
Affiliation(s)
- Kendra E Keenan
- Bone and Joint Research Laboratory, George E. Whalen Veteran's Affairs Medical Center, Salt Lake City, Utah
| | - Chad S Mears
- Bone and Joint Research Laboratory, George E. Whalen Veteran's Affairs Medical Center, Salt Lake City, Utah
| | - John G Skedros
- Bone and Joint Research Laboratory, George E. Whalen Veteran's Affairs Medical Center, Salt Lake City, Utah
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, 84132
| |
Collapse
|
13
|
Zaino NL, Hedgeland MJ, Ciani MJ, Clark AM, Kuxhaus L, Michalek AJ. White-Tailed Deer as an Ex Vivo Knee Model: Joint Morphometry and ACL Rupture Strength. Ann Biomed Eng 2016; 45:1093-1100. [PMID: 27718092 DOI: 10.1007/s10439-016-1746-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/04/2016] [Indexed: 11/30/2022]
Abstract
Animal joints are valuable proxies for those of humans in biomechanical studies, however commonly used quadruped knees differ greatly from human knees in scale and morphometry. To test the suitability of the cervine stifle joint (deer knee) as a laboratory model, gross morphometry, ACL cross section, and ACL rupture strength were measured and compared to values previously reported for the knees of humans and commonly studied animals. Twelve knee joints from wild white-tailed deer were tested. Several morphometry parameters, including bicondylar width (53.5 ± 3.0 mm) and notch width (14.7 ± 2.5 mm), showed a high degree of similarity to those of the human knee, while both medial (16.7 ± 2.1°) and lateral (17.6 ± 4.7°) tibial slopes were steeper than in humans but less steep than other quadrupeds. The median ACL rupture force (2054 N, 95% CI 2017-2256 N), mean stiffness (260 ± 166 N/mm), mean length (33 ± 7 mm), and mean cross sectional area (44.8 ± 18.3 mm2) were also comparable to previously reported values for human knees. In our limited sample size, no significant sexual dimorphism in strength or morphometry was observed (p ≥ 0.05 for all parameters), though female specimens generally had steeper tibial slopes (lateral: p = 0.52, medial: p = 0.07). Our results suggest that the deer knee may be a suitable model for ex vivo studies of ACL rupture and repair.
Collapse
Affiliation(s)
- Nicole L Zaino
- Department of Mechanical & Aeronautical Engineering, Clarkson University, 8 Clarkson Ave., Box 5725, Potsdam, NY, 13699, USA
| | - Mark J Hedgeland
- Department of Mechanical & Aeronautical Engineering, Clarkson University, 8 Clarkson Ave., Box 5725, Potsdam, NY, 13699, USA
| | - Mario J Ciani
- Department of Occupational Therapy, Clarkson University, Potsdam, USA
| | | | - Laurel Kuxhaus
- Department of Mechanical & Aeronautical Engineering, Clarkson University, 8 Clarkson Ave., Box 5725, Potsdam, NY, 13699, USA
| | - Arthur J Michalek
- Department of Mechanical & Aeronautical Engineering, Clarkson University, 8 Clarkson Ave., Box 5725, Potsdam, NY, 13699, USA.
| |
Collapse
|
14
|
Histocompositional organization and toughening mechanisms in antler. J Struct Biol 2014; 187:129-148. [DOI: 10.1016/j.jsb.2014.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/04/2014] [Accepted: 06/13/2014] [Indexed: 12/16/2022]
|
15
|
|
16
|
Sinclair KD, Farnsworth RW, Pham TX, Knight AN, Bloebaum RD, Skedros JG. The artiodactyl calcaneus as a potential ‘control bone’ cautions against simple interpretations of trabecular bone adaptation in the anthropoid femoral neck. J Hum Evol 2013; 64:366-79. [DOI: 10.1016/j.jhevol.2013.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 12/08/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|
17
|
Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. J Mech Behav Biomed Mater 2013; 21:109-20. [DOI: 10.1016/j.jmbbm.2013.02.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 02/15/2013] [Accepted: 02/23/2013] [Indexed: 11/21/2022]
|
18
|
Skedros JG, Knight AN, Clark GC, Crowder CM, Dominguez VM, Qiu S, Mulhern DM, Donahue SW, Busse B, Hulsey BI, Zedda M, Sorenson SM. Scaling of Haversian canal surface area to secondary osteon bone volume in ribs and limb bones. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:230-44. [DOI: 10.1002/ajpa.22270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 03/06/2013] [Indexed: 11/11/2022]
Affiliation(s)
- John G. Skedros
- Department of Veterans Affairs Medical Center; Bone and Joint Research Laboratory; Salt Lake City; UT
| | - Alex N. Knight
- Department of Veterans Affairs Medical Center; Bone and Joint Research Laboratory; Salt Lake City; UT
| | - Gunnar C. Clark
- Department of Veterans Affairs Medical Center; Bone and Joint Research Laboratory; Salt Lake City; UT
| | - Christian M. Crowder
- Office of the Armed Forces Medical Examiner; Armed Forces Medical Examiner System; Dover AFB; DE
| | | | - Shijing Qiu
- Bone and Mineral Research Laboratory; Henry Ford Hospital; Detroit; MI
| | | | - Seth W. Donahue
- Department of Mechanical Engineering; Colorado State University; Fort Collins; CO
| | - Björn Busse
- Department of Osteology and Biomechanics (IOBM); University Medical Center Hamburg-Eppendorf; Hamburg; Germany
| | | | - Marco Zedda
- Department of Animal Biology; University of Sassari; Sassari; Italy
| | - Scott M. Sorenson
- Department of Veterans Affairs Medical Center; Bone and Joint Research Laboratory; Salt Lake City; UT
| |
Collapse
|
19
|
Ambekar R, Chittenden M, Jasiuk I, Toussaint KC. Quantitative second-harmonic generation microscopy for imaging porcine cortical bone: comparison to SEM and its potential to investigate age-related changes. Bone 2012; 50:643-50. [PMID: 22155019 DOI: 10.1016/j.bone.2011.11.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/09/2011] [Accepted: 11/21/2011] [Indexed: 11/24/2022]
Abstract
We propose the use of second-harmonic generation (SHG) microscopy for imaging collagen fibers in porcine femoral cortical bone. The technique is compared with scanning electron microscopy (SEM). SHG microscopy is shown to have excellent potential for bone imaging primarily due its intrinsic specificity to collagen fibers, which results in high contrast images without the need for specimen staining. Furthermore, this technique's ability to quantitatively assess collagen fiber organization is evaluated through an exploratory examination of bone structure as a function of age, from very young to mature bone. In particular, four different age groups: 1 month, 3.5 months, 6 months, and 30 months, were studied. Specifically, we employ the recently developed Fourier transform-second harmonic generation (FT-SHG) imaging technique for the quantification of the structural changes, and observe that as the bone develops, there is an overall reduction in porosity, the number of osteons increases, and the collagen fibers become comparatively more organized. It is also observed that the variations in structure across the whole cross-section of the bone increase with age. The results of this work show that quantitative SHG microscopy can serve as a valuable tool for evaluating the structural organization of collagen fibers in ex vivo bone studies.
Collapse
Affiliation(s)
- Raghu Ambekar
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, 1406 West Green Street, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
20
|
Skedros JG, Knight AN, Farnsworth RW, Bloebaum RD. Do regional modifications in tissue mineral content and microscopic mineralization heterogeneity adapt trabecular bone tracts for habitual bending? Analysis in the context of trabecular architecture of deer calcanei. J Anat 2012; 220:242-55. [PMID: 22220639 DOI: 10.1111/j.1469-7580.2011.01470.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Calcanei of mature mule deer have the largest mineral content (percent ash) difference between their dorsal 'compression' and plantar 'tension' cortices of any bone that has been studied. The opposing trabecular tracts, which are contiguous with the cortices, might also show important mineral content differences and microscopic mineralization heterogeneity (reflecting increased hemi-osteonal renewal) that optimize mechanical behaviors in tension vs. compression. Support for these hypotheses could reveal a largely unrecognized capacity for phenotypic plasticity - the adaptability of trabecular bone material as a means for differentially enhancing mechanical properties for local strain environments produced by habitual bending. Fifteen skeletally mature and 15 immature deer calcanei were cut transversely into two segments (40% and 50% shaft length), and cores were removed to determine mineral (ash) content from 'tension' and 'compression' trabecular tracts and their adjacent cortices. Seven bones/group were analyzed for differences between tracts in: first, microscopic trabecular bone packets and mineralization heterogeneity (backscattered electron imaging, BSE); and second, trabecular architecture (micro-computed tomography). Among the eight architectural characteristics evaluated [including bone volume fraction (BVF) and structural model index (SMI)]: first, only the 'tension' tract of immature bones showed significantly greater BVF and more negative SMI (i.e. increased honeycomb morphology) than the 'compression' tract of immature bones; and second, the 'compression' tracts of both groups showed significantly greater structural order/alignment than the corresponding 'tension' tracts. Although mineralization heterogeneity differed between the tracts in only the immature group, in both groups the mineral content derived from BSE images was significantly greater (P < 0.01), and bulk mineral (ash) content tended to be greater in the 'compression' tracts (immature 3.6%, P = 0.03; mature 3.1%, P = 0.09). These differences are much less than the approximately 8% greater mineral content of their 'compression' cortices (P < 0.001). Published data, suggesting that these small mineralization differences are not mechanically important in the context of conventional tests, support the probability that architectural modifications primarily adapt the tracts for local demands. However, greater hemi-osteonal packets in the tension trabecular tract of only the mature bones (P = 0.006) might have an important role, and possible synergism with mineralization and/or microarchitecture, in differential toughening at the trabeculum level for tension vs. compression strains.
Collapse
Affiliation(s)
- John G Skedros
- Bone and Joint Research Laboratory, Veterans Affairs Medical Center, Salt Lake City, Utah 84107, USA.
| | | | | | | |
Collapse
|
21
|
Skedros JG, Sybrowsky CL, Anderson WE, Chow F. Relationships between in vivo microdamage and the remarkable regional material and strain heterogeneity of cortical bone of adult deer, elk, sheep and horse calcanei. J Anat 2011; 219:722-33. [PMID: 21951210 DOI: 10.1111/j.1469-7580.2011.01428.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Natural loading of the calcanei of deer, elk, sheep and horses produces marked regional differences in prevalent/predominant strain modes: compression in the dorsal cortex, shear in medial-lateral cortices, and tension/shear in the plantar cortex. This consistent non-uniform strain distribution is useful for investigating mechanisms that mediate the development of the remarkable regional material variations of these bones (e.g. collagen orientation, mineralization, remodeling rates and secondary osteon morphotypes, size and population density). Regional differences in strain-mode-specific microdamage prevalence and/or morphology might evoke and sustain the remodeling that produces this material heterogeneity in accordance with local strain characteristics. Adult calcanei from 11 animals of each species (deer, elk, sheep and horses) were transversely sectioned and examined using light and confocal microscopy. With light microscopy, 20 linear microcracks were identified (deer: 10; elk: six; horse: four; sheep: none), and with confocal microscopy substantially more microdamage with typically non-linear morphology was identified (deer: 45; elk: 24; horse: 15; sheep: none). No clear regional patterns of strain-mode-specific microdamage were found in the three species with microdamage. In these species, the highest overall concentrations occurred in the plantar cortex. This might reflect increased susceptibility of microdamage in habitual tension/shear. Absence of detectable microdamage in sheep calcanei may represent the (presumably) relatively greater physical activity of deer, elk and horses. Absence of differences in microdamage prevalence/morphology between dorsal, medial and lateral cortices of these bones, and the general absence of spatial patterns of strain-mode-specific microdamage, might reflect the prior emergence of non-uniform osteon-mediated adaptations that reduce deleterious concentrations of microdamage by the adult stage of bone development.
Collapse
Affiliation(s)
- John G Skedros
- Department of Orthopaedic Surgery, University of Utah and the Utah Bone and Joint Center, Salt Lake City, UT, USA.
| | | | | | | |
Collapse
|
22
|
Skedros JG, Clark GC, Sorenson SM, Taylor KW, Qiu S. Analysis of the effect of osteon diameter on the potential relationship of osteocyte lacuna density and osteon wall thickness. Anat Rec (Hoboken) 2011; 294:1472-85. [PMID: 21809466 DOI: 10.1002/ar.21452] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/16/2011] [Accepted: 06/20/2011] [Indexed: 01/28/2023]
Abstract
An important hypothesis is that the degree of infilling of secondary osteons (Haversian systems) is controlled by the inhibitory effect of osteocytes on osteoblasts, which might be mediated by sclerostin (a glycoprotein produced by osteocytes). Consequently, this inhibition could be proportional to cell number: relatively greater repression is exerted by progressively greater osteocyte density (increased osteocytes correlate with thinner osteon walls). This hypothesis has been examined, but only weakly supported, in sheep ulnae. We looked for this inverse relationship between osteon wall thickness (On.W.Th) and osteocyte lacuna density (Ot.Lc.N/B.Ar) in small and large osteons in human ribs, calcanei of sheep, deer, elk, and horses, and radii and third metacarpals of horses. Analyses involved: (1) all osteons, (2) smaller osteons, either ≤150 μm diameter or less than or equal to the mean diameter, and (3) larger osteons (>mean diameter). Significant, but weak, correlations between Ot.Lc.N/B.Ar and On.W.Th/On.Dm (On.Dm = osteon diameter) were found when considering all osteons in limb bones (r values -0.16 to -0.40, P < 0.01; resembling previous results in sheep ulnae: r = -0.39, P < 0.0001). In larger osteons, these relationships were either not significant (five/seven bone types) or very weak (two/seven bone types). In ribs, a negative relationship was only found in smaller osteons (r = -0.228, P < 0.01); this inverse relationship in smaller osteons did not occur in elk calcanei. These results do not provide clear or consistent support for the hypothesized inverse relationship. However, correlation analyses may fail to detect osteocyte-based repression of infilling if the signal is spatially nonuniform (e.g., increased near the central canal).
Collapse
Affiliation(s)
- John G Skedros
- Department of Veterans Affairs Medical Center, Bone and Joint Research Laboratory, and University of Utah, Salt Lake City, UT 84107, USA.
| | | | | | | | | |
Collapse
|
23
|
Skedros JG, Kiser CJ, Mendenhall SD. A weighted osteon morphotype score outperforms regional osteon percent prevalence calculations for interpreting cortical bone adaptation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2010; 144:41-50. [DOI: 10.1002/ajpa.21365] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 05/24/2010] [Indexed: 11/08/2022]
|
24
|
Gorman KF, Handrigan GR, Jin G, Wallis R, Breden F. Structural and micro-anatomical changes in vertebrae associated with idiopathic-type spinal curvature in the curveback guppy model. SCOLIOSIS 2010; 5:10. [PMID: 20529276 PMCID: PMC2890417 DOI: 10.1186/1748-7161-5-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Accepted: 06/07/2010] [Indexed: 12/13/2022]
Abstract
BACKGROUND The curveback lineage of guppy is characterized by heritable idiopathic-type spinal curvature that develops during growth. Prior work has revealed several important developmental similarities to the human idiopathic scoliosis (IS) syndrome. In this study we investigate structural and histological aspects of the vertebrae that are associated with spinal curvature in the curveback guppy and test for sexual dimorphism that might explain a female bias for severe curve magnitudes in the population. METHODS Vertebrae were studied from whole-mount skeletal specimens of curved and non-curved adult males and females. A series of ratios were used to characterize structural aspects of each vertebra. A three-way analysis of variance tested for effects of sex, curvature, vertebral position along the spine, and all 2-way interactions (i.e., sex and curvature, sex and vertebra position, and vertebra position and curvature). Histological analyses were used to characterize micro-architectural changes in affected vertebrae and the intervertebral region. RESULTS In curveback, vertebrae that are associated with curvature demonstrate asymmetric shape distortion, migration of the intervertebral ligament, and vertebral thickening on the concave side of curvature. There is sexual dimorphism among curved individuals such that for several vertebrae, females have more slender vertebrae than do males. Also, in the region of the spine where lordosis typically occurs, curved and non-curved females have a reduced width at the middle of their vertebrae, relative to males. CONCLUSIONS Based on similarities to human spinal curvatures and to animals with induced curves, the concave-convex biases described in the guppy suggest that there is a mechanical component to curve pathogenesis in curveback. Because idiopathic-type curvature in curveback is primarily a sagittal deformity, it is structurally more similar to Scheuermann kyphosis than IS. Anatomical differences between teleosts and humans make direct biomechanical comparisons difficult. However, study of basic biological systems involved in idiopathic-type spinal curvature in curveback may provide insight into the relationship between a predisposing aetiology, growth, and biomechanics. Further work is needed to clarify whether observed sex differences in vertebral characteristics are related to the female bias for severe curves that is observed in the population.
Collapse
Affiliation(s)
- Kristen F Gorman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gregory R Handrigan
- Department of Oral Health Sciences, Faculty of Dentistry, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ge Jin
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Rob Wallis
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
25
|
Skedros JG, Mendenhall SD, Kiser CJ, Winet H. Interpreting cortical bone adaptation and load history by quantifying osteon morphotypes in circularly polarized light images. Bone 2009; 44:392-403. [PMID: 19049911 DOI: 10.1016/j.bone.2008.10.053] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 09/23/2008] [Accepted: 10/30/2008] [Indexed: 10/21/2022]
Abstract
Birefringence variations in circularly polarized light (CPL) images of thin plane-parallel sections of cortical bone can be used to quantify regional differences in predominant collagen fiber orientation (CFO). Using CPL images of equine third metacarpals (MC3s), R.B. Martin, V.A. Gibson, S.M. Stover, J.C. Gibeling, and L.V. Griffin. (40) described six secondary osteon variants ('morphotypes') and suggested that differences in their regional prevalence affect fatigue resistance and toughness. They devised a numerical osteon morphotype score (MTS) for quantifying regional differences in osteon morphotypes. We have observed that a modification of this score could significantly improve its use for interpreting load history. We hypothesized that our modified osteon MTS would more accurately reveal differences in osteon MTSs between opposing "tension" and "compression" cortices of diaphyses of habitually bent bones. This was tested using CPL images in transverse sections of calcanei from sheep, deer, and horses, and radii from sheep and horses. Equine MC3s and sheep tibiae were examined as controls because they experience comparatively greater load complexity that, because of increased prevalence of torsion/shear, would not require regional mechanical enhancements provided by different osteon morphotypes. Predominant CFO, which can reliably reflect adaptation for a regionally prevalent strain mode, was quantified as mean gray levels from birefringence of entire images (excluding pore spaces) in anterior, posterior, medial, and lateral cortices. Results showed that, in contrast to the original scoring scheme of Martin et al., the modified scheme revealed significant anterior/posterior differences in osteon MTSs in nearly all "tension/compression" bones (p<0.0001), but not in equine MC3s (p=0.30) and sheep tibiae (p=0.35). Among habitually bent bones, sheep radii were the exception; relatively lower osteon populations and the birefringence of the primary bone contributed to this result. Correlations between osteon MTSs using the scoring scheme of Martin et al. with CFO data from all regions of each bone invariably demonstrated weak-to-moderate negative correlations. This contrasts with typically high positive correlations between modified osteon MTSs and regional CFO. These results show that the modified osteon MTS can be a strong correlate of predominant CFO and of the non-uniform strain distribution produced by habitual bending.
Collapse
Affiliation(s)
- John G Skedros
- Bone and Joint Research Laboratory, Department of Veterans Affairs Medical Center, The University of Utah Department of Orthopaedic Surgery, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
26
|
van Oers RFM, Ruimerman R, van Rietbergen B, Hilbers PAJ, Huiskes R. Relating osteon diameter to strain. Bone 2008; 43:476-82. [PMID: 18619937 DOI: 10.1016/j.bone.2008.05.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 04/24/2008] [Accepted: 05/10/2008] [Indexed: 12/21/2022]
Abstract
Osteon diameter is generally smaller in bone regions that experience larger strains. A mechanism relating osteon diameter to strain is as yet unknown. We propose that strain-induced osteocyte signals inhibit osteoclastic bone resorption. This mechanism was previously shown to produce load-aligned osteons in computer simulations. Now we find that it also predicts smaller osteon diameter for higher loads. Additionally, we find that our model predicts osteon development with two cutting cones, one moving up and one moving down the loading axis. Such 'double-ended osteons' were reported in literature as a common type of osteon development. Further, we find that a steep gradient in strain magnitude can result in an osteonal tunnel with continuous resorption along the less strained side, which corresponds to 'drifting osteons' reported in literature.
Collapse
Affiliation(s)
- René F M van Oers
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Investigation of cancellous bone architecture using structural optimisation. J Biomech 2008; 41:629-35. [DOI: 10.1016/j.jbiomech.2007.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 09/26/2007] [Accepted: 09/28/2007] [Indexed: 11/24/2022]
|
28
|
Skedros JG, Sorenson SM, Hunt KJ, Holyoak JD. Ontogenetic structural and material variations in ovine calcanei: a model for interpreting bone adaptation. Anat Rec (Hoboken) 2007; 290:284-300. [PMID: 17525944 DOI: 10.1002/ar.20423] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Experimental models are needed for resolving relative influences of genetic, epigenetic, and nonheritable functionally induced (extragenetic) factors in the emergence of developmental adaptations in limb bones of larger mammals. We examined regional/ontogenetic morphologic variations in sheep calcanei, which exhibit marked heterogeneity in structural and material organization by skeletal maturity. Cross-sections and lateral radiographs of an ontogenetic series of domesticated sheep calcanei (fetal to adult) were examined for variations in biomechanically important structural (cortical thickness and trabecular architecture) and material (percent ash and predominant collagen fiber orientation) characteristics. Results showed delayed development of variations in cortical thickness and collagen fiber orientation, which correlate with extragenetic factors, including compression/tension strains of habitual bending in respective dorsal/plantar cortices and load-related thresholds for modeling/remodeling activities. In contrast, the appearance of trabecular arches in utero suggests strong genetic/epigenetic influences. These stark spatial/temporal variations in sheep calcanei provide a compelling model for investigating causal mechanisms that mediate this construction. In view of these findings, it is also suggested that the conventional distinction between genetic and epigenetic factors in limb bone development be expanded into three categories: genetic, epigenetic, and extragenetic factors.
Collapse
Affiliation(s)
- John G Skedros
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
29
|
Skedros JG, Sorenson SM, Jenson NH. Are Distributions of Secondary Osteon Variants Useful for Interpreting Load History in Mammalian Bones? Cells Tissues Organs 2007; 185:285-307. [PMID: 17587802 DOI: 10.1159/000102176] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS In cortical bone, basic multicellular units (BMUs) produce secondary osteons that mediate adaptations, including variations in their population densities and cross-sectional areas. Additional important BMU-related adaptations might include atypical secondary osteon morphologies (zoned, connected, drifting, elongated, multiple canal). These variants often reflect osteonal branching that enhances toughness by increasing interfacial (cement line) complexity. If these characteristics correlate with strain mode/magnitude-related parameters of habitual loading, then BMUs might produce adaptive differences in unexpected ways. METHODS We carried out examinations in bones loaded in habitual torsion (horse metacarpals) or bending: sheep, deer, elk, and horse calcanei, and horse radii. Atypical osteons were quantified in backscattered images from anterior, posterior, medial, and lateral cortices. Correlations were determined between atypical osteon densities, densities of all secondary osteons, and associations with habitual strain mode/magnitude or transcortical location. RESULTS Osteon variants were not consistently associated with 'tension', 'compression', or neutral axis ('shear') regions, even when considering densities or all secondary osteons, or only osteon variants associated with relatively increased interfacial complexity. Similarly, marrow- and strain-magnitude-related associations were not consistent. CONCLUSION These data do not support the hypothesis that spatial variations in these osteon variants are useful for inferring a habitual bending or torsional load strain history.
Collapse
Affiliation(s)
- John G Skedros
- Department of Orthopaedic Surgery, University of Utah, Utah 84107, USA.
| | | | | |
Collapse
|
30
|
Mathematical analysis of trabecular 'trajectories' in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur. J Theor Biol 2006; 244:15-45. [PMID: 16949618 DOI: 10.1016/j.jtbi.2006.06.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 06/22/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
Wolff's "law" of the functional adaptation of bone is rooted in the trajectory hypothesis of cancellous bone architecture. Wolff often used the human proximal femur as an example of a trajectorial structure (i.e. arched trabecular patterns appear to be aligned along tension/compression stress trajectories). We examined two tenets of the trajectory hypothesis; namely, that the trabecular tracts from the tension- and compression-loaded sides of a bending environment will: (1) follow 'lines' (trajectories) of tension/compression stress that resemble an arch with its apex on a neutral axis, and (2) form orthogonal (90 degrees ) intersections. These predictions were analysed in proximal femora of chimpanzees and modern humans, and in calcanei of sheep and deer. Compared to complex loading of the human femoral neck, the chimpanzee femoral neck reputedly receives relatively simpler loading (i.e. temporally/spatially more consistent bending), and the artiodactyl calcaneus is even more simply loaded in bending. In order to directly consider Wolff's observations, measurements were also made on two-dimensional, cantilevered beams and curved beams, each with intersecting compression/tension stress trajectories. Results in the calcanei showed: (1) the same nonlinear equation best described the dorsal ("compression") and plantar ("tension") trabecular tracts, (2) these tracts could be exactly superimposed on the corresponding compression/tension stress trajectories of the cantilevered beams, and (3) trabecular tracts typically formed orthogonal intersections. In contrast, trabecular tracts in human and chimpanzee femoral necks were non-orthogonal (mean approximately 70 degrees ), with shapes differing from trabecular tracts in calcanei and stress trajectories in the beams. Although often being described by the same equations, the trajectories in the curved beams had lower r(2) values than calcaneal tracts. These results suggest that the trabecular patterns in the calcanei and stress trajectories in short beams are consistent with basic tenets of the trajectory hypothesis while those in human and chimpanzee femoral necks are not. Compared to calcanei, the more complexly loaded human and chimpanzee femoral necks probably receive more prevalent/predominant shear, which is best accommodated by non-orthogonal, asymmetric trabecular tracts. The asymmetrical trabecular patterns in the proximal femora may also reflect the different developmental 'fields' (trochanteric vs. neck/head) that formed these regions, of which there is no parallel in the calcanei.
Collapse
|
31
|
Skedros JG, Sorenson SM, Takano Y, Turner CH. Dissociation of mineral and collagen orientations may differentially adapt compact bone for regional loading environments: results from acoustic velocity measurements in deer calcanei. Bone 2006; 39:143-51. [PMID: 16459155 DOI: 10.1016/j.bone.2005.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 11/25/2005] [Accepted: 12/07/2005] [Indexed: 11/28/2022]
Abstract
In limb bone diaphyses, it is hypothesized that collagen and extra-fibrillar mineral are aligned differently in relatively simple loading conditions (e.g., habitual longitudinal compression) when compared to complex or potentially deleterious strain environments (e.g., habitual shear or tension). These putative differences in collagen/mineral organization might be adaptations that enhance toughness and fatigue resistance by controlling the direction of microdamage propagation. This study examined relationships between the non-uniform strain distribution of wild deer calcanei and elastic anisotropy of cortical bone specimens in three preparations: (1) demineralized (collagen only), (2) deproteinized (mineral only), and (3) untreated. Using simulated functional loading, the following strain data were obtained from the dorsal "compression", plantar "tension", and medial and lateral ("neutral axis") cortices of one calcaneus of each of seven pairs: (1) peak strain magnitude, (2) prevalent/predominant strain mode (compression, tension, shear), and (3) principal strain orientation with respect to the bone's long axis. In the contralateral calcanei, elastic anisotropy ratios (ARs) were calculated using acoustic velocity (longitudinal and transverse) measurements from a pair of orthogonally sliced specimens (representing each of three preparation types) from each cortex. In a separate set of seven adult calcanei, predominant collagen fiber orientation (CFO) was measured using circularly polarized light (CPL) in the four cortical locations. Results showed that, in general, elastic anisotropy was significant in each region, with ARs being significantly different from isotropy (where AR=1.0). Compared to CFO, mineral orientation more strongly influenced this anisotropy, which was most notable in the plantar "tension" cortex. High correlations (r values from -0.675 to -0.734, P<0.05) were found between collagen anisotropy obtained from acoustic data when compared to the CPL data. Significant correlations of mineral and collagen anisotropy were also found between strain mode, magnitude, and orientation (all r values approximately -0.750). The habitual compression, tension, and shear (neutral axis) regions also had different collagen/mineral organizations, which may be important in accommodating the well-known disparity in the mechanical properties of bone in these loading modes.
Collapse
Affiliation(s)
- John G Skedros
- Department of Orthopaedic Surgery, University of Utah, and Bone and Joint Research Laboratory, Department of Veteran's Affairs Medical Center, Salt Lake City, UT 84107, USA.
| | | | | | | |
Collapse
|
32
|
Skedros JG. Osteocyte Lacuna Population Densities in Sheep, Elk and Horse Calcanei. Cells Tissues Organs 2006; 181:23-37. [PMID: 16439816 DOI: 10.1159/000089966] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2005] [Indexed: 11/19/2022] Open
Abstract
Osteocytes, the most prevalent cell type in bone, appear to communicate via gap junctions. In limb-bone diaphyses, it has been hypothesized that these cellular networks have the capacity to monitor habitual strains, which can differ significantly between cortical locations of the same bone. Regional differences in microdamage associated with prevalent/predominant strain mode (tension, compression, or shear) and/or magnitude may represent an important "variable" detected by this network. This hypothesis was indirectly addressed by examining bones subjected to habitual bending for correlations of osteocyte lacuna population densities (n/mm(2) bone area, Ot.Lc.N/B.Ar) with locations experiencing high and low strain, and/or prevalent/predominant tension, compression, and shear. We examined dorsal ("compression"), plantar ("tension"), and medial/lateral ("shear" or neutral axis) cortices of mid-diaphyseal sections of calcanei of adult sheep, elk, and horses. Ot.Lc.N/B.Ar data, quantified in backscattered electron images, were also evaluated in a context of various additional structural and material variables (e.g. % ash, cortical thickness, porosity, and secondary osteon population). Results showed significant differences in dorsal versus plantar comparisons with the highest Ot.Lc.N/B.Ar in dorsal cortices of sheep and elk (p < 0.0001); but this was a statistical trend in the equine calcanei (p = 0.14). There were no consistent transcortical (pericortical to endocortical) differences, and Ot.Lc.N/B.Ar in neutral axes was not consistently different from dorsal/plantar cortices. Correlations of Ot.Lc.N/B.Ar with structural and material parameters were also poor and/or inconsistent within or between species. These results provide little or no evidence that the number of osteocyte lacunae has a functional role in mechanotransduction pathways that are typically considered in bone adaptation. Although dorsal/plantar differences may be adaptations for prevalent/predominant strain modes and/or associated microdamage, it is also plausible that they are strongly influenced by differences in the bone formation rates that produced the tissue in these locations.
Collapse
Affiliation(s)
- John G Skedros
- Department of Orthopaedic Surgery, University of Utah, Salt Lake City, UT 84107, USA.
| |
Collapse
|
33
|
Skedros JG, Hunt KJ, Bloebaum RD. Relationships of loading history and structural and material characteristics of bone: Development of the mule deer calcaneus. J Morphol 2004; 259:281-307. [PMID: 14994328 DOI: 10.1002/jmor.10167] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
If a bone's morphologic organization exhibits the accumulated effects of its strain history, then the relative contributions of a given strain stimulus to a bone's development may be inferred from a bone's hierarchical organization. The artiodactyl calcaneus is a short cantilever, loaded habitually in bending, with prevalent compression in the cranial (Cr) cortex, tension in the caudal (Cd) cortex, and shear in the medial and lateral cortices (i.e., neutral axis). Artiodactyl calcanei demonstrate unusually heterogeneous structural and material organization between these cortices. This study examines potential relationships between developmental morphologic variations and the functional strain distribution of the deer calcaneus. One calcaneus was obtained from each of 36 (fetus to adult) wild deer. Predominant collagen fiber orientation (CFO), microstructural characteristics, mineral content (% ash), and geometric parameters were determined from transversely cut segments. Radiographs were examined for arched trabeculae, which may reflect tension/compression stress trajectories. Results showed that cross-sectional shape changes with age from quasi-circular to quasi-elliptical, with the long axis in the cranial-caudal direction of habitual bending. Cranial ("compression") cortical thickness increased at a greater rate than the Cd ("tension") cortex. Fetal bones exhibited arched trabeculae. Percent ash was not uniform (Cr > Cd), and this disparity increased with age (absolute differences: 2.5% fetuses, 4.3% adults). Subadult bones showed progressively more secondary osteons and osteocyte lacunae in the Cr cortex, but the Cd cortex tended to have more active remodeling in the subadult and adult bones. Nonuniform Cr:Cd CFO patterns first consistently appear in the subadults, and are correlated with secondary bone formation and habitual strain mode. Medial and lateral cortices in these groups exhibited elongated secondary osteons. These variations may represent "strain-mode-specific" (i.e., tension, compression, shear) adaptations. The heterogeneous organization may also be influenced by variations in longitudinal strain magnitude (highest in the Cr cortex) and principal strain direction-oblique in medial-lateral cortices (where shear strains also predominate). Other factors such as local reductions in longitudinal strain may influence the increased remodeling activity of the Cd cortex. Some structural variations, such as arched trabeculae, that are established early in ontogeny may be strongly influenced by genetic- or epigenetic-derived processes. Material variations, such as secondary osteon population densities and CFO, which appear later, may be products of extragenetic factors, including microdamage.
Collapse
Affiliation(s)
- John G Skedros
- Bone and Joint Research Laboratories (151F), Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84148, USA.
| | | | | |
Collapse
|
34
|
Skedros JG, Hunt KJ, Hughes PE, Winet H. Ontogenetic and regional morphologic variations in the turkey ulna diaphysis: implications for functional adaptation of cortical bone. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2003; 273:609-29. [PMID: 12808646 DOI: 10.1002/ar.a.10073] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study examines relationships between bone morphology and mechanically mediated strain/fluid-flow patterns in an avian species. Using mid-diaphyseal transverse sections of domestic turkey ulnae (from 11 subadults and 11 adults), we quantified developmental changes in predominant collagen fiber orientation (CFO), mineral content (%ash), and microstructure in cortical octants or quadrants (i.e., %ash). Geometric parameters were examined using whole mid-diaphyseal cross-sections. The ulna undergoes habitual bending and torsion, and demonstrates nonuniform matrix fluid-flow patterns, and high circumferential strain gradients along the neutral axis (cranial-caudal) region at mid-diaphysis. The current results showed significant porosity differences: 1) greater osteocyte lacuna densities (N.Lac/Ar) (i.e., "non-vascular porosity") in the caudal and cranial cortices in both groups, 2) greater N.Lac/Ar in the pericortex vs. endocortex in mature bones, and 3) greater nonlacunar porosity (i.e., "vascular porosity") in the endocortex vs. pericortex in mature bones. Vascular and nonvascular porosities were not correlated. There were no secondary osteons in subadults. In adults, the highest secondary osteon population densities and lowest %ash occurred in the ventral-caudal, caudal, and cranial cortices, where shear strains, circumferential strain gradients, and fluid displacements are highest. Changes in thickness of the caudal cortex explained the largest proportion of the age-related increase in cranial-caudal breadth; the thickness of other cortices (dorsal, ventral, and cranial) exhibited smaller changes. Only subadult bones exhibited CFO patterns corresponding to habitual tension (ventral) and compression (dorsal). These CFO variations may be adaptations for differential mechanical requirements in "strain-mode-specific" loading. The more uniform oblique-to-transverse CFO patterns in adult bones may represent adaptations for shear strains produced by torsional loading, which is presumably more prevalent in adults. The micro- and ultrastructural heterogeneities may influence strain and fluid-flow dynamics, which are considered proximate signals in bone adaptation.
Collapse
Affiliation(s)
- John G Skedros
- Bone and Joint Research Laboratory, Department of Veterans Affairs Medical Center, Salt Lake City, Utah 84148, USA.
| | | | | | | |
Collapse
|
35
|
Skedros JG, Mason MW, Bloebaum RD. Modeling and remodeling in a developing artiodactyl calcaneus: a model for evaluating Frost's Mechanostat hypothesis and its corollaries. ACTA ACUST UNITED AC 2001; 263:167-85. [PMID: 11360234 DOI: 10.1002/ar.1094] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The artiodactyl (mule deer) calcaneus was examined for structural and material features that represent regional differences in cortical bone modeling and remodeling activities. Cortical thickness, resorption and formation surfaces, mineral content (percent ash), and microstructure were quantified between and within skeletally immature and mature bones. These features were examined to see if they are consistent with predictions of Frost's Mechanostat paradigm of mechanically induced bone adaptation in a maturing "tension/compression" bone (Frost, 1990a,b, Anat Rec 226:403-413, 414-422). Consistent with Frost's hypothesis that surface modeling activities differ between the "compression" (cranial) and "tension" (caudal) cortices, the elliptical cross-section of the calcaneal diaphysis becomes more elongated in the direction of bending as a result of preferential (> 95%) increase in thickness of the compression cortex. Regional differences in mineral content and population densities of new remodeling events (NREs = resorption spaces plus newly forming secondary osteons) support Frost's hypothesis that intracortical remodeling activities differ between the opposing cortices: 1.) in immature and mature bones, the compression cortex had attained a level of mineralization averaging 8.9 and 6.8% greater (P < 0.001), respectively, than that of the tension cortex, and 2.) there are on average 350 to 400% greater population densities of NREs in the tension cortices of both age groups (P < 0.0003). No significant differences in cortical thickness, mineral content, porosity, or NREs were found between medial and lateral cortices of the skeletally mature bones, suggesting that no modeling or remodeling differences exist along a theoretical neutral axis. However, in mature bones these cortices differed considerably in secondary osteon cross-sectional area and population density. Consistent with Frost's hypothesis, remodeling in the compression cortex produced bone with microstructural organization that differs from the tension cortex. However, the increased remodeling activity of the tension cortex does not appear to be related to a postulated low-strain environment. Although most findings are consistent with predictions of Frost's Mechanostat paradigm, there are several notable inconsistencies. Additional studies are needed to elucidate the nature of the mechanisms that govern the modeling and remodeling activities that produce and maintain normal bone. It is proposed that the artiodactyl calcaneus will provide a useful experimental model for these studies.
Collapse
Affiliation(s)
- J G Skedros
- Bone and Joint Research Laboratories, Department of Veterans Affairs SLC Health Care System, Salt Lake City, Utah 84148, USA
| | | | | |
Collapse
|