1
|
Dajčman U, Enriquez-Urzelai U, Žagar A. Microclimate variability impacts the coexistence of highland and lowland ectotherms. J Anim Ecol 2025; 94:999-1013. [PMID: 40108979 DOI: 10.1111/1365-2656.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Understanding differences in life-history outcomes under variable abiotic conditions is essential for understanding species coexistence. At middle elevations, a mosaic of available sets of abiotic conditions could allow highland and lowland species of the same ecological guild to overlap. Therefore, these sites are excellent to study the influence of abiotic conditions on life history and, thus, spatial overlap patterns of competing species. To test differences in life-history outcomes, we selected a pair of closely related lacertids, Iberolacerta horvathi and Podarcis muralis, with an overlapping geographical range but a contrasting elevational distribution. To assess how abiotic and biotic factors contribute to the realized niches of both species, we first built dynamic energy budget (DEB) models for each species based on available functional and life-history data. Then, we used a mechanistic modelling framework (NicheMapR) to simulate the microclimatic conditions at 15 study sites across an elevational gradient and performed whole life-cycle simulations for both species to compare egg development times, lifespans, reproductive years, mean yearly basking and foraging times and yearly fecundity in syntopy and allotopy along the elevational gradient. Our simulations show that the variability of abiotic conditions along an elevational gradient affects life-history traits of both species. We found strong effects of species and elevation on life-history outcomes such as longevity, activity and fecundity. We also observed the effects of syntopy/allotopy on egg development times, activity and reproductive output. In addition, we found a significant interplay between elevation and species impacting fecundity where occupying higher elevation habitats resulted in a more pronounced reduction in fecundity in P. muralis. Furthermore, using two different thermal preferences for spring and summer, we show that some physiological and reproductive traits change with seasonal changes in thermal preferences. Based on our simulations, we conclude that the intermediate elevations that harbour the majority of syntopic populations exhibit high environmental variability that is likely facilitating species coexistence. Since our model predictions support that the current elevational distribution of the species is not only affected by abiotic factors, this suggests that past historical contingencies might have also played a significant role. Our study provides a framework using mechanistic models to understand current distribution patterns of two interacting species by comparing life-history differences between species based on responses to changing abiotic conditions along an elevation gradient.
Collapse
Affiliation(s)
- Urban Dajčman
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
| | | | - Anamarija Žagar
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Vairão, Portugal
| |
Collapse
|
2
|
Sannolo M, Ponti R. Altitude correlates with dorsal -but not ventral- scale number and dimension in a lacertid lizard. ZOOLOGY 2025; 169:126249. [PMID: 39999725 DOI: 10.1016/j.zool.2025.126249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
The primary function of the keratinised skin of squamates is modulating heat load, reducing water loss rates and protecting from abrasion. Furthermore, reptilian scale size and shape variation have also been observed depending on the habitat and associated environmental conditions. However, how climate can modulate intraspecific scale characteristics of reptile species in temperate regions is still a subject of debate. Here, we investigate the potential correlation between climate and lizard scalation for a European lacertid lizard. From 221 museum collection specimens of Podarcis muralis, we recorded body measurements and sex information and counted the number and size of dorsal scales and the number of ventral scales per individual. We obtained each specimens' capture location information from which we extracted environmental data like temperature, precipitation, humidity, wind speed, solar radiation and altitude. We found that individuals that inhabited higher elevations tended to have fewer and larger dorsal scales than those from lowlands, as a potential adaptation to decrease water loss in arid and windy environments. We did not find a correlation between the number of ventral scales and environmental conditions, except for wind speed. This study uncovers an intraspecific adaptive mechanism in an environment gradient that is key to understanding species' potential adaptation to future climatic conditions.
Collapse
Affiliation(s)
- Marco Sannolo
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBio), Laboratório Associado, University of Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal; Museo Nacional de Ciencias Naturales (MNCN) - CSIC, Madrid, Spain
| | - Raquel Ponti
- Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO-InBio), Laboratório Associado, University of Porto, Campus Agrário de Vairão, Vairão 4485-661, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão 4485-661, Portugal.
| |
Collapse
|
3
|
Perry C, Sarraude T, Billet M, Minot E, Gangloff EJ, Aubret F. Sex-dependent shifts in body size and condition along replicated elevational gradients in a montane colonising ectotherm, the common wall lizard (Podarcis muralis). Oecologia 2024; 206:335-346. [PMID: 39523232 DOI: 10.1007/s00442-024-05634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
In ectothermic animals, elevational gradients, such as mountainous environments, are often associated with shifts in body size, although patterns differ across taxa and contexts. Mountain landscapes are characterised by relatively rapid shifts in biotic and abiotic conditions along an elevational gradient, commonly referred to as elevational zonation. Such zonation can reduce the geographic scale at which organisms experience the effects of climate change. The upslope range shifts will expose organisms at the colonization front to sub-optimal conditions. We can expect these challenging conditions to influence many life-history traits including growth rates and reproductive output. We tested the hypothesis that body size varies across elevational gradients in a contemporary montane colonizer, the common wall lizard (Podarcis muralis). Further, we assessed active body temperatures and available environmental temperatures in an attempt to discern a potential abiotic factor that might drive such a pattern. We quantified body size in lizards along four replicate transects ranging from 400 to 2400 m above sea level in the Pyrenees. Male body size decreased with increasing elevation. While female body size was invariant, females at higher elevation exhibited lower body condition. These results suggest that the effects of abiotic limitations or selective pressures experienced at the high-elevation colonisation front are sex-specific. Furthermore, lizards from both sexes were able to maintain similar field active body temperatures across elevation, despite reduced ambient temperature. If available temperatures limit activity periods or necessitate higher thermoregulatory investment, as suggested by our results, then further warming may benefit lizards and favour further upslope migration.
Collapse
Affiliation(s)
- Constant Perry
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France.
- ED SEVAB - Université Toulouse III - Paul Sabatier, 31062, Toulouse, France.
| | - Tom Sarraude
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France
| | - Manon Billet
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France
| | - Elsa Minot
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Fabien Aubret
- Station d'Écologie Théorique et Expérimentale du CNRS, UAR 2029, Moulis, France
- School of Agricultural, Environmental & Veterinary Sciences, Charles Sturt University, Birpai Country, 7 Major Innes Road, Port Macquarie, NSW, 2444, Australia
| |
Collapse
|
4
|
Žagar A, Dajčman U, Megía-Palma R, Simčič T, Barroso FM, Baškiera S, Carretero MA. Analysis of subcellular energy metabolism in five Lacertidae lizards across varied environmental conditions. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111729. [PMID: 39181180 DOI: 10.1016/j.cbpa.2024.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Aerobic respiration is the main energy source for most eukaryotes, and efficient mitochondrial energy transfer greatly influences organismal fitness. To survive environmental changes, cells have evolved to adjust their biochemistry. Thus, measuring energy metabolism at the subcellular level can enhance our understanding of individual performance, population dynamics, and species distribution ranges. We investigated three important metabolic traits at the subcellular level in five lacertid lizard species sampled from different elevations, from sea level up to 2000 m. We examined hemoglobin concentration, two markers of oxidative stress (catalase activity and carbonyl concentration) and maximum rate of metabolic respiration at the subcellular level (potential metabolic activity at the electron transport system). The traits were analysed in laboratory acclimated adult male lizards to investigate the adaptive metabolic responses to the variable environmental conditions at the local sampling sites. Potential metabolic activity at the cellular level was measured at four temperatures - 28 °C, 30 °C, 32 °C and 34 °C - covering the range of preferred body temperatures of the species studied. Hemoglobin content, carbonyl concentration and potential metabolic activity did not differ significantly among species. Interspecific differences were found in the catalase activity, Potential metabolic activity increased with temperature in parallel in all five species. The highest response of the metabolic rate with temperature (Q10) and Arrhenius activation energy (Ea) was recorded in the high-mountain species Iberolacerta monticola.
Collapse
Affiliation(s)
- Anamarija Žagar
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia; CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Urban Dajčman
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana, Slovenia
| | - Rodrigo Megía-Palma
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, School of Pharmacy, E-28805, Alcalá de Henares, Madrid, Spain
| | - Tatjana Simčič
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Frederico M Barroso
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Senka Baškiera
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
5
|
Amer A, Spears S, Vaughn PL, Colwell C, Livingston EH, McQueen W, Schill A, Reichard DG, Gangloff EJ, Brock KM. Physiological phenotypes differ among color morphs in introduced common wall lizards (Podarcis muralis). Integr Zool 2024; 19:505-523. [PMID: 37884464 DOI: 10.1111/1749-4877.12775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Many species exhibit color polymorphisms which have distinct physiological and behavioral characteristics. However, the consistency of morph trait covariation patterns across species, time, and ecological contexts remains unclear. This trait covariation is especially relevant in the context of invasion biology and urban adaptation. Specifically, physiological traits pertaining to energy maintenance are crucial to fitness, given their immediate ties to individual reproduction, growth, and population establishment. We investigated the physiological traits of Podarcis muralis, a versatile color polymorphic species that thrives in urban environments (including invasive populations in Ohio, USA). We measured five physiological traits (plasma corticosterone and triglycerides, hematocrit, body condition, and field body temperature), which compose an integrated multivariate phenotype. We then tested variation among co-occurring color morphs in the context of establishment in an urban environment. We found that the traits describing physiological status and strategy shifted across the active season in a morph-dependent manner-the white and yellow morphs exhibited clearly different multivariate physiological phenotypes, characterized primarily by differences in plasma corticosterone. This suggests that morphs have different strategies in physiological regulation, the flexibility of which is crucial to urban adaptation. The white-yellow morph exhibited an intermediate phenotype, suggesting an intermediary energy maintenance strategy. Orange morphs also exhibited distinct phenotypes, but the low prevalence of this morph in our study populations precludes clear interpretation. Our work provides insight into how differences among stable polymorphisms exist across axes of the phenotype and how this variation may aid in establishment within novel environments.
Collapse
Affiliation(s)
- Ali Amer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Sierra Spears
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Princeton L Vaughn
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Wyatt McQueen
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Anna Schill
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
- Department of Biology, Idaho State University, Pocatello, Idaho, USA
| | - Dustin G Reichard
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| | - Kinsey M Brock
- Department of Environmental Science, Policy, and Management, College of Natural Resources, University of California, Berkeley, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, USA
| |
Collapse
|
6
|
Spears S, Pettit C, Berkowitz S, Collier S, Colwell C, Livingston EH, McQueen W, Vaughn PL, Bodensteiner BL, Leos-Barajas V, Gangloff EJ. Lizards in the wind: The impact of wind on the thermoregulation of the common wall lizard. J Therm Biol 2024; 121:103855. [PMID: 38648702 DOI: 10.1016/j.jtherbio.2024.103855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Sierra Spears
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA.
| | - Ciara Pettit
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Sophie Berkowitz
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| | - Simone Collier
- School of the Environment, University of Toronto, Toronto, Ontario, Canada
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Wyatt McQueen
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Princeton L Vaughn
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Vianey Leos-Barajas
- School of the Environment, University of Toronto, Toronto, Ontario, Canada; Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| |
Collapse
|
7
|
Rutschmann A, Perry C, Le Galliard JF, Dupoué A, Lourdais O, Guillon M, Brusch G, Cote J, Richard M, Clobert J, Miles DB. Ecological responses of squamate reptiles to nocturnal warming. Biol Rev Camb Philos Soc 2024; 99:598-621. [PMID: 38062628 DOI: 10.1111/brv.13037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 03/06/2024]
Abstract
Nocturnal temperatures are increasing at a pace exceeding diurnal temperatures in most parts of the world. The role of warmer nocturnal temperatures in animal ecology has received scant attention and most studies focus on diurnal or daily descriptors of thermal environments' temporal trends. Yet, available evidence from plant and insect studies suggests that organisms can exhibit contrasting physiological responses to diurnal and nocturnal warming. Limiting studies to diurnal trends can thus result in incomplete and misleading interpretations of the ability of species to cope with global warming. Although they are expected to be impacted by warmer nocturnal temperatures, insufficient data are available regarding the night-time ecology of vertebrate ectotherms. Here, we illustrate the complex effects of nocturnal warming on squamate reptiles, a keystone group of vertebrate ectotherms. Our review includes discussion of diurnal and nocturnal ectotherms, but we mainly focus on diurnal species for which nocturnal warming affects a period dedicated to physiological recovery, and thus may perturb activity patterns and energy balance. We first summarise the physical consequences of nocturnal warming on habitats used by squamate reptiles. Second, we describe how such changes can alter the energy balance of diurnal species. We illustrate this with empirical data from the asp viper (Vipera aspis) and common wall lizard (Podarcis muralis), two diurnal species found throughout western Europe. Third, we make use of a mechanistic approach based on an energy-balance model to draw general conclusions about the effects of nocturnal temperatures. Fourth, we examine how warmer nights may affect squamates over their lifetime, with potential consequences on individual fitness and population dynamics. We review quantitative evidence for such lifetime effects using recent data derived from a range of studies on the European common lizard (Zootoca vivipara). Finally, we consider the broader eco-evolutionary ramifications of nocturnal warming and highlight several research questions that require future attention. Our work emphasises the importance of considering the joint influence of diurnal and nocturnal warming on the responses of vertebrate ectotherms to climate warming.
Collapse
Affiliation(s)
- Alexis Rutschmann
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Constant Perry
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean-François Le Galliard
- Sorbonne Université, CNRS, UMR 7618, IRD, INRAE, Institut d'écologie et des sciences de l'environnement (iEES Paris), Tours 44-45, 4 Place Jussieu, Paris, 75005, France
- Département de Biologie, Ecole Normale Supérieure, PSL Research University, CNRS, UMS 3194, Centre de Recherche en écologie expérimentale et Prédictive (CEREEP-Ecotron IleDeFrance), 78 rue du château, Saint-Pierre-Lès-Nemours, 77140, France
| | - Andréaz Dupoué
- Ifremer, Univ Brest, CNRS, IRD, UMR 6539, LEMAR, 1625 Rte de Sainte-Anne, Plouzané, 29280, France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- School of Life Sciences, Arizona State University, Life Sciences Center Building, 427E Tyler Mall, Tempe, AZ, 85281, USA
| | - Michaël Guillon
- Centre d'Etudes Biologiques de Chizé, CNRS UMR 7372-Université de La Rochelle, 405 Route de Prissé la Charrière, Villiers-en-Bois, 79630, France
- Cistude Nature, Chemin du Moulinat-33185, Le Haillan, France
| | - George Brusch
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Rd., San Marcos, CA, 92096, USA
| | - Julien Cote
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, Université Toulouse 3 Paul Sabatier, CNRS, IRD, 118 Rte de Narbonne, Toulouse, 31077, France
| | - Murielle Richard
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS UAR2029, 02 route du CNRS, Moulis, 09200, France
| | - Donald B Miles
- Department of Biological Sciences, 131 Life Science Building, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
8
|
Alujević K, Bakewell L, Clifton IT, Cox CL, Frishkoff LO, Gangloff EJ, Garcia-Costoya G, Gifford ME, Glenwinkel M, Gulati SAK, Head A, Miles M, Pettit C, Watson CM, Wuthrich KL, Logan ML. 3D printed models are an accurate, cost-effective, and reproducible tool for quantifying terrestrial thermal environments. J Therm Biol 2024; 119:103762. [PMID: 38071898 DOI: 10.1016/j.jtherbio.2023.103762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 02/25/2024]
Abstract
Predicting ecological responses to rapid environmental change has become one of the greatest challenges of modern biology. One of the major hurdles in forecasting these responses is accurately quantifying the thermal environments that organisms experience. The distribution of temperatures available within an organism's habitat is typically measured using data loggers called operative temperature models (OTMs) that are designed to mimic certain properties of heat exchange in the focal organism. The gold standard for OTM construction in studies of terrestrial ectotherms has been the use of copper electroforming which creates anatomically accurate models that equilibrate quickly to ambient thermal conditions. However, electroformed models require the use of caustic chemicals, are often brittle, and their production is expensive and time intensive. This has resulted in many researchers resorting to the use of simplified OTMs that can yield substantial measurement errors. 3D printing offers the prospect of robust, easily replicated, morphologically accurate, and cost-effective OTMs that capture the benefits but alleviate the problems associated with electroforming. Here, we validate the use of OTMs that were 3D printed using several materials across eight lizard species of different body sizes and living in habitats ranging from deserts to tropical forests. We show that 3D printed OTMs have low thermal inertia and predict the live animal's equilibration temperature with high accuracy across a wide range of body sizes and microhabitats. Finally, we developed a free online repository and database of 3D scans (https://www.3dotm.org/) to increase the accessibility of this tool to researchers around the world and facilitate ease of production of 3D printed models. 3D printing of OTMs is generalizable to taxa beyond lizards. If widely adopted, this approach promises greater accuracy and reproducibility in studies of terrestrial thermal ecology and should lead to improved forecasts of the biological impacts of climate change.
Collapse
Affiliation(s)
- Karla Alujević
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Leah Bakewell
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA
| | - Ian T Clifton
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA; Department of Biology, University of Arkansas at Little Rock, Little Rock, AR, 72204, USA
| | - Christian L Cox
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA
| | - Luke O Frishkoff
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Guillermo Garcia-Costoya
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Matthew E Gifford
- Department of Biology, University of Central Arkansas, Conway, AR, 72035, USA
| | - Madison Glenwinkel
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Samir A K Gulati
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| | - Alyssa Head
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Monica Miles
- Department of Biology, University of Texas at Arlington, Arlington, TX, 76019, USA
| | - Ciara Pettit
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, 43015, USA
| | - Charles M Watson
- Department of Life Sciences, Texas A&M University San Antonio, San Antonio, TX, 78249, USA
| | - Kelly L Wuthrich
- Department of Biological Sciences and Institute for the Environment, Florida International University, Miami, FL, 33199, USA
| | - Michael L Logan
- Department of Biology and Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
9
|
Souchet J, Josserand A, Darnet E, Le Chevalier H, Trochet A, Bertrand R, Calvez O, Martinez-Silvestre A, Guillaume O, Mossoll-Torres M, Pottier G, Philippe H, Aubret F, Gangloff EJ. Embryonic and juvenile snakes (Natrix maura, Linnaeus 1758) compensate for high elevation hypoxia via shifts in cardiovascular physiology and metabolism. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:1102-1115. [PMID: 37723946 DOI: 10.1002/jez.2756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/30/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023]
Abstract
The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (Natrix maura, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]-normoxia) at both the elevation of origin and high elevation (2877 m ASL-extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.
Collapse
Affiliation(s)
- Jérémie Souchet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Alicia Josserand
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Elodie Darnet
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Hugo Le Chevalier
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Audrey Trochet
- Société Herpétologique de France, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Bertrand
- Laboratoire Évolution et Diversité Biologique (UMR CNRS 5174), Université de Toulouse III Paul Sabatier, IRD, Toulouse, France
| | - Olivier Calvez
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | - Olivier Guillaume
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | | | | | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
| | - Fabien Aubret
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Eric J Gangloff
- Station d'Ecologie Théorique et Expérimentale (UAR CNRS 2029), Moulis, France
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, Ohio, USA
| |
Collapse
|
10
|
Žagar A, Simčič T, Dajčman U, Megía-Palma R. Parasitemia and elevation as predictors of hemoglobin concentration and antioxidant capacity in two sympatric lizards. Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111233. [PMID: 35589083 DOI: 10.1016/j.cbpa.2022.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Studies which quantify the influence of abiotic factors on physiological variation are paramount to comprehend organismal responses to diverse environments. We studied three physiological aspects of metabolism in two sympatric and ecologically similar European lizard species, Podarcis muralis and Iberolacerta horvathi, across an 830-m elevational gradient. We collected blood samples and tail tips from adult lizards, which were analyzed for parasitemia, hemoglobin concentration, potential metabolic activity and catalase activity. Hemoglobin concentration was higher in males than females and it increased across elevation in one of the studied species - P. muralis. Parasitemia was not an important predictor of the variation in hemoglobin concentration, which suggests that blood parasites do not constraint the aerobic capacity of the lizards. On the other hand, catalase activity reflected increased antioxidant activity in the presence of higher parasitemia, possibly acting as an adaptive mechanism to reduce oxidative stress during immune activation. Potential metabolic activity, as a proxy for maximum respiratory enzymatic capacity, did not differ between species or sexes nor was it affected by elevation or levels of parasitemia. The results provide insight into the relationships between physiological, biotic, and environmental traits in sympatric lizards.
Collapse
Affiliation(s)
- Anamarija Žagar
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, P-4485-661 Vairão, Portugal.
| | - Tatjana Simčič
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Urban Dajčman
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Rodrigo Megía-Palma
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, P-4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, P-4485-661 Vairão, Portugal; Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, School of Pharmacy, E-28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
11
|
Telemeco RS, Gangloff EJ, Cordero GA, Rodgers EM, Aubret F. From performance curves to performance surfaces: Interactive effects of temperature and oxygen availability on aerobic and anaerobic performance in the common wall lizard. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rory S. Telemeco
- Department of Biology California State University Fresno Fresno CA USA
| | - Eric J. Gangloff
- Department of Biological Sciences Ohio Wesleyan University Delaware OH USA
| | - G. Antonio Cordero
- Centre for Ecology, Evolution and Environmental Changes, Department of Animal Biology University of Lisbon Lisbon Portugal
| | - Essie M. Rodgers
- School of Biological Sciences, University of Canterbury Christchurch New Zealand
| | - Fabien Aubret
- Station d’Ecologie Théorique et Expérimentale du CNRS – UPR 2001 Moulis France
| |
Collapse
|
12
|
Avoiding the effects of translocation on the estimates of the metabolic rates across an elevational gradient. J Comp Physiol B 2022; 192:659-668. [DOI: 10.1007/s00360-022-01448-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
|