1
|
Last KB, Malte H, Rindom E, Guagnoni IN, Wang T. Proportional increment of oxygen consumption, heart rate and core body temperature in the digesting Python bivittatus. J Exp Biol 2024; 227:jeb248021. [PMID: 39319390 DOI: 10.1242/jeb.248021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024]
Abstract
The Burmese python has a remarkable digestive physiology with large elevations of metabolic rate and heart rate following feeding. Here, we investigated the relationship between heart rate, oxygen consumption and core body temperature during digestion in five pythons (Python bivittatus) by implantation of data loggers. The snakes were placed in respirometers at 30±0.1°C for 26 days and voluntarily ingested three meals of different size, whilst heart rate, core body temperature and oxygen consumption rate were measured continuously. Both oxygen consumption and heart rate increased severalfold during digestion, and metabolic heat production increased core body temperature by 2°C, explaining 12% of the observed tachycardia. The rise in core body temperature means that standard metabolic rate increased during digestion, and we estimate that failure to account for core body temperature leads to a 4% overestimation of the specific dynamic action (SDA) response. Our study reveals a close correlation between oxygen consumption and heart rate during digestion, further supporting the use of heart rate as a proxy for metabolism.
Collapse
Affiliation(s)
- Katja B Last
- Zoophysiology, Department of Biology, Aarhus University, Universitetsparken, 8000 Aarhus C, Denmark
| | - Hans Malte
- Zoophysiology, Department of Biology, Aarhus University, Universitetsparken, 8000 Aarhus C, Denmark
| | - Emil Rindom
- Zoophysiology, Department of Biology, Aarhus University, Universitetsparken, 8000 Aarhus C, Denmark
| | - Igor N Guagnoni
- Zoophysiology, Department of Biology, Aarhus University, Universitetsparken, 8000 Aarhus C, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, Universitetsparken, 8000 Aarhus C, Denmark
| |
Collapse
|
2
|
Guagnoni IN, Armelin VA, da Silva Braga VH, Monteiro DA, Florindo LH. Cardiovascular responses and the role of the neurohumoral cardiac regulation during digestion in the herbivorous lizard Iguana iguana. J Exp Biol 2024; 227:jeb247105. [PMID: 38186316 DOI: 10.1242/jeb.247105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Carnivorous reptiles exhibit an intense metabolic increment during digestion, which is accompanied by several cardiovascular adjustments responsible for meeting the physiological demands of the gastrointestinal system. Postprandial tachycardia, a well-documented phenomenon in these animals, is mediated by the withdrawal of vagal tone associated with the chronotropic effects of non-adrenergic and non-cholinergic (NANC) factors. However, herbivorous reptiles exhibit a modest metabolic increment during digestion and there is no information about postprandial cardiovascular adjustments. Considering the significant impact of feeding characteristics on physiological responses, we investigated cardiovascular and metabolic responses, as well as the neurohumoral mechanisms of cardiac control, in the herbivorous lizard Iguana iguana during digestion. We measured oxygen consumption rate (O2), heart rate (fH), mean arterial blood pressure (MAP), myocardial activity, cardiac autonomic tone, fH/MAP variability and baroreflex efficiency in both fasting and digesting animals before and after parasympathetic blockade with atropine followed by double autonomic blockade with atropine and propranolol. Our results revealed that the peak of O2 in iguanas was reached 24 h after feeding, accompanied by an increase in myocardial activity and a subtle tachycardia mediated exclusively by a reduction in cardiac parasympathetic activity. This represents the first reported case of postprandial tachycardia in digesting reptiles without the involvement of NANC factors. Furthermore, this withdrawal of vagal stimulation during digestion may reduce the regulatory range for short-term fH adjustments, subsequently intensifying the blood pressure variability as a consequence of limiting baroreflex efficiency.
Collapse
Affiliation(s)
- Igor Noll Guagnoni
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Vinicius Araújo Armelin
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiology, Institute of Biosciences (IB), University of São Paulo (USP), São Paulo, SP 05508-090, Brazil
| | - Victor Hugo da Silva Braga
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
| | - Diana Amaral Monteiro
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| | - Luiz Henrique Florindo
- Department of Biological Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP 15054-000, Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT - FAPESP/CNPq), São Paulo, SP 13506-900, Brazil
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
3
|
Smith B, Crossley JL, Conner J, Elsey RM, Wang T, Crossley DA. Exposure to hypoxia during embryonic development affects blood flow patterns and heart rate in juvenile American alligators during digestion. Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111440. [PMID: 37169243 DOI: 10.1016/j.cbpa.2023.111440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
The developmental environment can alter an organism's phenotype through epigenetic mechanisms. We incubated eggs from American alligators in 10% O2 (hypoxia) to investigate the functional plasticity of blood flow patterns in response to feeding later in life. Digestion is associated with marked elevations of metabolism, and we therefore used the feeding-induced stimulation of tissue O2 demand to determine whether there are lasting effects of developmental hypoxia on the cardiovascular response to digestion later in life. In all animals studied, digestion elicited tachycardia and an elevation of blood flow in the right aorta, left aorta, and the pulmonary artery, whereas flows in the carotid and subclavian artery did not change. We found that heart rate and systemic blood flow remained elevated for a longer time period in juvenile alligators that had been incubated in hypoxia; we also found that the pulmonary blood flow was elevated at 24, 36, and 48 h. Collectively, our findings demonstrate that exposure to hypoxia during incubation has lasting effects on the hemodynamics of juvenile alligators 4 years after hatching.
Collapse
Affiliation(s)
- Brandt Smith
- University of North Texas, Department of Biological Sciences, 1155 Union Circle, Denton, TX 76203, USA
| | - Janna L Crossley
- University of North Texas, Department of Biological Sciences, 1155 Union Circle, Denton, TX 76203, USA; Department of Surgery, Center for Organogenesis and Trauma, University of Texas Southwestern, TX 75390, USA
| | - Justin Conner
- University of North Texas, Department of Biological Sciences, 1155 Union Circle, Denton, TX 76203, USA
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA 70643, USA
| | - Tobias Wang
- Department of Biology- Zoophysiology, Aarhus University, Aarhus C, Denmark
| | - Dane A Crossley
- University of North Texas, Department of Biological Sciences, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|
4
|
da Cruz AL, Vilela B, Klein W. Morphological and physiological traits of the respiratory system in Iguana iguana and other non-avian reptiles. ZOOLOGY 2023; 157:126079. [PMID: 36868103 DOI: 10.1016/j.zool.2023.126079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
Functional morphology considers form and function to be intrinsically related. To understand organismal functions, a detailed knowledge of morphological and physiological traits is necessary. Regarding the respiratory system, the combined knowledge about pulmonary morphology and respiratory physiology is fundamental to understand how animals exchange gases and regulate critical functions to sustain metabolic activity. In the present study, the paucicameral lungs of Iguana iguana were analyzed morphometrically through stereological analysis using light and transmission electron images and compared with unicameral and multicameral lungs of six other non-avian reptiles. The morphological data were combined with physiological information to perform a principal component analysis (PCA) and phylogenetic tests of the relationship of the respiratory system. Iguana iguana, Lacerta viridis, and Salvator merianae presented similar pulmonary morphologies and physiologies when compared to Varanus examthematicus, Gekko gecko, Trachemys scripta, and Crocodylus niloticus. The former species showed an elevated respiratory surface area (%AR), a high diffusion capacity, a low volume of total parenchyma (VP), a low percentage of parenchyma concerning the lung volume (VL), and a higher surface/volume ratio of the parenchyma (SAR/VP), with high respiratory frequency (fR) and consequently total ventilation. The total parenchymal surface area (SA), effective parenchymal surface-to-volume ratio (SAR/VP), respiratory surface area (SAR), and anatomical diffusion factor (ADF) showed a phylogenetic signal, evidence that the morphological traits are more strongly correlated with the species' phylogeny than the physiological traits. In sum, our results indicated that the pulmonary morphology is intrinsically related to physiological traits of the respiratory system. Furthermore, phylogenetic signal tests also indicate that morphological traits are more likely to be evolutionary conserved than physiological traits, suggesting that evolutive physiological adaptations in the respiratory system could happen faster than morphological changes.
Collapse
Affiliation(s)
- André Luis da Cruz
- Institute of Biology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Ondina, CEP 40170-115 Salvador, Bahia, Brazil.
| | - Bruno Vilela
- Institute of Biology, Federal University of Bahia, Rua Barão de Jeremoabo 147, Ondina, CEP 40170-115 Salvador, Bahia, Brazil.
| | - Wilfried Klein
- School of Philosophy, Sciences and Literature of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes 3900. Monte Alegre, CEP 14040-900 Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Lopes AG, Monteiro DA, Kalinin AL. Effects of change in temperature on the cardiac contractility of broad-snouted caiman (Caiman latirostris) during digestion. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:417-425. [PMID: 33773091 DOI: 10.1002/jez.2457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/07/2022]
Abstract
In many reptiles, digestion has been associated with the selection of higher body temperatures, the so-called post-prandial thermophilic response. This study aimed to investigate the excitation-contraction (E-C) coupling in postprandial broad-snouted caimans (Caiman latirostris) in response to acute warming within a preferred body temperature range of crocodiles. Isometric preparations subjected to a temperature transition from 25°C to 30°C were used to investigate myocardial contractility of postprandial caimans, that is, 48 h after the animals ingested a rodent meal corresponding to 15% of body mass. The caiman heart exhibits a negative force-frequency relationship that is independent of the temperature. At 25°C, cardiac muscle was able to maintain a constant force up to 36 bpm, above which it decreased significantly, reaching minimum values at the highest frequency of 84 bpm. Moreover, E-C coupling is predominantly dependent on transsarcolemmal Ca2+ transport denoted by the lack of significant ryanodine effects on force generation. On the contrary, ventricular strips at 30°C were able to sustain the cardiac contractility at higher pacing frequencies (from 12 to 144 bpm) due to an important role of Na+ /Ca2+ exchanger in Ca2+ cycling, as indicated by the decay of the post-rest contraction, and a significant contribution of the sarcoplasmic reticulum above 72 bpm. Our results demonstrated that the myocardium of postprandial caimans exhibits a significant degree of thermal plasticity of E-C coupling during acute warming. Therefore, myocardial contractility can be maximized when postprandial broad-snouted caimans select higher body temperatures (preferred temperature zone) following feeding.
Collapse
Affiliation(s)
- André G Lopes
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil.,Joint Graduate Program in Physiological Sciences, Federal University of São Carlos-UFSCar/São Paulo State University, UNESP Campus Araraquara, Araraquara, São Paulo, Brazil
| | - Diana A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Ana L Kalinin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
6
|
Guagnoni IN, Armelin VA, da Silva Braga VH, Rantin FT, Florindo LH. Postprandial cardiorespiratory responses and the regulation of digestion-associated tachycardia in Nile tilapia (Oreochromis niloticus). J Comp Physiol B 2020; 191:55-67. [PMID: 33005989 DOI: 10.1007/s00360-020-01317-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/29/2020] [Accepted: 09/20/2020] [Indexed: 11/25/2022]
Abstract
Cardiorespiratory adjustments that occur after feeding are essential to supply the demands of digestion in vertebrates. The well-documented postprandial tachycardia is triggered by an increase in adrenergic activity and by non-adrenergic non-cholinergic (NANC) factors in mammals and crocodilians, while it is linked to a withdrawal of vagal drive and NANC factors in non-crocodilian ectotherms-except for fish, in which the sole investigation available indicated no participation of NANC factors. On the other hand, postprandial ventilatory adjustments vary widely among air-breathing vertebrates, with different species exhibiting hyperventilation, hypoventilation, or even no changes at all. Regarding fish, which live in an environment with low oxygen capacitance that requires great ventilatory effort for oxygen uptake, data on the ventilatory consequences of feeding are also scarce. Thus, the present study sought to investigate the postprandial cardiorespiratory adjustments and the mediation of digestion-associated tachycardia in the unimodal water-breathing teleost Oreochromis niloticus. Heart rate (fH), cardiac autonomic tones, ventilation rate (fV), ventilation amplitude, total ventilation and fH/fV variability were assessed both in fasting and digesting animals under untreated condition, as well as after muscarinic cholinergic blockade with atropine and double autonomic blockade with atropine and propranolol. The results revealed that digestion was associated with marked tachycardia in O. niloticus, determined by a reduction in cardiac parasympathetic activity and by circulating NANC factors-the first time such positive chronotropes were detected in digesting fish. Unexpectedly, postprandial ventilatory alterations were not observed, although digestion triggered mechanisms that were presumed to increase oxygen uptake, such as cardiorespiratory synchrony.
Collapse
Affiliation(s)
- Igor Noll Guagnoni
- Department of Zoology and Botany, Institute of Biosciences, Languages and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany, Institute of Biosciences, Languages and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.,Department of Physiology, Institute of Biosciences, University of São Paulo (USP), Rua do Matão, Travessa 14, 321, São Paulo, SP, 05508-090, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil
| | - Victor Hugo da Silva Braga
- Department of Zoology and Botany, Institute of Biosciences, Languages and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil
| | - Francisco Tadeu Rantin
- Department of Physiological Sciences, Federal University of São Carlos (UFSCar), Rodovia Washington Luiz, km 235, São Carlos, SP, 13565‑905, Brazil.,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil
| | - Luiz Henrique Florindo
- Department of Zoology and Botany, Institute of Biosciences, Languages and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo, 2265, São José do Rio Preto, SP, 15054-000, Brazil. .,Aquaculture Center (CAUNESP), São Paulo State University (UNESP), Rodovia Prof. Paulo Donato Castellane, n/n, Jaboticabal, SP, 14884-900, Brazil. .,National Institute of Science and Technology in Comparative Physiology (INCT, FAPESP/CNPq), São Paulo, Brazil.
| |
Collapse
|
7
|
Barrett KT, Hasan SU, Scantlebury MH, Wilson RJA. Impaired neonatal cardiorespiratory responses to hypoxia in mice lacking PAC1 or VPAC2 receptors. Am J Physiol Regul Integr Comp Physiol 2019; 316:R594-R606. [PMID: 30758978 DOI: 10.1152/ajpregu.00250.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The stress peptide pituitary adenylate cyclase activating polypeptide (PACAP) and its specific receptor PACAP type 1 receptor (PAC1) have been implicated in sudden infant death syndrome (SIDS). PACAP is also critical to the neonatal cardiorespiratory response to homeostatic stressors identified in SIDS, including hypoxia. However, which of PACAP's three receptors, PAC1, vasoactive intestinal peptide receptor type 1 (VPAC1), and/or vasoactive intestinal peptide receptor type 2 (VPAC2), are involved is unknown. In this study, we hypothesized that PAC1, but not VPAC2, is involved in mediating the cardiorespiratory response to hypoxia during neonatal development. To test this hypothesis, head-out plethysmography and surface ECG electrodes were used to assess the cardiorespiratory variables of unanesthetized postnatal day 4 PAC1 and VPAC2-knockout (KO) and wild-type (WT) mice in response to a 10% hypoxic challenge. Our results demonstrate that compared with WT pups, the early and late hypoxic rate of expired CO2 (V̇co2), V̇co2 and ventilatory responses were blunted in PAC1-KO neonates, and during the posthypoxic period, minute ventilation (V̇e), V̇co2 and heart rate were increased, while the increase in apneas normally associated with the posthypoxic period was reduced. Consistent with impaired cardiorespiratory control in these animals, the V̇e/V̇co2 slope was reduced in PAC1-KO pups, suggesting that breathing was inappropriately matched to metabolism. In contrast, VPAC2-KO pups exhibited elevated heart rate variability during hypoxia compared with WT littermates, but the effects of the VPAC2-KO genotype on breathing were minimal. These findings suggest that PAC1 plays the principal role in mediating the cardiorespiratory effects of PACAP in response to hypoxic stress during neonatal development and that defective PACAP signaling via PAC1 may contribute to the pathogenesis of SIDS.
Collapse
Affiliation(s)
- Karlene T Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Shabih U Hasan
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Morris H Scantlebury
- Department of Pediatrics, Clinical Neuroscience, Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| | - Richard J A Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
8
|
Barrett KT, Daubenspeck JA, Wilson RJA. Pituitary adenylate cyclase-activating polypeptide drives cardiorespiratory responses to heat stress in neonatal mice. Am J Physiol Regul Integr Comp Physiol 2017; 313:R385-R394. [DOI: 10.1152/ajpregu.00118.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/05/2017] [Accepted: 06/27/2017] [Indexed: 11/22/2022]
Abstract
The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has emerged as a principal and rate-limiting regulator of physiological stress responses in adult rodents and has been implicated in sudden infant death syndrome (SIDS). Recent studies show that PACAP plays a role in neonatal cardiorespiratory responses to hypoxia, hypercapnia, and hypothermia, but not hyperthermia, which is often associated with SIDS. Here we tested the hypothesis that, consistent with a role in SIDS, PACAP is involved in regulating the neonatal cardiorespiratory responses to severe heat. To address this, we used head-out plethysmography and surface ECG electrodes to study the cardiorespiratory physiology of conscious neonatal PACAP-null and wild-type mice at ambient temperatures of 32°C (baseline) and 40°C (heat stress). We also assessed body surface temperature as an indicator of cutaneous heat loss. Our results show that wild-type neonatal mice respond to heat stress by increasing ventilation ( P = 0.007) and associated expired CO2 ( P = 0.041), heart rate ( P < 0.001), and cutaneous heat loss ( P < 0.001). In PACAP-null neonates, this heat response is impaired, as indicated by a decrease in ventilation ( P = 0.04) and associated expired CO2 ( P = 0.006) and a blunted increase in heart rate ( P = 0.001) and cutaneous heat loss ( P = 0.0002). In addition, heart rate variability at baseline was lower in PACAP-null neonates than wild-type controls ( P < 0.01). These results suggest that, during heat stress, PACAP is important for neonatal cardiorespiratory responses that help regulate body temperature. Abnormal PACAP regulation could, therefore, contribute to neonatal disorders in which the autonomic response to stress is impaired, such as SIDS.
Collapse
Affiliation(s)
- Karlene T. Barrett
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; and
| | - John A. Daubenspeck
- Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Richard J. A. Wilson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; and
| |
Collapse
|
9
|
Crossley DA, Ling R, Nelson D, Gillium T, Conner J, Hapgood J, Elsey RM, Eme J. Metabolic responses to chronic hypoxic incubation in embryonic American alligators (Alligator mississippiensis). Comp Biochem Physiol A Mol Integr Physiol 2017; 203:77-82. [DOI: 10.1016/j.cbpa.2016.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 11/28/2022]
|
10
|
Wearing OH, Conner J, Nelson D, Crossley J, Crossley DA. Embryonic hypoxia programmes postprandial cardiovascular function in adult common snapping turtles (Chelydra serpentina). J Exp Biol 2017; 220:2589-2597. [DOI: 10.1242/jeb.160549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
Abstract
Reduced oxygen availability (hypoxia) is a potent stressor during embryonic development, altering the trajectory of trait maturation and organismal phenotype. We previously documented that chronic embryonic hypoxia has a lasting impact on the metabolic response to feeding in juvenile snapping turtles (Chelydra serpentina). Turtles exposed to hypoxia as embryos (10% O2, H10) exhibited an earlier and increased peak postprandial oxygen consumption rate, compared to control turtles (21% O2, N21). In the current study, we measured central blood flow patterns to determine whether the elevated postprandial metabolic response in H10 turtles is linked to lasting impacts on convective transport. Five years after hatching, turtles were instrumented to quantify systemic (Q̇sys) and pulmonary (Q̇pul) blood flows and heart rate (fH) before and after a ∼5% body mass meal. In adult N21 and H10 turtles, fH was increased significantly by feeding. While total stroke volume (Vstot) remained at fasted values, this tachycardia contributed to an elevation in total cardiac output (Q̇tot). However, there was a postprandial reduction in a net left-right (L-R) shunt in N21 snapping turtles only. Relative to N21 turtles, H10 animals exhibited higher Q̇sys due to increased blood flow through the right systemic outflow vessels of the heart. This effect of hypoxic embryonic development, reducing a net L-R cardiac shunt, may support the increased postprandial metabolic rate we previously reported in H10 turtles, and is further demonstration of adult reptile cardiovascular physiology being programmed by embryonic hypoxia.
Collapse
Affiliation(s)
- Oliver H. Wearing
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Justin Conner
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Derek Nelson
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Janna Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| |
Collapse
|
11
|
Malte CL, Malte H, Reinholdt LR, Findsen A, Hicks JW, Wang T. Right-to-left shunt has modest effects on CO 2 delivery to the gut during digestion, but compromises oxygen delivery. ACTA ACUST UNITED AC 2016; 220:531-536. [PMID: 27980124 DOI: 10.1242/jeb.149625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022]
Abstract
By virtue of their cardiovascular anatomy, reptiles and amphibians can shunt blood away from the pulmonary or systemic circuits, but the functional role of this characteristic trait remains unclear. It has been suggested that right-to-left (R-L) shunt (recirculation of systemic blood within the body) fuels the gastric mucosa with acidified and CO2-rich blood to facilitate gastric acid secretion during digestion. However, in addition to elevating PCO2 , R-L shunt also reduces arterial O2 levels and would compromise O2 delivery during the increased metabolic state of digestion. Conversely, arterial PCO2 can also be elevated by lowering ventilation relative to metabolism (i.e. reducing the air convection requirement, ACR). Based on a mathematical analysis of the relative roles of ACR and R-L shunt on O2 and CO2 levels, we predict that ventilatory modifications are much more effective for gastric CO2 supply with only modest effects on O2 delivery. Conversely, elevating CO2 levels by means of R-L shunt would come at a cost of significant reductions in O2 levels. The different effects of altering ACR and R-L shunt on O2 and CO2 levels are explained by the differences in the effective blood capacitance coefficients.
Collapse
Affiliation(s)
- Christian Lind Malte
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Hans Malte
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Anders Findsen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
12
|
Braga VHDS, Armelin VA, Teixeira MT, Abe AS, Rantin FT, Florindo LH. The Effects of Feeding on Cardiac Control of the Broad-Nosed Caiman (Caiman latirostris): The Role of the Autonomic Nervous System and NANC Factors. ACTA ACUST UNITED AC 2016; 325:524-531. [DOI: 10.1002/jez.2036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/06/2016] [Accepted: 08/05/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Victor Hugo Da Silva Braga
- Department of Zoology and Botany; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
| | - Vinicius Araújo Armelin
- Department of Zoology and Botany; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
| | - Mariana Teodoro Teixeira
- Department of Zoology and Botany; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
| | - Augusto Shinya Abe
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
- Department of Zoology; São Paulo State University (UNESP); Rio Claro São Paulo Brazil
- Aquaculture Center (CAUNESP); São Paulo State University (UNESP); Jaboticabal São Paulo Brazil
| | - Francisco Tadeu Rantin
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
- Department of Physiological Sciences; Federal University of São Carlos (UFSCar); São Carlos, São Paulo Brazil
| | - Luiz Henrique Florindo
- Department of Zoology and Botany; São Paulo State University (UNESP); São José do Rio Preto São Paulo Brazil
- National Institute of Science and Technology in Comparative Physiology (INCT-FAPESP/CNPq); São Paulo Brazil
- Aquaculture Center (CAUNESP); São Paulo State University (UNESP); Jaboticabal São Paulo Brazil
| |
Collapse
|
13
|
Joyce W, Axelsson M, Altimiras J, Wang T. In situ cardiac perfusion reveals interspecific variation of intraventricular flow separation in reptiles. J Exp Biol 2016; 219:2220-7. [DOI: 10.1242/jeb.139543] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022]
Abstract
The ventricles of non-crocodilian reptiles are incompletely divided and provide an opportunity for mixing of oxygen-poor blood and oxygen-rich blood (intracardiac shunting). However, both cardiac morphology and in vivo shunting patterns exhibit considerable interspecific variation within reptiles. In the present study, we develop an in situ double-perfused heart approach to characterise the propensity and capacity for shunting in five reptile species (turtle: Trachemys scripta, rock python: Python sebae, yellow anaconda: Eunectes notaeus, varanid lizard: Varanus exanthematicus, and bearded dragon: Pogona vitticeps). To simulate changes in vascular bed resistance, pulmonary and systemic afterloads were independently manipulated and changes in blood flow distribution amongst the central outflow tracts were monitored. As previously demonstrated in Burmese pythons, rock pythons and varanid lizards exhibited pronounced intraventricular flow separation. As pulmonary or systemic afterload was raised, flow in the respective circulation decreased. However, flow in the other circulation, where afterload was constant, remained stable. This correlates with the convergent evolution of intraventricular pressure separation and the large intraventricular muscular ridge, which compartmentalises the ventricle, in these species. Conversely, in the three other species, the pulmonary and systemic flows were strongly mutually dependent, such that the decrease in pulmonary flow in response to elevated pulmonary afterload resulted in redistribution of perfusate to the systemic circuit (and vice versa). Thus, in these species, the muscular ridge appeared labile and blood could readily transverse the intraventricular cava. We conclude that relatively minor structural differences between non-crocodilian reptiles result in the fundamental changes in cardiac function. Further, our study emphasises that functionally similar intracardiac flow separation evolved independently in lizards (varanids) and snakes (pythons) from an ancestor endowed with the capacity for large intracardiac shunts.
Collapse
Affiliation(s)
- William Joyce
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jordi Altimiras
- AVIAN Behavioural Genomics and Physiology Group, IFM, Linköping University, 581 83 Linköping, Sweden
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
14
|
Wearing OH, Eme J, Rhen T, Crossley DA. Phenotypic plasticity in the common snapping turtle (Chelydra serpentina): long-term physiological effects of chronic hypoxia during embryonic development. Am J Physiol Regul Integr Comp Physiol 2015; 310:R176-84. [PMID: 26608655 DOI: 10.1152/ajpregu.00293.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/24/2015] [Indexed: 11/22/2022]
Abstract
Studies of embryonic and hatchling reptiles have revealed marked plasticity in morphology, metabolism, and cardiovascular function following chronic hypoxic incubation. However, the long-term effects of chronic hypoxia have not yet been investigated in these animals. The aim of this study was to determine growth and postprandial O2 consumption (V̇o2), heart rate (fH), and mean arterial pressure (Pm, in kPa) of common snapping turtles (Chelydra serpentina) that were incubated as embryos in chronic hypoxia (10% O2, H10) or normoxia (21% O2, N21). We hypothesized that hypoxic development would modify posthatching body mass, metabolic rate, and cardiovascular physiology in juvenile snapping turtles. Yearling H10 turtles were significantly smaller than yearling N21 turtles, both of which were raised posthatching in normoxic, common garden conditions. Measurement of postprandial cardiovascular parameters and O2 consumption were conducted in size-matched three-year-old H10 and N21 turtles. Both before and 12 h after feeding, H10 turtles had a significantly lower fH compared with N21 turtles. In addition, V̇o2 was significantly elevated in H10 animals compared with N21 animals 12 h after feeding, and peak postprandial V̇o2 occurred earlier in H10 animals. Pm of three-year-old turtles was not affected by feeding or hypoxic embryonic incubation. Our findings demonstrate that physiological impacts of developmental hypoxia on embryonic reptiles continue into juvenile life.
Collapse
Affiliation(s)
- Oliver H Wearing
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - John Eme
- Department of Biological Sciences, California State University San Marcos, San Marcos, California
| | - Turk Rhen
- Department of Biology, University of North Dakota, Grand Forks, North Dakota; and
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, Texas
| |
Collapse
|
15
|
The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity. J Comp Physiol B 2015; 185:891-903. [PMID: 26285591 DOI: 10.1007/s00360-015-0927-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 11/27/2022]
Abstract
The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively.
Collapse
|
16
|
Esbaugh AJ, Secor SM, Grosell M. Renal plasticity in response to feeding in the Burmese python, Python molurus bivittatus. Comp Biochem Physiol A Mol Integr Physiol 2015; 188:120-6. [PMID: 26123779 DOI: 10.1016/j.cbpa.2015.06.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 04/13/2015] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
Abstract
Burmese pythons are sit-and-wait predators that are well adapted to go long periods without food, yet subsequently consume and digest single meals that can exceed their body weight. These large feeding events result in a dramatic alkaline tide that is compensated by a hypoventilatory response that normalizes plasma pH; however, little is known regarding how plasma HCO3(-) is lowered in the days post-feeding. The current study demonstrated that Burmese pythons contain the cellular machinery for renal acid-base compensation and actively remodel the kidney to limit HCO3(-) reabsorption in the post-feeding period. After being fed a 25% body weight meal plasma total CO2 was elevated by 1.5-fold after 1 day, but returned to control concentrations by 4 days post-feeding (d pf). Gene expression analysis was used to verify the presence of carbonic anhydrase (CA) II, IV and XIII, Na(+) H(+) exchanger 3 (NHE3), the Na(+) HCO3(-) co-transporter (NBC) and V-type ATPase. CA IV expression was significantly down-regulated at 3 dpf versus fasted controls. This was supported by activity analysis that showed a significant decrease in the amount of GPI-linked CA activity in isolated kidney membranes at 3 dpf versus fasted controls. In addition, V-type ATPase activity was significantly up-regulated at 3 dpf; no change in gene expression was observed. Both CA II and NHE3 expression was up-regulated at 3 dpf, which may be related to post-prandial ion balance. These results suggest that Burmese pythons actively remodel their kidney after feeding, which would in part benefit renal HCO3(-) clearance.
Collapse
Affiliation(s)
- A J Esbaugh
- Department of Marine Science, University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78418, USA.
| | - S M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35405, USA
| | - M Grosell
- Division of Marine Biology and Fisheries, University of Miami, Rosenstiel School of Marine and Atmospheric Science, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| |
Collapse
|
17
|
Munns SL, Edwards A, Nicol S, Frappell PB. Pregnancy limits lung function during exercise and depresses metabolic rate in the skink Tiliqua nigrolutea. ACTA ACUST UNITED AC 2015; 218:931-9. [PMID: 25788728 DOI: 10.1242/jeb.111450] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High gestational loads have been associated with a range of ecological costs, such as decreased locomotor ability; however, the physiological mechanisms that underpin these changes are poorly understood. In this study, breathing patterns, metabolic rates, lung volume and lung diffusing capacity were measured at rest and during exercise in the pregnant skink Tiliqua nigrolutea. Breathing patterns were largely unaffected by gestation; however, decreases in metabolic rate (rate of oxygen consumption) in the late stages of pregnancy induced a relative hyperventilation. The reductions in metabolic rate during late pregnancy prevent the calculation of the maintenance cost of pregnancy based on post-partum and neonatal metabolic rates. Despite the high relative litter mass of 38.9±5.3%, lung diffusing capacity was maintained during all stages of pregnancy, suggesting that alterations in diffusion at the alveolar capillary membrane were not responsible for the relative hyperventilation. Lung volume was increased during pregnancy compared with non-pregnant females, but lung volume was significantly lower during pregnancy compared with post-partum lung volume. Pregnant females were unable to produce the same metabolic and ventilatory changes induced by exercise in non-pregnant females. This lack of ability to respond to increased respiratory drive during exercise may underpin the locomotor impairment measured during gestation in previous studies.
Collapse
Affiliation(s)
- Suzanne L Munns
- Biomedical Sciences, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Ashley Edwards
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Stewart Nicol
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Peter B Frappell
- School of Biological Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
18
|
Dzal YA, Jenkin SEM, Lague SL, Reichert MN, York JM, Pamenter ME. Oxygen in demand: How oxygen has shaped vertebrate physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:4-26. [PMID: 25698654 DOI: 10.1016/j.cbpa.2014.10.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sabine L Lague
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michelle N Reichert
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julia M York
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew E Pamenter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
19
|
Burggren WW, Christoffels VM, Crossley DA, Enok S, Farrell AP, Hedrick MS, Hicks JW, Jensen B, Moorman AFM, Mueller CA, Skovgaard N, Taylor EW, Wang T. Comparative cardiovascular physiology: future trends, opportunities and challenges. Acta Physiol (Oxf) 2014; 210:257-76. [PMID: 24119052 DOI: 10.1111/apha.12170] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/16/2013] [Accepted: 09/12/2013] [Indexed: 12/23/2022]
Abstract
The inaugural Kjell Johansen Lecture in the Zoophysiology Department of Aarhus University (Aarhus, Denmark) afforded the opportunity for a focused workshop comprising comparative cardiovascular physiologists to ponder some of the key unanswered questions in the field. Discussions were centred around three themes. The first considered function of the vertebrate heart in its various forms in extant vertebrates, with particular focus on the role of intracardiac shunts, the trabecular ('spongy') nature of the ventricle in many vertebrates, coronary blood supply and the building plan of the heart as revealed by molecular approaches. The second theme involved the key unanswered questions in the control of the cardiovascular system, emphasizing autonomic control, hypoxic vasoconstriction and developmental plasticity in cardiovascular control. The final theme involved poorly understood aspects of the interaction of the cardiovascular system with the lymphatic, renal and digestive systems. Having posed key questions around these three themes, it is increasingly clear that an abundance of new analytical tools and approaches will allow us to learn much about vertebrate cardiovascular systems in the coming years.
Collapse
Affiliation(s)
- W. W. Burggren
- Developmental Integrative Biology Cluster; Department of Biological Sciences; University of North Texas; Denton TX USA
| | - V. M. Christoffels
- Department of Anatomy, Embryology & Physiology; Academic Medical Centre; Amsterdam The Netherlands
| | - D. A. Crossley
- Developmental Integrative Biology Cluster; Department of Biological Sciences; University of North Texas; Denton TX USA
| | - S. Enok
- Zoophysiology; Department of Bioscience; Aarhus University; Aarhus Denmark
| | - A. P. Farrell
- Department of Zoology and Faculty of Land and Food Systems; University of British Columbia; Vancouver BC Canada
| | - M. S. Hedrick
- Developmental Integrative Biology Cluster; Department of Biological Sciences; University of North Texas; Denton TX USA
| | - J. W. Hicks
- Department of Ecology and Evolutionary Biology; University of California; Irvine CA USA
| | - B. Jensen
- Department of Anatomy, Embryology & Physiology; Academic Medical Centre; Amsterdam The Netherlands
- Zoophysiology; Department of Bioscience; Aarhus University; Aarhus Denmark
| | - A. F. M. Moorman
- Department of Anatomy, Embryology & Physiology; Academic Medical Centre; Amsterdam The Netherlands
| | - C. A. Mueller
- Developmental Integrative Biology Cluster; Department of Biological Sciences; University of North Texas; Denton TX USA
| | - N. Skovgaard
- Zoophysiology; Department of Bioscience; Aarhus University; Aarhus Denmark
| | - E. W. Taylor
- School of Biosciences; University of Birmingham; Birmingham UK
| | - T. Wang
- Zoophysiology; Department of Bioscience; Aarhus University; Aarhus Denmark
| |
Collapse
|
20
|
Respiratory Biology during Gravidity inCrotaphytus collarisandGambelia wislizenii. J HERPETOL 2013. [DOI: 10.1670/11-097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Crossley DA, Sartori MR, Abe AS, Taylor EW. A role for histamine in cardiovascular regulation in late stage embryos of the red-footed tortoise, Chelonoidis carbonaria Spix, 1824. J Comp Physiol B 2013; 183:811-20. [PMID: 23377695 DOI: 10.1007/s00360-013-0746-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 12/24/2012] [Accepted: 01/09/2013] [Indexed: 11/27/2022]
Abstract
A chorioallantoic membrane artery in embryos of the red-footed tortoise, Chelonoidis carbonaria was occlusively cannulated for measurement of blood pressure and injection of drugs. Two age groups of embryos in the final 10 % of incubation were categorized by the ratio of embryonic body to yolk mass. All embryos first received cholinergic and β-adrenergic blockade. This revealed that β-adrenergic control was established in both groups whereas cholinergic control was only established in the older group immediately prior to hatching. The study then progressed as two series. Series one was conducted in a subset of embryos treated with histamine before or after injection of ranitidine, the antagonist of H2 receptors. Injection of histamine caused an initial phasic hypertension which recovered, followed by a longer lasting hypertensive response accompanied by a tachycardia. Injection of the H2 receptor antagonist ranitidine itself caused a hypotensive tachycardia with subsequent recovery of heart rate. Ranitidine also abolished the cardiac effects of histamine injection while leaving the initial hypertensive response intact. In series, two embryos were injected with histamine after injection of diphenhydramine, the antagonist to H1 receptors. This abolished the whole of the pressor response to histamine injection but left the tachycardic response intact. These data indicate that histamine acts as a non-adrenergic, non-cholinergic factor, regulating the cardiovascular system of developing reptilian embryos and that its overall effects are mediated via both H1 and H2 receptor types.
Collapse
Affiliation(s)
- Dane A Crossley
- Department of Biological Sciences, Developmental Integrative Biology Cluster, University of North Texas, Denton, TX 76203-5017, USA.
| | | | | | | |
Collapse
|
22
|
Enok S, Simonsen LS, Pedersen SV, Wang T, Skovgaard N. Humoral regulation of heart rate during digestion in pythons (Python molurus and Python regius). Am J Physiol Regul Integr Comp Physiol 2012; 302:R1176-83. [PMID: 22422667 DOI: 10.1152/ajpregu.00661.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pythons exhibit a doubling of heart rate when metabolism increases several times during digestion. Pythons, therefore, represent a promising model organism to study autonomic cardiovascular regulation during the postprandial state, and previous studies show that the postprandial tachycardia is governed by a release of vagal tone as well as a pronounced stimulation from nonadrenergic, noncholinergic (NANC) factors. Here we show that infusion of plasma from digesting donor pythons elicit a marked tachycardia in fasting snakes, demonstrating that the NANC factor resides in the blood. Injections of the gastrin and cholecystokinin receptor antagonist proglumide had no effect on double-blocked heart rate or blood pressure. Histamine has been recognized as a NANC factor in the early postprandial period in pythons, but the mechanism of its release has not been identified. Mast cells represent the largest repository of histamine in vertebrates, and it has been speculated that mast cells release histamine during digestion. Treatment with the mast cell stabilizer cromolyn significantly reduced postprandial heart rate in pythons compared with an untreated group but did not affect double-blocked heart rate. While this study indicates that histamine induces postprandial tachycardia in pythons, its release during digestion is not stimulated by gastrin or cholecystokinin nor is its release from mast cells a stimulant of postprandial tachycardia.
Collapse
Affiliation(s)
- Sanne Enok
- Zoophysiology, Department of Bioscience, Aarhus University, Denmark
| | | | | | | | | |
Collapse
|
23
|
Munns SL. Gestation increases the energetic cost of breathing in the lizard, Tiliqua rugosa. J Exp Biol 2012; 216:171-80. [DOI: 10.1242/jeb.067827] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
High gestational loads result in fetuses that occupy a large proportion of the body cavity and may compress maternal organs. Compression of the lungs results in alterations in breathing patterns during gestation which may affect the oxidative cost of breathing. In this study, the oxidative cost of breathing during gestation was determined in the viviparous skink, Tiliqua rugosa. Radiographic imaging showed progressive lung compression during gestation and a 30% reduction in the lung compression index (rib number at which the caudal margin of the lung was imaged). Pneumotachography and open flow respirometry were used to measure breathing patterns and metabolic rates. Gestation induced a two fold increase in minute ventilation via increases in breathing frequency but no change in inspired tidal volume. The rates of O2 consumption and CO2 production did not change significantly during gestation. Together, these results suggest that a relative hyperventilation occurs during gestation in Tiliqua rugosa. This relative hyperventilation suggests that diffusion and/or perfusion limitations may exist at the lung during gestation. The oxidative cost of breathing was estimated as a percentage of resting metabolic rate using hypercapnia to stimulate ventilation at different stages of pregnancy. The oxidative cost of breathing in non pregnant lizards was 19.96±3.85% and increased 3 fold to 62.80±10.11% during late gestation. This significant increase in the oxidative cost of breathing may have significant consequences for energy budgets during gestation.
Collapse
|
24
|
Li KG, Cao ZD, Peng JL, Fu SJ. The metabolic responses and acid–base status after feeding, exhaustive exercise, and both feeding and exhaustive exercise in Chinese catfish (Silurus asotus Linnaeus). J Comp Physiol B 2010; 180:661-71. [DOI: 10.1007/s00360-010-0443-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/23/2009] [Accepted: 01/06/2010] [Indexed: 11/24/2022]
|
25
|
Secor SM, White SE. Prioritizing blood flow: cardiovascular performance in response to the competing demands of locomotion and digestion for the Burmese python, Python molurus. J Exp Biol 2010; 213:78-88. [DOI: 10.1242/jeb.034058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Individually, the metabolic demands of digestion or movement can be fully supported by elevations in cardiovascular performance, but when occurring simultaneously, vascular perfusion may have to be prioritized to either the gut or skeletal muscles. Burmese pythons (Python molurus) experience similar increases in metabolic rate during the digestion of a meal as they do while crawling, hence each would have an equal demand for vascular supply when these two actions are combined. To determine, for the Burmese python, whether blood flow is prioritized when snakes are digesting and moving, we examined changes in cardiac performance and blood flow in response to digestion, movement, and the combination of digestion and movement. We used perivascular blood flow probes to measure blood flow through the left carotid artery, dorsal aorta, superior mesenteric artery and hepatic portal vein, and to calculate cardiac output, heart rate and stroke volume. Fasted pythons while crawling experienced a 2.7- and 3.3-fold increase, respectively, in heart rate and cardiac output, and a 66% decrease in superior mesenteric flow. During the digestion of a rodent meal equaling in mass to 24.7% of the snake's body mass, heart rate and cardiac output increased by 3.3- and 4.4-fold, respectively. Digestion also resulted in respective 11.6- and 14.1-fold increases in superior mesenteric and hepatic portal flow. When crawling while digesting, cardiac output and dorsal aorta flow increased by only 21% and 9%, respectively, a modest increase compared with that when they start to crawl on an empty stomach. Crawling did triggered a significant reduction in blood flow to the digesting gut, decreasing superior mesenteric and hepatic portal flow by 81% and 47%, respectively. When faced with the dual demands of digestion and crawling, Burmese pythons prioritize blood flow, apparently diverting visceral supply to the axial muscles.
Collapse
Affiliation(s)
- Stephen M. Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | | |
Collapse
|
26
|
Starck JM. Functional morphology and patterns of blood flow in the heart of Python regius. J Morphol 2009; 270:673-87. [PMID: 19097161 DOI: 10.1002/jmor.10706] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Brightness-modulated ultrasonography, continuous-wave Doppler, and pulsed-wave Doppler-echocardiography were used to analyze the functional morphology of the undisturbed heart of ball pythons. In particular, the action of the muscular ridge and the atrio-ventricular valves are key features to understand how patterns of blood flow emerge from structures directing blood into the various chambers of the heart. A step-by-step image analysis of echocardiographs shows that during ventricular diastole, the atrio-ventricular valves block the interventricular canals so that blood from the right atrium first fills the cavum venosum, and blood from the left atrium fills the cavum arteriosum. During diastole, blood from the cavum venosum crosses the muscular ridge into the cavum pulmonale. During middle to late systole the muscular ridge closes, thus prohibiting further blood flow into the cavum pulmonale. At the same time, the atrio-ventricular valves open the interventricular canal and allow blood from the cavum arteriosum to flow into the cavum venosum. In the late phase of ventricular systole, all blood from the cavum pulmonale is pressed into the pulmonary trunk; all blood from the cavum venosum is pressed into both aortas. Quantitative measures of blood flow volume showed that resting snakes bypass the pulmonary circulation and shunt about twice the blood volume into the systemic circulation as into the pulmonary circulation. When digesting, the oxygen demand of snakes increased tremendously. This is associated with shunting more blood into the pulmonary circulation. The results of this study allow the presentation of a detailed functional model of the python heart. They are also the basis for a functional hypothesis of how shunting is achieved. Further, it was shown that shunting is an active regulation process in response to changing demands of the organism (here, oxygen demand). Finally, the results of this study support earlier reports about a dual pressure circulation in Python regius.
Collapse
Affiliation(s)
- J Matthias Starck
- Department of Biology II, Biocenter Martinsried, University of Munich (LMU), Planegg-Martinsried, Germany.
| |
Collapse
|
27
|
Owerkowicz T, Elsey RM, Hicks JW. Atmospheric oxygen level affects growth trajectory, cardiopulmonary allometry and metabolic rate in the American alligator (Alligator mississippiensis). ACTA ACUST UNITED AC 2009; 212:1237-47. [PMID: 19376944 DOI: 10.1242/jeb.023945] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent palaeoatmospheric models suggest large-scale fluctuations in ambient oxygen level over the past 550 million years. To better understand how global hypoxia and hyperoxia might have affected the growth and physiology of contemporary vertebrates, we incubated eggs and raised hatchlings of the American alligator. Crocodilians are one of few vertebrate taxa that survived these global changes with distinctly conservative morphology. We maintained animals at 30 degrees C under chronic hypoxia (12% O(2)), normoxia (21% O(2)) or hyperoxia (30% O(2)). At hatching, hypoxic animals were significantly smaller than their normoxic and hyperoxic siblings. Over the course of 3 months, post-hatching growth was fastest under hyperoxia and slowest under hypoxia. Hypoxia, but not hyperoxia, caused distinct scaling of major visceral organs-reduction of liver mass, enlargement of the heart and accelerated growth of lungs. When absorptive and post-absorptive metabolic rates were measured in juvenile alligators, the increase in oxygen consumption rate due to digestion/absorption of food was greatest in hyperoxic alligators and smallest in hypoxic ones. Hyperoxic alligators exhibited the lowest breathing rate and highest oxygen consumption per breath. We suggest that, despite compensatory cardiopulmonary remodelling, growth of hypoxic alligators is constrained by low atmospheric oxygen supply, which may limit their food utilisation capacity. Conversely, the combination of elevated metabolism and low cost of breathing in hyperoxic alligators allows for a greater proportion of metabolised energy to be available for growth. This suggests that growth and metabolic patterns of extinct vertebrates would have been significantly affected by changes in the atmospheric oxygen level.
Collapse
Affiliation(s)
- Tomasz Owerkowicz
- Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
28
|
Clark TD, Taylor BD, Seymour RS, Ellis D, Buchanan J, Fitzgibbon QP, Frappell PB. Moving with the beat: heart rate and visceral temperature of free-swimming and feeding bluefin tuna. Proc Biol Sci 2009; 275:2841-50. [PMID: 18755679 DOI: 10.1098/rspb.2008.0743] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Owing to the inherent difficulties of studying bluefin tuna, nothing is known of the cardiovascular function of free-swimming fish. Here, we surgically implanted newly designed data loggers into the visceral cavity of juvenile southern bluefin tuna (Thunnus maccoyii) to measure changes in the heart rate (fH) and visceral temperature (TV) during a two-week feeding regime in sea pens at Port Lincoln, Australia. Fish ranged in body mass from 10 to 21 kg, and water temperature remained at 18-19 degrees C. Pre-feeding fH typically ranged from 20 to 50 beats min(-1). Each feeding bout (meal sizes 2-7% of tuna body mass) was characterized by increased levels of activity and fH (up to 130 beats min(-1)), and a decrease in TV from approximately 20 to 18 degrees C as cold sardines were consumed. The feeding bout was promptly followed by a rapid increase in TV, which signified the beginning of the heat increment of feeding (HIF). The time interval between meal consumption and the completion of HIF ranged from 10 to 24 hours and was strongly correlated with ration size. Although fH generally decreased after its peak during the feeding bout, it remained elevated during the digestive period and returned to routine levels on a similar, but slightly earlier, temporal scale to TV. These data imply a large contribution of fH to the increase in circulatory oxygen transport that is required for digestion. Furthermore, these data oppose the contention that maximum fH is exceptional in bluefin tuna compared with other fishes, and so it is likely that enhanced cardiac stroke volume and blood oxygen carrying capacity are the principal factors allowing superior rates of circulatory oxygen transport in tuna.
Collapse
Affiliation(s)
- T D Clark
- School of Earth and Environmental Sciences and Aquafin CRC, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | | | | | | | |
Collapse
|
29
|
Bucking C, Wood CM. The alkaline tide and ammonia excretion after voluntary feeding in freshwater rainbow trout. J Exp Biol 2008; 211:2533-41. [PMID: 18626089 DOI: 10.1242/jeb.015610] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe investigated the potential acid–base and nitrogenous waste excretion challenges created by voluntary feeding in freshwater rainbow trout,with particular focus on the possible occurrence of an alkaline tide (a metabolic alkalosis created by gastric HCl secretion during digestion). Plasma metabolites (glucose, urea and ammonia) were measured at various time points before and after voluntary feeding to satiation (approximately 5% body mass meal of dry commercial pellets), as was the net flux of ammonia and titratable alkalinity to the water from unfed and fed fish. Arterial blood, sampled by indwelling catheter, was examined for post-prandial effects on pH, plasma bicarbonate and plasma CO2 tension. There was no significant change in plasma glucose or urea concentrations following feeding, whereas plasma ammonia transiently increased, peaking at threefold above resting values at 12 h after the meal and remaining elevated for 24 h. The increased plasma ammonia was correlated with an increase in net ammonia excretion to the water, with fed fish significantly elevating their net ammonia excretion two- to threefold between 12 and 48 h post feeding. These parameters did not change in unfed control fish. Fed fish likewise increased the net titratable base flux to the water by approximately threefold, which resulted in a transition from a small net acid flux seen in unfed fish to a large net base flux in fed fish. Over 48 h, this resulted in a net excretion of 13 867 μmol kg–1more base to the external water than in unfed fish. The arterial blood exhibited a corresponding rise in pH (between 6 and 12 h) and plasma bicarbonate (between 3 and 12 h) following feeding; however, no respiratory compensation was observed, as PaCO2 remained constant. Overall, there was evidence of numerous challenges created by feeding in a freshwater teleost fish, including the occurrence of an alkaline tide, and its compensation by excretion of base to the external water. The possible influence of feeding ecology and environmental salinity on these challenges, as well as discrepancies in the literature, are discussed.
Collapse
Affiliation(s)
- Carol Bucking
- McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| | - Chris M. Wood
- McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada, L8S 4K1
| |
Collapse
|
30
|
Secor SM. Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 2008; 179:1-56. [PMID: 18597096 DOI: 10.1007/s00360-008-0283-7] [Citation(s) in RCA: 403] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 05/19/2008] [Accepted: 05/30/2008] [Indexed: 11/24/2022]
Abstract
For more than 200 years, the metabolic response that accompanies meal digestion has been characterized, theorized, and experimentally studied. Historically labeled "specific dynamic action" or "SDA", this physiological phenomenon represents the energy expended on all activities of the body incidental to the ingestion, digestion, absorption, and assimilation of a meal. Specific dynamic action or a component of postprandial metabolism has been quantified for more than 250 invertebrate and vertebrate species. Characteristic among all of these species is a rapid postprandial increase in metabolic rate that upon peaking returns more slowly to prefeeding levels. The average maximum increase in metabolic rate stemming from digestion ranges from a modest 25% for humans to 136% for fishes, and to an impressive 687% for snakes. The type, size, composition, and temperature of the meal, as well as body size, body composition, and several environmental factors (e.g., ambient temperature and gas concentration) can each significantly impact the magnitude and duration of the SDA response. Meals that are large, intact or possess a tough exoskeleton require more digestive effort and thus generate a larger SDA than small, fragmented, or soft-bodied meals. Differences in the individual effort of preabsorptive (e.g., swallowing, gastric breakdown, and intestinal transport) and postabsorptive (e.g., catabolism and synthesis) events underlie much of the variation in SDA. Specific dynamic action is an integral part of an organism's energy budget, exemplified by accounting for 19-43% of the daily energy expenditure of free-ranging snakes. There are innumerable opportunities for research in SDA including coverage of unexplored taxa, investigating the underlying sources, determinants, and the central control of postprandial metabolism, and examining the integration of SDA across other physiological systems.
Collapse
Affiliation(s)
- Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL 35487-0344, USA.
| |
Collapse
|
31
|
Christel CM, DeNardo DF, Secor SM. Metabolic and digestive response to food ingestion in a binge-feeding lizard, the Gila monster (Heloderma suspectum). ACTA ACUST UNITED AC 2007; 210:3430-9. [PMID: 17872997 DOI: 10.1242/jeb.004820] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The gastrointestinal tract possesses the capacity to change in form and function in response to fasting and feeding. Such plasticity can be dramatic for species that naturally experience long episodes of fasting between large meals (e.g. sit-and-wait foraging snakes, estivating anurans). By contrast, for active foraging species that feed more frequently on smaller meals, gastrointestinal responses are more modest in magnitude. The Gila monster Heloderma suspectum is an active foraging lizard that feeds infrequently on meals weighing up to one-third of its body mass. Additionally, Gila monsters possess a species-specific salivary peptide, exendin-4, which may be involved in the regulation of metabolic and digestive performance. To investigate the adaptive postprandial response of Gila monsters and the potential regulatory role of exendin-4, we measured metabolic and intestinal responses to feeding in the presence or absence of circulating exendin-4. Following the consumption of rodent or egg meals equivalent to 10% of lizard body mass, metabolic rates peaked at 4.0- to 4.9-fold of standard metabolic rates and remained elevated for 5-6 days. Specific dynamic action of these meals (43-60 kJ) was 13-18% of total meal energy. Feeding triggered significant increases in mucosal mass, enterocyte width and volume, and the upregulation of D-glucose uptake rates and aminopeptidase-N activity. Total intestinal uptake capacity for L-leucine, L-proline and D-glucose were significantly elevated within 1-3 days after feeding. Whereas the absence of circulating exendin-4 had no impact on postprandial metabolism or the postprandial response of intestinal structure and nutrient uptake, it significantly increased intestinal aminopeptidase-N activity. Within the continuum of physiological responses to feeding and fasting, Gila monsters occupy an intermediate position in experiencing moderate, though significant, regulation of intestinal performance with feeding.
Collapse
Affiliation(s)
- C M Christel
- Arizona State University, School of Life Sciences, PO Box 874501, Tempe, AZ 85287, USA.
| | | | | |
Collapse
|
32
|
Munns S, Daniels C. Breathing with Big Babies: Ventilation and Oxygen Consumption during Pregnancy in the LizardTiliqua rugosa. Physiol Biochem Zool 2007; 80:35-45. [PMID: 17160878 DOI: 10.1086/508823] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2006] [Indexed: 11/03/2022]
Abstract
We determined the effects of high gestational loads on ventilation and the rate of oxygen consumption (VO2) in the scincid lizard Tiliqua rugosa. Tiliqua rugosa is a large viviparous lizard that gives birth to one to four young after 6-7 mo gestation. Pregnant females gave birth to large young, weighing 89.5+/-5.9 g, which represents 21.6%+/-2.6% of maternal body mass. As the embryos developed, they occupied an increasingly large proportion of the body cavity, decreasing food consumption and compressing the gastrointestinal tract. Computerized axial tomography scans demonstrated that the lungs were compressed and/or regionally collapsed by the developing embryos, potentially compromising ventilation. Both minute ventilation (VE) and tidal volume decreased as gestation progressed, but no compensatory changes in breathing frequency or in the duration of the nonventilatory period were observed. The total rate of VO2, consisting of contributions from both maternal and fetal tissues, did not change during gestation, suggesting that maternal VO2 decreases as fetal VO2 increases. Pregnant females demonstrated a decreased ventilatory response to increased respiratory drive (triggered via inhalation of hypoxic hypercapnic gas), which may be associated with the increased energetic cost of ventilating a compressed lung or the desensitization of chemoreceptors during gestation. The decreased ability of the respiratory system to respond to increased respiratory drive may have important consequences for locomotor performance and predator avoidance in pregnant lizards.
Collapse
Affiliation(s)
- Suzanne Munns
- School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland, 4811, Australia.
| | | |
Collapse
|
33
|
Fu SJ, Cao ZD, Peng JL. Effect of feeding and fasting on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen). Comp Biochem Physiol A Mol Integr Physiol 2006; 146:435-9. [PMID: 17251045 DOI: 10.1016/j.cbpa.2006.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 12/04/2006] [Accepted: 12/05/2006] [Indexed: 11/29/2022]
Abstract
The impact of feeding (fed to satiation, 13.85% body mass) on excess post-exercise oxygen consumption (EPOC, chasing for 2.5 min) was investigated in juvenile southern catfish (Silurus meridionalis Chen) (38.62-57.55 g) at 25. Cutlets of freshly killed loach species without viscera, head and tail were used as the test meal, and oxygen consumption (VO(2)) was adjusted to a standard body mass of 1 kg using a mass exponent of 0.75. Resting VO(2) increased significantly above fasting levels (49.89 versus 148.25 mg O(2) h(-)(1)) in 12 h postprandial catfish. VO(2) and ventilation frequency (V(f)) both increased immediately after exhaustive exercise and slowly returned to pre-exercise values in all experimental groups. The times taken for post-exercise VO(2) to return to the pre-exercise value were 20, 25 and 30 min in 12 h, 60 h and 120 h postprandial catfish, respectively. Peak VO(2) levels were 257.36+/-6.06, 219.32+/-6.32 and 200.91+/-5.50 mg O(2) h(-1) in 12 h, 60 h and 120 h postprandial catfish and EPOC values were 13.85+/-4.50, 27.24+/-3.15 and 41.91+/-3.02 mg O(2) in 12 h, 60 h and 120 h postprandial southern catfish, respectively. There were significant differences in both EPOC and peak VO(2) during the post-exercise recovery process among three experimental groups (p<0.05). These results showed that: (1) neither digestive nor exhaustive exercise could elicit maximal VO(2) in southern catfish, (2) both the digestive process and exercise (also the post-exercise recovery process) were curtailed under postprandial exercise, (3) the change of V(f) was smaller than that of VO(2) during the exhaustive exercise recovery process, (4) for a similar increment in VO(2), the change in V(f) was larger during the post-exercise process than during the digestive process.
Collapse
Affiliation(s)
- Shi-Jian Fu
- Laboratory of Evolutionary Physiology and Behaviour, College of Life Sciences, Chongqing Normal University, Chongqing, 400047, China.
| | | | | |
Collapse
|
34
|
Hartzler LK, Munns SL, Bennett AF, Hicks JW. Metabolic and blood gas dependence on digestive state in the Savannah monitor lizard Varanus exanthematicus: an assessment of the alkaline tide. ACTA ACUST UNITED AC 2006; 209:1052-7. [PMID: 16513931 DOI: 10.1242/jeb.02121] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A large alkaline tide (up to 20 mmol l(-1) increase in bicarbonate concentration [HCO3-] with an accompanied increase in blood pH) has previously been reported for some carnivorous reptiles within 24 h after ingesting a large meal. This phenomenon has been attributed to the secretion of large amounts of H+ ions into the stomach, which is required for digestion of large prey items. To test the generality of this phenomenon in carnivorous reptiles, this study quantified the metabolic and acid-base status of the Savannah monitor lizard, Varanus exanthematicus, during digestion at 35 degrees C. Following a meal of approximately 10% of body mass, V(O2) and V(CO2) were measured continuously and arterial pH, blood gases and strong ions were measured every 8 h for 5 days. During peak digestion (24 h post feeding), V(O2) and V(CO2) increased to approximately threefold fasting values (V(O2), 0.95-2.57 ml min(-1) kg(-1); V(CO2) 0.53-1.63 ml min(-1) kg(-1)) while respiratory exchange ratio (R) remained constant (0.62-0.73). During digestion, arterial P(CO2) increased (from 4.6 kPa to 5.8 kPa), and [HCO3-] also increased (from 24.1 mmol l(-1) to 40.3 mmol l(-1)). In contrast to early studies on crocodilians, arterial pH in V. exanthematicus remained relatively stable during digestion (7.43-7.56). Strong ions contributed little to the acid-base compensation during the alkalosis. Collectively the data indicate that the metabolic alkalosis associated with H+ secretion (as indicated by increased plasma bicarbonate) is partially compensated by a respiratory acidosis.
Collapse
Affiliation(s)
- L K Hartzler
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
| | | | | | | |
Collapse
|
35
|
Klein W, Perry SF, Abe AS, Andrade DV. Metabolic Response to Feeding inTupinambis merianae: Circadian Rhythm and a Possible Respiratory Constraint. Physiol Biochem Zool 2006; 79:593-601. [PMID: 16691525 DOI: 10.1086/502818] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2005] [Indexed: 11/03/2022]
Abstract
The diurnal tegu lizard Tupinambis merianae exhibits a marked circadian variation in metabolism that is characterized by the significant increase in metabolism during part of the day. These increases in metabolic rate, found in the fasting animal, are absent during the first 2 d after meal ingestion but reappear subsequently, and the daily increase in metabolic rate is added to the increase in metabolic rate caused by digestion. During the first 2 d after feeding, priority is given to digestion, while on the third and following days, the metabolic demands are clearly added to each other. This response seems to be a regulated response of the animal, which becomes less active after food ingestion, rather than an inability of the respiratory system to support simultaneous demands at the beginning of digestion. The body cavity of Tupinambis is divided into two compartments by a posthepatic septum (PHS). Animals that had their PHS surgically removed showed no significant alteration in the postprandial metabolic response compared to tegus with intact PHS. The maximal metabolic increment during digestion, the relative cost of meal digestion, and the duration of the process were virtually unaffected by the removal of the PHS.
Collapse
Affiliation(s)
- Wilfried Klein
- Institut fur Zoologie, Universitat Bonn, Poppelsdorfer Schloss, Germany.
| | | | | | | |
Collapse
|
36
|
|
37
|
Arvedsen SK, Andersen JB, Zaar M, Andrade D, Abe AS, Wang T. Arterial acid–base status during digestion and following vascular infusion of NaHCO3 and HCl in the South American rattlesnake, Crotalus durissus. Comp Biochem Physiol A Mol Integr Physiol 2005; 142:495-502. [PMID: 16289770 DOI: 10.1016/j.cbpa.2005.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 09/30/2005] [Accepted: 10/02/2005] [Indexed: 10/25/2022]
Abstract
Digestion is associated with gastric secretion that leads to an alkalinisation of the blood, termed the "alkaline tide". Numerous studies on different reptiles and amphibians show that while plasma bicarbonate concentration ([HCO(3)(-)](pl)) increases substantially during digestion, arterial pH (pHa) remains virtually unchanged, due to a concurrent rise in arterial PCO(2) (PaCO(2)) caused by a relative hypoventilation. This has led to the suggestion that postprandial amphibians and reptiles regulate pHa rather than PaCO(2). Here we characterize blood gases in the South American rattlesnake (Crotalus durissus) during digestion and following systemic infusions of NaHCO(3) and HCl in fasting animals to induce a metabolic alkalosis or acidosis in fasting animals. The magnitude of these acid-base disturbances were similar in magnitude to that mediated by digestion and exercise. Plasma [HCO(3)(-)] increased from 18.4+/-1.5 to 23.7+/-1.0 mmol L(-1) during digestion and was accompanied by a respiratory compensation where PaCO(2) increased from 13.0+/-0.7 to 19.1+/-1.4 mm Hg at 24 h. As a result, pHa decreased slightly, but were significantly below fasting levels 36 h into digestion. Infusion of NaHCO(3) (7 mmol kg(-1)) resulted in a 10 mmol L(-1) increase in plasma [HCO(3)(-)] within 1 h and was accompanied by a rapid elevation of pHa (from 7.58+/-0.01 to 7.78+/-0.02). PaCO(2), however, did not change following HCO(3)(-) infusion, which indicates a lack of respiratory compensation. Following infusion of HCl (4 mmol kg(-1)), plasma pHa decreased by 0.07 units and [HCO(3)(-)](pl) was reduced by 4.6 mmol L(-1) within the first 3 h. PaCO(2), however, was not affected and there was no evidence for respiratory compensation. Our data show that digesting rattlesnakes exhibit respiratory compensations to the alkaline tide, whereas artificially induced metabolic acid-base disturbances of same magnitude remain uncompensated. It seems difficult to envision that the central and peripheral chemoreceptors would experience different stimuli during these conditions. One explanation for the different ventilatory responses could be that digestion induces a more relaxed state with low responsiveness to ventilatory stimuli.
Collapse
Affiliation(s)
- Sine K Arvedsen
- Department of Zoophysiology, The University of Aarhus, Denmark; Departamento de Zoologia, Instituto de Biociências, UNESP, Rio Claro, SP, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Skals M, Skovgaard N, Abe AS, Wang T. Venous tone and cardiac function in the South American rattlesnakeCrotalus durissus: mean circulatory filling pressure during adrenergic stimulation in anaesthetised and fully recovered animals. J Exp Biol 2005; 208:3747-59. [PMID: 16169952 DOI: 10.1242/jeb.01828] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYThe effects of adrenergic stimulation on mean circulatory filling pressure(MCFP), central venous pressure (PCV) and stroke volume(Vs), as well as the effects of altered MCFP through changes of blood volume were investigated in rattlesnakes (Crotalus durissus). MCFP is an estimate of the upstream pressure driving blood towards the heart and is determined by blood volume and the activity of the smooth muscle cells in the veins (venous tone). MCFP can be determined as the plateau in PCV during a total occlusion of blood flow from the heart.V s decreased significantly when MCFP was lowered by reducing blood volume in anaesthetised snakes, whereas increased MCFP through infusion of blood (up to 3 ml kg-1) only led to a small rise in Vs. Thus, it seems that end-diastolic volume is not affected by an elevated MCFP in rattlesnakes. To investigate adrenergic regulation on venous tone, adrenaline as well as phenylephrine and isoproterenol (α- and β-adrenergic agonists, respectively) were infused as bolus injections (2 and 10 μg kg-1). Adrenaline and phenylephrine caused large increases in MCFP and PCV,whereas isoproterenol decreased both parameters. This was also the case in fully recovered snakes. Therefore, adrenaline affects venous tone through bothα- and β-adrenergic receptors, but the α-adrenergic receptor dominates at the dosages used in the present study. Injection of the nitric oxide donor SNP caused a significant decrease in PCV and MCFP. Thus, nitric oxide seems to affect venous tone.
Collapse
Affiliation(s)
- Marianne Skals
- Department of Zoophysiology, Institute of Biological Science, Aarhus University, Denmark.
| | | | | | | |
Collapse
|
39
|
Munns SL, Hartzler LK, Bennett AF, Hicks JW. Terrestrial locomotion does not constrain venous return in the American alligator,Alligator mississippiensis. J Exp Biol 2005; 208:3331-9. [PMID: 16109894 DOI: 10.1242/jeb.01758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SUMMARYThe effects of treadmill exercise on components of the cardiovascular(heart rate, mean arterial blood pressure, central venous pressure, venous return) and respiratory (minute ventilation, tidal volume, breathing frequency, rate of oxygen consumption, rate of carbon dioxide production)systems and on intra-abdominal pressure were measured in the American alligator, Alligator mississippiensis, at 30°C. Alligators show speed-dependent increases in tidal volume and minute ventilation,demonstrating that the inhibition of ventilation during locomotion that is present in some varanid and iguanid lizards was not present in alligators. Exercise significantly increases intra-abdominal pressure; however,concomitant elevations in central venous pressure acted to increase the transmural pressure of the post caval vein and thus increased venous return. Therefore, despite elevated intra-abdominal pressure, venous return was not limited during exercise in alligators, as was the case in Varanus exanthematicus and Iguana iguana. Respiratory cycle variations in intra-abdominal pressure, central venous pressure and venous return indicate that, at high tidal volumes, inspiration causes a net reduction in venous return during active ventilation and thus may act to limit venous return during exercise. These results suggest that, while tonically elevated intra-abdominal pressure induced by exercise does not inhibit venous return,phasic fluctuations during each breath cycle may contribute to venous flow limitation during exercise.
Collapse
Affiliation(s)
- Suzanne L Munns
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
40
|
Clark TD, Butler PJ, Frappell PB. Digestive state influences the heart rate hysteresis and rates of heat exchange in the varanid lizard Varanus rosenbergi. ACTA ACUST UNITED AC 2005; 208:2269-76. [PMID: 15939769 DOI: 10.1242/jeb.01657] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To maximize the period where body temperature (Tb) exceeds ambient temperature (Ta), many reptiles have been reported to regulate heart rate (fH) and peripheral blood flow so that the rate of heat gain in a warming environment occurs more rapidly than the rate of heat loss in a cooling environment. It may be hypothesized that the rate of cooling, particularly at relatively cool Tbs, would be further reduced during postprandial periods when specific dynamic action (SDA) increases endogenous heat production (i.e. the heat increment of feeding). Furthermore, it may also be hypothesized that the increased perfusion of the gastrointestinal organs that occurs during digestion may limit peripheral blood flow and thus compromise the rate of heating. Finally, if the changes in fh are solely for the purpose of thermoregulation, there should be no associated changes in energy demand and, consequently, no hysteresis in the rate of oxygen consumption (V(O2)). To test these hypotheses, seven individual Varanus rosenbergi were heated and cooled between 19 degrees C and 35 degrees C following at least 8 days fasting and then approximately 25 h after consumption of a meal (mean 10% of fasted body mass). For a given Tb between the range of 19-35 degrees C, fh of fasting lizards was higher during heating than during cooling. Postprandial lizards also displayed a hysteresis in fh, although the magnitude was reduced in comparison with that of fasting lizards as a result of a higher fh during cooling in postprandial animals. Both for fasting and postprandial lizards, there was no hysteresis in V(O2) at any Tb throughout the range although, as a result of SDA, postprandial animals displayed a significantly higher V(O2) than fasting animals both during heating and during cooling at Tbs above 24 degrees C. The values of fh during heating at a given Tb were the same for fasting and postprandial animals, which, in combination with a slower rate of heating in postprandial animals, suggests that a prioritization of blood flow to the gastrointestinal organs during digestion is occurring at the expense of higher rates of heating. Additionally, postprandial lizards took longer to cool at Tbs below 23 degrees C, suggesting that the endogenous heat produced during digestion temporarily enhances thermoregulatory ability at lower temperatures, which would presumably assist V. rosenbergi during cooler periods in the natural environment by augmenting temperature-dependent physiological processes.
Collapse
Affiliation(s)
- T D Clark
- Adaptational and Evolutionary Respiratory Physiology Laboratory, Department of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | | |
Collapse
|
41
|
Clark TD, Wang T, Butler PJ, Frappell PB. Factorial scopes of cardio-metabolic variables remain constant with changes in body temperature in the varanid lizard, Varanus rosenbergi. Am J Physiol Regul Integr Comp Physiol 2004; 288:R992-7. [PMID: 15576663 DOI: 10.1152/ajpregu.00593.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The majority of information concerning the cardio-metabolic performance of varanids during exercise is limited to a few species at their preferred body temperature (T(b)) even though, being ectotherms, varanids naturally experience rather large changes in T(b). Although it is well established that absolute aerobic scope declines with decreasing T(b), it is not known whether changes in cardiac output (V(b)) and/or tissue oxygen extraction, (Ca(O2) - Cv(O2)), are in proportion to the rate of oxygen consumption (Vo(2)). To test this, we studied six Rosenberg's goannas (Varanus rosenbergi) while at rest and while maximally exercising on a treadmill both at 25 and 36 degrees C. During maximum exercise both at 25 and 36 degrees C, mass-specific rate of oxygen consumption (Vo(2kg)) increased with an absolute scope of 8.5 ml min(-1) kg(-1) and 15.7 ml min(-1) kg(-1), respectively. Interestingly, the factorial aerobic scope was temperature-independent and remained at 7.0 which, at each T(b), was primarily the result of an increase in V(bkg), governed by approximate twofold increases both in heart rate (f(H)) and cardiac stroke volume (V(Skg)). Both at 25 degrees C and 36 degrees C, the increase in V(bkg) alone was not sufficient to provide all of the additional oxygen required to attain maximal Vo(2kg), as indicated by a decrease in the blood convection requirement V(bkg)/Vo(2kg); hence, there was a compensatory twofold increase in (Ca(O2) - Cv(O2)). Although associated with an increase in hemoglobin-oxygen affinity, a decrease in T(b) did not impair unloading of oxygen at the tissues and act to reduce (Ca(O2) - Cv(O2)); both Ca(O2)) and Cv(O2)) were maintained across T(b). The change in Vo(2kg) with T(b), therefore, is solely reliant on the thermal dependence of V(bkg). Maintaining a high factorial aerobic scope across a range of T(b) confers an advantage in that cooler animals can achieve higher absolute aerobic scopes and presumably improved aerobic performance than would otherwise be achievable.
Collapse
Affiliation(s)
- T D Clark
- Adaptational and Evolutionary Respiratory Physiology Laboratory, Department of Zoology, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | | | | | |
Collapse
|
42
|
Hicks JW, Bennett AF. Eat and run: prioritization of oxygen delivery during elevated metabolic states. Respir Physiol Neurobiol 2004; 144:215-24. [PMID: 15556104 DOI: 10.1016/j.resp.2004.05.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2004] [Indexed: 10/26/2022]
Abstract
The principal function of the cardiopulmonary system is the matching of oxygen and carbon dioxide transport to the metabolic requirements of different tissues. Increased oxygen demands (VO2), for example during physical activity, result in a rapid compensatory increase in cardiac output and redistribution of blood flow to the appropriate skeletal muscles. These cardiovascular changes are matched by suitable ventilatory increments. This matching of cardiopulmonary performance and metabolism during activity has been demonstrated in a number of different taxa, and is universal among vertebrates. In some animals, large increments in aerobic metabolism may also be associated with physiological states other than activity. In particular, VO2 may increase following feeding due to the energy requiring processes associated with prey handling, digestion and ensuing protein synthesis. This large increase in VO2 is termed "specific dynamic action" (SDA). In reptiles, the increase in VO2 during SDA may be 3-40-fold above resting values, peaking 24-36 h following ingestion, and remaining elevated for up to 7 days. In addition to the increased metabolic demands, digestion is associated with secretion of H+ into the stomach, resulting in a large metabolic alkalosis (alkaline tide) and a near doubling in plasma [HCO3-]. During digestion then, the cardiopulmonary system must meet the simultaneous challenges of an elevated oxygen demand and a pronounced metabolic alkalosis. This paper will compare and contrast the patterns of cardiopulmonary response to similar metabolic increments in these different physiological states (exercise and/or digestion) in a variety of reptiles, including the Burmese python, Python morulus, savannah monitor lizard, Varanus exanthematicus, and American alligator Alligator mississipiensis.
Collapse
Affiliation(s)
- James W Hicks
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, USA.
| | | |
Collapse
|
43
|
Munns SL, Hartzler LK, Bennett AF, Hicks JW. Elevated intra-abdominal pressure limits venous return during exercise inVaranus exanthematicus. J Exp Biol 2004; 207:4111-20. [PMID: 15498957 DOI: 10.1242/jeb.01279] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SUMMARYThe effects of treadmill exercise on components of the cardiovascular(venous return, heart rate, arterial blood pressure) and respiratory systems(minute ventilation, tidal volume, breathing frequency, oxygen consumption,carbon dioxide production) and intra-abdominal pressure were investigated in the Savannah monitor lizard, Varanus exanthematicus B., at 35°C. Compared with resting conditions, treadmill exercise significantly increased lung ventilation, gular pumping, intra-abdominal pressure, mean arterial blood pressure and venous return (blood flow in the post caval vein). However,venous return declines at high levels of activity, and mean arterial pressure and venous return did not attain peak values until the recovery period,immediately following activity. Elevating intra-abdominal pressure in resting lizards (via saline infusion) resulted in significant reductions in venous return when the transmural pressure of the post caval vein became negative (i.e. when intra-abdominal pressure exceeded central venous pressure). Together these results suggest that increments in intra-abdominal pressure compress the large abdominal veins and inhibit venous return. During locomotion, the physical compression of the large abdominal veins may represent a significant limitation to cardiac output and maximal oxygen consumption in lizards.
Collapse
Affiliation(s)
- Suzanne L Munns
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | | | | | | |
Collapse
|
44
|
Skovgaard N, Wang T. Cost of ventilation and effect of digestive state on the ventilatory response of the tegu lizard. Respir Physiol Neurobiol 2004; 141:85-97. [PMID: 15234678 DOI: 10.1016/j.resp.2004.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 11/15/2022]
Abstract
We performed simultaneous measurements of ventilation, oxygen uptake and carbon dioxide production in the South American lizard, Tupinambis merianae, equipped with a mask and maintained at 25 degrees C. Ventilation of resting animals was stimulated by progressive exposure to hypercapnia (2, 4 and 6%) or hypoxia (15, 10, 8 and 6%) in inspired gas mixture. This was carried out in both fasting and digesting animals. The ventilatory response to hypercapnia and hypoxia were affected by digestive state, with a more vigorous ventilatory response in digesting animals compared to fasting animals. Hypoxia doubled total ventilation while hypercapnia led to a four-fold increase in total ventilation both accomplished through an increase in tidal volume. Oxygen uptake remained constant during all hypercapnic exposures while there was an increase during hypoxia. Cost of ventilation was estimated to be 17% during hypoxia but less than 1% during hypercapnia. Our data indicate that ventilation can be greatly elevated at a small energetic cost.
Collapse
Affiliation(s)
- Nini Skovgaard
- Department of Zoophysiology, Aarhus University, Building 131, 8000 Aarhus C, Denmark
| | | |
Collapse
|
45
|
Andrade DV, De Toledo LF, Abe AS, Wang T. Ventilatory compensation of the alkaline tide during digestion in the snake Boa constrictor. ACTA ACUST UNITED AC 2004; 207:1379-85. [PMID: 15010489 DOI: 10.1242/jeb.00896] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The increased metabolic rate during digestion is associated with changes in arterial acid-base parameters that are caused by gastric acid secretion (the 'alkaline tide'). Net transfer of HCl to the stomach lumen causes an increase in plasma HCO3- levels, but arterial pH does not change because of a ventilatory compensation that counters the metabolic alkalosis. It seems, therefore, that ventilation is controlled to preserve pH and not PCO2 during the postprandial period. To investigate this possibility, we determined arterial acid-base parameters and the metabolic response to digestion in the snake Boa constrictor, where gastric acid secretion was inhibited pharmacologically by oral administration of omeprazole. The increase in oxygen consumption of omeprazole-treated snakes after ingestion of 30% of their own body mass was quantitatively similar to the response in untreated snakes, although the peak of the metabolic response occurred later (36 h versus 24 h). Untreated control animals exhibited a large increase in arterial plasma HCO3- concentration of approximately 12 mmol l(-1), but arterial pH only increased by 0.12 pH units because of a simultaneous increase in arterial PCO2 by about 10 mmHg. Omeprazole virtually abolished the changes in arterial pH and plasma HCO3- concentration during digestion and there was no increase in arterial PCO2. The increased arterial PCO2 during digestion is not caused, therefore, by the increased metabolism during digestion or a lower ventilatory responsiveness to ventilatory stimuli during a presumably relaxed state in digestion. Furthermore, the constant arterial PCO2, in the absence of an alkaline tide, of omeprazole-treated snakes strongly suggests that pH rather than PCO2 normally affects chemoreceptor activity and ventilatory drive.
Collapse
Affiliation(s)
- Denis V Andrade
- Departamento de Zoologia, Universidade Estadual Paulista, 13506-900, Rio Claro SP, Brazil
| | | | | | | |
Collapse
|
46
|
Zaar M, Larsen E, Wang T. Hysteresis of heart rate and heat exchange of fasting and postprandial savannah monitor lizards (Varanus exanthematicus). Comp Biochem Physiol A Mol Integr Physiol 2004; 137:675-82. [PMID: 15123175 DOI: 10.1016/j.cbpb.2004.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2003] [Revised: 01/23/2004] [Accepted: 01/28/2004] [Indexed: 11/29/2022]
Abstract
Reptiles are ectothermic, but regulate body temperatures (T(b)) by behavioural and physiological means. Body temperature has profound effects on virtually all physiological functions. It is well known that heating occurs faster than cooling, which seems to correlate with changes in cutaneous perfusion. Increased cutaneous perfusion, and hence elevated cardiac output, during heating is reflected in an increased heart rate (f(H)), and f(H), at a given T(b), is normally higher during heating compared to cooling ('hysteresis of heart rate'). Digestion is associated with an increased metabolic rate. This is associated with an elevated f(H) and many species of reptiles also exhibited a behavioural selection of higher T(b) during digestion. Here, we examine whether digestion affects the rate of heating and cooling as well as the hysteresis of heart rate in savannah monitor lizards (Varanus exanthematicus). Fasting lizards were studied after 5 days of food deprivation while digesting lizards were studied approximately 24 h after ingesting dead mice that equalled 10% of their body mass. Heart rate was measured while T(b) increased from 28 to 38 degrees C under a heat lamp and while T(b) decreased during a subsequent cooling phase. The lizards exhibited hysteresis of heart rate, and heating occurred faster than cooling. Feeding led to an increased f(H) (approximately 20 min(-1) irrespective of T(b)), but did not affect the rate of temperature change during heating or cooling. Therefore, it is likely that the increased blood flows during digestion are distributed exclusively to visceral organs and that the thermal conductance remains unaffected by the elevated metabolic rate during digestion.
Collapse
Affiliation(s)
- Morten Zaar
- Department of Zoophysiology, Institute of Biology, Aarhus University, Building 131, Universitetsparken, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
47
|
Tattersall GJ, Milsom WK, Abe AS, Brito SP, Andrade DV. The thermogenesis of digestion in rattlesnakes. J Exp Biol 2004; 207:579-85. [PMID: 14718501 DOI: 10.1242/jeb.00790] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYSome snakes have a feeding regime characterized by the infrequent ingestion of relatively large meals, causing impressive increments in post-prandial metabolism. Metabolism remains elevated for many days, while digestion proceeds, resulting in considerable investment of time and energy. Snakes actively adjust thermoregulatory behavior to raise their body temperature during digestion, exhibiting a post-prandial thermophilic response that accelerates digestion at the expense of higher metabolic rates. In the present study, we investigated the possibility that endogenously derived heat,originating as a byproduct of the post-prandial increase in metabolism, could itself contribute to the elevated body temperature during digestion in the South American rattlesnake Crotalus durissus. We assessed heat production, at a constant environmental temperature, by taking infrared (IR)images of snakes during fasting and after being fed meals varying from 10% to 50% of their own body masses. Our results show clearly that digesting rattlesnakes have significantly increased body temperatures, even when precluded from adjusting their thermoregulatory behavior. The feeding-derived thermogenesis caused the surface body temperature of rattlesnakes to increase by 0.9–1.2°C, a temperature change that will significantly affect digestive performance. The alterations in body temperature following feeding correlated closely with the temporal profile of changes in post-prandial metabolism. Moreover, the magnitude of the thermogenesis was greater for snakes fed large meals, as was the corresponding metabolic response. Since IR imaging only assesses surface temperatures, the magnitude of the thermogenesis and the changes in deep core temperature could be even more pronounced than is reported here.
Collapse
Affiliation(s)
- Glenn J Tattersall
- Department of Biological Sciences, Brock University, St Catharines, ON, L2S 3A1, Canada.
| | | | | | | | | |
Collapse
|
48
|
Andersen JB, Wang T. Cardiorespiratory effects of forced activity and digestion in toads. Physiol Biochem Zool 2003; 76:459-70. [PMID: 13130426 DOI: 10.1086/375439] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2003] [Indexed: 11/03/2022]
Abstract
Digestion and physical activity are associated with large and sometimes opposite changes in several physiological parameters. Gastric acid secretion during digestion causes increased levels of plasma bicarbonate ([HCO-3](pl)), whereas activity leads to a metabolic acidosis with increased lactate and decrease in plasma bicarbonate. Here we describe the combined effects of feeding and activity in the toad Bufo marinus to investigate whether the increased bicarbonate buffering capacity during digestion (the so-called alkaline tide) protects the acid-base disturbance during activity and enhances the subsequent recovery. In addition, we describe the changes in arterial oxygen levels and plasma ion composition, as well as rates of gas exchange, heart rates, and blood pressures. Toads were equipped with catheters in the femoral artery and divided into four experimental regimes: control, digestion, forced activity, and forced activity during the postprandial period (N=6 in each). Digestion induced a significant metabolic alkalosis with increased [HCO-3](pl) that was completely balanced by a respiratory acidosis; that is, increased arterial Pco(2) (P(a)co(2)), so that arterial pH (pH(a)) did not change. Forced activity led to a substantial reduction in pH(a) by 0.43 units, an increase in plasma lactate concentration by 12.5 mmol L(-1), and a reduction in [HCO-3](pl) of similar magnitude. While digesting animals had higher P(a)co(2) and [HCO-3](pl) at rest, the magnitude and duration of the changes in arterial acid-base parameters were similar to those of fasting animals, although the reduction in pH(a) was somewhat lower (0.32 units). In conclusion, while recovery from the acidosis following exercise did not seem to be affected by digestion, the alkaline tide did slightly dampen the reduction in pH(a) during activity.
Collapse
|
49
|
Andersen JB, Andrade DV, Wang T. Effects of inhibition gastric acid secretion on arterial acid-base status during digestion in the toad Bufo marinus. Comp Biochem Physiol A Mol Integr Physiol 2003; 135:425-33. [PMID: 12829050 DOI: 10.1016/s1095-6433(03)00108-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Digestion affects acid-base status, because the net transfer of HCl from the blood to the stomach lumen leads to an increase in HCO3(-) levels in both extra- and intracellular compartments. The increase in plasma [HCO3(-)], the alkaline tide, is particularly pronounced in amphibians and reptiles, but is not associated with an increased arterial pH, because of a concomitant rise in arterial PCO2 caused by a relative hypoventilation. In this study, we investigate whether the postprandial increase in PaCO2 of the toad Bufo marinus represents a compensatory response to the increased plasma [HCO3(-)] or a state-dependent change in the control of pulmonary ventilation. To this end, we successfully prevented the alkaline tide, by inhibiting gastric acid secretion with omeprazole, and compared the response to that of untreated toads determined in our laboratory during the same period. In addition, we used vascular infusions of bicarbonate to mimic the alkaline tide in fasting animals. Omeprazole did not affect blood gases, acid-base and haematological parameters in fasting toads, but abolished the postprandial increase in plasma [HCO3(-)] and the rise in arterial PCO2 that normally peaks 48 h into the digestive period. Vascular infusion of HCO3(-), that mimicked the postprandial rise in plasma [HCO3(-)], led to a progressive respiratory compensation of arterial pH through increased arterial PCO2. Thus, irrespective of whether the metabolic alkalosis is caused by gastric acid secretion in response to a meal or experimental infusion of bicarbonate, arterial pH is being maintained by an increased arterial PCO2. It seems, therefore, that the elevated PCO2, occuring during the postprandial period, constitutes of a regulated response to maintain pH rather than a state-dependent change in ventilatory control.
Collapse
Affiliation(s)
- Johnnie B Andersen
- Department of Zoophysiology, Institute of Biological Sciences, University of Aarhus, Universitetsparken Building 131, 8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
50
|
Bradley TJ, Brethorst L, Robinson S, Hetz S. Changes in the rate of CO2 release following feeding in the insect Rhodnius prolixus. Physiol Biochem Zool 2003; 76:302-9. [PMID: 12905116 DOI: 10.1086/367953] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We describe for the first time changes in the rate of CO2 release (as a surrogate of metabolic rate) in the terminal larval stage of the insect Rhodnius prolixus following a blood meal and during the molt leading to the adult stage. These data are presented on a whole-animal basis as well as per gram wet and dry weight. We have also used techniques that allow us to describe the rate of release per gram of actual body tissue (i.e., removing the weight of the remaining bloodmeal in the gut and the metabolically inactive portion of the cuticle). While the metabolic rate of the whole animal rises approximately 10-fold in 15 d following feeding, the rate per gram of dry body mass rises only twofold. We use these data to provide insights into the relative contributions of tissue growth and increases in metabolic intensity to the massive increases in metabolic rate observed in these insects following feeding. Our analyses indicate that the majority of nutrient uptake occurs in the first 4 d following feeding. It is well known in this species that day 4 following feeding is the end of a critical period for the insect in determining whether it will proceed to the next molt. Our results indicate that the insects may be able to make this decision based on nutrients already transported into the body. We examined the "down regulation" of metabolism observed in the latter stages of the molt cycle in this insect. We express these changes on both a per animal and per gram basis and demonstrate that this down regulation extends even into the adult stage before feeding. Using a comparison of the allometric relationships of metabolic rate to mass in insects and ticks, we demonstrate that unfed R. prolixus show a marked decrease in metabolic rate compared to other insects, while fed Rhodnius are similar in metabolic rate to other insects. Rhodnius has a markedly higher metabolic rate (as do all insects) than that found in ticks.
Collapse
Affiliation(s)
- Timothy J Bradley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California 92697-2525, USA.
| | | | | | | |
Collapse
|