1
|
Zhou JB, Li CX, Qian L, Chu JH. Identification of cancer-associated fibroblast characteristics for predicting outcome and response to immunotherapy in renal cell carcinoma. Comput Methods Biomech Biomed Engin 2025:1-13. [PMID: 40285654 DOI: 10.1080/10255842.2025.2495299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 03/04/2025] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVES To elucidate the prognostic effect of cancer-associated fibroblasts (CAFs) on renal cell carcinoma. METHODS CAFs and stromal scores were calculated using various algorithms including Estimating the Proportions of Immune and Cancer cells (EPIC), Microenvironment Cell Populations-counter (MCP counter), Tumor immune dysfunction and exclusion (TIDE) and xCell. Weighted gene co-expression network analysis (WGCNA) was conducted to determine the CAF-associated modules and key genes. The functional pathways of key genes in important CAF modules were analyzed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. CAF-associated signatures were established through univariate Cox and Least Absolute Shrinkage and Selection Operator (LASSO) analyses. Kaplan-Meier and receiver operating characteristic (ROC) analyses were carried out to assess the predictive value of CAF signatures. RESULTS WGCNA analysis distinguished several CAF-associated modules for renal clear cell carcinoma (KIRC), renal chromophobe cell carcinoma (KICH) and renal papillary cell carcinoma (KIRP) respectively. CAF signatures were established containing two and four genes for KIRC and KIRP, respectively. In KIRC and KIRP, patients with high-risk scores had unfavorable outcome than those with low-risk scores. Additionally, in both KIRC and KIRP, the ratio of patients responding to immunotherapy was obviously higher in low-risk group than in high-risk group. Finally, the mutation frequency of some genes differed significantly between two groups. CONCLUSION Our study provided valuable CAF signatures for predicting the outcome of KIRC and KIRP patients. These CAF signatures were also used to predict immunotherapy response, providing strategies for individualized therapy of patients.
Collapse
Affiliation(s)
- Jie-Bo Zhou
- Department of Oncology, Hai'an People's Hospital, Nantong, Jiangsu, China
| | - Chun-Xiang Li
- Department of Oncology, Hai'an People's Hospital, Nantong, Jiangsu, China
| | - Lei Qian
- Department of Oncology, Hai'an People's Hospital, Nantong, Jiangsu, China
| | - Jian-Hua Chu
- Department of Oncology, Hai'an People's Hospital, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Dong T, Liu L, You Y, Liu J, Wang F, Li S, Yu Z. WISP1 inhibition of YAP phosphorylation drives breast cancer growth and chemoresistance via TEAD4 activation. Anticancer Drugs 2025; 36:157-176. [PMID: 39774151 PMCID: PMC11781553 DOI: 10.1097/cad.0000000000001687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/15/2024] [Indexed: 01/11/2025]
Abstract
Wnt1-inducible signaling pathway protein 1 (WISP1) promotes breast cancer. The Hippo signaling pathway demonstrates a potential connection with WISP1, necessitating an exploration of their interaction. This study hypothesized that WISP1 boosts breast cancer by modulating the Hippo signaling pathway. The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were used to analyze WISP1 expression and Hippo signaling in breast cancer patients. WISP1, yes-associated protein (YAP), and domain family member 4 (TEAD4) were overexpressed or silenced in breast cancer cells. Epithelial-mesenchymal transition (EMT), and chemoresistance of breast cancer cells were evaluated. Immunofluorescence, PCR, immunoprecipitation, and western blot were used to detect the expression of WISP1 and key Hippo signaling factors and their interactions. Enrichment analysis indicated activation of WISP1 and Hippo signaling pathway and correlated with a worse prognosis in breast cancer. WISP1 overexpression facilitated EMT and chemotherapy resistance in breast cancer. Importantly, overexpression of WISP1 promoted YAP's nuclear translocation. TEAD4 expression in YAP precipitates from nuclear of WISP1-overexpressing MCF-7 cells increased. The promoting effect of WISP1 on breast cancer was counteracted by silencing YAP or TEAD4. Moreover, in WISP1 small interfering RNA-transfected MCF-7 cells, p-YAP expression increased, while interaction between YAP and TEAD4 decreased. WISP1 silencing led to ubiquitin increase and TEAD reduction in the p-YAP precipitates. In conclusion, WISP1 promotes YAP nuclear translocation and binding with TEAD4 by inhibiting YAP phosphorylation, reducing ubiquitin recruitment, and participating in transcriptional regulation in breast cancer.
Collapse
Affiliation(s)
- Tingting Dong
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing
- Department of Oncology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian
| | - Li Liu
- Department of General Surgery, Geriatric Hospital of Nanjing Medical University, Nanjing
| | - Yikai You
- Department of Rehabilitation, Suqian Integrative Medicine Hospital
| | - Jin Liu
- Department of Oncology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian
| | - Fuchao Wang
- Department of Thyroid and Breast Surgery, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Shimeng Li
- Department of Oncology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian
| | - Zhenghong Yu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing
| |
Collapse
|
3
|
Zhou G, Qu W, Yang L, Huang A, Gui X. Expression and clinical significance of CCN5 and the oestrogen receptor in advanced breast cancer. BMC Womens Health 2025; 25:89. [PMID: 40016720 PMCID: PMC11866700 DOI: 10.1186/s12905-025-03608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 03/01/2025] Open
Abstract
PURPOSE The aim of this study was to investigate the expression and clinical implications of CCN family member 5 (CCN5) and the oestrogen receptor (ER) in advanced breast cancer (BC). METHODS A total of 130 patients with advanced BC were selected for the study. Samples of normal breast tissue, ductal carcinoma in situ (DCIS), and invasive carcinoma were collected. The expression levels of CCN5 and ER in these tissues were examined using immunohistochemical methods. The correlation between expression of CCN5 and ER in different tissues and also differences in expression in invasive carcinoma were analysed. In addition, the relationship between CCN5 expression in advanced BC tissues and clinical pathological features was examined. RESULTS CCN5 and ER had low expression in normal breast tissues and invasive carcinoma tissues, but high expression in DCIS, with this difference being statistically significant (X2 = 119.899, P < 0.001; X2 = 113.524, P < 0.001, respectively). The expression of CCN5 and ER in different tissues of patients with advanced BC showed a positive correlation. Significant differences were also observed in the positive and negative expression of CCN5 and ER (X2 = 56.358, P < 0.001). Moreover, the expression of CCN5 protein in advanced BC showed a statistically significant associations (P < 0.05) with the expression of the progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2), Ki-67, and P53, tumor diameter, histological grade, lymph node metastasis, pathological molecular subtype, and clinical staging. CONCLUSION High expression of CCN5 and ER was observed in DCIS tissues of patients with advanced BC, with their expression being positively correlated. These findings suggest that CCN5 and ER may have a potential synergistic role in the progression of BC that influences the progression of advanced BC and can also be used to predict the effectiveness of endocrine therapy.
Collapse
MESH Headings
- Humans
- Female
- Breast Neoplasms/pathology
- Breast Neoplasms/metabolism
- Receptors, Estrogen/metabolism
- Middle Aged
- CCN Intercellular Signaling Proteins/metabolism
- Adult
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Aged
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Biomarkers, Tumor/metabolism
- Immunohistochemistry
- Immediate-Early Proteins/metabolism
- Neoplasm Staging
- Clinical Relevance
- Repressor Proteins
Collapse
Affiliation(s)
- Guofeng Zhou
- Department of Pathology, Nanchang People'S Hospital (the Third Hospital of Nanchang), No.1268, Jiuzhou Street, Xihu District, Nanchang, 330009, China
| | - Wei Qu
- Department of Pathology, Nanchang People'S Hospital (the Third Hospital of Nanchang), No.1268, Jiuzhou Street, Xihu District, Nanchang, 330009, China
| | - Liu Yang
- Department of Pathology, Nanchang People'S Hospital (the Third Hospital of Nanchang), No.1268, Jiuzhou Street, Xihu District, Nanchang, 330009, China
| | - Aili Huang
- Department of Pathology, Nanchang People'S Hospital (the Third Hospital of Nanchang), No.1268, Jiuzhou Street, Xihu District, Nanchang, 330009, China
| | - Xinxing Gui
- Department of Pathology, Nanchang People'S Hospital (the Third Hospital of Nanchang), No.1268, Jiuzhou Street, Xihu District, Nanchang, 330009, China.
| |
Collapse
|
4
|
Lu W, Feng W, Zhen H, Jiang S, Li Y, Liu S, Ru Q, Xiao W. Unlocking the therapeutic potential of WISP-1: A comprehensive exploration of its role in age-related musculoskeletal disorders. Int Immunopharmacol 2025; 145:113791. [PMID: 39667044 DOI: 10.1016/j.intimp.2024.113791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/14/2024]
Abstract
As the global population ages, the incidence of age-related musculoskeletal diseases continues to increase, driven by numerous complex and poorly understood factors. WNT-1 inducible secreted protein 1 (WISP-1), a secreted matrix protein, plays a critical role in the growth and development of the musculoskeletal system, including chondrogenesis, osteogenesis, and myogenesis. Numerous in vivo and in vitro studies have demonstrated that WISP-1 is significantly upregulated in age-related musculoskeletal conditions, such as osteoarthritis, osteoporosis, and sarcopenia, suggesting its involvement in the pathogenesis of these diseases. Regulating WISP-1 expression holds promise as a therapeutic strategy for improving musculoskeletal function, potentially offering new avenues for treating age-related musculoskeletal diseases in clinical practice. This review highlights the signaling pathways associated with WISP-1, its physiological roles within the musculoskeletal system, and its therapeutic potential in treating age-related musculoskeletal disorders.
Collapse
Affiliation(s)
- Wenhao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Wenjie Feng
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Haozu Zhen
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Shuguang Liu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710001, Shaanxi, China.
| | - Qin Ru
- Department of Health and Physical Education, Jianghan University, Wuhan 430056, China.
| | - Wenfeng Xiao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
5
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
6
|
Zhang H, Song W, Ma X, Yu M, Chen L, Tao Y. Acetylation stabilizes the signaling protein WISP2 by preventing its degradation to suppress the progression of acute myeloid leukemia. J Biol Chem 2023; 299:102971. [PMID: 36736423 PMCID: PMC9996369 DOI: 10.1016/j.jbc.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Acute myeloid leukemia (AML) is challenging to treat due to its heterogeneity, prompting a deep understanding of its pathogenesis mechanisms, diagnosis, and treatment. Here, we found reduced expression and acetylation levels of WISP2 in bone marrow mononuclear cells from AML patients and that AML patients with lower WISP2 expression tended to have reduced survival. At the functional level, overexpression of WISP2 in leukemia cells (HL-60 and Kasumi-1) suppressed cell proliferation, induced cell apoptosis, and exerted antileukemic effects in an in vivo model of AML. Our mechanistic investigation demonstrated that WISP2 deacetylation was regulated by the deacetylase histone deacetylase (HDAC)3. In addition, we determined that crosstalk between acetylation and ubiquitination was involved in the modulation of WISP2 expression in AML. Deacetylation of WISP2 decreased the stability of the WISP2 protein by boosting its ubiquitination mediated by NEDD4 and proteasomal degradation. Moreover, pan-HDAC inhibitors (valproic acid and trichostatin A) and an HDAC3-specific inhibitor (RGFP966) induced WISP2 acetylation at lysine K6 and prevented WISP2 degradation. This regulation led to inhibition of proliferation and induction of apoptosis in AML cells. In summary, our study revealed that WISP2 contributes to tumor suppression in AML, which provided an experimental framework for WISP2 as a candidate for gene therapy of AML.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China; Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China
| | - Wenjun Song
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Xinying Ma
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Mingxiao Yu
- Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China; Graduate School, Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Lulu Chen
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China; Institute of Blood and Marrow Transplantation, Jining Medical University, Jining, Shandong, China
| | - Yanling Tao
- Department of Pediatric Hematology, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
7
|
Reprogramming of cancer-associated fibroblasts by apoptotic cancer cells inhibits lung metastasis via Notch1-WISP-1 signaling. Cell Mol Immunol 2022; 19:1373-1391. [PMID: 36241874 PMCID: PMC9708692 DOI: 10.1038/s41423-022-00930-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022] Open
Abstract
The interplay between apoptotic cancer cells and the tumor microenvironment modulates cancer progression and metastasis. Cancer-associated fibroblasts (CAFs) play a crucial role in promoting these events through paracrine communication. Here, we demonstrate that conditioned medium (CM) from lung CAFs exposed to apoptotic cancer cells suppresses TGF-β1-induced migration and invasion of cancer cells and CAFs. Direct exposure of CAFs to apoptotic 344SQ cells (ApoSQ) inhibited CAF migration and invasion and the expression of CAF activation markers. Enhanced secretion of Wnt-induced signaling protein 1 (WISP-1) by CAFs exposed to ApoSQ was required for these antimigratory and anti-invasive effects. Pharmacological inhibition of Notch1 activation or siRNA-mediated Notch1 silencing prevented WISP-1 production by CAFs and reversed the antimigratory and anti-invasive effects. Enhanced expression of the Notch ligand delta-like protein 1 on the surface of ultraviolet-irradiated apoptotic lung cancer cells triggered Notch1-WISP-1 signaling. Phosphatidylserine receptor brain-specific angiogenesis inhibitor 1 (BAI1)-Rac1 signaling, which facilitated efferocytosis by CAFs, participated in crosstalk with Notch1 signaling for optimal production of WISP-1. In addition, a single injection of ApoSQ enhanced WISP-1 production, suppressed the expression of CAF activation markers in isolated Thy1+ CAFs, and inhibited lung metastasis in syngeneic immunocompetent mice via Notch1 signaling. Treatment with CM from CAFs exposed to ApoSQ suppressed tumor growth and lung metastasis, whereas treatment with WISP-1-immunodepleted CM from CAFs exposed to ApoSQ reversed the antitumorigenic and antimetastatic effects. Therefore, treatment with CM from CAFs exposed to apoptotic lung cancer cells could be therapeutically applied to suppress CAF activation, thereby preventing cancer progression and metastasis.
Collapse
|
8
|
Jia Q, Zhang Y, Xu B, Liao X, Bu Y, Xu Z, Duan X, Zhang Q. Dual roles of WISP2 in the progression of hepatocellular carcinoma: implications of the fibroblast infiltration into the tumor microenvironment. Aging (Albany NY) 2021; 13:21216-21231. [PMID: 34497155 PMCID: PMC8457598 DOI: 10.18632/aging.203424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022]
Abstract
The dismal outcome of hepatocellular carcinoma (HCC) patients is attributable to high frequency of metastasis and. Identification of effective biomarkers is a key strategy to inform prognosis and improve survival. Previous studies reported inconsistent roles of WISP2 in carcinogenesis, while the role of WISP2 in HCC progression also remains unclear. In this study, we confirmed that WISP2 was downregulated in HCC tissues, and WISP2 was acting as a protective factor, especially in patients without alcohol intake using multiple online datasets. In addition, we reported that upregulation of WISP2 in HCC was related to inhibition of the malignant phenotype in vitro, but these alterations were not observed in vivo. WISP2 also negatively correlated with tumour purity, and increased infiltration of fibroblasts promoted malignant progression in HCC tissues. The enhanced infiltration ability of fibroblasts was related to upregulated HMGB1 after overexpression of WISP2 in HCC. The findings shed light on the anticancer role of WISP2, and HMGB1 is one of the key factors involved in the inhibition of the efficiency of WISP2 through reducing the tumour purity with fibroblast infiltration.
Collapse
Affiliation(s)
- Qingan Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yaoyao Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Binghui Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xia Liao
- Department of Nutrition, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Bu
- Department of Hepatobiliary Surgery, General Hospital, Ningxia Medical University, Yinchuan 750001, China
| | - Zihan Xu
- Department of Burns and Plastic Surgery, Affiliated Shaanxi Provincial People's Hospital, Northwestern Polytechnical University, Xi'an 710068, China
| | - Xianglong Duan
- Second Department of General Surgery, Shaanxi Provincial People's Hospital Affiliated Hospital of Northwestern Polytechnical University, Xi'an 710068, China
| | - Qiangbo Zhang
- Cheeloo College of Medicine, Shandong University, Jinan 250012, China.,Department of General Surgery, Qilu Hospital, Shandong University, Jinan 250012, China
| |
Collapse
|
9
|
Liu Y, Qin W, Zhang F, Wang J, Li X, Li S, Qin X, Lu Y. Association between WNT-1-inducible signaling pathway protein-1 (WISP1) genetic polymorphisms and the risk of gastric cancer in Guangxi Chinese. Cancer Cell Int 2021; 21:405. [PMID: 34330284 PMCID: PMC8325280 DOI: 10.1186/s12935-021-02116-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
Background WNT1-inducible signaling pathway protein 1 (WISP1) is a member of the CCN protein family and a downstream target of β-catenin. Aberrant WISP1 expression may be involved in carcinogenesis. To date, no studies have investigated the association between single-nucleotide polymorphisms (SNPs) of WISP1 and gastric cancer. Therefore, we conducted this study to explore their relationship. Methods Polymerase chain reaction-restriction fragment length polymorphism assay was used to analyze three SNPs of WISP1 in 204 gastric cancer patients and 227 controls. Results Overall, we could not identify a significant association between WISP1 SNPs and gastric cancer risk. However, the subgroup analysis demonstrated that the presence of the rs7843546 T allele was associated with a significantly decreased risk of gastric cancer in those of Han Chinese ethnicity (CT vs. CC: OR = 0.33, 95%CI 0.14–0.78; TT vs. CC: OR = 0.29, 95%CI 0.11–0.76; CT + TT vs. CC: OR = 0.32, 95%CI 0.14–0.74). In addition, patients with the rs7843546 TT genotype display a 0.34-fold lower risk of developing stage I/II gastric cancer than those with the CC genotype Furthermore, individuals ≥ 50 years old who carried the rs10956697 AC genotype had a significantly decreased risk of gastric cancer (OR = 0.58, 95%CI 0.35–0.98). Smokers with the rs10956697 AC and AC + AA genotypes exhibited a 0.28-fold lower and 0.32-fold lower risk of gastric cancer, respectively. Conclusions The WISP1 SNPs rs7843546 and rs10956697 were, for the first time, found to reduce susceptibility to gastric cancer in various subgroups of Guangxi Chinese. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02116-2.
Collapse
Affiliation(s)
- Yanqiong Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Weijuan Qin
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Fuyong Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jian Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xi Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xue Qin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China. .,Medical Equipment Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| | - Yuefeng Lu
- Medical Equipment Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
10
|
Jia Q, Xu B, Zhang Y, Ali A, Liao X. CCN Family Proteins in Cancer: Insight Into Their Structures and Coordination Role in Tumor Microenvironment. Front Genet 2021; 12:649387. [PMID: 33833779 PMCID: PMC8021874 DOI: 10.3389/fgene.2021.649387] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
The crosstalk between tumor cells and the tumor microenvironment (TME), triggers a variety of critical signaling pathways and promotes the malignant progression of cancer. The success rate of cancer therapy through targeting single molecule of this crosstalk may be extremely low, whereas co-targeting multiple components could be complicated design and likely to have more side effects. The six members of cellular communication network (CCN) family proteins are scaffolding proteins that may govern the TME, and several studies have shown targeted therapy of CCN family proteins may be effective for the treatment of cancer. CCN protein family shares similar structures, and they mutually reinforce and neutralize each other to serve various roles that are tightly regulated in a spatiotemporal manner by the TME. Here, we review the current knowledge on the structures and roles of CCN proteins in different types of cancer. We also analyze CCN mRNA expression, and reasons for its diverse relationship to prognosis in different cancers. In this review, we conclude that the discrepant functions of CCN proteins in different types of cancer are attributed to diverse TME and CCN truncated isoforms, and speculate that targeting CCN proteins to rebalance the TME could be a potent anti-cancer strategy.
Collapse
Affiliation(s)
- Qingan Jia
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Binghui Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Yaoyao Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Arshad Ali
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Song D, Wang L, Su K, Wu H, Li J. WISP1 aggravates cell metastatic potential by abrogating TGF- β-Smad2/3-dependent epithelial-to-mesenchymal transition in laryngeal squamous cell carcinoma. Exp Biol Med (Maywood) 2021; 246:1244-1252. [PMID: 33593111 DOI: 10.1177/1535370221992703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Laryngeal squamous cell cancer (LSCC) is a common carcinoma with high morbidity and mortality. Metastasis constitutes the major cause of death and poor prognosis among patients with LSCC. Recent evidence confirms critical function of Wnt1-inducible signaling protein 1 (WISP1) in several cancers. However, its contribution in LSCC metastasis remains unclear. Specimens of tumor tissues and adjacent normal mucosa were collected from patients with LSCC. The mRNA and protein levels were determined using quantitative real-time PCR and Western blot, respectively. RNA interference was applied to silence the expression of WISP1 and TGF-β, and recombinant adenovirus was used to overexpress WISP1 in human LSCC cell line TU212 cells. Cell invasion and migration were determined by transwell assay. High expression of WISP1 was observed in LSCC tissues, especially in those from metastatic groups. Ectopic expression of WISP1 enhanced invasion and migration of TU212 cells. On the contrary, WISP1 knockdown reduced numbers of invasive and migrated cells. Additionally, elevation of WISP1 depressed the expression of epithelial marker E-cadherin and increased levels of mesenchymal marker vimentin in TU212 cells, whereas WISP suppression yielded the opposite effects. Further analysis corroborated that WISP1 overexpression enhanced activation of TGF-β-Smad signaling by increasing expression of TGF-β1, p-Smad2, and p-Smad3, which was abrogated following WISP1 down-regulation. Moreover, TGF-β1 exposure facilitated LSCC cell invasion and migration. Notably, blockage of the TGF-β-Smad pathway by si-TGF-β overturned WISP-1-evoked epithelial-to-mesenchymal transition (EMT), and subsequent cell invasion and migration. These findings highlight the pro-metastatic function of WISP1 in LSCC by regulating cell invasion and migration via TGF-β-Smad-mediated EMT, supporting a promising invention target for LSCC therapy.
Collapse
Affiliation(s)
- Dandan Song
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Liang Wang
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Ke Su
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Huanhuan Wu
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Junli Li
- Department of Otolaryngology-Head and Neck Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| |
Collapse
|
12
|
Amm HM, DeVilliers P, Srivastava AR, Diniz MG, Siegal GP, MacDougall M. Mandibular undifferentiated pleomorphic sarcoma: Molecular analysis of a primary cell population. Clin Exp Dent Res 2020; 6:495-505. [PMID: 32652895 PMCID: PMC7545231 DOI: 10.1002/cre2.301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Background Undifferentiated pleomorphic sarcomas are one of the most common subtypes of soft tissue sarcomas. These are aggressive mesenchymal tumors and are devoid of the major known biomarkers except vimentin. Our objective was to establish and characterize a primary cell population from a mandibular UPS specimen. Methods The tumor was surgically removed from the right mandible of a 24‐year‐old male with IRB approved signed consent. Tumor was dissected, cultured ex vivo, and a cell population, MUPS‐1, were isolated from outgrowths. Gene and protein expression profiles of both the primary tumor and the derived there from cells were obtained by quantitative RT‐PCR and immunohistochemistry and included markers of epithelial, endothelial, and mesenchymal differentiation. To better define potential biomarkers, MUPS‐1 cells were additionally characterized by RNA sequencing analysis. Results Pathological analysis of primary tumor tissue revealed a sarcoma demonstrating multiple pathways of differentiation simultaneously with myxoid, fibrous, and osseous tissue. The isolated cells had a spindle cell‐like morphology, were maintained in culture for greater than 20 passages, and formed colonies in soft agar indicating tumorigenicity. The cells, similar to the primary tumor, were strongly positive for vimentin and moderately expressed alkaline phosphatase. RNA‐seq analysis revealed the tumor over‐expressed several genes compared to normal tissue, including components of the Notch signaling pathway, NOTCH3 and JAG1. Conclusions We have successfully established an undifferentiated pleomorphic sarcoma cell population, which will provide a valuable resource for studying fundamental processes and potentially serving as a platform for exploring therapeutic strategies for sarcomas.
Collapse
Affiliation(s)
- Hope M Amm
- Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Patricia DeVilliers
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ambika R Srivastava
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marina G Diniz
- Department of Pathology and Oral Surgery and Pathology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gene P Siegal
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mary MacDougall
- Oral and Maxillofacial Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Liao X, Bu Y, Xu Z, Jia F, Chang F, Liang J, Jia Q, Lv Y. WISP1 Predicts Clinical Prognosis and Is Associated With Tumor Purity, Immunocyte Infiltration, and Macrophage M2 Polarization in Pan-Cancer. Front Genet 2020; 11:502. [PMID: 32523603 PMCID: PMC7261883 DOI: 10.3389/fgene.2020.00502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/23/2020] [Indexed: 12/30/2022] Open
Abstract
Cancer is becoming the leading cause of death and a major public health problem. Although many advanced treatment strategies are currently in use, the general prognosis of cancer patients remains dismal due to the high frequency of recurrence, metastasis. The identification of effective biomarkers is important for predicting survival of cancer patients and improving treatment efficacy. In this study, we comprehensively analyzed WNT1-inducible-signaling pathway protein 1 (WISP1) expression and explored its correlation with prognosis in pan-cancer using tumor IMmune Estimation Resource (TIMER) and Gene Expression Profiling Interactive Analysis 2 (GEPIA2). We also examined correlations between WISP1 and immunocyte infiltration using TIMER. We identified genes co-expressed with WISP1 using the LinkedOmics database and analyzed associated gene ontology using Metascape. Finally, we constructed protein-protein interaction networks and examined correlations between genes co-expressed with WISP1 and immunocyte infiltration in pan-cancer. WISP1 level differed between human pan-cancer tissues and normal tissues, indicating its potential as a prognostic biomarker. WISP1 expression was correlated with tumor purity and immunocyte infiltration, especially monocyte-macrophage trafficking and M2 polarization. Genes co-expressed with WISP1 were mainly associated with extracellular matrix organization, with collagen members COL6A3, COL5A1, and COL8A1 being key genes correlated with macrophage infiltration and M2 polarization in pan-cancer. Conversely, in certain types of cancer with better prognoses, WISP1 was associated with low M2 macrophage infiltration. These results suggest that WISP1 affect clinical prognosis through associations with tumor purity, immune cell infiltration, and macrophage M2 polarization in pan-cancer, with collagen member proteins may serving as effector molecules of WISP1.
Collapse
Affiliation(s)
- Xia Liao
- Department of Nutrition, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yang Bu
- Department of Hepatobiliary Surgery, General Hospital, Ningxia Medical University, Yinchuan, China
| | - Zihan Xu
- Department of Burns and Plastic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Fengan Jia
- Metabolite Research Center, Shaanxi Institute of Microbiology, Xi'an, China
| | - Fan Chang
- Metabolite Research Center, Shaanxi Institute of Microbiology, Xi'an, China
| | - Junrong Liang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qingan Jia
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Gerarduzzi C, Hartmann U, Leask A, Drobetsky E. The Matrix Revolution: Matricellular Proteins and Restructuring of the Cancer Microenvironment. Cancer Res 2020; 80:2705-2717. [PMID: 32193287 DOI: 10.1158/0008-5472.can-18-2098] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/04/2019] [Accepted: 03/17/2020] [Indexed: 11/16/2022]
Abstract
The extracellular matrix (ECM) surrounding cells is indispensable for regulating their behavior. The dynamics of ECM signaling are tightly controlled throughout growth and development. During tissue remodeling, matricellular proteins (MCP) are secreted into the ECM. These factors do not serve classical structural roles, but rather regulate matrix proteins and cell-matrix interactions to influence normal cellular functions. In the tumor microenvironment, it is becoming increasingly clear that aberrantly expressed MCPs can support multiple hallmarks of carcinogenesis by interacting with various cellular components that are coupled to an array of downstream signals. Moreover, MCPs also reorganize the biomechanical properties of the ECM to accommodate metastasis and tumor colonization. This realization is stimulating new research on MCPs as reliable and accessible biomarkers in cancer, as well as effective and selective therapeutic targets.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada. .,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Ursula Hartmann
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elliot Drobetsky
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Québec, Canada.,Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
15
|
Loftus A, Cappariello A, George C, Ucci A, Shefferd K, Green A, Paone R, Ponzetti M, Delle Monache S, Muraca M, Teti A, Rucci N. Extracellular Vesicles From Osteotropic Breast Cancer Cells Affect Bone Resident Cells. J Bone Miner Res 2020; 35:396-412. [PMID: 31610048 DOI: 10.1002/jbmr.3891] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are emerging as mediators of a range of pathological processes, including cancer. However, their role in bone metastases has been poorly explored. We investigated EV-mediated effects of osteotropic breast cancer cells (MDA-MB-231) on bone resident cells and endothelial cells. Pretreatment of osteoblasts with conditioned medium (CM) of MDA-MB-231 (MDA) cells promoted pro-osteoclastogenic and pro-angiogenic effects by osteoblast EVs (OB-EVs), as well as an increase of RANKL-positive OB-EVs. Moreover, when treating osteoblasts with MDA-EVs, we observed a reduction of their number, metabolic activity, and alkaline phosphatase (Alp) activity. MDA-EVs also reduced transcription of Cyclin D1 and of the osteoblast-differentiating genes, while enhancing the expression of the pro-osteoclastogenic factors Rankl, Lcn2, Il1b, and Il6. Interestingly, a cytokine array on CM from osteoblasts treated with MDA-EVs showed an increase of the cytokines CCL3, CXCL2, Reg3G, and VEGF, while OPG and WISP1 were downregulated. MDA-EVs contained mRNAs of genes involved in bone metabolism, as well as cytokines, including PDGF-BB, CCL3, CCL27, VEGF, and Angiopoietin 2. In line with this profile, MDA-EVs increased osteoclastogenesis and in vivo angiogenesis. Finally, intraperitoneal injection of MDA-EVs in mice revealed their ability to reach the bone microenvironment and be integrated by osteoblasts and osteoclasts. In conclusion, we showed a role for osteoblast-derived EVs and tumor cell-derived EVs in the deregulation of bone and endothelial cell physiology, thus fueling the vicious cycle induced by bone tumors. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alexander Loftus
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alfredo Cappariello
- Oncohematology Department, IRCCS Bambino Gesù Children's Hospital Research Laboratories, Rome, Italy
| | - Christopher George
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Argia Ucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Kirsty Shefferd
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Alice Green
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Riccardo Paone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marco Ponzetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maurizio Muraca
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Nadia Rucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
16
|
Donma MM, Güngör ZE, Yılmaz A, Guzel S, Donma O. Assessment of Iron Metabolism-Related Parameters in Obese Children. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2019. [DOI: 10.34172/ajmb.2019.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Objectives: The aim of the study was to assess the possible associations among biochemical parameters that may be correlated with the possible mechanisms of iron metabolism in healthy children with normal body mass index (BMI), along with morbid obese (MO) children with and without metabolic syndrome (MetS). Methods: To this end, children aged 6-18 years with no history of any acute or chronic diseases were selected as the population of this prospective case-control study. Thirty MO children (with BMI higher than 99th percentile and without MetS findings), 28 MO children (with BMI higher than 99th percentile and with MetS), and 30 healthy children (with BMI values between 15th and 85th percentiles) participated in the study. Then, anthropometric measurements were recorded, followed by performing the complete blood count and serum iron profile. In addition, ferritin, transferrin, hepcidin, irisin, ferroportin, brain-derived neurotrophic factor (BDNF), WISP1, and PTP1/fortilin levels were measured using ELISA. Finally, statistical analyses were performed and P<0.05 was considered as the level of statistical significance. Results: Significant differences were obtained among the groups regarding anthropometric measurements, blood pressures, triacylglycerols, and high-density lipoprotein cholesterol levels. Further, there was a tendency toward an iron deficiency in both MO groups while an increase in ferritin levels was significant in the MetS group. However, BDNF, hepcidin, and ferroportin demonstrated no significant difference among the groups. Eventually, although the above-mentioned parameters were statistically insignificant, fortilin levels indicated a gradual decrease whereas irisin levels represented an increase from control group toward morbid obesity and MetS. Conclusion: In our study, obesity severity and the tendency toward iron deficiency were in accordance with each other. Particularly, different WISP-1 levels in the groups may help predict future complications, along with its use in diagnosing obesity.
Collapse
Affiliation(s)
- Mustafa Metin Donma
- Department of Pediatrics, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Zeynep Ersöz Güngör
- Ministry of Health, Hayrabolu State Hospital, Department of Pediatrics; Tekirdag, Turkey
| | - Ahsen Yılmaz
- Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Savas Guzel
- Department of Biochemistry, Faculty of Medicine, Namik Kemal University, Tekirdag, Turkey
| | - Orkide Donma
- Department of Medical Biochemistry, Cerrahpasa Medical Faculty, Istanbul University Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
17
|
Wang Y, Yang SH, Hsu PW, Chien SY, Wang CQ, Su CM, Dong XF, Zhao YM, Tang CH. Impact of WNT1-inducible signaling pathway protein-1 (WISP-1) genetic polymorphisms and clinical aspects of breast cancer. Medicine (Baltimore) 2019; 98:e17854. [PMID: 31689877 PMCID: PMC6946553 DOI: 10.1097/md.0000000000017854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common diagnosed malignancy in women. This study genotyped blood samples from 236 Han Chinese women with breast cancer and 128 healthy controls for single nucleotide polymorphisms (SNPs) rs2977537, rs2929970, rs2929973, rs2977530, and rs62514004, to determine whether these WNT1-inducible signaling pathway protein 1 (WISP-1) genetic polymorphisms increase the risk of developing breast cancer. Compared with wild-type (AA) carriers, those carrying the WISP1 rs62514004 AG or AG + GG genetic variants had a greater risk of developing breast cancer. In an evaluation of the association between clinicopathological aspects and the WISP1 SNP rs62514004 in the breast cancer cohort, patients with the GG genotype were less likely than those with the AA genotype to develop stage III/IV disease. Patients carrying the WISP1 rs2929973 GG + TT variant were almost twice as likely as those carrying the GT genotype to have estrogen receptor (ER)- and progesterone receptor (PR)-positive tumors, while those with the WISP1 rs62514004 AG + GG genetic variants were around twice as likely as those with the AA genotype to have HER2-positive tumors. This study details risk associations between WISP1 SNPs and breast cancer susceptibility in women of Han Chinese ethnicity.
Collapse
Affiliation(s)
- Yan Wang
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Shi-Hui Yang
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Ping-Wen Hsu
- School of Medicine, China Medical University, Taichung, Taiwan
| | - Szu-Yu Chien
- School of Medicine, China Medical University, Taichung, Taiwan
| | | | | | - Xiao-Fang Dong
- Department of Medical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Yong-Ming Zhao
- Department of Surgical Oncology, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Chinese Medicine Research Center, China Medical University
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
18
|
Kuo SJ, Hsua PW, Chien SY, Huang CC, Hu SL, Tsai CH, Su CM, Tang CH. Associations between WNT1-inducible signaling pathway protein-1 (WISP-1) genetic polymorphisms and clinical aspects of rheumatoid arthritis among Chinese Han subjects. Medicine (Baltimore) 2019; 98:e17604. [PMID: 31689765 PMCID: PMC6946386 DOI: 10.1097/md.0000000000017604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study genotyped blood samples from 214 patients with rheumatoid arthritis (RA) and 293 healthy controls for single nucleotide polymorphisms (SNPs) rs2977537, rs2929970, rs2929973, rs2977530, rs1689334 and rs62514004. We want to investigate whether the SNPs in the WNT1-inducible signaling pathway protein 1 (WISP-1) gene may increase the risk of developing RA. We showed that RA disease was more likely with the AA genotype compared with the AG genotype of SNP rs2977537 (adjusted odds ratio [AOR]: 0.54; 95% confidence interval [CI]: 0.34-0.84), and with the TT genotype (AOR: 0.24; 95% CI: 0.13-0.39) or the GG genotype (AOR: 0.05; 95% CI: 0.03-0.10) compared with the GT genotype of rs2929973, and with the AA genotype (AOR: 0.34; 95% CI: 0.22-0.54) or GG genotype (AOR: 0.52; 95% CI: 0.31 to 0.87) vs the AG genotype of rs2977530. Rheumatoid factor positivity was more likely with the AA genotype than with the AG genotype of the rs2977537 polymorphism (AOR: 0.16; 95% CI: 0.16-0.94). High CRP (>8 mg/L) was more likely with the non-AG genotype (AA + GG) than the AG genotype of rs2977537 (AOR: 1.84; 95% CI: 1.05-3.21) and with the AA genotype vs the AG genotype of rs2977530 (AOR: 2.62; 95% CI: 1.35-5.09). Compared with the AG genotype, the AA genotype of rs2929970 was more likely to require prednisolone (AOR: 0.49; 95% CI: 0.27-0.88), while the AG genotype was more likely than the AA genotype of SNP rs2977530 to require TNF-α inhibitors (AOR: 2.07; 95% CI: 1.08 to 3.98). WISP-1 may be a diagnostic marker and therapeutic target for RA therapy.
Collapse
Affiliation(s)
- Shu-Jui Kuo
- School of Medicine
- Department of Orthopedic Surgery
| | | | | | - Chien-Chung Huang
- School of Medicine
- Division of Immunology and Rheumatology, Department of Internal Medicine, China Medical University Hospital
| | - Sung-Lin Hu
- School of Medicine
- Department of Family Medicine, China Medical University Hsinchu Hospital, Hsinchu
| | | | - Chen-Ming Su
- Department of Biomedical Sciences Laboratory, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, Zhejiang, China
| | - Chih-Hsin Tang
- School of Medicine
- Graduate Institute of Biomedical Science
- Chinese Medicine Research Center, China Medical University
- Department of Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
| |
Collapse
|
19
|
Wang L, Sun J, Gao P, Su K, Wu H, Li J, Lou W. Wnt1-inducible signaling protein 1 regulates laryngeal squamous cell carcinoma glycolysis and chemoresistance via the YAP1/TEAD1/GLUT1 pathway. J Cell Physiol 2019; 234:15941-15950. [PMID: 30805937 DOI: 10.1002/jcp.28253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Wnt1-inducible signaling protein 1 (WISP1) is a matricellular protein and downstream target of Wnt/β-catenin signaling. This study sought to determine the role of WISP1 in glucose metabolism and chemoresistance in laryngeal squamous cell carcinoma. WISP1 expression was silenced or upregulated in Hep-2 cells by the transfection of WISP1 siRNA or AdWISP1 vector. Ectopic WISP1 expression regulated glucose uptake and lactate production in Hep-2 cells. Subsequently, the expression of glucose transporter 1 (GLUT1) was significantly modulated by WISP1. Furthermore, WISP1 increased cell survival rates, diminished cell death rates, and suppressed ataxia-telangiectasia-mutated (ATM)-mediated DNA damage response pathway in cancer cells treated with cisplatin through GLUT1. WISP1 also promoted cancer cell tumorigenicity and growth in mice implanted with Hep-2 cells. Additionally, WISP1 activated the YAP1/TEAD1 pathway that consequently contributed to the regulation of GLUT1 expression. In summary, WISP1 regulated glucose metabolism and cisplatin resistance in laryngeal cancer by regulating GLUT1 expression. WISP1 may be used as a potential therapeutic target for laryngeal cancer.
Collapse
Affiliation(s)
- Liang Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jin Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pei Gao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ke Su
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huanhuan Wu
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junli Li
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weihua Lou
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Chai DM, Qin YZ, Wu SW, Ma L, Tan YY, Yong X, Wang XL, Wang ZP, Tao YS. WISP2 exhibits its potential antitumor activity via targeting ERK and E-cadherin pathways in esophageal cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:102. [PMID: 30808397 PMCID: PMC6390602 DOI: 10.1186/s13046-019-1108-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022]
Abstract
Backgrounds Emerging evidence has demonstrated that WISP2 is critically involved in cell proliferation, migration, invasion and metastasis in cancers. However, the function of WISP2 in esophageal squamous cell carcinoma (ESCC) is largely unclear. Therefore, we aim to explore the effects and the potential mechanism of WISP2 on proliferation and motility and invasion of ESCC cells. Methods Cell proliferation was detected by MTT assay and apoptosis was measured by FACS in ESCC cells after WISP2 downregulation and overexpression. Cell migration and invasion were analyzed by wound healing assay and transwell migration assay, respectively. The expression of ERK-1/2, Slug and E-cadherin was measured by Western blot respectively. IHC was performed to measure the expression of WISP2 in ESCC tissues. Results WISP2 overexpression is associated with survival in ESCC patients. WISP2 overexpression inhibited cell growth and induced cell apoptosis, suppressed cell migration and invasion in ESCC cells. Moreover, WISP overexpression retarded tumor growth in mouse model. WISP2 downregulation enhanced cell growth, inhibited apoptosis, promoted cell migration and invasion in ESCC cells. Mechanistically, WISP2 exerts its tumor suppressive functions via regulation of ERK1/2, Slug, and E-cadherin in ESCC cells. Conclusions Our findings suggest that activation of WISP2 could be a useful therapeutic strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Da-Min Chai
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Yan-Zi Qin
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Shi-Wu Wu
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Li Ma
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Yuan-Yuan Tan
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Xiang Yong
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Xiao-Li Wang
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China
| | - Z Peter Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China. .,Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA, 02215, USA.
| | - Yi-Sheng Tao
- Department of Pathology, the First Affiliated Hospital of Bengbu Medical University, Bengbu Medical College, Changhuai road 287#, Bengbu, Anhui, 233000, People's Republic of China.
| |
Collapse
|
21
|
Vyskocil E, Pammer J, Altorjai G, Grasl MC, Parzefall T, Haymerle G, Janik S, Perisanidis C, Erovic BM. Dysregulation of ß-catenin, WISP1 and TCF21 predicts disease-specific survival and primary response against radio(chemo)therapy in patients with locally advanced squamous cell carcinomas of the head and neck. Clin Otolaryngol 2019; 44:263-272. [PMID: 30615266 DOI: 10.1111/coa.13281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/28/2018] [Accepted: 12/05/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The objective of this study was to determine the prognostic and predictive impact of β-catenin, TCF21 and WISP1 expression in patients with squamous cell carcinomas of the head and neck who underwent primary radiotherapy or concomitant chemoradiotherapy. STUDY DESIGN Prospective cohort study. SETTING University hospital. PARTICIPANTS Protein expression profiles of β-catenin, TCF21, WISP1 and p16 were determined by immunohistochemical analyses in tissue samples of 59 untreated patients. Expression was correlated with different outcome parameters. MAIN OUTCOME MEASURES Impact of TNM classification, grading, sex, age, gender, type of therapy, response to therapy and p16 status on disease-specific (DSS) and disease-free survival (DFS). RESULTS Patients with high expression of TCF21 were associated with significantly worse disease-specific survival (P = 0.005). In a multivariable analysis, TCF21 was a significant determinant of disease-specific survival. (HR 3.01; P = 0.036). Conversely, low expression of β-catenin (P = 0.025) and WISP1 (P = 0.037) revealed a better response to radiotherapy. CONCLUSION Since data show that TCF21 is a prognostic factor for disease-specific survival and WISP1 and ß-catenin are predictive factors for clinical outcome after definitive radiotherapy, further studies are warranted to prove these preliminary but very promising findings.
Collapse
Affiliation(s)
- Erich Vyskocil
- Department of Otorhinolaryngology, Head Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Johannes Pammer
- Clinical Pathology, Medical University of Vienna, Vienna, Austria
| | | | - Matthaeus Ch Grasl
- Department of Otorhinolaryngology, Head Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Parzefall
- Department of Otorhinolaryngology, Head Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Georg Haymerle
- Department of Otorhinolaryngology, Head Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Stefan Janik
- Department of Otorhinolaryngology, Head Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christos Perisanidis
- Department of Oral and Maxillofacial Surgery, Dental School of Athens, University of Athens, Athens, Greece
| | - Boban M Erovic
- Institute of Head and Neck Diseases, Evangelical Hospital Vienna, Vienna, Austria
| |
Collapse
|
22
|
Abstract
The CCN protein family is composed of six matricellular proteins, which serve regulatory roles rather than structural roles in the extracellular matrix. First identified as secreted proteins which are induced by oncogenes, the acronym CCN came from the names of the first three members: CYR61, CTGF, and NOV. All six members of the CCN family consist of four cysteine-rich modular domains. CCN proteins are known to regulate cell adhesion, proliferation, differentiation, and apoptosis. In addition, CCN proteins are associated with cardiovascular and skeletal development, injury repair, inflammation, and cancer. They function either through binding to integrin receptors or by regulating the expression and activity of growth factors and cytokines. Given their diverse roles related to the pathology of certain diseases such as fibrosis, arthritis, atherosclerosis, diabetic nephropathy, retinopathy, and cancer, there are many emerging studies targeting CCN protein signaling pathways in attempts to elucidate their potentials as therapeutic targets. [BMB Reports 2018; 51(10): 486-493].
Collapse
Affiliation(s)
- Hyungjoo Kim
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Seogho Son
- Department of Life Science, Hanyang University, Seoul 04763, Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul 04763, and Natural Science Institute, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
23
|
Liu Y, Song Y, Ye M, Hu X, Wang ZP, Zhu X. The emerging role of WISP proteins in tumorigenesis and cancer therapy. J Transl Med 2019; 17:28. [PMID: 30651114 PMCID: PMC6335850 DOI: 10.1186/s12967-019-1769-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022] Open
Abstract
Accumulated evidence has demonstrated that WNT1 inducible signaling pathway protein (WISP) genes, which belong to members of the CCN growth factor family, play a pivotal role in tumorigenesis and progression of a broad spectrum of human cancers. Mounting studies have identified that WISP proteins (WISP1-3) exert different biological functions in various human malignancies. Emerging evidence indicates that WISP proteins are critically involved in cell proliferation, apoptosis, invasion and metastasis in cancers. Because the understanding of a direct function of WISP proteins in cancer development and progression has begun to emerge, in this review article, we describe the physiological function of WISP proteins in a variety of human cancers. Moreover, we highlight the current understanding of how the WISP protein is involved in tumorigenesis and cancer progression. Furthermore, we discuss that targeting WISP proteins could be a promising strategy for the treatment of human cancers. Hence, the regulation of WISP proteins could improve treatments for cancer patients.
Collapse
Affiliation(s)
- Yi Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Yizuo Song
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| | - Z. Peter Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang China
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030 Anhui China
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, No. 109 Xueyuan Xi Road, Wenzhou, 325027 Zhejiang China
| |
Collapse
|
24
|
Abstract
CCN proteins are secreted into the extracellular environment where they interact with both components of the extracellular matrix and with cell surface receptors to regulate cellular function. Through these interactions, CCNs act as extracellular ligands to activate intracellular signal transduction pathways. CCN4/WISP-1, like other CCNs, plays multiple physiologic roles in development and also participates in pathogenesis. CCN4 is of particular interest with respect to cancer, showing promise as a biomarker or prognostic factor as well as a potential therapeutic target. This review focuses on recent work addressing the role of CCN4 in cancer. While CCN4 has been identified as an oncogene in a number of cancers, where it enhances cell migration and promoting epithelial-mesenchymal transition, there are other cancers where CCN4 appears to play an inhibitory role. The mechanisms underlying these differences in cellular response have not yet been delineated, but are an active area of investigation. The expression and activities of CCN4 splice variants are likewise an emerging area for study. CCN4 acts as an autocrine factor that regulates the cancer cells from which it is secreted. However, CCN4 is also a paracrine factor that is secreted by stromal fibroblasts, and can affect the function of vascular endothelial cells. In summary, current evidence is abundant in regard to establishing potential roles for CCN4 in oncogenesis, but much remains to be learned about the functions of this fascinating protein as both an autocrine and paracrine regulator in the tumor microenvironment.
Collapse
Affiliation(s)
- Mary P Nivison
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA,
| | - Kathryn E Meier
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA,
| |
Collapse
|
25
|
Wright LH, Herr DJ, Brown SS, Kasiganesan H, Menick DR. Angiokine Wisp-1 is increased in myocardial infarction and regulates cardiac endothelial signaling. JCI Insight 2018; 3:95824. [PMID: 29467324 DOI: 10.1172/jci.insight.95824] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/10/2018] [Indexed: 12/17/2022] Open
Abstract
Myocardial infarctions (MIs) cause the loss of myocytes due to lack of sufficient oxygenation and latent revascularization. Although the administration of histone deacetylase (HDAC) inhibitors reduces the size of infarctions and improves cardiac physiology in small-animal models of MI injury, the cellular targets of the HDACs, which the drugs inhibit, are largely unspecified. Here, we show that WNT-inducible secreted protein-1 (Wisp-1), a matricellular protein that promotes angiogenesis in cancers as well as cell survival in isolated cardiac myocytes and neurons, is a target of HDACs. Further, Wisp-1 transcription is regulated by HDACs and can be modified by the HDAC inhibitor, suberanilohydroxamic acid (SAHA/vorinostat), after MI injury. We observe that, at 7 days after MI, Wisp-1 is elevated 3-fold greater in the border zone of infarction in mice that experience an MI injury and are injected daily with SAHA, relative to MI alone. Additionally, human coronary artery endothelial cells (HCAECs) produce WISP-1 and are responsive to autocrine WISP-1-mediated signaling, which functionally promotes their proangiogenic behavior. Altering endogenous expression of WISP-1 in HCAECs directly impacts their network density in vitro. Therapeutic interventions after a heart attack define the extent of infarct injury, cell survival, and overall prognosis. Our studies shown here identify a potentially novel cardiac angiokine, Wisp-1, that may contribute to beneficial post-MI treatment modalities.
Collapse
Affiliation(s)
| | | | - Symone S Brown
- College of Graduate Studies, Summer Undergraduate Research Program, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | - Donald R Menick
- Division of Cardiology, and.,Ralph H. Johnson VA Medical Center, Charleston, South Carolina, USA
| |
Collapse
|
26
|
Shao H, Cai L, Moller M, Issac B, Zhang L, Owyong M, Moscowitz AE, Vazquez-Padron R, Radtke F, Liu ZJ. Notch1-WISP-1 axis determines the regulatory role of mesenchymal stem cell-derived stromal fibroblasts in melanoma metastasis. Oncotarget 2018; 7:79262-79273. [PMID: 27813493 PMCID: PMC5346712 DOI: 10.18632/oncotarget.13021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/26/2016] [Indexed: 11/25/2022] Open
Abstract
Mesenchymal stem cells-derived fibroblasts (MSC-DF) constitute a significant portion of stromal fibroblasts in the tumor microenvironment (TME) and are key modulators of tumor progression. However, the molecular mechanisms that determine their tumor-regulatory function are poorly understood. Here, we uncover the Notch1 pathway as a molecular determinant that selectively controls the regulatory role of MSC-DF in melanoma metastasis. We demonstrate that the Notch1 pathway's activity is inversely correlated with the metastasis-regulating function of fibroblasts and can determine the metastasis-promoting or -suppressing phenotype of MSC-DF. When co-grafted with melanoma cells, MSC-DFNotch1-/- selectively promote, while MSC-DFN1IC+/+ preferentially suppress melanoma metastasis, but not growth, in mouse models. Consistently, conditioned media (CM) from MSC-DFNotch1-/- and MSC-DFN1IC+/+ oppositely, yet selectively regulates migration, but not growth of melanoma cells in vitro. Additionally, when co-cultured with metastatic melanoma cells in vitro, MSC-DFNotch1-/- support, while MSC-DFN1IC+/+ inhibit melanoma cells in the formation of spheroids. These findings expand the repertoire of Notch1 signaling as a molecular switch in determining the tumor metastasis-regulating function of MSC-DF. We also identified Wnt-induced secreted protein-1 (WISP-1) as a key downstream secretory mediator of Notch1 signaling to execute the influential role of MSC-DF on melanoma metastasis. These findings reveal the Notch1-WISP-1 axis as a crucial molecular determinant in governing stromal regulation of melanoma metastasis; thus, establishing this axis as a potential therapeutic target for melanoma metastasis.
Collapse
Affiliation(s)
- Hongwei Shao
- Department of Surgery, University of Miami School of Medicine, Miami, USA
| | - Long Cai
- Department of Surgery, University of Miami School of Medicine, Miami, USA.,Hangzhou Red-Cross Hospital, Zhejiang, China
| | - Mecker Moller
- Department of Surgery, University of Miami School of Medicine, Miami, USA
| | - Biju Issac
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Leiming Zhang
- Department of Surgery, University of Miami School of Medicine, Miami, USA.,Yantai University, School of Pharmacy, Shandong, China
| | - Mark Owyong
- Department of Surgery, University of Miami School of Medicine, Miami, USA
| | | | | | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland
| | - Zhao-Jun Liu
- Department of Surgery, University of Miami School of Medicine, Miami, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| |
Collapse
|
27
|
Lin YH, Hsiao YH, Yang SF, Liu YF, Hsu CF, Wang PH. Association Between Genetic Polymorphisms of WNT1 Inducible Signaling Pathway Protein 1 and Uterine Cervical Cancer. Reprod Sci 2018; 25:1549-1556. [PMID: 29402200 DOI: 10.1177/1933719118756749] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To date, no study has investigated the involvement of the single-nucleotide polymorphisms (SNPs) of WNT1 inducible signaling pathway protein 1 (WISP1) in uterine cervical cancer. Therefore, we conducted this study to explore the clinical implications of WISP1 SNPs in cervical cancer. One hundred and fifteen patients with invasive cervical cancer, 95 patients with preinvasive lesions, and 316 normal controls were enrolled. The WISP1 SNPs rs62514004, rs2929973, rs2977530, and rs2977537 were selected, and their genotypic distributions were determined through real-time polymerase chain reaction. Our findings showed that genotypes AG/GG in WISP1 SNP rs2977530 reduced the risk of invasive cervical cancer with AA as a reference; however, these genotypes did not reduce the risk of preinvasive lesions. By contrast, genotype AA in WISP1 SNP rs2977537 elevated the risk of invasive cervical cancer with GG/GA as a reference, but it did not elevate the risk of preinvasive lesions. Moreover, an additional integrated in silico analysis indicated that WISP1 rs2977537 altered the WISP1 expression recorded in the Genotype-Tissue Expression database. In conclusion, genotypes AG/GG in WISP1 SNP rs2977530 reduce the susceptibility of Taiwanese women to invasive cervical cancer, whereas genotype AA in rs2977537 increases the said risk.
Collapse
Affiliation(s)
- Yu-Hsiang Lin
- 1 Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yi-Hsuan Hsiao
- 2 School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,3 Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shun-Fa Yang
- 1 Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,4 Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yu-Fan Liu
- 5 Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Chun-Fang Hsu
- 1 Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Po-Hui Wang
- 1 Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,2 School of Medicine, Chung Shan Medical University, Taichung, Taiwan.,6 Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
28
|
Koellensperger E, Bonnert LC, Zoernig I, Marmé F, Sandmann S, Germann G, Gramley F, Leimer U. The impact of human adipose tissue-derived stem cells on breast cancer cells: implications for cell-assisted lipotransfers in breast reconstruction. Stem Cell Res Ther 2017; 8:121. [PMID: 28545495 PMCID: PMC5445287 DOI: 10.1186/s13287-017-0579-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/27/2017] [Accepted: 05/08/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND In this study we evaluated the interactions of human adipose tissue-derived stem cells (ADSCs) and different human breast cancer cell lines (BRCAs) with regard to the safety of cell-assisted lipotransfers for breast reconstruction and a thereby unintended co-localization of ADSCs and BRCAs. METHODS ADSCs were co-cultured with five different human BRCAs (MCF-7, MDA-MB-231, SK-BR-3, ZR-75-30, and EVSA-T) and primary BRCAs from one patient in a transwell system, and cell-cell-interactions were analyzed by assessing doubling time, migration and invasion, angiogenesis, quantitative real-time polymerase chain reaction (PCR) of more than 300 tumor-associated genes, and multiplex protein assays of 20 chemokines and growth factors and eight matrix metalloproteinases (MMPs). Results of co-culture were compared to those of the respective monoculture. RESULTS Quantitative real-time PCR revealed remarkable changes in the expression of multiple tumor-associated genes in co-culture compared to monocultures of both ADSCs and BRCAs. Concomitantly, the concentration of several tumor-associated proteins, such as cytokines and MMPs, were strongly increased in co-culture. Furthermore, exclusively in co-culture with ADSCs, the different BRCAs were exposed to several important tumor-modulating proteins, such as CCL2, HGF, or interleukins. Co-culture did not significantly affect cellular proliferation of either ADSCs or BRCAs (p > 0.05). The migration of MCF-7 and MDA-MB-231 BRCAs was significantly increased in co-culture with ADSCs by a mean of 11% and 23%, respectively (p = 0.04 and 0.012), as well as that of ADSCs in co-culture with MDA-MB-231, ZR-75-30, and EVSA-T (+11-15%, p = 0.035-0.045). Co-culture with MDA-MB-231, SK-BR-3, and EVSA-T BRCAs significantly increased the invasive behavior of ADSCs by a mean of 24-41% (p = 0.014-0.039). There were no significant differences in the in vitro invasive properties of BRCAs in co-culture compared to monoculture. An in vitro angiogenesis assay revealed an increased tube formation of conditioned media from co-cultured BRCAs and ADSCs compared to the respective monocultures. CONCLUSION This study further elucidates the possible interactions of primary human ADSCs with human BRCAs, pointing towards a potential increased oncological risk which should not be neglected when considering a clinical use of cell-assisted lipoaspirates in breast reconstruction.
Collapse
Affiliation(s)
- Eva Koellensperger
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery - ETHIANUM, Vossstraße 6, 69115, Heidelberg, Germany. .,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
| | - Lilly-Claire Bonnert
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery - ETHIANUM, Vossstraße 6, 69115, Heidelberg, Germany
| | - Inka Zoernig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Frederik Marmé
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Stefanie Sandmann
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery - ETHIANUM, Vossstraße 6, 69115, Heidelberg, Germany
| | - Günter Germann
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery - ETHIANUM, Vossstraße 6, 69115, Heidelberg, Germany
| | - Felix Gramley
- Department of Cardiology, University of Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Uwe Leimer
- Clinic for Plastic, Aesthetic and Reconstructive Surgery, Spine, Orthopedic and Hand Surgery - ETHIANUM, Vossstraße 6, 69115, Heidelberg, Germany
| |
Collapse
|
29
|
Paik ES, Choi HJ, Kim TJ, Lee JW, Kim BG, Bae DS, Choi CH. Molecular Signature for Lymphatic Invasion Associated with Survival of Epithelial Ovarian Cancer. Cancer Res Treat 2017; 50:461-473. [PMID: 28546526 PMCID: PMC5912145 DOI: 10.4143/crt.2017.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/09/2017] [Indexed: 01/02/2023] Open
Abstract
Purpose We aimed to develop molecular classifier that can predict lymphatic invasion and their clinical significance in epithelial ovarian cancer (EOC) patients. Materials and Methods We analyzed gene expression (mRNA, methylated DNA) in data from The Cancer Genome Atlas. To identify molecular signatures for lymphatic invasion, we found differentially expressed genes. The performance of classifier was validated by receiver operating characteristics analysis, logistic regression, linear discriminant analysis (LDA), and support vector machine (SVM). We assessed prognostic role of classifier using random survival forest (RSF) model and pathway deregulation score (PDS). For external validation,we analyzed microarray data from 26 EOC samples of Samsung Medical Center and curatedOvarianData database. Results We identified 21 mRNAs, and seven methylated DNAs from primary EOC tissues that predicted lymphatic invasion and created prognostic models. The classifier predicted lymphatic invasion well, which was validated by logistic regression, LDA, and SVM algorithm (C-index of 0.90, 0.71, and 0.74 for mRNA and C-index of 0.64, 0.68, and 0.69 for DNA methylation). Using RSF model, incorporating molecular data with clinical variables improved prediction of progression-free survival compared with using only clinical variables (p < 0.001 and p=0.008). Similarly, PDS enabled us to classify patients into high-risk and low-risk group, which resulted in survival difference in mRNA profiles (log-rank p-value=0.011). In external validation, gene signature was well correlated with prediction of lymphatic invasion and patients’ survival. Conclusion Molecular signature model predicting lymphatic invasion was well performed and also associated with survival of EOC patients.
Collapse
Affiliation(s)
- E Sun Paik
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Jin Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Tae-Joong Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Taghavi A, Akbari ME, Hashemi-Bahremani M, Nafissi N, Khalilnezhad A, Poorhosseini SM, Hashemi-Gorji F, Yassaee VR. Gene expression profiling of the 8q22-24 position in human breast cancer: TSPYL5, MTDH, ATAD2 and CCNE2 genes are implicated in oncogenesis, while WISP1 and EXT1 genes may predict a risk of metastasis. Oncol Lett 2016; 12:3845-3855. [PMID: 27895739 PMCID: PMC5104179 DOI: 10.3892/ol.2016.5218] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/28/2016] [Indexed: 01/07/2023] Open
Abstract
Gene expression profiling has been suggested to predict breast cancer outcome. The prognostic value of the 8q22-24 position in breast cancer remains to be elucidated. The present study evaluated expression patterns of the genes located at this position in metastatic and non-metastatic breast cancer. A total of 85 patients with recurrent/metastatic (n=15) and non-metastatic (n=70) early-stage, estrogen receptor-positive and lymph node-negative breast tumors were included. In addition, 15 normal breast tissue samples were used as controls. Demographic and clinical features were recorded. Subsequently, mRNA copy numbers of exostosin glycosyltransferase 1 (EXT1), WNT1 inducible signaling pathway protein 1 (WISP1), ATPase family, AAA domain containing 2 (ATAD2), TSP-like 5 (TSPYL5), metadherin (MTDH) and cyclin E2 (CCNE2) genes were measured by reverse transcription-quantitative polymerase chain reaction assay. The expression of EXT1 and WISP1 exhibited a significant decline in the metastatic breast cancer group compared to the control (P=0.015 and P=0.012, respectively). The expression of TSPYL5, MTDH and ATAD2 was significantly decreased in the metastatic (P=0.002, P=0.018 and P=0.016, respectively) and non-metastatic (P=0.038, P=0.045 and P=0.000, respectively) breast cancer groups compared with the control. The expression of CCNE2 in the metastatic and non-metastatic breast cancer groups was significantly increased compared with the control (P=0.002 and P=0.001, respectively). WISP1 expression demonstrated a correlation with patient age and tumor size, and TSPYL5 expression was correlated with lymphovascular invasion. None of the genes investigated exhibited any correlation with stage and grade of disease. The TSPYL5, MTDH, ATAD2 and CCNE2 genes may be implicated in the pathogenesis of human breast cancer, while the WISP1 and EXT1 genes may have the potential to serve as promising indicators of the risk of metastasis. However, further studies are required to validate these results.
Collapse
Affiliation(s)
- Afsoon Taghavi
- Department of Cellular and Molecular Biology, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Mohammad Esmaeil Akbari
- Department of Cellular and Molecular Biology, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Mohammad Hashemi-Bahremani
- Department of Pathology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Nahid Nafissi
- Department of Cellular and Molecular Biology, Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Ahad Khalilnezhad
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Seyed Mohammad Poorhosseini
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Feyzollah Hashemi-Gorji
- Molecular Diagnostic Laboratory, Genomic Research Center, Shahid Beheshti University of Medical Sciences, Ayatollah Taleghani Educational Hospital, Tehran 1985717413, Iran
| | - Vahid Reza Yassaee
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; Molecular Diagnostic Laboratory, Genomic Research Center, Shahid Beheshti University of Medical Sciences, Ayatollah Taleghani Educational Hospital, Tehran 1985717413, Iran
| |
Collapse
|
31
|
Human pancreatic cancer progression: an anarchy among CCN-siblings. J Cell Commun Signal 2016; 10:207-216. [PMID: 27541366 DOI: 10.1007/s12079-016-0343-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/07/2023] Open
Abstract
Decades of basic and translational studies have identified the mechanisms by which pancreatic cancer cells use molecular pathways to hijack the normal homeostasis of the pancreas, promoting pancreatic cancer initiation, progression, and metastasis, as well as drug resistance. These molecular pathways were explored to develop targeted therapies to prevent or cure this fatal disease. Regrettably, the studies found that majority of the molecular events that dictate carcinogenic growth in the pancreas are non-actionable (potential non-responder groups of targeted therapy). In this review we discuss exciting discoveries on CCN-siblings that reveal how CCN-family members contribute to the different aspects of the development of pancreatic cancer with special emphasis on therapy.
Collapse
|
32
|
Dual roles of CCN proteins in breast cancer progression. J Cell Commun Signal 2016; 10:217-222. [PMID: 27520547 DOI: 10.1007/s12079-016-0345-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 07/30/2016] [Indexed: 01/10/2023] Open
Abstract
The tumor microenvironment has a powerful effect on the development and progression of human breast cancer, which may be used therapeutically. Despite efforts to understand the complex role of the tumor microenvironment in breast cancer development, the specific players and their contributions to tumorigenesis need further investigation. The CCN family of matricellular proteins comprises six members (CCN1-6; CYR61, CTGF, NOV, WISP1-3) with central roles in development, inflammation, and tissue repair. CCN proteins also exert functions during pathological processes including fibrosis and cancer by regulating extracellular signals in the cellular environment. Studies have demonstrated that all six CCN proteins exert functions in breast tumorigenesis. Although CCN proteins share a multimodular structure in which most cysteine residues are conserved within structural motifs, they may have opposing functions in breast cancer progression. A better understanding of the functions of each CCN member will assist in the development of specific therapeutic approaches for breast cancer.
Collapse
|
33
|
Piszczatowski RT, Lents NH. Regulation of the CCN genes by vitamin D: A possible adjuvant therapy in the treatment of cancer and fibrosis. Cell Signal 2016; 28:1604-13. [PMID: 27460560 DOI: 10.1016/j.cellsig.2016.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 01/21/2023]
Abstract
The CCN family is composed of six cysteine-rich, modular, and conserved proteins whose functions span a variety of tissues and include cell proliferation, adhesion, angiogenesis, and wound healing. Roles for the CCN proteins throughout the entire body including the skin, kidney, brain, blood vessels, hematopoietic compartment and others, are continuously being elucidated. Likewise, an understanding of the regulation of this important gene family is constantly becoming clearer, through identification of transcription factors that directly activate, repress, or respond to upstream cell signaling pathways, as well as other forms of gene expression control. Vitamin D (1,25-dihydroxyvitamin D3 or calcitriol), a vitamin essential for numerous biological processes, acts as a potent gene expression modulator. The regulation of the CCN gene family members by calcitriol has been described in many contexts. Here, we provide a concise and thorough overview of what is known about calcitriol and its regulation of the CCN genes, and argue that its regulation is of physiological importance in a wide breadth of tissues in which CCN genes function. In addition, we highlight the effects of vitamin D on CCN gene expression in the setting of two common pathologic conditions, fibrosis and cancer, and propose that the therapeutic effects of vitamin D3 described in these disease states may in part be attributable to CCN gene modulation. As vitamin D is perfectly safe in a wide range of doses and already showing promise as an adjuvant therapeutic agent, a deeper understanding of its control of CCN gene expression may have profound implications in clinical management of disease.
Collapse
Affiliation(s)
| | - Nathan H Lents
- Department of Sciences, John Jay College, The City University of New York, New York, NY 10019, USA.
| |
Collapse
|
34
|
Abstract
Wnt-1 inducible signaling pathway-1 (WISP-1), also known as CCN-4, belongs to the connective tissue growth factor (CTGF) family. WISP-1 is primarily expressed in embryonic stem cells and is involved in adult organ development. WISP-1 participates in many cellular processes, including proliferation, differentiation, apoptosis and adhesion. In addition, WISP-1 plays an important role in diverse pathophysiological processes, such as embryonic development, inflammation, injury repairs and cancers. Recent studies showed that WISP-1 was highly correlated with tumor progression and malignant transformation, whereas it played an oncogenic role in colorectal cancer, cholangiocarcinoma, hepatocellular carcinoma and breast cancer. However, interestingly, WISP-1 exerts a tumor-suppressing role in lung and prostate cancers. WISP-1 promotes cell proliferation, adhesion, motility, invasion, metastasis and epithelial-to-mesenchymal transition via particular signaling pathways. In this review, we discussed the structure, expression profile, functions, clinical significance and potential mechanisms of WISP-1 in cancer and non-neoplastic diseases.
Collapse
Affiliation(s)
- Mengmeng Feng
- Laboratory of Surgery, the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China
| | - Shuqin Jia
- Laboratory of Surgery, the Affiliated Hospital, Inner Mongolia Medical University, Hohhot 010050, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Molecular Oncology Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Molecular Diagnosis, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
35
|
Li J, Ye L, Owen S, Weeks HP, Zhang Z, Jiang WG. Emerging role of CCN family proteins in tumorigenesis and cancer metastasis (Review). Int J Mol Med 2015; 36:1451-63. [PMID: 26498181 PMCID: PMC4678164 DOI: 10.3892/ijmm.2015.2390] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
The CCN family of proteins comprises the members CCN1, CCN2, CCN3, CCN4, CCN5 and CCN6. They share four evolutionarily conserved functional domains, and usually interact with various cytokines to elicit different biological functions including cell proliferation, adhesion, invasion, migration, embryonic development, angiogenesis, wound healing, fibrosis and inflammation through a variety of signalling pathways. In the past two decades, emerging functions for the CCN proteins (CCNs) have been identified in various types of cancer. Perturbed expression of CCNs has been observed in a variety of malignancies. The aberrant expression of certain CCNs is associated with disease progression and poor prognosis. Insight into the detailed mechanisms involved in CCN-mediated regulation may be useful in understanding their roles and functions in tumorigenesis and cancer metastasis. In this review, we briefly introduced the functions of CCNs, especially in cancer.
Collapse
Affiliation(s)
- Jun Li
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Sioned Owen
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Hoi Ping Weeks
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, Institute of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
36
|
WISP-2 in human gastric cancer and its potential metastatic suppressor role in gastric cancer cells mediated by JNK and PLC-γ pathways. Br J Cancer 2015; 113:921-33. [PMID: 26291058 PMCID: PMC4578084 DOI: 10.1038/bjc.2015.285] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 07/08/2015] [Accepted: 07/11/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND It has recently been shown that WISP proteins (Wnt-inducted secreted proteins), a group of intra- and extra-cellular regulatory proteins, have been implicated in the initiation and progression of a variety of tumour types including colorectal and breast cancer. However, the role of WISP proteins in gastric cancer (GC) cells and their clinical implications have not yet been elucidated. METHODS The expression of WISP molecules in a cohort of GC patients was analysed using real-time quantitative PCR and immunohistochemistry. The expression of a panel of recognised epithelial-mesenchymal transition (EMT) markers was quantified using Q-PCR in paired tumour and normal tissues. WISP-2 knockdown (kd) sublines using ribozyme transgenes were created in the GC cell lines AGS and HGC27. Subsequently, several biological functions, including cell growth, adhesion, migration and invasion, were studied. Potential pathways for the interaction of EMT, extracellular matrix and MMP were evaluated. RESULTS Overexpression of WISP-2 was detected in GC and significantly correlated with early tumour node-metastasis staging, differentiation status and positively correlated with overall survival and disease-free survival of the patients. WISP-2 expression was inversely correlated with that of Twist and Slug in paired samples. Kd of WISP-2 expression promoted the proliferation, migration and invasion of GC cells. WISP-2 suppressed GC cell metastasis through reversing EMT and suppressing the expression and activity of MMP9 and MMP2 via JNK and ERK. Cell motility analysis indicated that WISP-2 kd contributed to GC cells' motility and can be attenuated by PLC-γ and JNK small inhibitors. CONCLUSIONS Increased expression of WISP-2 in GC is positively correlated with favourable clinical features and the survival of patients with GC and is a negative regulator of growth, migration and invasion in GC cells. These findings suggest that WISP-2 is a potential tumour suppressor in GC.
Collapse
|
37
|
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res 2015; 10:518-28. [PMID: 26170801 PMCID: PMC4424733 DOI: 10.4103/1673-5374.155427] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus affects almost 350 million individuals throughout the globe resulting in significant morbidity and mortality. Of further concern is the growing population of individuals that remain undiagnosed but are susceptible to the detrimental outcomes of this disorder. Diabetes mellitus leads to multiple complications in the central and peripheral nervous systems that include cognitive impairment, retinal disease, neuropsychiatric disease, cerebral ischemia, and peripheral nerve degeneration. Although multiple strategies are being considered, novel targeting of trophic factors, Wnt signaling, Wnt1 inducible signaling pathway protein 1, and stem cell tissue regeneration are considered to be exciting prospects to overcome the cellular mechanisms that lead to neuronal injury in diabetes mellitus involving oxidative stress, apoptosis, and autophagy. Pathways that involve insulin-like growth factor-1, fibroblast growth factor, epidermal growth factor, and erythropoietin can govern glucose homeostasis and are intimately tied to Wnt signaling that involves Wnt1 and Wnt1 inducible signaling pathway protein 1 (CCN4) to foster control over stem cell proliferation, wound repair, cognitive decline, β-cell proliferation, vascular regeneration, and programmed cell death. Ultimately, cellular metabolism through Wnt signaling is driven by primary metabolic pathways of the mechanistic target of rapamycin and AMP activated protein kinase. These pathways offer precise biological control of cellular metabolism, but are exquisitely sensitive to the different components of Wnt signaling. As a result, unexpected clinical outcomes can ensue and therefore demand careful translation of the mechanisms that govern neural repair and regeneration in diabetes mellitus.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, Newark, New Jersey 07101, USA
| |
Collapse
|
38
|
Zhang H, Luo H, Hu Z, Peng J, Jiang Z, Song T, Wu B, Yue J, Zhou R, Xie R, Chen T, Wu S. Targeting WISP1 to sensitize esophageal squamous cell carcinoma to irradiation. Oncotarget 2015; 6:6218-34. [PMID: 25749038 PMCID: PMC4467433 DOI: 10.18632/oncotarget.3358] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/13/2015] [Indexed: 01/12/2023] Open
Abstract
Radiotherapy is a primary treatment modality for esophageal squamous cell carcinoma (ESCC). However, most of patients benefited little from radiotherapy due to refractory radioresistance. We found that WISP1, a downstream target gene of Wnt/β-catenin pathway, was re-expressed in 67.3% of ESCC patients as an oncofetal gene. Expression of WISP1 predicted prognosis of ESCC patients treated with radiotherapy. Overall survival in WISP1-positive patients was significantly poorer than in WISP1-negative patients. Serum concentration of WISP1 after radiotherapy reversely correlated with relapse-free survival. Gain and loss of function studies confirmed that WISP1 mediated radioresistance both in esophageal squamous cancer cells and in xenograft tumor models. Further studies revealed that WISP1 contributed to radioresistance primarily by repressing irradiation-induced DNA damage and activating PI3K kinase. LncRNA BOKAS was up-regulated following radiation and promoted WISP1 expression and resultant radioresistance. Furthermore, WISP1 facilitated its own expression in response to radiation, creating a positive feedback loop and increased radioresistance. Our study revealed WISP1 as a potential target to overcome radioresistance in ESCC.
Collapse
Affiliation(s)
- Hongfang Zhang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Honglei Luo
- Department of Radiotherapy, Huai'an First People's Hospital, Huai'an, China
| | - Zhaoyang Hu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Jin Peng
- Department of Radiotherapy, Huai'an First People's Hospital, Huai'an, China
| | - Zhenzhen Jiang
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Tao Song
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Bo Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Jing Yue
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Rongjing Zhou
- Department of Pathology, Hangzhou Cancer Hospital, Hangzhou, China
| | - Ruifei Xie
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
- Department of Bio-Informatics, Hangzhou Cancer Hospital, Hangzhou, China
| | - Tian Chen
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| | - Shixiu Wu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China
| |
Collapse
|
39
|
Gurbuz I, Chiquet-Ehrismann R. CCN4/WISP1 (WNT1 inducible signaling pathway protein 1): a focus on its role in cancer. Int J Biochem Cell Biol 2015; 62:142-6. [PMID: 25794425 DOI: 10.1016/j.biocel.2015.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 01/17/2023]
Abstract
The matricellular protein WISP1 is a member of the CCN protein family. It is induced by WNT1 and is a downstream target of β-catenin. WISP1 is expressed during embryonic development, wound healing and tissue repair. Aberrant WISP1 expression is associated with various pathologies including osteoarthritis, fibrosis and cancer. Its role in tumor progression and clinical outcome makes WISP1 an emerging candidate for the detection and treatment of tumors.
Collapse
Affiliation(s)
- Irem Gurbuz
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland; University of Basel, Faculty of Science, Basel, Switzerland.
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland; University of Basel, Faculty of Science, Basel, Switzerland
| |
Collapse
|
40
|
WNT-1 inducible signaling pathway protein-1 enhances growth and tumorigenesis in human breast cancer. Sci Rep 2015; 5:8686. [PMID: 25732125 PMCID: PMC4346832 DOI: 10.1038/srep08686] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/22/2015] [Indexed: 01/06/2023] Open
Abstract
WNT1 inducible signaling pathway protein 1 (WISP1) plays a key role in many cellular functions in a highly tissue-specific manner; however the role of WISP1 in breast cancer is still poorly understood. Here, we demonstrate that WISP1 acts as an oncogene in human breast cancer. We demonstrated that human breast cancer tissues had higher WISP1 mRNA expression than normal breast tissues and that treatment of recombinant WISP1 enhanced breast cancer cell proliferation. Further, ectopic expression of WISP1 increased the growth of breast cancer cells in vitro and in vivo. WISP1 transfection also induced epithelial-mesenchymal-transition (EMT) in MCF-7 cells, leading to higher migration and invasion. During this EMT-inducing process, E-cadherin was repressed and N-cadherin, snail, and β-catenin were upregulated. Filamentous actin (F-actin) remodeling and polarization were also observed after WISP1 transfection into MCF-7 cells. Moreover, forced overexpression of WISP1 blocked the expression of NDRG1, a breast cancer tumor suppressor gene. Our study provides novel evidence that WISP1-modulated NDRG1 gene expression is dependent on a DNA fragment (-128 to +46) located within the human NDRG1 promoter. Thus, we concluded that WISP1 is a human breast cancer oncogene and is a potential therapeutic target.
Collapse
|
41
|
Zhang H, Li W, Huang P, Lin L, Ye H, Lin D, Koeffler HP, Wang J, Yin D. Expression of CCN family members correlates with the clinical features of hepatocellular carcinoma. Oncol Rep 2015; 33:1481-1492. [PMID: 25571929 DOI: 10.3892/or.2015.3709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/09/2014] [Indexed: 11/05/2022] Open
Abstract
Studies have reported that the CCN family of proteins plays an important role in stimulating tumorigenesis. However, the relationship between the CCN protein family members and the features of hepatocellular carcinoma (HCC) remains unclear. The objective of this study was to determine the relationship between the expression levels of CCN protein family members and the features of HCC. Expression levels of the CCN family of proteins in 80-paired primary HCC samples and 11 normal liver samples were determined by a quantitative real-time PCR assay. Enhanced expression of nephroblastoma overexpressed protein (NOV) and decreased expression of Wnt-induced secreted protein 1 (WISP1), cysteine-rich protein 61 (CYR61) and connective tissue growth factor (CTGF) were found in HCC samples when compared to levels in matched non-cancerous tissues. No significant difference in WISP2 was found between matched-pair samples; only a few samples showed WISP3 expression. Furthermore, the expression levels of NOV, WISP1 and CYR61 were closely correlated with certain clinical features, including venous invasion, cellular differentiation, pTNM stage, disease-free survival and overall survival. Our results suggest that HCC progression may be enhanced by NOV and suppressed by WISP1 and CYR61. Our statistical analysis suggests that these proteins may be valuable in determining the prognosis of this deadly disease and directs attention to modulating the levels of these proteins as a potential mode of therapy.
Collapse
Affiliation(s)
- Heyun Zhang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Wenbin Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Pinbo Huang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Hua Ye
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Dechen Lin
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | - H Phillip Koeffler
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | - Jie Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P.R. China
| |
Collapse
|
42
|
Barreto SC, Hopkins CA, Bhowmick M, Ray A. Extracellular matrix in obesity – cancer interactions. Horm Mol Biol Clin Investig 2015; 22:63-77. [DOI: 10.1515/hmbci-2015-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/09/2015] [Indexed: 01/21/2023]
Abstract
AbstractObesity or overweight is a risk factor for several health disorders such as type 2 diabetes, hypertension, and certain cancers. Furthermore, obesity affects almost all body systems including the extracellular matrix (ECM) by generating a pro-inflammatory environment, which are associated with abnormal secretions of several cytokines or hormonal substances, for example, insulin-like growth factors (IGFs), leptin, and sex hormones. These chemical mediators most likely have a great impact on the ECM. Accumulating evidence suggests that both obesity and ECM can influence tumor growth and progression through a number of chemical mediators. Conversely, cells in the connective tissue, namely fibroblasts and macrophages, support and aggravate the inflammatory situation in obesity by releasing several cytokines or growth factors such as vascular endothelial growth factor, epidermal growth factor, and transforming growth factor-beta (TGF-β). A wide range of functions are performed by TGF-β in normal health and pathological conditions including tumorigenesis. Breast cancer in postmenopausal women is a classic example of obesity-related cancer wherein several of these conditions, for example, higher levels of pro-inflammatory cytokines, impairment in the regulation of estrogen and growth factors, and dysregulation of different ECM components may favor the neoplastic process. Aberrant expressions of ECM components such as matrix metalloproteinases or matricellular proteins in both obesity and cancer have been reported by many studies. Nonstructural matricellular proteins, viz., thrombospondins, secreted protein acidic and rich in cysteine (SPARC), and Cyr61-CTGF-Nov (CCN), which function as modulators of cell-ECM interactions, exhibit protean behavior in cancer. Precise understanding of ECM biology can provide potential therapeutic targets to combat obesity-related pathologies.
Collapse
|
43
|
Chen J, Yin JY, Li XP, Wang Y, Zheng Y, Qian CY, He H, Fang C, Wang Z, Zhang Y, Xiao L, Wang SY, Zhang W, Zhou HH, Liu ZQ. Association of Wnt-Inducible Signaling Pathway Protein 1 Genetic Polymorphisms With Lung Cancer Susceptibility and Platinum-Based Chemotherapy Response. Clin Lung Cancer 2014; 16:298-304.e1-2. [PMID: 25656821 DOI: 10.1016/j.cllc.2014.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/24/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Platinum-based chemotherapy is the main treatment method for lung cancer patients. The genetic polymorphisms of Wnt-inducible signaling pathway protein 1 (WISP1) were reported to be associated with the development of diverse lung diseases. In this study, we aimed to investigate the relationship of WISP1 genetic polymorphisms with lung cancer susceptibility and platinum-based chemotherapy response in Chinese lung cancer patients. MATERIALS AND METHODS A total of 556 lung cancer patients and 254 healthy controls were enrolled onto this study. The 28 polymorphisms of the WISP1 gene were genotyped by the Sequenom MassARRAY system. RESULTS We found that WISP1 rs16893344, rs2977530, rs2977537, and rs62514004 (P = .009, .033, .049, and .036, respectively) polymorphisms were related to susceptibility of lung cancer; and WISP1 rs11778573 (P = .023, nonsmokers), rs16893344 (P = .013, ≥ 50 years old), rs2977536 (P = .039, ≥ 50 years old; P = .044, nonsmokers; P = .047, non-small-cell lung cancer, respectively), rs2977549 (P = .013, smokers), and rs62514004 (P = .033, ≥ 50 years old) polymorphisms were significantly associated with platinum-based chemotherapy response in lung cancer patients. CONCLUSION Genotypes of WISP1 may be novel and useful biomarkers for diagnosis of lung cancer and evaluation of platinum-based chemotherapy response in lung cancer patients.
Collapse
Affiliation(s)
- Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China; Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China; Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Xiang-Ping Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Ying Wang
- Affiliated Cancer Hospital of XiangYa School of Medicine, Central South University, Changsha, P.R. China
| | - Yi Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Chen-Yue Qian
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Hui He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Chao Fang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, P.R. China
| | - Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Ling Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China; Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Sai-Ying Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China; Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, P.R. China; Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P.R. China; Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China.
| |
Collapse
|
44
|
Chen J, Yin J, Li X, Wang Y, Zheng Y, Qian C, Xiao L, Zou T, Wang Z, Liu J, Zhang W, Zhou H, Liu Z. WISP1 polymorphisms contribute to platinum-based chemotherapy toxicity in lung cancer patients. Int J Mol Sci 2014; 15:21011-27. [PMID: 25405734 PMCID: PMC4264209 DOI: 10.3390/ijms151121011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/09/2023] Open
Abstract
Platinum-based chemotherapy toxicity is always one of the serious problems from which lung cancer patients suffer. The genetic polymorphism of WISP1 was revealed to be associated with susceptibility and platinum-based chemotherapy response in our previous studies. In this study, we aimed to investigate the relationship of WISP1 genetic polymorphisms with platinum-based chemotherapy toxicity in lung cancer patients. A total of 412 lung cancer patients were enrolled in this study, and 28 polymorphisms of the WISP1 gene were genotyped by SequenomMassARRAY. We found that WISP1 polymorphisms (rs2929965, rs2929969, rs2929970, rs2929973 and rs754958) were related to the overall chemotherapy toxicity of lung cancer in subgroup analyses. Rs16904853, rs2929970, rs2977549 and rs2977551 (p = 0.021, 0.028, 0.024, 0.048, respectively) polymorphisms were significantly associated with hematologic toxicity. Rs2929946, rs2929970, rs2977519, rs2977536, rs3739262 and rs754958 (p = 0.031, 0.046, 0.029, 0.016, 0.042, 0.035, respectively) polymorphisms were significantly associated with the gastrointestinal toxicity of lung cancer. Genotypes of WISP1 may be novel and useful biomarkers for predicting platinum-based chemotherapy toxicity in lung cancer patients.
Collapse
Affiliation(s)
- Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Xiangping Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Ying Wang
- The Affiliated Cancer Hospital of XiangYa School of Medicine, Central South University, Changsha 410014, China.
| | - Yi Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Chenyue Qian
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Ling Xiao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Ting Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Junyan Liu
- Xiangya School of Medicine, Central South University, Changsha 410008, China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
45
|
Xiao G, Tang Z, Yuan X, Yuan J, Zhao J, Zhang Z, He Z, Liu J. The expression of Wnt-1 inducible signaling pathway protein-2 in astrocytoma: Correlation between pathological grade and clinical outcome. Oncol Lett 2014; 9:235-240. [PMID: 25435966 PMCID: PMC4246620 DOI: 10.3892/ol.2014.2663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 10/15/2014] [Indexed: 01/16/2023] Open
Abstract
Wnt-1 inducible signaling pathway protein-2 (WISP-2) is a member of the CCN family, which is critical for the control of cell morphology, motion, adhesion and other processes involved in tumorigenesis. The expression pattern and clinical significance of WISP-2 in astrocytomas remains unclear. In this study, reverse transcription-polymerase chain reaction was performed to systematically investigate the expression of WISP-2 in 47 astrocytoma tissues of different pathological grades and 10 normal brain tissues. The mRNA expression levels of WISP-2 in the astrocytoma tissues were observed to be significantly higher than those in the normal brain tissues. Furthermore, the upregulation of WISP-2 was found to be associated with astrocytomas of higher pathological grades. Subsequently, 154 astrocytoma and 15 normal brain tissues were analyzed using immunohistochemistry and similar results were obtained. Univariate and multivariate survival analyses were used to determine the correlations between WISP-2 expression and overall survival (OS) and progression-free survival (PFS). The results indicated that the expression of WISP-2 was found to negatively correlate with patient PFS and OS. These results demonstrated that the WISP-2 protein is involved in the pathogenesis and progression of human astrocytomas and may serve as a malignant biomarker of this disease.
Collapse
Affiliation(s)
- Gelei Xiao
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhi Tang
- Department of Neurosurgery, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xianrui Yuan
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Jian Yuan
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Jie Zhao
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhiping Zhang
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| | - Zhengwen He
- Department of Neurosurgery, Hunan Provincial Tumor Hospital, The Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingping Liu
- The Institute of Skull Base Surgery and Neurooncology at Hunan, Xiangya Hospital, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
46
|
Induction of Wnt-inducible signaling protein-1 correlates with invasive breast cancer oncogenesis and reduced type 1 cell-mediated cytotoxic immunity: a retrospective study. PLoS Comput Biol 2014; 10:e1003409. [PMID: 24426833 PMCID: PMC3890420 DOI: 10.1371/journal.pcbi.1003409] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023] Open
Abstract
Innate and type 1 cell-mediated cytotoxic immunity function as important extracellular control mechanisms that maintain cellular homeostasis. Interleukin-12 (IL12) is an important cytokine that links innate immunity with type 1 cell-mediated cytotoxic immunity. We recently observed in vitro that tumor-derived Wnt-inducible signaling protein-1 (WISP1) exerts paracrine action to suppress IL12 signaling. The objective of this retrospective study was three fold: 1) to determine whether a gene signature associated with type 1 cell-mediated cytotoxic immunity was correlated with overall survival, 2) to determine whether WISP1 expression is increased in invasive breast cancer, and 3) to determine whether a gene signature consistent with inhibition of IL12 signaling correlates with WISP1 expression. Clinical information and mRNA expression for genes associated with anti-tumor immunity were obtained from the invasive breast cancer arm of the Cancer Genome Atlas study. Patient cohorts were identified using hierarchical clustering. The immune signatures associated with the patient cohorts were interpreted using model-based inference of immune polarization. Reverse phase protein array, tissue microarray, and quantitative flow cytometry in breast cancer cell lines were used to validate observed differences in gene expression. We found that type 1 cell-mediated cytotoxic immunity was correlated with increased survival in patients with invasive breast cancer, especially in patients with invasive triple negative breast cancer. Oncogenic transformation in invasive breast cancer was associated with an increase in WISP1. The gene expression signature in invasive breast cancer was consistent with WISP1 as a paracrine inhibitor of type 1 cell-mediated immunity through inhibiting IL12 signaling and promoting type 2 immunity. Moreover, model-based inference helped identify appropriate immune signatures that can be used as design constraints in genetically engineering better pre-clinical models of breast cancer. Effective anti-tumor immunity is proportional to the number and to the cytotoxic activity of immune cells that enter the tumor microenvironment. Recent advances in cancer immunotherapy stem from increasing the number of tumor-infiltrating immune cells by inhibiting immune checkpoints or adoptive T cell therapy. Here, we used computational methods to identify potential mechanisms present within the tumor microenvironment that limit the efficacy of anti-tumor immunity. Specifically, we found that oncogenic transformation is associated with the induction of tumor-derived biochemical cues, namely Wnt-inducible signaling protein-1, that locally suppress anti-tumor immunity. Moreover, we used model-based inference to demonstrate that a gene signature consistent with effective type 1 cell-mediated cytotoxic immunity is a predictor of overall survival independent of molecular pathology. Interestingly, patients with triple negative breast cancer were more enriched in the cohort associated with type 1 cell-mediated immunity. As this immune gene signature is not present in current genetically engineered mouse models of breast cancer, the results help identify design constraints for engineering better pre-clinical models of breast cancer. Demonstrating efficacy in pre-clinical animal models is a pre-requisite for bringing improved cancer immunotherapies into the clinic.
Collapse
|
47
|
Bedogni B. Notch signaling in melanoma: interacting pathways and stromal influences that enhance Notch targeting. Pigment Cell Melanoma Res 2013; 27:162-8. [PMID: 24330305 DOI: 10.1111/pcmr.12194] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/19/2013] [Indexed: 01/14/2023]
Abstract
The Notch signaling pathway is an evolutionarily conserved, intercellular signaling cascade. Notch was first described in the early 1900s when a mutant Drosophila showed notches on the wing margins. Studies of the role of Notch signaling have ever since flourished, and the pleiotropic nature of the Notch gene is now evident. Indeed, the Notch signaling pathway plays key roles in cell fate decisions, tissue patterning, and morphogenesis during development. However, deregulation of this pathway can contribute to cell transformation and tumorigenesis. Several reports have now highlighted the role of Notch signaling in a variety of malignancies where Notch can either be an oncogene or a tumor suppressor depending on the cell context. Here, we summarize the major components of Notch signaling with an aim to emphasize the contribution of deregulated Notch signaling in melanomagenesis.
Collapse
Affiliation(s)
- Barbara Bedogni
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
48
|
Ji J, Jia S, Ji K, Jiang WG. Wnt1 inducible signalling pathway protein-2 (WISP‑2/CCN5): roles and regulation in human cancers (review). Oncol Rep 2013; 31:533-9. [PMID: 24337439 DOI: 10.3892/or.2013.2909] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/27/2013] [Indexed: 11/05/2022] Open
Abstract
Wnt1 inducible signalling pathway protein-2 (WISP‑2), also known as CCN5, CT58, CTGF-L, CTGF-3, HICP and Cop1, is one of the 3 WNT1 inducible proteins that belongs to the CCN family. This family of members has been shown to play multiple roles in a number of pathophysiological processes, including cell proliferation, adhesion, wound healing, extracellular matrix regulation, epithelial-mesenchymal transition, angiogenesis, fibrosis, skeletal development and embryo implantation. Recent results suggest that WISP-2 is relevant to tumorigenesis and malignant transformation, particularly in breast cancer, colorectal cancer and hepatocarcinoma. Notably, its roles in cancer appear to vary depending on cell/tumour type and the microenvironment. The striking difference in the structure of WISP-2 in comparison with the other 2 family members may contribute to its difference in functions, which leads to the hypothesis that WISP-2 may act as a dominant-negative regulator of other CCN family members. In the present review, we summarise the roles, regulation and underlying mechanism of WISP-2 in human cancers.
Collapse
Affiliation(s)
- Jiafu Ji
- Department of Gastro-enterological Cancers, Peking University Cancer Hospital, Beijing, P.R. China
| | - Shuqin Jia
- Cardiff University-Peking University Joint Cancer Institute, Beijing, P.R. China
| | - Ke Ji
- Cardiff University-Peking University Joint Cancer Institute, Beijing, P.R. China
| | - Wen G Jiang
- Metastasis and Angiogenesis Research Group, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
49
|
Kawakubo T, Yasukochi A, Toyama T, Takahashi S, Okamoto K, Tsukuba T, Nakamura S, Ozaki Y, Nishigaki K, Yamashita H, Yamamoto K. Repression of cathepsin E expression increases the risk of mammary carcinogenesis and links to poor prognosis in breast cancer. Carcinogenesis 2013; 35:714-26. [PMID: 24242330 DOI: 10.1093/carcin/bgt373] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Despite advances in detection and treatment for breast cancer (BC), recurrence and death rates remain unacceptably high. Therefore, more convenient diagnostic and prognostic methods still required to optimize treatments among the patients. Here, we report the clinical significance of the serum cathepsin E (CatE) activity as a novel prognostic marker for BC. Correlation analysis between the serum levels of CatE expression and clinicopathological parameters revealed that the activity levels, but not the protein levels, were negatively associated with the stages and progression of BC. Univariate and multivariate analyses demonstrated that the serum CatE activity was significantly correlated with favorable prognostic outcomes of the patients. The functional link of CatE expression to BC progression was further corroborated by in vivo and in vitro studies with mice exhibiting different levels of CatE expression. Multiparous CatE (-) (/) (-) mice spontaneously developed mammary tumors concomitant with morphological transformation and altered growth characteristics of the mammary glands. These alterations were associated in part with the induction of epithelial-mesenchymal transition and the activation of β-catenin-dependent pathway in mammary cells. Loss of CatE strongly induced the translocation and accumulation of Wnt5a in the nuclei, thereby leading to the aberrant trafficking, maturation and secretion of Wnt5a and the impaired signaling. The interaction of CatE and Wnt5a was verified by proximity ligation assay and by knockdown or restoration of CatE expression in the mammary cells. Consequently, our data demonstrate that CatE contributes to normal growth and development of mammary glands through proper trafficking and secretion of Wnt5a.
Collapse
Affiliation(s)
- Tomoyo Kawakubo
- Proteolysis Research Laboratory, Graduate School of Pharmaceutical Sciences and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schneider S, Kloimstein P, Pammer J, Brannath W, Grasl MC, Erovic BM. New diagnostic markers in salivary gland tumors. Eur Arch Otorhinolaryngol 2013; 271:1999-2007. [PMID: 24091559 DOI: 10.1007/s00405-013-2740-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/24/2013] [Indexed: 12/31/2022]
Abstract
Parotid gland tumors are a rare and heterogeneous entity. Molecular markers are sparse. The aim of the study was to identify new diagnostic markers in benign and malignant salivary tumors. A tissue microarray was constructed with 158 tumor samples. Expression of 21 tumor antigens involved in tumor cell survival and known for prognostic potential was assessed immunohistochemically in all parotid gland samples. CEA, Cox-1, Cox-2, Sigma, beta-Catenin, WISP-1 and PDGF-beta were differently regulated in benign and malignant parotid tumors. Subsequently, these seven proteins entered the step-wise logistic regression analysis. As a second step, we defined a score for differentiating benign versus malignant parotid lesions: 4*CEA+15*Cox-1+4*Cox-2+4*Sigma+3*PDGF-beta+10*beta-Catenin+14*Wisp1. Sensitivity and specificity of 94 and 83% were reached. Besides routine hematoxylin and eosin staining, definition of new diagnostic markers and subsequently a new diagnostic score are an attempt to create an additional tool for the diagnosis of parotid gland tumors.
Collapse
Affiliation(s)
- Sven Schneider
- Departments of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria,
| | | | | | | | | | | |
Collapse
|