1
|
Koç Ş. A possible follow-up method for diabetic heart failure patients. Int J Clin Pract 2021; 75:e14794. [PMID: 34482595 DOI: 10.1111/ijcp.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/02/2021] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Plasma osmolarity is maintained through various mechanisms. The osmolarity of the aqueous humor around the crystalline lens is correlated with plasma osmolarity. A vacuole can be formed in the lens upon changes in osmolarity. The sodium-glucose cotransporter 2 inhibitors (SGLT2i) are new in the treatment of heart failure. They can cause osmotic diuresis but do not affect plasma osmolarity. OBJECTIVE It is unclear if the presence or absence of lens vacuole changes can monitor diabetic heart failure and SGLT2i treatment efficacy. METHODS Web of Science, PubMed and Scopus databases were searched for relevant articles about osmolarity, diabetes, transient receptor potential vanilloid channel, diabetic heart failure, lens vacuoles up to May 2021. MAIN MESSAGE The effect of SGLT2i on osmosis underlies its benefit to heart failure, but this in turn affects many other mechanisms. Failure to experience osmolarity changes will reduce the negative changes in terms of heart failure affected by osmolarity. A practical observable method is needed. CONCLUSIONS There is a possibility of using lens vacuoles in the follow-up of diabetic heart failure patients.
Collapse
Affiliation(s)
- Şahbender Koç
- University of Health Sciences, Keçiören Education and Training Hospital, Ankara, Turkey
| |
Collapse
|
2
|
Aguilar OA, Hadj-Moussa H, Storey KB. Freeze-responsive regulation of MEF2 proteins and downstream gene networks in muscles of the wood frog, Rana sylvatica. J Therm Biol 2017; 67:1-8. [DOI: 10.1016/j.jtherbio.2017.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023]
|
3
|
Multiple across-strain and within-strain QTLs suggest highly complex genetic architecture for hypoxia tolerance in channel catfish. Mol Genet Genomics 2016; 292:63-76. [PMID: 27734158 DOI: 10.1007/s00438-016-1256-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/03/2016] [Indexed: 10/20/2022]
Abstract
The ability to survive hypoxic conditions is important for various organisms, especially for aquatic animals. Teleost fish, representing more than 50 % of vertebrate species, are extremely efficient in utilizing low levels of dissolved oxygen in water. However, huge variations exist among various taxa of fish in their ability to tolerate hypoxia. In aquaculture, hypoxia tolerance is among the most important traits because hypoxia can cause major economic losses. Genetic enhancement for hypoxia tolerance in catfish is of great interest, but little was done with analysis of the genetic architecture of hypoxia tolerance. The objective of this study was to conduct a genome-wide association study to identify QTLs for hypoxia tolerance using the catfish 250K SNP array with channel catfish families from six strains. Multiple significant and suggestive QTLs were identified across and within strains. One significant QTL and four suggestive QTLs were identified across strains. Six significant QTLs and many suggestive QTLs were identified within strains. There were rare overlaps among the QTLs identified within the six strains, suggesting a complex genetic architecture of hypoxia tolerance. Overall, within-strain QTLs explained larger proportion of phenotypic variation than across-strain QTLs. Many of genes within these identified QTLs have known functions for regulation of oxygen metabolism and involvement in hypoxia responses. Pathway analysis indicated that most of these genes were involved in MAPK or PI3K/AKT/mTOR signaling pathways that were known to be important for hypoxia-mediated angiogenesis, cell proliferation, apoptosis and survival.
Collapse
|
4
|
Jewhurst K, McLaughlin KA. Beyond the Mammalian Heart: Fish and Amphibians as a Model for Cardiac Repair and Regeneration. J Dev Biol 2015; 4:jdb4010001. [PMID: 29615574 PMCID: PMC5831815 DOI: 10.3390/jdb4010001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/04/2015] [Accepted: 12/17/2015] [Indexed: 12/12/2022] Open
Abstract
The epidemic of heart disease, the leading cause of death worldwide, is made worse by the fact that the adult mammalian heart is especially poor at repair. Damage to the mammal heart-such as that caused by myocardial infarction-leads to scarring, resulting in cardiac dysfunction and heart failure. In contrast, the hearts of fish and urodele amphibians are capable of complete regeneration of cardiac tissue from multiple types of damage, with full restoration of functionality. In the last decades, research has revealed a wealth of information on how these animals are able to perform this remarkable feat, and non-mammalian models of heart repair have become a burgeoning new source of data on the morphological, cellular, and molecular processes necessary to heal cardiac damage. In this review we present the major findings from recent research on the underlying mechanisms of fish and amphibian heart regeneration. We also discuss the tools and techniques that have been developed to answer these important questions.
Collapse
Affiliation(s)
- Kyle Jewhurst
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | | |
Collapse
|
5
|
Umasuthan N, Bathige SDNK, Noh JK, Lee J. Gene structure, molecular characterization and transcriptional expression of two p38 isoforms (MAPK11 and MAPK14) from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2015; 47:331-343. [PMID: 26363230 DOI: 10.1016/j.fsi.2015.09.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/07/2015] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
The p38 kinases are one of the four subgroups of mitogen-activated protein kinase (MAPK) superfamily which are involved in the innate immunity. The p38 subfamily that includes four members namely p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12) and p38δ (MAPK13), regulates the activation of several transcription factors. In this study, a p38β (OfMAPK11) homolog and a p38α (OfMAPK14) homolog of Oplegnathus fasciatus were identified at genomic level. Results clearly showed that both MAPK11 and MAPK14 are well-conserved at both genomic structural- and amino acid (aa)-levels. Genomic sequences of OfMAPK11 (∼ 15.6 kb) and OfMAPK14 (∼ 13.4 kb) had 12 exons. A comparison of exon-intron structural arrangement of these genes from different vertebrate lineages indicated that all the exon lengths are highly conserved, except their terminal exons. Full-length cDNAs of OfMAPK11 (3957 bp) and OfMAPK14 (2504 bp) encoded corresponding proteins of 361 aa and 360 aa, respectively. Both OfMAPK proteins harbored a Ser/Thr protein kinases catalytic domain (S_TKc domain) which includes an activation loop with a dual phosphorylation site (TGY motif) and several specific-binding sites for ATP and substrates. Molecular modeling of the activation loop and substrate binding sites of rock bream MAPKs revealed the conservation of crucial residues and their orientation in 3D space. Transcripts of OfMAPKs were ubiquitously detected in eleven tissues examined, however at different levels. The modulation of OfMAPKs' transcription upon pathogen-associated molecular patterns (PAMPs: flagellin, lipopolysaccharide and poly I:C) and pathogens (Edwardsiella tarda, Streptococcus iniae and rock bream iridovirus) was investigated. Among the seven examined tissues, the flagellin-challenge upregulated the mRNA level of both OfMAPKs in the head kidney. Meanwhile, modulation of OfMAPK mRNA expression in the liver upon other immune-challenges varied in a time-dependent manner. Collectively, these results suggest that OfMAPKs are true members of p38 subfamily, which might be induced by different immune stimuli.
Collapse
Affiliation(s)
- Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
6
|
Feidantsis K, Anestis A, Michaelidis B. Seasonal variations of anti-/apoptotic and antioxidant proteins in the heart and gastrocnemius muscle of the water frog Pelophylax ridibundus. Cryobiology 2013; 67:175-83. [DOI: 10.1016/j.cryobiol.2013.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/22/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023]
|
7
|
Feidantsis K, Anestis A, Vasara E, Kyriakopoulou-Sklavounou P, Michaelidis B. Seasonal variations of cellular stress response in the heart and gastrocnemius muscle of the water frog (Pelophylax ridibundus). Comp Biochem Physiol A Mol Integr Physiol 2012; 162:331-9. [DOI: 10.1016/j.cbpa.2012.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/03/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
|
8
|
Cai J, Huang Y, Wei S, Huang X, Ye F, Fu J, Qin Q. Characterization of p38 MAPKs from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1129-1136. [PMID: 22005516 DOI: 10.1016/j.fsi.2011.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/29/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
p38 mitogen-activated protein kinases (MAPKs) are broadly expressed signaling molecules that involves in the regulation of cellular responsible for various extracellular stimuli. In this study, three p38 MAPK genes (Ec-p38a, p38b and p38β) were cloned from grouper, Epinephelus coioides and their characteristics were investigated in vitro. Although Ec-p38a, p38b and p38β showed high homologies to other fish p38a MPAK, p38b MAPK and p38β MAPK, respectively, they all contained the conserved structures of Thr-Gly-Tyr (TGY) motif and substrate binding site Ala-Thr-Arg-Trp (ATRW). Phylogenetic analysis indicated that Ec-p38a, p38b and p38β are more closely related to those from fish than mammals. The tissue distribution patterns of Ec-p38a, p38b and p38β were different, and Ec-p38β was up-regulated most obviously in head kidney after Singapore grouper iridovirus (SGIV) infection. Overexpression of Ec-p38β in FHM cells delayed the occurrence of CPE induced by SGIV infection. Further analysis indicated that overexpression of Ec-p38β inhibited viral gene transcription and protein synthesis, as well as SGIV induced typical apoptosis in fish cells. Taken together, our data indicated that Ec-p38β played a crucial role in regulating apoptosis and virus replication during iridovirus infection.
Collapse
Affiliation(s)
- Jia Cai
- Key Laboratory of Marine Bio-resources Sustainable Utilization, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, PR China
| | | | | | | | | | | | | |
Collapse
|
9
|
Ezure T, Amano S. Heat stimulation reduces early adipogenesis in 3T3-L1 preadipocytes. Endocrine 2009; 35:402-8. [PMID: 19277908 DOI: 10.1007/s12020-009-9164-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/15/2009] [Accepted: 02/23/2009] [Indexed: 01/21/2023]
Abstract
In this study, we used 3T3-L1 preadipocytes as a model to investigate the effects of heat stimulation on adipogenesis, which is a key process in the development of obesity. Heat stimulation at 43 degrees C for 60 min significantly reduced lipid accumulation, as measured by Oil Red-O assay. In the early phase of adipogenesis, heat stimulation almost completely blocked the increase of CCAAT/enhancer binding protein delta (C/EBPdelta) gene expression and delayed the onset of the increase of C/EBPbeta gene expression. The expression of proliferator-activated receptor gamma (PPARgamma), which is regulated by these factors, was also reduced. In the later phase of adipogenesis, the induction of adipocyte-specific genes, such as C/EBPalpha, adipocyte protein 2 (aP2), lipoprotein lipase (LPL), adiponectin, and glucose transporter 4 (Glut4), which are regulated by PPARgamma, was reduced. However, adipogenesis was not significantly reduced if heat stimulation was carried out after the early phase of adipogenesis. These results suggest that heat stimulation reduces adipogenesis by decreasing the expression of adipogenesis-related transcriptional factors during early adipogenesis.
Collapse
Affiliation(s)
- Tomonobu Ezure
- Shiseido Research Center, Tsuzuki-ku, Yokohama-shi, Kanagawa 224-8558, Japan.
| | | |
Collapse
|
10
|
Michaelidis B, Hatzikamari M, Antoniou V, Anestis A, Lazou A. Stress activated protein kinases, JNKs and p38 MAPK, are differentially activated in ganglia and heart of land snail Helix lucorum (L.) during seasonal hibernation and arousal. Comp Biochem Physiol A Mol Integr Physiol 2009; 153:149-53. [DOI: 10.1016/j.cbpa.2009.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/23/2009] [Accepted: 01/29/2009] [Indexed: 11/15/2022]
|
11
|
Levin TC, Wickliffe KE, Leppla SH, Moayeri M. Heat shock inhibits caspase-1 activity while also preventing its inflammasome-mediated activation by anthrax lethal toxin. Cell Microbiol 2008; 10:2434-46. [PMID: 18671821 PMCID: PMC2592509 DOI: 10.1111/j.1462-5822.2008.01220.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Anthrax lethal toxin (LT) rapidly kills macrophages from certain mouse strains in a mechanism dependent on the breakdown of unknown protein(s) by the proteasome, formation of the Nalp1b (NLRP1b) inflammasome and subsequent activation of caspase-1. We report that heat-shocking LT-sensitive macrophages rapidly protects them against cytolysis by inhibiting caspase-1 activation without upstream effects on LT endocytosis or cleavage of the toxin's known cytosolic substrates (mitogen-activated protein kinases). Heat shock protection against LT occurred through a mechanism independent of de novo protein synthesis, HSP90 activity, p38 activation or proteasome inhibition and was downstream of mitogen-activated protein kinase cleavage and degradation of an unknown substrate by the proteasome. The heat shock inhibition of LT-mediated caspase-1 activation was not specific to the Nalp1b (NLRP1b) inflammasome, as heat shock also inhibited Nalp3 (NLRP3) inflammasome-mediated caspase-1 activation in macrophages. We found that heat shock induced pro-caspase-1 association with a large cellular complex that could prevent its activation. Additionally, while heat-shocking recombinant caspase-1 did not affect its activity in vitro, lysates from heat-shocked cells completely inhibited recombinant active caspase-1 activity. Our results suggest that heat shock inhibition of active caspase-1 can occur independently of an inflammasome platform, through a titratable factor present within intact, functioning heat-shocked cells.
Collapse
Affiliation(s)
- Tera C. Levin
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Katherine E. Wickliffe
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Stephen H. Leppla
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| | - Mahtab Moayeri
- Bacterial Toxins and Therapeutics Section, Laboratory of Bacterial Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892
| |
Collapse
|
12
|
Gaitanaki C, Mastri M, Aggeli IKS, Beis I. Differential roles of p38-MAPK and JNKs in mediating early protection or apoptosis in the hyperthermic perfused amphibian heart. J Exp Biol 2008; 211:2524-32. [DOI: 10.1242/jeb.018960] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
In the present study the activation of p38 mitogen-activated protein kinase(p38-MAPK) and c-Jun N-terminal kinases (JNKs) by hyperthermia was investigated in the isolated perfused Rana ridibunda heart. Hyperthermia (42°C) was found to profoundly stimulate p38-MAPK phosphorylation within 0.5 h, with maximal values being attained at 1 h[4.503(±0.577)-fold relative to control, P<0.01]. JNKs were also activated under these conditions in a sustained manner for at least 4 h[2.641(±0.217)-fold relative to control, P<0.01]. Regarding their substrates, heat shock protein 27 (Hsp27) was maximally phosphorylated at 1 h [2.261(±0.327)-fold relative to control, P<0.01] and c-Jun at a later phase [3 h: 5.367(±0.081)-fold relative to control, P<0.001]. Hyperthermia-induced p38-MAPK activation was found to be dependent on the Na+/H+ exchanger 1 (NHE1) and was also suppressed by catalase (Cat) and superoxide dismutase (SOD), implicating the generation of reactive oxygen species (ROS). ROS were also implicated in the activation of JNKs by hyperthermia, with the Na+/K+-ATPase acting as a mediator of this effect at an early stage and the NHE1 getting involved at a later time point. Finally, JNKs were found to be the principal mediators of the apoptosis induced under hyperthermic conditions, as their inhibition abolished poly(ADP-ribose)polymerase (PARP) cleavage after 4 h at 42°C. Overall, to our knowledge,this study highlights for the first time the variable mediators implicated in the transduction of the hyperthermic signal in the isolated perfused heart of an ectotherm and deciphers a potential salutary effect of p38-MAPK as well as the fundamental role of JNKs in the induced apoptosis.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | - Michalis Mastri
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | - Ioanna-Katerina S. Aggeli
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | - Isidoros Beis
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| |
Collapse
|
13
|
Gaitanaki C, Kalpachidou T, Aggeli IKS, Papazafiri P, Beis I. CoCl2 induces protective events via the p38-MAPK signalling pathway and ANP in the perfused amphibian heart. ACTA ACUST UNITED AC 2007; 210:2267-77. [PMID: 17575032 DOI: 10.1242/jeb.003178] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) constitute one of the most important intracellular signalling pathways. In particular, the p38-MAPK subfamily is known to be activated under various stressful conditions, such as mechanical or oxidative stress. Furthermore, cobalt chloride (CoCl2) has been shown to mimic hypoxic responses in various cell lines and cause overproduction of reactive oxygen species (ROS). In the current study, we investigated the effect of CoCl2 on p38-MAPK signalling pathway in the perfused Rana ridibunda heart. Immunoblot analysis of the phosphorylated, and thus activated, form of p38-MAPK revealed that maximum phosphorylation was attained at 500 micromol l(-1) CoCl2. A similar profile was observed for MAPKAPK2 and Hsp27 phosphorylation (direct and indirect p38-MAPK substrates, respectively). Time course analysis of p38-MAPK phosphorylation pattern showed that the kinase reached its peak within 15 min of treatment with 500 micromol l(-1) CoCl2. Similar results were obtained for Hsp27 phosphorylation. In the presence of the antioxidants Trolox or Lipoic acid, p38-MAPK CoCl2-induced phosphorylation was attenuated. Analogous results were obtained for Hsp27 and MAPKAPK2. In parallel, mRNA levels of the ANP gene, a hormone whose transcriptional regulation has previously been shown to be regulated by p38-MAPK, were examined (semi-quantitative ratiometric RT-PCR). CoCl2 treatment significantly increased ANP mRNA levels, whereas, in the presence of antioxidants, the transcript levels returned to basal values. All the above data indicate that CoCl2 stimulates compensatory mechanisms involving the p38-MAPK signalling cascade along with ANP.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, University of Athens, Panepistimioupolis, 157 84 Athens, Greece
| | | | | | | | | |
Collapse
|
14
|
Ai J, Wang Y, Tan K, Deng Y, Luo N, Yuan W, Wang Z, Li Y, Wang Y, Mo X, Zhu C, Yin Z, Liu M, Wu X. A human homolog of mouse Lbh gene, hLBH, expresses in heart and activates SRE and AP-1 mediated MAPK signaling pathway. Mol Biol Rep 2007; 35:179-87. [PMID: 17390236 DOI: 10.1007/s11033-007-9068-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 02/26/2007] [Indexed: 01/24/2023]
Abstract
It has been reported that mouse Lbh (limb-bud and heart) can regulate cardiac gene expression by modulating the combinatorial activities of key cardiac transcription factors, as well as their individual functions in cardiogenesis. Here we report the cloning and characterization of the human homolog of mouse Lbh gene, hLBH, from a human embryonic heart cDNA library. The cDNA of hLBH is 2927 bp long, encoding a protein product of 105 amino acids. The protein is highly conserved in evolution across different species from zebra fish, to mouse, to human. Northern blot analysis indicates that a 2.9 kb transcript specific for hLBH is most abundantly expressed in both embryonic and adult heart tissue. In COS-7 cells, hLBH proteins are localized to both the nucleus and the cytoplasm. hLBH is a transcription activator when fused to Gal-4 DNA-binding domain. Deletion analysis indicates that both the N-terminal containing proline-dependent serine/threonine kinase group and the C-terminal containing ERK D-domain motif are required for transcriptional activation. Overexpression of hLBH in COS-7 cells activates the transcriptional activities of activator protein-1 (AP-1) and serum response element (SRE). These results suggest that hLBH proteins may act as a transcriptional activator in mitogen-activated protein kinase signaling pathway to mediate cellular functions.
Collapse
Affiliation(s)
- Jianping Ai
- The Center For Heart Development, Key Lab of MOE for Development Biology and Protein Chemistry, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, Peoples' Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gaitanaki C, Pliatska M, Stathopoulou K, Beis I. Cu2+ and acute thermal stress induce protective eventsviathe p38-MAPK signalling pathway in the perfusedRana ridibundaheart. J Exp Biol 2007; 210:438-46. [PMID: 17234613 DOI: 10.1242/jeb.02680] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYIn the present study, we investigated the induction of the p38-MAPK signalling pathway by copper, as exemplified by CuCl2, in the isolated perfused heart of the amphibian Rana ridibunda. We found that p38-MAPK phosphorylation by CuCl2 occurs in a dose-dependent manner, with maximum activation (8.73±1.43-fold relative to control values) attained by perfusion with 500 μmol l–1CuCl2 for 15 min, while this activation sustained even after 60 min of reperfusion with normal bicarbonate buffer. CuCl2 also induced the phosphorylation of the small heat shock protein 27 (Hsp27) in a p38-MAPK dependent manner, as revealed by experiments using the p38-MAPK inhibitor SB203580. p38-MAPK and Hsp27 phosphorylations were also strongly induced by hyperthermia (42°C), while the simultaneous use of hyperthermia and CuCl2 had a synergistic effect on p38-MAPK activation. Furthermore,perfusions with the potent antioxidant L-ascorbic acid (100 μmol l–1), the antioxidant enzymes catalase (CAT) (150 U ml–1) or superoxide dismutase (SOD) (30 U ml–1) in the presence of 500 μmol l–1CuCl2 did not attenuate the CuCl2-induced p38-MAPK activation, implying that at least the reactive oxygen species (ROS) scavenged by these agents are not implicated in this kinase activation. The p38-MAPK phosphorylation induced by the combined action of CuCl2 and hyperthermia was partially inhibited by catalase, indicating that hyperthermia possibly activates the kinase through the production of H2O2. Caspase-3, an effector protease of apoptosis,remained inactive in hearts perfused at normal or hyperthermic conditions, in the absence or presence of 500 μmol l–1 CuCl2. All the above results suggest that, in the amphibian Rana ridibundaheart, p38-MAPK activation by copper has a possible protective role through the small Hsp27.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, Faculty of Sciences, University of Athens, Panepistimioupolis, Athens 157 84, Greece
| | | | | | | |
Collapse
|
16
|
Vassilopoulos A, Gaitanaki C, Papazafiri P, Beis I. Atrial Natriuretic Peptide mRNA Regulation by p38- MAPK in the Perfused Amphibian Heart. Cell Physiol Biochem 2006; 16:183-192. [PMID: 16342435 DOI: 10.1159/000097100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Gaitanaki C, Papatriantafyllou M, Stathopoulou K, Beis I. Effects of various oxidants and antioxidants on the p38-MAPK signalling pathway in the perfused amphibian heart. Mol Cell Biochem 2006; 291:107-17. [PMID: 16710743 DOI: 10.1007/s11010-006-9203-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 03/28/2006] [Indexed: 01/23/2023]
Abstract
We investigated the effects of different antioxidants such as L-ascorbic acid, catalase, and superoxide dismutase (SOD), on the p38-MAPK activation induced by oxidative stress in the isolated perfused amphibian heart. Oxidative stress was exemplified by perfusing hearts with 30 microM H(2)O(2) for 5 min or with the enzymatic system of xanthine/xanthine oxidase (200 microM/10 mU/ml, respectively) for 10 min. H(2)O(2)-induced activation of p38-MAPK (7.04 +/- 0.20-fold relative to control values) was totally attenuated by L-ascorbic acid (100 microM) or catalase (150 U/ml). These results were confirmed by immunohistochemical studies in which the phosphorylated form of p38-MAPK was localised in the perinuclear region and dispersedly in the cytoplasm of the ventricular cells during H(2)O(2) treatment, a pattern that was abolished by catalase or L-ascorbic acid. p38-MAPK was also activated (2.34 +/- 0.17-fold) by perfusing amphibian hearts with the reactive oxygen species (ROS)-generating system of xanthine/xanthine oxidase and this activation sustained in the presence of 150 U/ml catalase (2.16 +/- 0.26-fold), 50 U/ml SOD (2.02 +/- 0.07) or 100 microM L-ascorbic acid (2.18 +/- 0.10), but was suppressed by the combination of 150 U/ml catalase and 50 U/ml SOD. Finally, our studies showed that xanthine/xanthine oxidase induced the phosphorylation of the potent p38-MAPK substrates MAPKAPK2 (3.14 +/- 0.27-fold) and HSP27 (5.32 +/- 0.83-fold), which are implicated in cell protection, and this activation was reduced by the simultaneous use of catalase and SOD.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal & Human Physiology, School of Biology, Faculty of Sciences, University of Athens, Panepistimioupolis, Athens, 157 84, Greece
| | | | | | | |
Collapse
|
18
|
Stathopoulou K, Gaitanaki C, Beis I. Extracellular pH changes activate the p38-MAPK signalling pathway in the amphibian heart. J Exp Biol 2006; 209:1344-54. [PMID: 16547305 DOI: 10.1242/jeb.02134] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SUMMARYWe investigated the activation of the p38-MAPK signalling pathway during extracellular pH changes in the isolated perfused amphibian heart. Extracellular alkalosis (pH 8.5 or 9.5) maximally activated p38-MAPK within 2 min (4.17- and 3.20-fold, respectively) and this effect was reversible since the kinase phosphorylation levels decreased upon reperfusing the heart with normal Tris–Tyrode's buffer. Extracellular acidosis also activated p38-MAPK moderately, but persistently (1.65-fold, at 1 min and 1.91-fold, at 60 min). The alkalosis-induced p38-MAPK activation depended upon the Na+/H+ exchanger (NHE) and Na+/K+-ATPase, because it was abolished when the NHE inhibitors amiloride and HOE642 and the Na+/K+-ATPase inhibitor, ouabain, were used. Our studies also showed that extracellular alkalosis (pH 8.5) induced MAPKAPK2 phosphorylation (2.59-fold, 2 min) and HSP27 phosphorylation (5.33-fold, 2 min) in a p38-MAPK-dependent manner, as it was inhibited with 1 μmol l–1 SB203580. Furthermore,immunohistochemical studies of the phosphorylated forms of p38-MAPK and HSP27 revealed that these proteins were localised in the perinuclear region and dispersedly in the cytoplasm of ventricular cells during alkalosis. Finally,alkalosis induced the increase of HSP70 protein levels (1.52-fold, 5 min), but independently of p38-MAPK activation. These data indicate that the p38-MAPK signalling pathway is activated by extracellular pH changes and in the case of alkalosis this activation may have a protective role.
Collapse
Affiliation(s)
- Konstantina Stathopoulou
- Department of Animal and Human Physiology, School of Biology, Faculty of Sciences, University of Athens, Panepistimioupolis, Athens 157 84, Greece
| | | | | |
Collapse
|
19
|
Sung CS, Wen ZH, Chang WK, Chan KH, Ho ST, Tsai SK, Chang YC, Wong CS. Inhibition of p38 mitogen-activated protein kinase attenuates interleukin-1beta-induced thermal hyperalgesia and inducible nitric oxide synthase expression in the spinal cord. J Neurochem 2005; 94:742-52. [PMID: 16033422 DOI: 10.1111/j.1471-4159.2005.03226.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have reported recently that intrathecal (i.t.) injection of interleukin-1beta (IL-1beta), at a dose of 100 ng, induces inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production in the spinal cord and results in thermal hyperalgesia in rats. This study further examines the role of mitogen-activated protein kinase (MAPK) in i.t. IL-1beta-mediated iNOS-NO cascade in spinal nociceptive signal transduction. All rats were implanted with an i.t. catheter either with or without an additional microdialysis probe. Paw withdrawal latency to radiant heat is used to assess thermal hyperalgesia. The iNOS and MAPK protein expression in the spinal cord dorsal horn were examined by western blot. The [NO] in CSF dialysates were also measured. Intrathecal IL-1beta leads to a time-dependent up-regulation of phosphorylated p38 (p-p38) MAPK protein expression in the spinal cord 30-240 min following IL-1beta injection (i.t.). However, neither the phosphorylated extracellular signal-regulated kinase (p-ERK) nor phosphorylated c-Jun NH2-terminal kinase (p-JNK) was affected. The total amount of p38, ERK, and JNK MAPK proteins were not affected following IL-1beta injection. Intrathecal administration of either selective p38 MAPK, or JNK, or ERK inhibitor alone did not affect the thermal nociceptive threshold or iNOS protein expression in the spinal cord. However, pretreatment with a p38 MAPK inhibitor significantly reduced the IL-1beta-induced p-p38 MAPK expression by 38-49%, and nearly completely blocked the subsequent iNOS expression (reduction by 86.6%), NO production, and thermal hyperalgesia. In contrast, both ERK and JNK inhibitor pretreatments only partially (approximately 50%) inhibited the IL-1beta-induced iNOS expression in the spinal cord. Our results suggest that p38 MAPK plays a pivotal role in i.t. IL-1beta-induced spinal sensitization and nociceptive signal transduction.
Collapse
Affiliation(s)
- Chun-Sung Sung
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Shiratsuchi H, Basson MD. Activation of p38 MAPKalpha by extracellular pressure mediates the stimulation of macrophage phagocytosis by pressure. Am J Physiol Cell Physiol 2005; 288:C1083-C1093. [PMID: 15625302 DOI: 10.1152/ajpcell.00543.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that constant 20 mmHg extracellular pressure increases serum-opsonized latex bead phagocytosis by phorbol 12-myristate 13-acetate (PMA)- differentiated THP-1 macrophages in part by inhibiting focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK). Because p38 MAPK is activated by physical forces in other cells, we hypothesized that modulation of p38 MAPK might also contribute to the stimulation of macrophage phagocytosis by pressure. We studied phagocytosis in PMA-differentiated THP-1 macrophages, primary human monocytes, and human monocyte-derived macrophages (MDM). p38 MAPK activation was inhibited using SB-203580 or by p38 MAPKalpha small interfering RNA (siRNA). Pressure increased phagocytosis in primary monocytes and MDM as in THP-1 cells. Increased extracellular pressure for 30 min increased phosphorylated p38 MAPK by 46.4 +/- 20.5% in DMSO-treated THP-1 macrophages and by 20.9 +/- 9% in primary monocytes (P < 0.05 each). SB-203580 (20 microM) reduced basal p38 MAPK phosphorylation by 34.7 +/- 2.1% in THP-1 macrophages and prevented pressure activation of p38. p38 MAPKalpha siRNA reduced total p38 MAPK protein by 50-60%. Neither SB-203580 in THP-1 cells and peripheral monocytes nor p38 MAPK siRNA in THP-1 cells affected basal phagocytosis, but each abolished pressure-stimulated phagocytosis. SB-203580 did not affect basal or pressure-reduced FAK activation in THP-1 macrophages, but significantly attenuated the reduction in ERK phosphorylation associated with pressure. p38 MAPKalpha siRNA reduced total FAK protein by 40-50%, and total ERK by 10-15%, but increased phosphorylated ERK 1.4 +/- 0.1-fold. p38 MAPKalpha siRNA transfection did not affect the inhibition of FAK-Y397 phosphorylation by pressure but prevented inhibition of ERK phosphorylation. Changes in extracellular pressure during infection or inflammation regulate macrophage phagocytosis by a FAK-dependent inverse effect on p38 MAPKalpha that might subsequently downregulate ERK.
Collapse
Affiliation(s)
- Hiroe Shiratsuchi
- John D. Dingell VA Medical Center, 4646 John R. St., Detroit, MI 48201-1932, USA
| | | |
Collapse
|
21
|
Komis G, Apostolakos P, Gaitanaki C, Galatis B. Hyperosmotically induced accumulation of a phosphorylated p38-like MAPK involved in protoplast volume regulation of plasmolyzed wheat root cells. FEBS Lett 2004; 573:168-74. [PMID: 15327993 DOI: 10.1016/j.febslet.2004.07.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2004] [Accepted: 07/28/2004] [Indexed: 10/26/2022]
Abstract
A 46 kDa protein resembling immunochemically to the mammalian dually phosphorylated p38-MAPK was detected in wheat root cells under hyperosmotic conditions, using Western blot analysis. This protein accumulated in a time- and dose-dependent fashion and exhibited pharmacological sensitivity similar to the activated p38-MAPK. The application of a highly specific p38-MAPK inhibitor revealed that the p38-like MAPK is probably implicated in hyperosmotically induced tubulin cytoskeleton reorganization as well as in protoplast volume regulation and osmotic tolerance of wheat root cells. As far as we know, the p38-MAPK has not been previously reported in higher plants.
Collapse
Affiliation(s)
- G Komis
- Faculty of Biology, Department of Botany, University of Athens, Athens 157 84, Greece
| | | | | | | |
Collapse
|
22
|
Jin JY, Wen JF, Li D, Cho KW. Osmoregulation of atrial myocytic ANP release: osmotransduction via cross-talk between L-type Ca2+ channel and SR Ca2+ release. Am J Physiol Regul Integr Comp Physiol 2004; 287:R1101-9. [PMID: 15256366 DOI: 10.1152/ajpregu.00063.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperosmolality has been known to increase ANP release. However, its physiological role in the regulation of atrial myocytic ANP release and the mechanism by which hyperosmolality increases ANP release are to be defined. The purpose of the present study was to define these questions. Experiments were performed in perfused beating rabbit atria. Hyperosmolality increased atrial ANP release, cAMP efflux, and atrial dynamics in a concentration-dependent manner. The osmolality threshold for the increase in ANP release was as low as 10 mosmol/kgH2O (approximately 3%) above the basal levels (1.55 +/- 1.71, 17.19 +/- 3.11, 23.15 +/- 5.49, 54.04 +/- 11.98, and 62.00 +/- 13.48% for 10, 20, 30, 60, and 100 mM mannitol, respectively; all P < 0.01). Blockade of sarcolemmal L-type Ca2+ channel activity, which increased ANP release, attenuated hyperosmolality-induced increases in ANP release (-13.58 +/- 4.68% vs. 62.00 +/- 13.48%, P < 0.001) and cAMP efflux but not atrial dynamics. Blockade of the Ca2+ release from the sarcoplasmic reticulum, which increased ANP release, attenuated hyperosmolality-induced increases in ANP release (13.44 +/- 7.47% vs. 62.00 +/- 13.48%, P < 0.01) and dynamics but not cAMP efflux. Blockades of Na+-K+-2Cl- cotransporter, Na+/H+ exchanger, and Na+/Ca2+ exchanger had no effect on hyperosmolality-induced increase in ANP release. The present study suggests that hyperosmolality regulates atrial myocytic ANP release and that the mechanism by which hyperosmolality activates ANP release is closely related to the cross-talk between the sarcolemmal L-type Ca2+ channel activity and sarcoplasmic reticulum Ca2+ release, possibly inactivation of the L-type Ca2+ channels.
Collapse
Affiliation(s)
- Jing Yu Jin
- Department of Physiology, Institute for Medical Sciences, Jeonbug National University Medical School, Republic of Korea
| | | | | | | |
Collapse
|
23
|
Pan F, Zarate J, Choudhury A, Rupprecht R, Bradley TM. Osmotic stress of salmon stimulates upregulation of a cold inducible RNA binding protein (CIRP) similar to that of mammals and amphibians. Biochimie 2004; 86:451-61. [PMID: 15308334 DOI: 10.1016/j.biochi.2004.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 06/18/2004] [Indexed: 11/20/2022]
Abstract
Salmon are subjected to hyperosmotic stress during transition from freshwater to the marine environment. A variety of mechanisms have evolved to allow movement of the animal from a hydrating to a dehydrating environment. Using differential assay of mRNA expression, a 1.3 kb transcript was found to be upregulated in branchial lamellae of salmon exposed to hyperosmotic conditions. The transcript contains an open reading frame of 618 nt coding for a 205 amino acid protein with a molecular mass of 21.5 kDa. The putative protein, dubbed salmon glycine-rich RNA binding protein (SGRP), possesses a high degree of identity (>70%) with the cold inducible RNA binding proteins (CIRP) of mammals and amphibians and contains the canonical features of these proteins including a single RNA recognition motif (RRM), high glycine content and conserved flanking motifs. SGRP mRNA was observed to increase in response to hyperosmotic stress of branchial tissue with maximum levels of expression after 48 h of exposure. Transcript also was observed in liver, kidney and heart but was not upregulated significantly by osmotic stress in these tissues. Exposure of isolated lamellae to heat stress and sodium arsenite, known inducers of hsps, did not stimulate accumulation of SGRP transcript. Similarly, inhibition of protein synthesis with cycloheximide and the MAPK and MEK signal transduction pathways with SB202190 and PD98059 failed to alter expression of the gene. Of significance was the absence of an increase in expression of SGRP in response to cold stress (DeltaT = 5 and 12 degrees C for 12 and 24 h). The findings of this research suggest that ectothermic salmon inhabiting boreal waters possess a protein analogous to the CIRPs currently identified in mammals and amphibians. In contrast to the function of CIRPs, SGRP appears to have a more prominent role in adaptation to hyperosmotic conditions rather than cold stress.
Collapse
Affiliation(s)
- Feng Pan
- Dept of Fisheries, Animal and Veterinary Science, Building #14 East Farm, URI, Kingston, RI 02881, USA
| | | | | | | | | |
Collapse
|
24
|
Corbucci GG, Perrino C, Donato G, Ricchi A, Lettieri B, Troncone G, Indolfi C, Chiariello M, Avvedimento EV. Transient and reversible deoxyribonucleic acid damage in human left ventricle under controlled ischemia and reperfusion. J Am Coll Cardiol 2004; 43:1992-9. [PMID: 15172403 DOI: 10.1016/j.jacc.2004.01.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 01/15/2004] [Accepted: 01/27/2004] [Indexed: 01/02/2023]
Abstract
OBJECTIVES We sought to describe the sequence of molecular events during ischemia and reperfusion of the human heart and to determine the activation of stress kinases and deoxyribonucleic acid (DNA) damage response elements on apoptosis in ischemia or reperfusion of the human heart. BACKGROUND Brief ischemia is tolerated by cardiac myocytes, but it determines immediate metabolic changes and block of contraction. Prompt restoration of coronary blood flow is inexorably associated with a slow recovery of myocardial contractile function. The prolonged, postischemic contractile dysfunction in the viable tissue is called myocardial stunning. The molecular mechanisms underlying myocardial stunning and ischemia-reperfusion injury are still poorly understood. Their elucidation would be valuable in order to identify novel therapeutic strategies. METHODS We examined human left ventricular samples taken from 20 patients undergoing elective valve surgery before aortic cross-clamping, 20 +/- 2 min (brief ischemia), 58 +/- 5 min after the cross-clamping period (prolonged ischemia), and 21 +/- 4 min after reconstitution of coronary blood flow (reperfusion). Stress kinases and DNA damage sensor proteins (ATM, H2AX, p53) were determined by immunoblotting with specific antibodies. Electron microscopy analysis was carried out on ischemic and reperfused samples. ATP content, reactive oxygen species (ROS) levels, and cytochrome oxidase activity were determined by biochemical assays. RESULTS Ischemia caused accumulation of ROS, reduction of cytochrome C oxidase and ATP, and activation of stress kinases p38 and Jun terminal kinase. Electron microscopy showed significant mitochondrial swelling in the majority of cells, but no appreciable apoptosis of cardiomyocytes. During ischemia, myocytes were intensely stained by TUNEL, and many cells showed proliferative cell nuclear antigen-positive nuclei. Finally, we found in ischemic tissues increased p53/p21(WAF) levels and phosphorylation of histone H2AX, a substrate of ATM kinase, which marks double-strand DNA breaks. Reperfusion caused a robust extracellular signal-regulated kinase-1/2 activation, a marked reduction of TUNEL staining, and persistent activation of ATM checkpoint. CONCLUSIONS These data indicate that ischemia induces extensive DNA damage and activation of ATM checkpoint. Reperfusion allows the repair of the DNA lesions and salvage of ischemic cells.
Collapse
Affiliation(s)
- Gian G Corbucci
- Division of Anesthesiology, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hildesheim J, Awwad RT, Fornace AJ. p38 Mitogen-Activated Protein Kinase Inhibitor Protects the Epidermis Against the Acute Damaging Effects of Ultraviolet Irradiation by Blocking Apoptosis and Inflammatory Responses. J Invest Dermatol 2004; 122:497-502. [PMID: 15009736 DOI: 10.1111/j.1523-1747.2004.22229.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The primary function of the epidermis is to provide a protective barrier against numerous environmental insults, including ultraviolet radiation (UVR). UVR, particularly in the UVB spectrum, is a potent carcinogen known to damage DNA directly or through the generation of free radicals. Although in the long term, protective measures such as apoptosis and inflammation may prove beneficial in safeguarding the epidermis against the propagation of potentially tumorigenic cells, after high-dose UV irradiation these biologic events may be acutely detrimental to the architectural and functional integrity of the tissue owing to rampant cell death and inflammatory responses, which can culminate in epidermal erosion and consequently loss of barrier functions. The mitogen-activated protein kinase (MAPK) signaling pathway is known to be activated by UVR and herein we identify p38 MAPK as a key modulator of these physiologic events. Mice treated with the p38 MAPK inhibitor SB202190 are protected against several detrimental effects of acute UV irradiation, namely, sunburn cell/apoptosis, inflammation, and a hyperproliferation response. Based on our results, selectively blocking p38 activation with the SB202190 inhibitor could prove beneficial in treating victims from severe sunburn or exposure to other chemical agents known to trigger the p38 pathway.
Collapse
Affiliation(s)
- Jeffrey Hildesheim
- Gene Response Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda Maryland, USA
| | | | | |
Collapse
|
26
|
Gaitanaki C, Konstantina S, Chrysa S, Beis I. Oxidative stress stimulates multiple MAPK signalling pathways and phosphorylation of the small HSP27 in the perfused amphibian heart. J Exp Biol 2003; 206:2759-69. [PMID: 12847121 DOI: 10.1242/jeb.00483] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the activation of three subfamilies of MAPKs (ERK, JNKs and p38-MAPK) by oxidative stress in the isolated perfused amphibian heart. Activation of p43-ERK by 100 micro mol l(-1) H(2)O(2) was maximally observed within 5 min, remained elevated for 30 min and was comparable with the effect of 1 micro mol l(-1) PMA. p43-ERK activation by H(2)O(2) was inhibited by PD98059 but not by SB203580. The p46 and p52 species of JNKs were maximally activated by 2.5- and 2.1-fold, respectively, by 100 micro mol l(-1) H(2)O(2) within 2 min. JNK activation was still detectable after 15 min, reaching control values at 30 min of treatment. p38-MAPK was maximally activated by 9.75-fold by 100 micro mol l(-1) H(2)O(2) after 2 min and this activation progressively declined thereafter, reaching control values within 45 min of treatment. The observed dose-dependent profile of p38-MAPK activation by H(2)O(2) revealed that 30 micro mol l(-1) H(2)O(2) induced maximal phosphorylation, whereas 100-300 micro mol l(-1) H(2)O(2) induced considerable activation of the kinase. Our studies also showed that the phosphorylation of MAPKAPK2 by H(2)O(2) followed a parallel time-dependent pattern and that SB203580 abolished this phosphorylation. Furthermore, our experiments clearly showed that 30 micro mol l(-1) H(2)O(2) induced a strong, specific phosphorylation of HSP27. Our immunohistochemical studies showed that immune complexes of phosphorylated forms of both p38-MAPK and HSP27 were strongly enhanced by 30 micro mol l(-1) H(2)O(2) in the perinuclear region as well as dispersedly in the cytoplasm of ventricular cells and that SB203580 abolished this phosphorylation. These data indicate that oxidative stress is a powerful activator of all three MAPK subfamilies in the amphibian heart. Stimulation of p38-MAPK and the consequent phosphorylation of HSP27 may be important in cardioprotection under such conditions.
Collapse
Affiliation(s)
- Catherine Gaitanaki
- Department of Animal and Human Physiology, School of Biology, Faculty of Sciences, University of Athens, Panepistimioupolis, Athens 157 84, Greece
| | | | | | | |
Collapse
|
27
|
Fernando P, Megeney LA, Heikkila JJ. Phosphorylation-dependent structural alterations in the small hsp30 chaperone are associated with cellular recovery. Exp Cell Res 2003; 286:175-85. [PMID: 12749847 DOI: 10.1016/s0014-4827(03)00067-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Small heat shock proteins (hsps) act as molecular chaperones by preventing the thermal aggregation and unfolding of cellular protein; however, the manner by which cells regulate chaperone activity remains unclear. In the present study, we examined the role of phosphorylation on the chaperone function of the Xenopus small hsp30. Both heat stress and sodium arsenite treatment in A6 cells resulted in a rapid activation of p38alpha and MAPKAPK-2. Surprisingly, the association of MAPKAPK-2 with hsp30 and its subsequent phosphorylation were more prevalent during recovery after heat stress. Treatment of A6 cells with SB203580, an inhibitor of the p38 MAP kinase pathway, resulted in a loss of hsp30 phosphorylation. Phosphorylation resulted in the formation of smaller multimeric hsp30 complexes and resulted in a significant loss of secondary structure. Consequently the phosphorylation-induced structural changes severely compromised the ability of hsp30 to prevent the heat-induced aggregation of citrate synthase and luciferase in vitro. We confirmed that the loss of chaperone activity was coincident with an attenuated binding of phosphorylated hsp30 with target proteins. Our data suggest that phosphorylation may be necessary to regulate the post-heat stress molecular chaperone activity of hsp30.
Collapse
Affiliation(s)
- Pasan Fernando
- Ottawa Health Research Institute, Ottawa General Hospital, Center for Molecular Medicine, Ottawa, Ontario, Canada K1H 8L6
| | | | | |
Collapse
|
28
|
Cowan KJ, Storey KB. Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 2003; 206:1107-15. [PMID: 12604570 DOI: 10.1242/jeb.00220] [Citation(s) in RCA: 447] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mitogen-activated protein kinase (MAPK) superfamily consists of three main protein kinase families: the extracellular signal-regulated protein kinases (ERKs), the c-Jun N-terminal kinases (JNKs) and the p38 family of kinases. Each is proving to have major roles in the regulation of intracellular metabolism and gene expression and integral actions in many areas including growth and development, disease, apoptosis and cellular responses to external stresses. To date, this cellular signal transduction network has received relatively little attention from comparative biochemists, despite the high probability that MAPKs have critical roles in the adaptive responses to thermal, osmotic and oxygen stresses. The present article reviews the current understanding of the roles and regulation of ERKs, JNKs and p38, summarizes what is known to date about MAPK roles in animal models of anoxia tolerance, freeze tolerance and osmoregulation, and highlights the potential that studies of MAPK pathways have for advancing our understanding of the mechanisms of biochemical adaptation.
Collapse
Affiliation(s)
- Kyra J Cowan
- Department of Surgery, Surgical Research Laboratory, San Francisco General Hospital and University of California, San Francisco, San Francisco, California 94110, USA
| | | |
Collapse
|
29
|
Aggeli IKS, Gaitanaki C, Lazou A, Beis I. α1- and β-adrenoceptor stimulation differentially activate p38-MAPK and atrial natriuretic peptide production in the perfused amphibian heart. J Exp Biol 2002; 205:2387-97. [PMID: 12124364 DOI: 10.1242/jeb.205.16.2387] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
We investigated the activation of p38-MAPK by various adrenergic agents in the perfused Rana ridibunda heart. Phenylephrine (50 μmol l-1) rapidly induced the differential activation of all three mitogen-activated protein kinase (MAPK) subfamilies (ERK, JNKs and p38-MAPK)in this experimental system. Focusing on p38-MAPK response to phenylephrine,we found that the kinase phosphorylation reached maximal values at 30 s,declining thereafter to basal values at 15 min. p38-MAPK activation by phenylephrine was verified as exclusively α1-AR-mediated. Furthermore, SB203580 (1 μmol l-1) abolished the kinase phosphorylation by phenylephrine. Isoproterenol (50 μmol l-1)was also shown to activate p38-MAPK in a time- and temperature-dependent manner. A marked, sustained p38-MAPK activation profile was observed at 25°C, while at 18°C the kinase response to isoproterenol was modest. Isoproterenol effect on p38-MAPK stimulation was β-AR-mediated. Immunohistochemical studies revealed the enhanced presence of phosphorylated p38-MAPK and atrial natriuretic peptide (ANP) in both phenylephrine- and isoproterenol-stimulated hearts, a reaction completely blocked by the respective specific antagonists, or the specific p38-MAPK inhibitor SB203580. These findings indicate a functional correlation between p38-MAPK activation and ANP accumulation in the perfused amphibian heart.
Collapse
Affiliation(s)
- Ioanna-Katerina S Aggeli
- Department of Animal and Human Physiology, School of Biology, Faculty of Sciences, University of Athens, Panepistimioupolis, Athens, Greece
| | | | | | | |
Collapse
|