1
|
Petersen JC, Campbell LC, Jayne BC, Roberts TJ. Mechanical properties of snake skin vary longitudinally, following large prey ingestion and among species. J Exp Biol 2024; 227:jeb248142. [PMID: 39711310 DOI: 10.1242/jeb.248142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/07/2024] [Indexed: 12/24/2024]
Abstract
The ability for snakes to ingest large prey (macrostomy) is a widespread, derived trait that involves distending the skin during ingestion and metabolic upregulation during digestion. The material behavior of the skin must accommodate significant stretch associated with a large prey bolus, but data remain sparse for how the material properties of snake skin vary: longitudinally within an individual, after ingesting large prey and among species. To test whether these three factors affected the mechanical properties of snake skin, we quantified uniaxial stresses and strains in circumferential loops of skin from the neck, mid-body and tail of fasted and recently fed Boa constrictor. We also tested skin from several pre-cloacal longitudinal positions in fasted snakes that included two non-macrostomates (Afrotyphlops lineolatus, Anilius scytale) and a highly specialized macrostomate species that eats only bird eggs (Dasypeltis gansi). For B. constrictor, the anterior-most skin failed at higher strains for fed (mean±s.e.m. 2.17±0.10) compared with unfed individuals (1.80±0.04), and maximal stiffness (Young's modulus) had a significant increase posteriorly. The values of Young's modulus for the anterior-most skin of D. gansi (0.050±0.014 MPa) were by far the lowest observed both within that species and among all species. The material properties of skin of the two non-macrostomate species had little longitudinal variation. Hence, the extent of longitudinal variation in skin properties is both species dependent and affected by feeding. The more distensible skin in macrostomates relative to the non-macrostomate species tested suggests that more compliant anterior skin is a derived trait that facilitates macrostomy.
Collapse
Affiliation(s)
- Jarrod C Petersen
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Lucy C Campbell
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Bruce C Jayne
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Thomas J Roberts
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Jensen B, Wang T. The Elusive Hypertrophy of the Python Heart. Physiology (Bethesda) 2024; 39:0. [PMID: 38085014 DOI: 10.1152/physiol.00025.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
The Burmese python, one of the world's largest snakes, has reached celebrity status for its dramatic physiological responses associated with digestion of enormous meals. The meals elicit a rapid gain of mass and function of most visceral organs, particularly the small intestine. There is also a manyfold elevation of oxygen consumption that demands the heart to deliver more oxygen. It therefore made intuitive sense when it was reported that the postprandial response entailed a 40% growth of heart mass that could accommodate a rise in stroke volume. Many studies, however, have not been able to reproduce the 40% growth of the heart. We collated published values on postprandial heart mass in pythons, which include several instances of no change in heart mass. On average, the heart mass is only 15% greater. The changes in heart mass did not correlate to the mass gain of the small intestine or peak oxygen consumption. Hemodynamic studies show that the rise in cardiac output does not require increased heart mass but can be fully explained by augmented cardiac filling and postprandial tachycardia. Under the assumption that hypertrophy is a contingent phenomenon, more recent experiments have employed two interventions such as feeding with a concomitant reduction in hematocrit. The results suggest that the postprandial response of the heart can be enhanced, but the 40% hypertrophy of the python heart remains elusive.
Collapse
Affiliation(s)
- Bjarke Jensen
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tobias Wang
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
da Silva JP, Rahal SC, Castiglioni MCR, de Campos Vettorato M, Ichikawa RS, Teixeira RHF, Doiche DP, Mamprim MJ. Ultrasonographic evaluation of the liver and gallbladder and hepatic histogram of non-venomous snakes. Anat Histol Embryol 2024; 53:e12996. [PMID: 38018271 DOI: 10.1111/ahe.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/22/2023] [Accepted: 11/05/2023] [Indexed: 11/30/2023]
Abstract
This study aimed to describe sonographic features of the liver, gallbladder and hepatic histogram from grey-scale ultrasound in three species of healthy non-venomous snakes. Twenty-eight adult snakes were enrolled in the study, including 10 common boas (Boa constrictor), eight black-tailed pythons (Python molurus) and 10 rainbow boas (Epicrates crassus). The snakes fasted for 30 days and were manually restrained while conscious. For B. constrictor and P. molurus the liver and gallbladder were best visualized in ventral recumbency, and E. crassus in dorsal recumbency. A single elongated hepatic lobe was identified in all snakes. The gallbladder was positioned caudal and separated from the liver, with an oval shape and homogeneous anechoic content in the lumen, and thin and regular walls. A region of interest by pixel number was chosen for the liver, fat bodies, left kidney, and splenopancreas. The mean grey level (G) of the organs had significant differences within each species. Standard deviation of grey levels (SG ) had significant differences within B. constrictor and E. crassus. P. molurus had no significant difference among organs. The comparison among snakes showed that E. crassus had G of liver and splenopancreas lower than B. constrictor and P. molurus. The SG of the liver in E. crassus was lowest compared to B. constrictor and P. molurus. P. molurus showed the highest values in mean of G and SG . In conclusion, despite the liver and gallbladder having similar sonographic features, the grey-level histogram showed that liver echotexture and echogenicity differ among species.
Collapse
Affiliation(s)
- Jeana Pereira da Silva
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, Brazil
| | - Sheila Canevese Rahal
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, Brazil
| | - Maria Cristina Reis Castiglioni
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, Brazil
| | - Michel de Campos Vettorato
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, Brazil
| | - Ricardo Shoiti Ichikawa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, Brazil
| | | | - Danuta Pulz Doiche
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, Brazil
| | - Maria Jaqueline Mamprim
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (Unesp), Botucatu, Brazil
| |
Collapse
|
4
|
Shang Y, Zhong H, Liu G, Wang X, Wu X, Wei Q, Shi L, Zhang H. Characteristics of Microbiota in Different Segments of the Digestive Tract of Lycodon rufozonatus. Animals (Basel) 2023; 13:ani13040731. [PMID: 36830518 PMCID: PMC9952230 DOI: 10.3390/ani13040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The gastrointestinal tract of animals contains microbiota, forming a complex microecosystem. Gut microbes and their metabolites can regulate the development of host innate and adaptive immune systems. Animal immune systems maintain intestinal symbiotic microbiota homeostasis. However, relatively few studies have been published on reptiles, particularly snakes, and even fewer studies on different parts of the digestive tracts of these animals. Herein, we used 16S rRNA gene sequencing to investigate the microbial community composition and adaptability in the stomach and small and large intestines of Lycodon rufozonatus. Proteobacteria, Bacteroidetes, and Firmicutes were most abundant in the stomach; Fusobacteria in the small intestine; and Proteobacteria, Bacteroidetes, Fusobacteria, and Firmicutes in the large intestine. No dominant genus could be identified in the stomach; however, dominant genera were evident in the small and large intestines. The microbial diversity index was significantly higher in the stomach than in the small and large intestines. Moreover, the influence of the microbial community structure on function was clarified through function prediction. Collectively, the gut microbes in the different segments of the digestive tract revealed the unique features of the L. rufozonatus gut microbiome. Our results provide insights into the co-evolutionary relationship between reptile gut microbiota and their hosts.
Collapse
Affiliation(s)
- Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Huaming Zhong
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Gang Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Lupeng Shi
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence:
| |
Collapse
|
5
|
Rämö RA, Honkanen J, Nybom I, Gunnarsson JS. Biological Effects of Activated Carbon on Benthic Macroinvertebrates are Determined by Particle Size and Ingestibility of Activated Carbon. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3465-3477. [PMID: 34748656 DOI: 10.1002/etc.5231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
The application of activated carbon (AC) to the surface of contaminated sediments is a promising technology for sediment remediation in situ. Amendment with AC has proved to be effective in reducing bioavailability and sediment-to-water release of hydrophobic organic contaminants. However, AC may cause positive or negative biological responses in benthic organisms. The causes of these effects, which include changes in growth, reproduction, and mortality, are unclear but are thought to be related to the size of AC particles. The present study investigated biological response to AC ranging from ingestible powdered AC to noningestible granular AC in two benthic deposit feeders: the polychaete Marenzelleria spp. and the clam Limecola balthica (syn. Macoma balthica). In the polychaete, exposure to powdered AC (ingestible) reduced both dry weight and carbon assimilation, whereas exposure to granular AC (noningestible) increased both dry weight and carbon assimilation. Responses in the clam were similar but less pronounced, indicating that response levels are species-specific and may vary within a benthic community. In addition, worms exposed to the finest ingestible AC particles had reduced gut microvilli length and reduced gut lumen, indicating starvation. These results strongly suggest that biological responses to AC depend on particle ingestibility, whereby exposure to ingestible particles may cause starvation through reduced bioavailability of food coingested with AC or due to rejection of AC-treated sediment as a food source. Environ Toxicol Chem 2021;40:3465-3477. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Robert A Rämö
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Johanna Honkanen
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Inna Nybom
- Department of Environmental Science, Stockholm University, Stockholm, Sweden
| | - Jonas S Gunnarsson
- Department of Ecology, Environment, and Plant Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Ghilardi M, Schiettekatte NMD, Casey JM, Brandl SJ, Degregori S, Mercière A, Morat F, Letourneur Y, Bejarano S, Parravicini V. Phylogeny, body morphology, and trophic level shape intestinal traits in coral reef fishes. Ecol Evol 2021; 11:13218-13231. [PMID: 34646464 PMCID: PMC8495780 DOI: 10.1002/ece3.8045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 01/24/2023] Open
Abstract
Trait-based approaches are increasingly used to study species assemblages and understand ecosystem functioning. The strength of these approaches lies in the appropriate choice of functional traits that relate to the functions of interest. However, trait-function relationships are often supported by weak empirical evidence.Processes related to digestion and nutrient assimilation are particularly challenging to integrate into trait-based approaches. In fishes, intestinal length is commonly used to describe these functions. Although there is broad consensus concerning the relationship between fish intestinal length and diet, evolutionary and environmental forces have shaped a diversity of intestinal morphologies that is not captured by length alone.Focusing on coral reef fishes, we investigate how evolutionary history and ecology shape intestinal morphology. Using a large dataset encompassing 142 species across 31 families collected in French Polynesia, we test how phylogeny, body morphology, and diet relate to three intestinal morphological traits: intestinal length, diameter, and surface area.We demonstrate that phylogeny, body morphology, and trophic level explain most of the interspecific variability in fish intestinal morphology. Despite the high degree of phylogenetic conservatism, taxonomically unrelated herbivorous fishes exhibit similar intestinal morphology due to adaptive convergent evolution. Furthermore, we show that stomachless, durophagous species have the widest intestines to compensate for the lack of a stomach and allow passage of relatively large undigested food particles.Rather than traditionally applied metrics of intestinal length, intestinal surface area may be the most appropriate trait to characterize intestinal morphology in functional studies.
Collapse
Affiliation(s)
- Mattia Ghilardi
- Reef Systems Research GroupDepartment of EcologyLeibniz Centre for Tropical Marine Research (ZMT)BremenGermany
- Department of Marine EcologyFaculty of Biology and ChemistryUniversity of BremenBremenGermany
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Nina M. D. Schiettekatte
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Jordan M. Casey
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- Department of Marine ScienceMarine Science InstituteUniversity of Texas at AustinPort AransasTXUSA
| | - Simon J. Brandl
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- Department of Marine ScienceMarine Science InstituteUniversity of Texas at AustinPort AransasTXUSA
- CESABCentre for the Synthesis and Analysis of BiodiversityInstitut Bouisson BertrandMontpellierFrance
| | - Samuel Degregori
- Department of Ecology and Evolutionary BiologyUniversity of California Los AngelesLos AngelesCAUSA
| | - Alexandre Mercière
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Fabien Morat
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
| | - Yves Letourneur
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- UMR ENTROPIE (UR‐IRD‐CNRS‐IFREMER‐UNC)Université de la Nouvelle‐CalédonieNouméa CedexNew Caledonia
| | - Sonia Bejarano
- Reef Systems Research GroupDepartment of EcologyLeibniz Centre for Tropical Marine Research (ZMT)BremenGermany
| | - Valeriano Parravicini
- PSL Université Paris: EPHE‐UPVD‐CNRSUSR3278 CRIOBEPerpignanFrance
- Laboratoire d’Excellence “CORAIL”PerpignanFrance
- Institut Universitaire de FranceParisFrance
| |
Collapse
|
7
|
Patterns of energetic substrate modifications in response to feeding in boas, Boa constrictor (Serpentes, Boidae). Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111073. [PMID: 34562624 DOI: 10.1016/j.cbpa.2021.111073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/25/2022]
Abstract
Ambush-foraging snakes that ingest large meals might undergo several months without eating when they use the internal reserves to support the energetic costs of living. Then, morphological and physiological processes might be orchestrated during the transition from fasting to the postprandial period to rapidly use the energetic stores while the metabolic rate is elevated in response to food intake. To understand the patterns of substrates deposition after feeding, we accessed the morphological and biochemical response in Boa constrictor snakes after two months of fasting and six days after feeding. We followed the plasma levels of glucose, total proteins, and total lipids, and we performed the stereological ultrastructural analysis of the liver and the proximal region of the intestine to quantify glycogen granules and lipid droplets. In the same tissues and stomach, we measured the activity of the enzyme fructose-1,6-biphosphatase (FBPase1) involved in the gluconeogenic pathway, and we measured pyruvate kinase (PK) and lactate dehydrogenase (LDH) enzymatic activities involved in the anaerobic pathway in the liver. Briefly, our results indicated an increase in boas' plasma glucose one day after meal intake compared to unfed snakes. The hepatic glycogen reserves were continuously restored within days after feeding. Also, the enzymes involved in the energetic pathways increased activity six days after feeding in the liver. These findings suggest a quick restoring pattern of energetic stores during the postprandial period.
Collapse
|
8
|
Bury S. Intestinal upregulation and specific dynamic action in snakes - Implications for the 'pay before pumping' hypothesis. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111080. [PMID: 34543726 DOI: 10.1016/j.cbpa.2021.111080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Animals which feed infrequently and on large prey, like many snake species, are characterized by a high magnitude of gut upregulation upon ingesting a meal. The intensity of intestinal upregulation was hypothesized to be proportional to the time and energy required for food processing (Specific-Dynamic-Action; SDA); hence, a positive correlation between the scope of intestinal growth and SDA response can be deduced. Such a correlation would support the so far not well established link between the intestinal and metabolic consequences of digestion. In this study I tested this prediction using an interspecific dataset on snakes gleaned from published sources. I found that SDAduration and SDAscope were positively correlated with post-feeding factorial increase in small intestine mass, but not with microvillar elongation. This indicates that a wide range of whole intestine remodelling (up- but potentially also downregulation) may temporarily prolong meal processing and that a greater magnitude of intestinal growth requires a stronger metabolic elevation. However, these effects do not seem large enough to drive the variation in the entire energetic costs of digestion, because SDAexpenditure was not affected either by intestinal or microvillar growth. I therefore propose that intestinal upregulation elicits non-negligible costs, but that these costs are a fairly small component of the whole SDAexpenditure.
Collapse
Affiliation(s)
- Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland.
| |
Collapse
|
9
|
Bury S. Energy expenses on prey processing are comparable, but paid at a higher metabolic scope and for a longer time in ambush vs active predators: a multispecies study on snakes. Oecologia 2021; 197:61-70. [PMID: 34392416 PMCID: PMC8445871 DOI: 10.1007/s00442-021-05014-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/05/2021] [Indexed: 12/04/2022]
Abstract
Snakes are characterized by distinct foraging strategies, from ambush to active hunting, which can be predicted to substantially affect the energy budget as a result of differential activity rates and feeding frequencies. Intense foraging activity and continuously upregulated viscera as a result of frequent feeding leads to a higher standard metabolic rate (SMR) in active than in ambush predators. Conversely, the costs of digestion (Specific Dynamic Action—SDA) are expected to be higher in ambush predators following the substantial remodelling of the gut upon ingestion of a meal after a long fasting period. This prediction was tested on an interspecific scale using a large multispecies dataset (> 40 species) obtained from published sources. I found that the metabolic scope and duration of SDA tended to reach higher values in ambush than in active predators, which probably reflects the greater magnitude of postprandial physiological upregulation in the former. In contrast, the SDA energy expenditure appeared to be unrelated to the foraging mode. The costs of visceral activation conceivably are not negligible, but represent a minor part of the total costs of digestion, possibly not large enough to elicit a foraging-mode driven variation in SDA energy expenditure. Non-mutually exclusive is that the higher costs of structural upregulation in ambush predators are balanced by the improved, thus potentially less expensive, functional performance of the more efficient intestines. I finally suggest that ambush predators may be less susceptible than active predators to the metabolic ‘meltdown effect’ driven by climate change.
Collapse
Affiliation(s)
- Stanisław Bury
- Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| |
Collapse
|
10
|
Hoppe MI, Meloro C, Edwards MS, Codron D, Clauss M, Duque-Correa MJ. Less need for differentiation? Intestinal length of reptiles as compared to mammals. PLoS One 2021; 16:e0253182. [PMID: 34214090 PMCID: PMC8253402 DOI: 10.1371/journal.pone.0253182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/28/2021] [Indexed: 11/18/2022] Open
Abstract
Although relationships between intestinal morphology between trophic groups in reptiles are widely assumed and represent a cornerstone of ecomorphological narratives, few comparative approaches actually tested this hypothesis on a larger scale. We collected data on lengths of intestinal sections of 205 reptile species for which either body mass (BM), snout-vent-length (SVL) or carapax length (CL) was recorded, transforming SVL or CL into BM if the latter was not given, and analyzed scaling patterns with BM and SVL, accounting for phylogeny, comparing three trophic guilds (faunivores, omnivores, herbivores), and comparing with a mammal dataset. Length-BM relationships in reptiles were stronger for the small than the large intestine, suggesting that for the latter, additional factors might be relevant. Adding trophic level did not consistently improve model fit; only when controlling for phylogeny, models indicated a longer large intestine in herbivores, due to a corresponding pattern in lizards. Trophic level effects were highly susceptible to sample sizes, and not considered strong. Models that linked BM to intestine length had better support than models using SVL, due to the deviating body shape of snakes. At comparable BM, reptiles had shorter intestines than mammals. While the latter finding corresponds to findings of lower tissue masses for the digestive tract and other organs in reptiles as well as our understanding of differences in energetic requirements between the classes, they raise the hitherto unanswered question what it is that reptiles of similar BM have more than mammals. A lesser effect of trophic level on intestine lengths in reptiles compared to mammals may stem from lesser selective pressures on differentiation between trophic guilds, related to the generally lower food intake and different movement patterns of reptiles, which may not similarly escalate evolutionary arms races tuned to optimal agility as between mammalian predators and prey.
Collapse
Affiliation(s)
- Monika I. Hoppe
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mark S. Edwards
- California Polytechnic State University, San Luis Obispo, California, United States of America
| | - Daryl Codron
- Department of Zoology and Entomology, University of the Free State, Bloemfontein, South Africa
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- * E-mail:
| | - María J. Duque-Correa
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Lopes AG, Monteiro DA, Kalinin AL. Effects of change in temperature on the cardiac contractility of broad-snouted caiman (Caiman latirostris) during digestion. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:417-425. [PMID: 33773091 DOI: 10.1002/jez.2457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/07/2022]
Abstract
In many reptiles, digestion has been associated with the selection of higher body temperatures, the so-called post-prandial thermophilic response. This study aimed to investigate the excitation-contraction (E-C) coupling in postprandial broad-snouted caimans (Caiman latirostris) in response to acute warming within a preferred body temperature range of crocodiles. Isometric preparations subjected to a temperature transition from 25°C to 30°C were used to investigate myocardial contractility of postprandial caimans, that is, 48 h after the animals ingested a rodent meal corresponding to 15% of body mass. The caiman heart exhibits a negative force-frequency relationship that is independent of the temperature. At 25°C, cardiac muscle was able to maintain a constant force up to 36 bpm, above which it decreased significantly, reaching minimum values at the highest frequency of 84 bpm. Moreover, E-C coupling is predominantly dependent on transsarcolemmal Ca2+ transport denoted by the lack of significant ryanodine effects on force generation. On the contrary, ventricular strips at 30°C were able to sustain the cardiac contractility at higher pacing frequencies (from 12 to 144 bpm) due to an important role of Na+ /Ca2+ exchanger in Ca2+ cycling, as indicated by the decay of the post-rest contraction, and a significant contribution of the sarcoplasmic reticulum above 72 bpm. Our results demonstrated that the myocardium of postprandial caimans exhibits a significant degree of thermal plasticity of E-C coupling during acute warming. Therefore, myocardial contractility can be maximized when postprandial broad-snouted caimans select higher body temperatures (preferred temperature zone) following feeding.
Collapse
Affiliation(s)
- André G Lopes
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil.,Joint Graduate Program in Physiological Sciences, Federal University of São Carlos-UFSCar/São Paulo State University, UNESP Campus Araraquara, Araraquara, São Paulo, Brazil
| | - Diana A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Ana L Kalinin
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
12
|
Tang W, Zhu G, Shi Q, Yang S, Ma T, Mishra SK, Wen A, Xu H, Wang Q, Jiang Y, Wu J, Xie M, Yao Y, Li D. Characterizing the microbiota in gastrointestinal tract segments of Rhabdophis subminiatus: Dynamic changes and functional predictions. Microbiologyopen 2019; 8:e00789. [PMID: 30848054 PMCID: PMC6612554 DOI: 10.1002/mbo3.789] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 01/24/2023] Open
Abstract
The gut microbiota helps the host to absorb nutrients and generate immune responses that can affect host behavior, development, reproduction, and overall health. However, in most of the previous studies, microbiota was sampled mainly using feces and intestinal contents from mammals but not from wild reptiles. Here, we described the bacterial profile from five different gastrointestinal tract (GIT) segments (esophagus, stomach, small intestine, large intestine, and cloaca) of three wild Rhabdophis subminiatus using 16S rRNA V4 hypervariable amplicon sequencing. Forty-seven bacterial phyla were found in the entire GIT, of which Proteobacteria, Firmicutes, and Bacteroidetes were predominant. The results showed a significant difference in microbial diversity between the upper GIT segments (esophagus and stomach) and lower GIT segments (large intestine and cloaca). An obvious dynamic distribution of Fusobacteria and Bacteroidetes was observed, which mainly existed in the lower GIT segments. Conversely, the distribution of Tenericutes was mainly observed in the upper GIT. We also predicted the microbial functions in the different GIT segments, which showed that microbiota in each segments played an important role in higher membrane transport and carbohydrate and amino acid metabolism. Microbes in the small intestine were also mainly involved in disease-related systems, while in the large intestine, they were associated with membrane transport and carbohydrate metabolism. This is the first study to investigate the distribution of the gut microbiota and to predict the microbial function in R. subminiatus. The composition of the gut microbiota certainly reflects the diet and the living environment of the host. Furthermore, these findings provide vital evidence for the diagnosis and treatment of gut diseases in snakes and offer a direction for a model of energy budget research.
Collapse
Affiliation(s)
- Wenjiao Tang
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Guangxiang Zhu
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Qian Shi
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Shijun Yang
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Tianyuan Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Shailendra Kumar Mishra
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Anxiang Wen
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Huailiang Xu
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Qin Wang
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Yanzhi Jiang
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Jiayun Wu
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Meng Xie
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Yongfang Yao
- College of Life ScienceSichuan Agricultural UniversityYa’anChina
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| |
Collapse
|
13
|
Filogonio R, Wang T, Danielsen CC. Analysis of vascular mechanical properties of the yellow anaconda reveals increased elasticity and distensibility of the pulmonary artery during digestion. ACTA ACUST UNITED AC 2018; 221:jeb.177766. [PMID: 29941610 DOI: 10.1242/jeb.177766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022]
Abstract
In animals with functional division of blood systemic and pulmonary pressures, such as mammals, birds, crocodilians and a few non-crocodilian reptiles, the vessel walls of systemic and pulmonary arteries are exquisitely adapted to endure different pressures during the cardiac cycle, systemic arteries being stronger and stiffer than pulmonary arteries. However, the typical non-crocodilian reptile heart possesses an undivided ventricle that provides similar systolic blood pressure to both circuits. This raises the question whether in these species the systemic and pulmonary mechanical vascular properties are similar. Snakes also display large organ plasticity and increased cardiac output in response to digestion, and we speculate how the vascular circuit would respond to this further stress. We addressed these questions by testing the mechanical vascular properties of the dorsal aorta and the right pulmonary artery of fasted and fed yellow anacondas, Eunectes notaeus, a snake without functional ventricular separation that also exhibits large metabolic and cardiovascular responses to digestion. Similar to previous studies, the dorsal aorta was thicker, stronger, stiffer and more elastic than the pulmonary artery. However, unlike any other species studied so far, the vascular distensibility (i.e. the relative volume change given a pressure change) was similar for the two circuits. Most striking, the pulmonary artery elasticity (i.e. its capacity to resume its original form after being stretched) and distensibility increased during digestion, which suggests that this circuit is remodeled to accommodate the larger stroke volume and enhance the Windkessel effect, thus providing a more constant blood perfusion during digestion.
Collapse
Affiliation(s)
- Renato Filogonio
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | | |
Collapse
|
14
|
Histological organization of intestinal villi in the crocodilian caiman yacare (Daudin, 1802) during dietary lipid absorption. ZOOMORPHOLOGY 2018. [DOI: 10.1007/s00435-018-0401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Gavira RSB, Sartori MR, Gontero-Fourcade MN, Gomes BF, Abe AS, Andrade DV. The consequences of seasonal fasting during the dormancy of tegu lizards (Salvator merianae) on their postprandial metabolic response. J Exp Biol 2018. [DOI: 10.1242/jeb.176156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tegu lizards (Salvator merianae) aestivate for up to 5 months during Brazil's winter, when they retreat to burrows and halt most activities. Dormant tegus reduce their gastrointestinal (GI) mass, which allows a substantial energy economy. This strategy however, implies that the first post-dormancy digestion would be more costly than subsequent feeding episodes due to GI atrophy. To address this, we determined the postprandial metabolic response (SDA) of the first (M1), second (M2) and several (RM) feeding episodes after tegus' dormancy. Another group of tegus (PF) was subjected to an extra 50-days fasting period after arousal. Glucose, triglycerides, and uric acid levels were checked before and after feeding. M1 digestion lasted twice as long and cost two-fold more when compared to M2 or RM, in agreement with the idea that GI atrophy inflates digestion cost at the first post-dormancy meal. SDA response was similar in M2 and RM suggesting that the GI tract was fully reorganized after the first feeding. SDA cost was equal in PF and RM implying that the change in state per se (dormant-to-arousal) triggers the regrowth of GI, independently of feeding. Fasting M1 presented higher triglycerides and lower uric acid levels than fed tegus, indicating that fasting is mainly sustained by fat storages. Our results showed that seasonal fasting imposes an extra digestion cost to tegus following their next feeding, which is fully paid during their first digestion. This surplus cost, however, may be negligible compared to the overall energetic savings provisioned from GI tract atrophy during the dormancy period.
Collapse
Affiliation(s)
- Rodrigo S. B. Gavira
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| | - Marina R. Sartori
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| | - Manuel N. Gontero-Fourcade
- Laboratório de Biología Integrativa, Instituto Multidisciplinário de Investigaciones Biológicas de San Luis, Consejo de Investigaciones Científicas y Técnicas, San Luis 5700, Argentina
| | - Bruna F. Gomes
- Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| | - Augusto S. Abe
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| | - Denis V. Andrade
- Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, 13506-900, Brazil
| |
Collapse
|
16
|
McCue MD, Passement CA, Meyerholz DK. Maintenance of Distal Intestinal Structure in the Face of Prolonged Fasting: A Comparative Examination of Species From Five Vertebrate Classes. Anat Rec (Hoboken) 2017; 300:2208-2219. [PMID: 28941363 PMCID: PMC5767472 DOI: 10.1002/ar.23691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/16/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
It was recently shown that fasting alters the composition of microbial communities residing in the distal intestinal tract of animals representing five classes of vertebrates [i.e., fishes (tilapia), amphibians (toads), reptiles (leopard geckos), birds (quail), and mammals (mice)]. In this study, we tested the hypothesis that the extent of tissue reorganization in the fasted distal intestine was correlated with the observed changes in enteric microbial diversity. Segments of intestine adjacent to those used for the microbiota study were examined histologically to quantify cross-sectional and mucosal surface areas and thicknesses of mucosa, submucosa, and tunica muscularis. We found no fasting-induced differences in the morphology of distal intestines of the mice (3 days), quail (7 days), or geckos (28 days). The toads, which exhibited a general increase in phylogenetic diversity of their enteric microbiota with fasting, also exhibited reduced mucosal circumference at 14 and 21 days of fasting. Tilapia showed increased phylogenetic diversity of their enteric microbiota, and showed a thickened tunica muscularis at 21 days of fasting; but this morphological change was not related to microbial diversity or absorptive surface area, and thus, is unlikely to functionally match the changes in their microbiome. Given that fasting caused significant increases and reductions in the enteric microbial diversity of mice and quail, respectively, but no detectable changes in distal intestine morphology, we conclude that reorganization is not the primary factor shaping changes in microbial diversity within the fasted colon, and the observed modest structural changes are more related to the fasted state. Anat Rec, 300:2208-2219, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
|
17
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
18
|
D'Aquila T, Hung YH, Carreiro A, Buhman KK. Recent discoveries on absorption of dietary fat: Presence, synthesis, and metabolism of cytoplasmic lipid droplets within enterocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:730-47. [PMID: 27108063 DOI: 10.1016/j.bbalip.2016.04.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/16/2016] [Accepted: 04/16/2016] [Indexed: 02/07/2023]
Abstract
Dietary fat provides essential nutrients, contributes to energy balance, and regulates blood lipid concentrations. These functions are important to health, but can also become dysregulated and contribute to diseases such as obesity, diabetes, cardiovascular disease, and cancer. Within enterocytes, the digestive products of dietary fat are re-synthesized into triacylglycerol, which is either secreted on chylomicrons or stored within cytoplasmic lipid droplets (CLDs). CLDs were originally thought to be inert stores of neutral lipids, but are now recognized as dynamic organelles that function in multiple cellular processes in addition to lipid metabolism. This review will highlight recent discoveries related to dietary fat absorption with an emphasis on the presence, synthesis, and metabolism of CLDs within this process.
Collapse
Affiliation(s)
- Theresa D'Aquila
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Yu-Han Hung
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Alicia Carreiro
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA
| | - Kimberly K Buhman
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
19
|
Abstract
Extended bouts of fasting are ingrained in the ecology of many organisms, characterizing aspects of reproduction, development, hibernation, estivation, migration, and infrequent feeding habits. The challenge of long fasting episodes is the need to maintain physiological homeostasis while relying solely on endogenous resources. To meet that challenge, animals utilize an integrated repertoire of behavioral, physiological, and biochemical responses that reduce metabolic rates, maintain tissue structure and function, and thus enhance survival. We have synthesized in this review the integrative physiological, morphological, and biochemical responses, and their stages, that characterize natural fasting bouts. Underlying the capacity to survive extended fasts are behaviors and mechanisms that reduce metabolic expenditure and shift the dependency to lipid utilization. Hormonal regulation and immune capacity are altered by fasting; hormones that trigger digestion, elevate metabolism, and support immune performance become depressed, whereas hormones that enhance the utilization of endogenous substrates are elevated. The negative energy budget that accompanies fasting leads to the loss of body mass as fat stores are depleted and tissues undergo atrophy (i.e., loss of mass). Absolute rates of body mass loss scale allometrically among vertebrates. Tissues and organs vary in the degree of atrophy and downregulation of function, depending on the degree to which they are used during the fast. Fasting affects the population dynamics and activities of the gut microbiota, an interplay that impacts the host's fasting biology. Fasting-induced gene expression programs underlie the broad spectrum of integrated physiological mechanisms responsible for an animal's ability to survive long episodes of natural fasting.
Collapse
Affiliation(s)
- Stephen M Secor
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Hannah V Carey
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
20
|
do Nascimento LFR, da Silveira LC, Nisembaum LG, Colquhoun A, Abe AS, Mandarim-de-Lacerda CA, de Souza SCR. Morphological and metabolic adjustments in the small intestine to energy demands of growth, storage, and fasting in the first annual cycle of a hibernating lizard (Tupinambis merianae). Comp Biochem Physiol A Mol Integr Physiol 2016; 195:55-64. [PMID: 26872995 DOI: 10.1016/j.cbpa.2016.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/02/2016] [Accepted: 02/07/2016] [Indexed: 12/17/2022]
Abstract
Seasonal plasticity in the small intestine of neonatal tegu lizards was investigated using morphometry and analysis of enzymes involved in supplying energy to the intestinal tissue. In the autumn, the intestinal mass (Mi) was 1.0% of body mass and the scaling exponent b=0.92 indicated that Mi was larger in smaller neonates. During arousal from dormancy Mi was 23% smaller; later in spring, Mi increased 60% in relation to the autumn and the exponent b=0.14 indicated that the recovery was disproportionate in smaller tegus. During the autumn, the intestinal villi were greatly elongated; by midwinter, the Hv, SvEp, and VvEp were smaller than during the autumn (59%, 54%, 29%) and were restored to autumn levels during spring. In the active tegus, the maximum activity (Vmax) of enzymes indicated that the enterocytes can obtain energy from different sources, and possess gluconeogenic capacity. During winter, the Vmax of CS, HOAD, GDH, PEPCK was 40-50% lower in relation to the autumn and spring, while the Vmax of HK, PK, LDH, AST was unchanged. The hypoglycemia and the mucosal atrophy/ischemia during winter would prevent the enterocytes from using glucose, whereas they could slowly oxidize fatty acids released from body stores and amino acids from the tissue proteolysis to satisfy their needs of energy. Contrastingly, starvation during spring caused severe mass loss (50%); the tissue protein and the VvEp and VvLP did not change while the thickness of the muscular layer increased 51%, which suggested different effects along the length of the organ. In addition, the Vmax of the glycolytic enzymes was lower, indicating that a regulatory mechanism would spare blood glucose for vital organs during unanticipated food restriction.
Collapse
Affiliation(s)
| | - Lilian Cristina da Silveira
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Laura Gabriela Nisembaum
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Alison Colquhoun
- Department of Cellular and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Agusto S Abe
- Department of Zoology, Institute of Biosciences, State University of São Paulo, P.O. Box 199, 13506-900 Rio Claro, SP, Brazil
| | | | - Silvia Cristina R de Souza
- Department of Physiology, Institute of Biosciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Dietary lipid absorption and lipoprotein secretion by the intestine of the crocodilian Caiman yacare (Daudin, 1802). ZOOMORPHOLOGY 2016. [DOI: 10.1007/s00435-015-0300-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Hanning I, Diaz-Sanchez S. The functionality of the gastrointestinal microbiome in non-human animals. MICROBIOME 2015; 3:51. [PMID: 26552373 PMCID: PMC4640220 DOI: 10.1186/s40168-015-0113-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 09/28/2015] [Indexed: 05/04/2023]
Abstract
Due to the significance of the microbiome on human health, much of the current data available regarding microbiome functionality is centered on human medicine. For agriculturally important taxa, the functionality of gastrointestinal bacteria has been studied with the primary goals of improving animal health and production performance. With respect to cattle, the digestive functions of bacteria in cattle are unarguably critical to digestion and positively impact production performance. Conversely, some research suggests that the gastrointestinal microbiome in chickens competes with the host for nutrients and produces toxins that can harm the host resulting in decreased growth efficiency. Concerning many other species including reptiles and cetaceans, some cataloging of fecal bacteria has been conducted, but the functionality within the host remains ambiguous. These taxa could provide interesting gastrointestinal insight into functionality and symbiosis considering the extreme feeding regimes (snakes), highly specialized diets (vampire bats), and living environments (polar bears), which warrants further exploration.
Collapse
Affiliation(s)
- Irene Hanning
- College of Genome Sciences and Technology, University of Tennessee, Knoxville, TN, USA.
- Department of Science, Lincoln International Academy, Managua, Nicaragua.
| | - Sandra Diaz-Sanchez
- Department of Food Science and Technology, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
23
|
Fasting for 21days leads to changes in adipose tissue and liver physiology in juvenile checkered garter snakes (Thamnophis marcianus). Comp Biochem Physiol A Mol Integr Physiol 2015; 190:68-74. [PMID: 26358832 DOI: 10.1016/j.cbpa.2015.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/02/2015] [Accepted: 09/02/2015] [Indexed: 12/17/2022]
Abstract
Snakes often undergo periods of prolonged fasting and, under certain conditions, can survive years without food. Despite this unique phenomenon, there are relatively few reports of the physiological adaptations to fasting in snakes. At post-prandial day 1 (fed) or 21 (fasting), brain, liver, and adipose tissues were collected from juvenile checkered garter snakes (Thamnophis marcianus). There was greater glycerol-3-phosphate dehydrogenase (G3PDH)-specific activity in the liver of fasted than fed snakes (P=0.01). The mRNA abundance of various fat metabolism-associated factors was measured in brain, liver, and adipose tissue. Lipoprotein lipase (LPL) mRNA was greater in fasted than fed snakes in the brain (P=0.04). Adipose triglyceride lipase (ATGL; P=0.006) mRNA was greater in the liver of fasted than fed snakes. In adipose tissue, expression of peroxisome proliferator-activated receptor (PPAR)γ (P=0.01), and fatty acid binding protein 4 (P=0.03) was greater in fed than fasted snakes. Analysis of adipocyte morphology revealed that cross-sectional area (P=0.095) and diameter (P=0.27) were not significantly different between fed and fasted snakes. Results suggest that mean adipocyte area can be preserved during fasting by dampening lipid biosynthesis while not changing rates of lipid hydrolysis. In the liver, however, extensive lipid remodeling may provide energy and lipoproteins to maintain lipid structural integrity during energy restriction. Because the duration of fasting was not sufficient to change adipocyte size, results suggest that the liver is important as a short-term provider of energy in the snake.
Collapse
|
24
|
Effects of insularity on digestion: living on islands induces shifts in physiological and morphological traits in island reptiles. Naturwissenschaften 2015; 102:55. [DOI: 10.1007/s00114-015-1301-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/22/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
25
|
Neuman‐Lee LA, Bobby Fokidis H, Spence AR, Van der Walt M, Smith GD, Durham S, French SS. Food restriction and chronic stress alter energy use and affect immunity in an infrequent feeder. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12457] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - H. Bobby Fokidis
- Department of Biology Rollins College Winter Park Florida 32789 USA
| | - Austin R. Spence
- Department of Biology Utah State University Logan Utah 84322 USA
| | | | - Geoffrey D. Smith
- Department of Biology Utah State University Logan Utah 84322 USA
- Ecology Center Utah State University Logan Utah 84322 USA
| | - Susan Durham
- Ecology Center Utah State University Logan Utah 84322 USA
| | - Susannah S. French
- Department of Biology Utah State University Logan Utah 84322 USA
- Ecology Center Utah State University Logan Utah 84322 USA
| |
Collapse
|
26
|
Physiological responses to short-term fasting among herbivorous, omnivorous, and carnivorous fishes. J Comp Physiol B 2014; 184:497-512. [DOI: 10.1007/s00360-014-0813-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 01/29/2014] [Accepted: 02/06/2014] [Indexed: 10/25/2022]
|
27
|
Digestive flexibility during fasting in fish: A review. Comp Biochem Physiol A Mol Integr Physiol 2014; 169:7-14. [PMID: 24342486 DOI: 10.1016/j.cbpa.2013.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 11/20/2022]
|
28
|
Physiological and morphological responses to the first bout of refeeding in southern catfish (Silurus meridionalis). J Comp Physiol B 2014; 184:329-46. [DOI: 10.1007/s00360-014-0801-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 12/31/2022]
|
29
|
Hansen K, Pedersen PBM, Pedersen M, Wang T. Magnetic Resonance Imaging Volumetry for Noninvasive Measures of Phenotypic Flexibility during Digestion in Burmese Pythons. Physiol Biochem Zool 2013; 86:149-58. [DOI: 10.1086/668915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Zeng LQ, Li FJ, Fu SJ, Cao ZD, Zhang YG. Effect of feeding on the function and structure of the digestive system in juvenile southern catfish (Silurus meridionalis Chen). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1459-1475. [PMID: 22466311 DOI: 10.1007/s10695-012-9634-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Accepted: 03/12/2012] [Indexed: 05/31/2023]
Abstract
Postprandial physiological and morphological responses to feeding were examined in juvenile southern catfish (Silurus meridionalis Chen) that had consumed a loach (Misgurnus anguillicaudatus Cantor) meal equivalent to 6 % of the body mass of the catfish. The gastric evacuation rate (GER) peaked at 4 h postfeeding, averaging 0.36 g food weight h(-1), at which time 14 % of the ingested meal had passed into the intestine. Less than 10 % of the ingested meal remained in the stomach at 24 h postfeeding. Pepsin activity peaked at 8 h postfeeding, reaching a level approximately twofold higher than the prefeeding level. Pancreatic trypsin activity peaked at 16 h postfeeding, reaching a level 4.5-fold higher than the prefeeding level. Peaks in lipase activity in both the proximal and middle intestinal segments occurred at 16 h, reaching 2.8- and 2.4-fold higher levels than the prefeeding level, respectively, while the activity in the distal intestine segment reached a level 2.9-fold higher than the prefeeding level at 24 h postfeeding. With respect to amylase activity, only the middle intestinal segment exhibited a change, first an increase and then a decrease, after feeding. Feeding also triggered an approximately 200 % increase in the metabolic rate and resulted in 44.6 kJ kg(-1) being expended on specific dynamic action, equivalent to 16.1 % of the meal's energy. In terms of organ size, the wet mass of the liver increased by 11 % at 24 h postfeeding, whereas the wet mass of the pancreas did not change. Except for a decrease in the thickness of the submucosa in the middle intestinal segment, the thickness of the intestinal fold, mucosa, submucosa, muscularis and serosa of each intestinal segment did not change significantly with feeding. These results suggest that the continuum of physiological responses observed with respect to metabolic increases, GER, regulation of pancreatic and intestinal digestive enzyme activities and liver wet mass to feeding corresponds to the changes in the demand on the digestive system in S. meridionalis. Moreover, species maintained stable gastrointestinal tract morphology during the short interval of repeated feeding.
Collapse
Affiliation(s)
- Ling-Qing Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development, Southwest University, Chongqing, 400715, China
| | | | | | | | | |
Collapse
|
31
|
Koca YB, Gürcü B. Morphological and histochemical investigations of esophagogastric tract of a lizard, Laudakia stellio (Agamidae, Linnaeus 1758). ACTA BIOLOGICA HUNGARICA 2011; 62:376-87. [PMID: 22119867 DOI: 10.1556/abiol.62.2011.4.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Histological structures of esophagus and stomach tissue samples of Lacerta stellio have been studied, and glycosaminoglycan (GAG) distribution has been histochemically determined. Histologically, esophagus and stomach of L. stellio are composed of four layers: mucosa, submucosa, muscularis mucosae and serosa. Mucosa of esophagus is covered by simple columnar ciliated epithelium with many mucous secreting goblet cells and contains branched tubular glands.Stomach of L. stellio is composed of fundus (oral and aboral) and pylorus regions. Mucosa is covered by columnar epithelium. Fundic glands are branched tubular glands while pyloric glands are usually simple tubular glands. In both regions of the stomach, glands are subdivided into three areas as base, neck and isthmus. Both in the esophagus and stomach, muscular layer is in the form of smooth muscle having inner circular and outer longitudinal layers.According to the results obtained by Alcian Blue (pH 5.8)/Periodic Acid Schiff staining, stomach is similar to esophagus in that neutral mucins and hyaluronic acid (HA) are dominant in isthmus and neck regions of gland tissue of stomach. In the base of the stomach, only neutral mucins have been observed. HA has been observed to be dominant in all other regions of both stomach and esophagus, along with some but not much sulphated GAGs.
Collapse
Affiliation(s)
- Yücel Başimoğlu Koca
- Department of Biology, Faculty of Sciences and Art, Adnan Menderes University, Aydin, Turkey.
| | | |
Collapse
|
32
|
Icardo JM, Loong AIM, Colvee E, Wong WP, IP YK. The Alimentary Canal of the African Lungfish Protopterus annectens During Aestivation and After Arousal. Anat Rec (Hoboken) 2011; 295:60-72. [DOI: 10.1002/ar.21476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 07/26/2011] [Indexed: 11/12/2022]
|
33
|
Zerbe P, Glaus T, Clauss M, Hatt JM, Steinmetz HW. Ultrasonographic evaluation of postprandial heart variation in juvenile Paraguay anacondas (Eunectes notaeus). Am J Vet Res 2011; 72:1253-8. [DOI: 10.2460/ajvr.72.9.1253] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Gaucher L, Vidal N, D'Anatro A, Naya DE. Digestive flexibility during fasting in the characid fishHyphessobrycon luetkenii. J Morphol 2011; 273:49-56. [DOI: 10.1002/jmor.11005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/05/2011] [Accepted: 05/30/2011] [Indexed: 11/10/2022]
|
35
|
Naya DE, Veloso C, Sabat P, Bozinovic F. Physiological flexibility and climate change: The case of digestive function regulation in lizards. Comp Biochem Physiol A Mol Integr Physiol 2011; 159:100-4. [DOI: 10.1016/j.cbpa.2011.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/03/2011] [Accepted: 02/05/2011] [Indexed: 10/18/2022]
|
36
|
Khamas W, Reeves R. Morphological Study of the Oesophagus and Stomach of the Gopher Snake Pituophis catenifer. Anat Histol Embryol 2011; 40:307-13. [DOI: 10.1111/j.1439-0264.2011.01072.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Seasonal changes in liver size in edible dormice (Glis glis): non-invasive measurements using ultrasonography. EUR J WILDLIFE RES 2010. [DOI: 10.1007/s10344-010-0476-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
38
|
Wood MD, Beresford NA, Semenov DV, Yankovich TL, Copplestone D. Radionuclide transfer to reptiles. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:509-530. [PMID: 20725838 DOI: 10.1007/s00411-010-0321-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 07/29/2010] [Indexed: 05/29/2023]
Abstract
Reptiles are an important, and often protected, component of many ecosystems but have rarely been fully considered within ecological risk assessments (ERA) due to a paucity of data on contaminant uptake and effects. This paper presents a meta-analysis of literature-derived environmental media (soil and water) to whole-body concentration ratios (CRs) for predicting the transfer of 35 elements (Am, As, B, Ba, Ca, Cd, Ce, Cm, Co, Cr, Cs, Cu, Fe, Hg, K, La, Mg, Mn, Mo, Na, Ni, Pb, Po, Pu, Ra, Rb, Sb, Se, Sr, Th, U, V, Y, Zn, Zr) to reptiles in freshwater ecosystems and 15 elements (Am, C, Cs, Cu, K, Mn, Ni, Pb, Po, Pu, Sr, Tc, Th, U, Zn) to reptiles in terrestrial ecosystems. These reptile CRs are compared with CRs for other vertebrate groups. Tissue distribution data are also presented along with data on the fractional mass of bone, kidney, liver and muscle in reptiles. Although the data were originally collected for use in radiation dose assessments, many of the CR data presented in this paper will also be useful for chemical ERA and for the assessments of dietary transfer in humans for whom reptiles constitute an important component of the diet, such as in Australian aboriginal communities.
Collapse
Affiliation(s)
- Michael D Wood
- School of Environmental Sciences, University of Liverpool, Liverpool, Merseyside, UK.
| | | | | | | | | |
Collapse
|
39
|
Vervust B, Pafilis P, Valakos ED, Van Damme R. Anatomical and physiological changes associated with a recent dietary shift in the lizard Podarcis sicula. Physiol Biochem Zool 2010; 83:632-42. [PMID: 20504228 DOI: 10.1086/651704] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary shifts have played a major role in the evolution of many vertebrates. The idea that the evolution of herbivory is physiologically constrained in squamates is challenged by a number of observations that suggest that at least some lizards can overcome the putative physiological difficulties of herbivory on evolutionary and even ecological timescales. We compared a number of morphological and physiological traits purportedly associated with plant consumption between two island populations of the lacertid lizard Podarcis sicula. Previous studies revealed considerable differences in the amount of plant material consumed between those populations. We continued the investigation of this study system and explored the degree of divergence in morphology (dentition, gut morphology), digestive performance (gut passage time, digestive efficiency), and ecology (endosymbiont density). In addition, we also performed a preliminary analysis of the plasticity of some of these modifications. Our results confirm and expand earlier findings concerning divergence in the morphology of feeding structures between two island populations of P. sicula lizards. In addition to the differences in skull dimensions and the prevalence of cecal valves previously reported, these two recently diverged populations also differ in aspects of their dentition (teeth width) and the lengths of the stomach and small intestine. The plasticity experiment suggests that at least some of the changes associated with a dietary shift toward a higher proportion of plant material may be plastic. Our results also show that these morphological changes effectively translate into differences in digestive performance: the population with the longer digestive tract exhibits longer gut passage time and improved digestive efficiency.
Collapse
Affiliation(s)
- Bart Vervust
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk, Belgium.
| | | | | | | |
Collapse
|
40
|
Cox C, Secor S. Integrated Postprandial Responses of the Diamondback Water Snake, Nerodia rhombifer. Physiol Biochem Zool 2010; 83:618-31. [DOI: 10.1086/648737] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
41
|
Vidal MA, Sabat P. Stable isotopes document mainland–island divergence in resource use without concomitant physiological changes in the lizard Liolaemus pictus. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:61-7. [DOI: 10.1016/j.cbpb.2010.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 02/07/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
|
42
|
McCue MD. Starvation physiology: reviewing the different strategies animals use to survive a common challenge. Comp Biochem Physiol A Mol Integr Physiol 2010; 156:1-18. [PMID: 20060056 DOI: 10.1016/j.cbpa.2010.01.002] [Citation(s) in RCA: 452] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 12/30/2009] [Accepted: 01/03/2010] [Indexed: 11/26/2022]
Abstract
All animals face the possibility of limitations in food resources that could ultimately lead to starvation-induced mortality. The primary goal of this review is to characterize the various physiological strategies that allow different animals to survive starvation. The ancillary goals of this work are to identify areas in which investigations of starvation can be improved and to discuss recent advances and emerging directions in starvation research. The ubiquity of food limitation among animals, inconsistent terminology associated with starvation and fasting, and rationale for scientific investigations into starvation are discussed. Similarities and differences with regard to carbohydrate, lipid, and protein metabolism during starvation are also examined in a comparative context. Examples from the literature are used to underscore areas in which reporting and statistical practices, particularly those involved with starvation-induced changes in body composition and starvation-induced hypometabolism can be improved. The review concludes by highlighting several recent advances and promising research directions in starvation physiology. Because the hundreds of studies reviewed here vary so widely in their experimental designs and treatments, formal comparisons of starvation responses among studies and taxa are generally precluded; nevertheless, it is my aim to provide a starting point from which we may develop novel approaches, tools, and hypotheses to facilitate meaningful investigations into the physiology of starvation in animals.
Collapse
Affiliation(s)
- Marshall D McCue
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
43
|
Helmstetter C, Pope RK, T’Flachebba M, Secor SM, Lignot JH. The effects of feeding on cell morphology and proliferation of the gastrointestinal tract of juvenile Burmese pythons (Python molurus). CAN J ZOOL 2009. [DOI: 10.1139/z09-110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gastrointestinal tract of Burmese pythons ( Python molurus (L., 1758)) exhibits large morphological and physiological changes in response to feeding and extended periods of fasting. In this study the mucosa of the stomach, small intestine, and colon were examined for changes in structure and cellular proliferation. The mucosa of fasting pythons exhibited low levels of cellular replication, but after feeding, cellular replication was evident as early as 12 h in the small intestine and colon and 24 h in the stomach. Replication peaked 3 days postfeeding for the small intestine and colon, but was still increasing at 6 days postfeeding in the stomach. Interestingly, cell proliferation was still evident after 45 days in the colon. In these tissues, a stock of “ready-to-use” primary lysosomes is found in the mucosal cells of fasting animals, whereas profound intracellular recycling is typical of animals that have been fed. These findings indicate that during the postprandial period, the intestinal mucosa undergoes extensive remodelling in anticipation of the next fasting and feeding period. One key adaptive factor for the python’s ability to cope with infrequent feeding is a well-prepared digestive system in fasting animals that can quickly start functioning again when food becomes available.
Collapse
Affiliation(s)
- Cécile Helmstetter
- Centre National de la Recherche Scientifique, Centre d’Ecologie et Physiologie Energétiques, 23 rue Becquerel, F-67087 Strasbourg CEDEX 2, France
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - Robert K. Pope
- Centre National de la Recherche Scientifique, Centre d’Ecologie et Physiologie Energétiques, 23 rue Becquerel, F-67087 Strasbourg CEDEX 2, France
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - Mathieu T’Flachebba
- Centre National de la Recherche Scientifique, Centre d’Ecologie et Physiologie Energétiques, 23 rue Becquerel, F-67087 Strasbourg CEDEX 2, France
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - Stephen M. Secor
- Centre National de la Recherche Scientifique, Centre d’Ecologie et Physiologie Energétiques, 23 rue Becquerel, F-67087 Strasbourg CEDEX 2, France
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344, USA
| | - Jean-Hervé Lignot
- Centre National de la Recherche Scientifique, Centre d’Ecologie et Physiologie Energétiques, 23 rue Becquerel, F-67087 Strasbourg CEDEX 2, France
- Department of Biological Sciences, Box 870344, The University of Alabama, Tuscaloosa, AL 35487-0344, USA
| |
Collapse
|
44
|
Roark AM, Bjorndal KA, Bolten AB, Leeuwenburgh C. Biochemical indices as correlates of recent growth in juvenile green turtles (Chelonia mydas). JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY 2009; 376:59-67. [PMID: 20161581 PMCID: PMC2808034 DOI: 10.1016/j.jembe.2009.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleic acid and protein concentrations and their ratios are increasingly used as correlates of nutritional condition and growth in marine species. However, their application in studies of reptile growth has not yet been validated. The green turtle (Chelonia mydas) is an endangered marine reptile for which assessing population health requires knowledge of demographic parameters such as individual growth rates. The purpose of this study was to evaluate a number of biochemical indices ([DNA], [RNA], RNA:DNA ratio, [protein], protein:DNA ratio, and RNA:protein ratio) in liver, heart, and blood as potential predictors of recent growth rate in juvenile green turtles under controlled feeding conditions. Intake of juvenile green turtles was manipulated over twelve weeks to obtain a range of growth rates. With the exception of [RNA](blood), [DNA](heart), and [protein]:[DNA](liver), all biochemical indices demonstrated significant linear relationships with growth rate during the last 1.5 weeks of the study. The best single predictors of recent growth were hepatic [RNA] and [RNA]:[protein], which explained 66% and 49%, respectively, of the variance in growth. Contrary to expectations, these two indices were negatively correlated with growth rate. To investigate the possibility that hepatic [RNA] was higher in slow-growing turtles because of elevated expression of antioxidant genes, we quantified glutathione peroxidase activity and total antioxidant potential. Both measures of antioxidant function were affected by intake and growth histories, but these effects did not explain our results for hepatic RNA and protein concentrations. We developed a model that predicted 68% of the variance in specific growth rate (SGR) with the equation SGR = -0.913(ln[RNA](liver)) + 17.689(Condition Index) + 4.316. In addition, our findings that [DNA] and [RNA]:[DNA] for blood were significantly correlated with SGR demonstrate the potential utility of minimally invasive tissue sampling that could facilitate instantaneous population monitoring.
Collapse
Affiliation(s)
- Alison M. Roark
- Archie Carr Center for Sea Turtle Research, Department of Zoology, University of Florida, Box, 118525, Gainesville, FL 32611, USA
| | - Karen A. Bjorndal
- Archie Carr Center for Sea Turtle Research, Department of Zoology, University of Florida, Box, 118525, Gainesville, FL 32611, USA
| | - Alan B. Bolten
- Archie Carr Center for Sea Turtle Research, Department of Zoology, University of Florida, Box, 118525, Gainesville, FL 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatrics, College of Medicine, University of Florida Institute on, Aging Genomics and Biomarkers Core, Biochemistry of Aging Laboratory, Gainesville, FL 32611, USA
| |
Collapse
|
45
|
Naya DE, Veloso C, Sabat P, Bozinovic F. The effect of short- and long-term fasting on digestive and metabolic flexibility in the Andean toad, Bufo spinulosus. J Exp Biol 2009; 212:2167-75. [DOI: 10.1242/jeb.030650] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
SUMMARY
Hibernation in ectothermic animals was historically considered as a simple cold-induced torpor state resulting from the inability to maintain a high body temperature at low ambient temperatures. During the last decades this vision changed and nowadays there is a myriad of studies showing that hibernation implies different adjustments at the genetic, molecular, biochemical and cellular levels. However, studies oriented to evaluate changes of whole organism structure and physiology still are scarce, which is particularly true for amphibians that hibernate on land. Accordingly, in the Andean toad(Bufo spinulosus), we investigated the effect of short-term fasting and hibernation on the hydrolytic activity of digestive enzymes, histology of the small intestine, gross morphology of digestive and other internal organs and standard metabolic rate. Based on the pattern of size variation, internal organs may be grouped into those that were affected by both season and feeding condition (small intestine, stomach and liver), those that were only affected by season (fat bodies), those that were only affected by feeding condition(kidneys) and, finally, those that did not change between the three groups(large intestine, heart and lungs). Hydrolytic activity of maltase, trehalase and aminopeptidase-N followed the same pattern of variation(feeding>fasting>hibernating toads), although the change for the latter enzyme was less noticeable than for the disaccharidases. Enzymatic adjustments were correlated with changes in small intestine histology: villus and enterocyte height increased from hibernating to fasting and more markedly from fasting to feeding toads. Metabolic rate decreased during hibernation to 7.8%(at 5°C) and 13.6% (at 15°C) of summer values, which is one of the highest metabolic depressions reported for any ectothermic vertebrate. Our results suggest that amphibian persistence in highly seasonal environments is related to a large capacity of phenotypic flexibility at different organisational levels; an ability that may be related to the extensive ranges of temporal existence and geographic distribution of these vertebrates.
Collapse
Affiliation(s)
- Daniel E. Naya
- Sección Evolución, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
- Center for Advanced Studies in Ecology and Biodiversity, LINC-Global and Departamento de Ecología, Pontificia Universidad Católica de Chile, CP 6513677, Santiago, Chile
| | - Claudio Veloso
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Pablo Sabat
- Center for Advanced Studies in Ecology and Biodiversity, LINC-Global and Departamento de Ecología, Pontificia Universidad Católica de Chile, CP 6513677, Santiago, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
| | - Francisco Bozinovic
- Center for Advanced Studies in Ecology and Biodiversity, LINC-Global and Departamento de Ecología, Pontificia Universidad Católica de Chile, CP 6513677, Santiago, Chile
| |
Collapse
|
46
|
Wagner CE, McIntyre PB, Buels KS, Gilbert DM, Michel E. Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Funct Ecol 2009. [DOI: 10.1111/j.1365-2435.2009.01589.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
47
|
Ksiazek A, Czerniecki J, Konarzewski M. Phenotypic flexibility of traits related to energy acquisition in mice divergently selected for basal metabolic rate (BMR). ACTA ACUST UNITED AC 2009; 212:808-14. [PMID: 19251997 DOI: 10.1242/jeb.025528] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Theoretical considerations suggest that one of the main factors determining phenotypic flexibility of the digestive system is the size (mass) of internal organs. To test this, we used mice from two lines selected for high and low levels of basal metabolic rate (BMR). Mice with higher BMRs also have larger internal organs and higher daily food consumption (C) under non-stressful conditions. We exposed animals from both lines to a sudden cold exposure by transferring them (without prior acclimation) from an ambient temperature of 23 degrees C to 5 degrees C. Cold exposure elicited a twofold increase in C and a 25% reduction of apparent digestive efficiency. For the same body mass-corrected C, small intestine, kidneys, heart and liver of cold-exposed low-BMR mice were smaller than those of the high-BMR line. Therefore, the internal organs of low-BMR animals were burdened with substantially higher metabolic loads (defined as C or digestible food intake per total mass of a particular organ). The mass-specific activity of citrate synthase (CS) in the liver and kidneys (but not heart) was also lower in the low-BMR mice. The magnitude of phenotypic flexibility of internal organ size and CS activity was strictly proportional to the organ mass (in the case of kidneys and liver, also mass-specific CS activity) prior to an increased energy demand. Thus, phenotypic flexibility had additive rather than multiplicative dynamics. Our results also suggest that variation in BMR positively correlates with the magnitude of an immediate spare capacity that fuels the initial response of internal organs to a sudden metabolic stress.
Collapse
Affiliation(s)
- Aneta Ksiazek
- Institute of Biology, University of Białystok, Swierkowa 20b, 15-950 Białystok, Poland.
| | | | | |
Collapse
|
48
|
Fatty acid analyses may provide insight into the progression of starvation among squamate reptiles. Comp Biochem Physiol A Mol Integr Physiol 2008; 151:239-46. [DOI: 10.1016/j.cbpa.2008.06.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 06/27/2008] [Accepted: 06/30/2008] [Indexed: 11/21/2022]
|
49
|
Santos X, Llorente GA. Gastrointestinal responses to feeding in a frequently feeding colubrid snake (Natrix maura). Comp Biochem Physiol A Mol Integr Physiol 2008; 150:75-9. [DOI: 10.1016/j.cbpa.2008.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Revised: 03/08/2008] [Accepted: 03/09/2008] [Indexed: 11/26/2022]
|
50
|
Habold C, Reichardt F, Foltzer-Jourdainne C, Lignot JH. Morphological changes of the rat intestinal lining in relation to body stores depletion during fasting and after refeeding. Pflugers Arch 2007; 455:323-32. [PMID: 17638014 DOI: 10.1007/s00424-007-0289-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Accepted: 05/09/2007] [Indexed: 11/25/2022]
Abstract
Intestinal villus atrophy through prolonged fasting was studied according to two different metabolic phases reached by fasting animals and characterized by (a) the mobilization of fat stores as body fuel and (b) an increase in protein catabolism for energy expenditure. The mechanisms involved in the rapid jejunal restoration after refeeding were also determined. Mucosal structural atrophy during fasting proved to worsen over the two phases due mainly to the retraction of the lacteals in the lamina propria, as observed through the immunolocalization of aquaporin 1 in the endothelial cells of the lymphatic vessels and the detachment of the basal membrane of the epithelial lining at the tip of the villi. Microvilli surface area is preserved through fasting, and apical PepT1 expression increases during both metabolic fasting phases. Refeeding after both fasting phases induces an increase in FATP4 accompanied by a rapid lipid uptake by the enterocytes at the tip of the villi and a rapid extension of the lamina propria due to inflated lymphatic vessels. These mechanisms were more prevalent in animals refed after the phase III fast and could be considered as the major processes allowing complete morphological restoration of the jejunum within only 3 days after refeeding.
Collapse
Affiliation(s)
- Caroline Habold
- Département d'Ecologie, Physiologie et Ethologie, CNRS, IPHC, 23 rue Becquerel, 67087 Strasbourg cedex 2, France
| | | | | | | |
Collapse
|