1
|
He X, Wang G, Wang Y, Zhang C. Matrine Enhances the Antitumor Efficacy of Chidamide in CTCL by Promoting Apoptosis. Recent Pat Anticancer Drug Discov 2025; 20:223-231. [PMID: 38571359 DOI: 10.2174/0115748928289036240318040756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Cutaneous T-cell Lymphoma (CTCL) is a rare group of non-Hodgkin lymphoma originating from the skin, which is characterized by T-cell lymphoproliferative disorders. Chidamide, a Chinese original antineoplastic agent with independent intellectual property rights, and matrine, an extract of Chinese herbal medicine, both have been reported to exert effects on the treatment of tumors individually. However, chidamide combined with matrine has not been tested for the treatment of CTCL. METHODS Both HH and Hut78 CTCL cell lines were treated with chidamide (0.4 μmol/L), matrine (0.6 g/L), or chidamide combined with matrine for 24, 48, and 72 h. Cell viability was estimated by MTS assay at each time point. Flow cytometry was then conducted to detect cell apoptosis. The exact mechanism of chidamide combined with matrine on CTCL cells was detected by Western blotting and further validated in xenograft models of NOD/SCID mice. RESULTS AND DISCUSSION Compared to the single drug, chidamide combined with matrine showed a more significant effect on proliferation inhibition and apoptosis induction on CTCL cells both in vitro and in vivo. The results from the in vitro and in vivo studies suggested that matrine could enhance the anti-tumor effect of chidamide by increasing the protein expression of cleaved caspase- 3 and decreasing the expression of E-cadherin, NF-κB, p-Bad, and Bcl-2 to activate apoptosis. CONCLUSION Our data have demonstrated chidamide combined with matrine to exhibit elevated antitumor activity in both CTCL cells and xenograft models of NOD/SCID mice, which may be a potential treatment option for CTCL.
Collapse
Affiliation(s)
- Xinglan He
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Guanyu Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Yimeng Wang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| | - Chunlei Zhang
- Department of Dermatology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Therapeutic Effect of Matrine on Collagen-Induced Arthritis Rats and Its Regulatory Effect on RANKL and OPG Expression. J Immunol Res 2021; 2021:4186102. [PMID: 34423052 PMCID: PMC8371639 DOI: 10.1155/2021/4186102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/14/2021] [Accepted: 07/27/2021] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate the effect of matrine on rats with collagen-induced arthritis (CIA) and its regulatory effect on receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) expression. Methods Wistar rats (n = 6) and CIA rats (n = 30) were randomly divided into six groups: healthy, CIA control, low/medium/high matrine (25, 50, or 100 mg/kg, once per day for six weeks), and methotrexate (MTX) (2 mg/kg, once per week for six weeks). The degree of joint damage was evaluated by X-ray and HE staining. Bone marrow suppression was assessed by routine blood analysis. In addition, the levels of serum RANKL and OPG in the rats were measured by ELISA. Results The level of joint swelling and degree of joint damage assessed by ankle swelling measurements, AI score, X-ray, and HE staining were alleviated in the CIA rats treated with MTX or different doses of matrine. Furthermore, no obvious inhibitory effect was observed on the bone marrow of the CIA rats, regardless of the dose of matrine or treatment with 2 mg/kg MTX (P > 0.05). The levels of OPG in serum and the ratio of OPG/RANKL were higher, and RANKL expression was lower in the low/medium/high matrine group compared with that of the CIA control group. The serum levels of OPG and OPG/RANKL ratio increased with the matrine dose, while the opposite was observed for RANKL expression. Conclusion Matrine treatment was associated with a lower degree of bone destruction, increased OPG expression and OPG/RANKL ratio, and decreased RANKL expression in CIA rats. Thus, matrine may represent a novel drug candidate for the treatment of RA.
Collapse
|
3
|
Arbulo-Echevarria MM, Vico-Barranco I, Narbona-Sánchez I, García-Cózar F, Miazek A, Aguado E. Increased Protein Stability and Interleukin-2 Production of a LAT G131D Variant With Possible Implications for T Cell Anergy. Front Cell Dev Biol 2020; 8:561503. [PMID: 33042995 PMCID: PMC7517355 DOI: 10.3389/fcell.2020.561503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
The adaptor LAT plays a crucial role in the transduction of signals coming from the TCR/CD3 complex. Phosphorylation of some of its tyrosines generates recruitment sites for other cytosolic signaling molecules. Tyrosine 132 in human LAT is essential for PLC-γ activation and calcium influx generation. It has been recently reported that a conserved glycine residue preceding tyrosine 132 decreases its phosphorylation kinetics, which constitutes a mechanism for ligand discrimination. Here we confirm that a LAT mutant in which glycine 131 has been substituted by an aspartate (LATG131D) increases phosphorylation of Tyr132, PLC-γ activation and calcium influx generation. Interestingly, the LATG131D mutant has a slower protein turnover while being equally sensitive to Fas-mediated protein cleavage by caspases. Moreover, J.CaM2 cells expressing LATG131D secrete greater amounts of interleukin-2 (IL-2) in response to CD3/CD28 engagement. However, despite this increased IL-2 secretion, J.CaM2 cells expressing the LATG131D mutant are more sensitive to inhibition of IL-2 production by pre-treatment with anti-CD3, which points to a possible role of this residue in the generation of anergy. Our results suggest that the increased kinetics of LAT Tyr132 phosphorylation could contribute to the establishment of T cell anergy, and thus constitutes an earliest known intracellular event responsible for the induction of peripheral tolerance.
Collapse
Affiliation(s)
| | | | | | - Francisco García-Cózar
- Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain.,Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Arkadiusz Miazek
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Enrique Aguado
- Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain.,Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| |
Collapse
|
4
|
Mohtashami L, Shakeri A, Javadi B. Neuroprotective natural products against experimental autoimmune encephalomyelitis: A review. Neurochem Int 2019; 129:104516. [DOI: 10.1016/j.neuint.2019.104516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
|
5
|
Li P, Lei J, Hu G, Chen X, Liu Z, Yang J. Matrine Mediates Inflammatory Response via Gut Microbiota in TNBS-Induced Murine Colitis. Front Physiol 2019; 10:28. [PMID: 30800071 PMCID: PMC6376167 DOI: 10.3389/fphys.2019.00028] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
This study mainly investigated the effect of matrine on TNBS-induced intestinal inflammation in mice. TNBS treatment caused colonic injury and gut inflammation. Matrine (1, 5, and 10 mg/kg) treatment alleviated colonic injury and gut inflammation via reducing bleeding and diarrhea and downregulating cytokines expression (IL-1β and TNF-α). Meanwhile, serum immunoglobulin G (IgG) was markedly reduced in TNBS treated mice, while 5 and 10 mg/kg matrine alleviated IgG reduction. Fecal microbiota was tested using 16S sequencing and the results showed that TNBS caused gut microbiota dysbiosis, while matrine treatment markedly improved gut microbiota communities (i.e., Bacilli and Mollicutes). Functional analysis showed that cell motility, nucleotide metabolism, and replication and repair were markedly altered in the TNBS group, while matrine treatment significantly affected cell growth and death, membrane transport, nucleotide metabolism, and replication and repair. In conclusion, matrine may serve as a protective mechanism in TNBS-induced colonic inflammation and the beneficial effect may be associated with gut microbiota.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jiajun Lei
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Guangsheng Hu
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xuanmin Chen
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhifeng Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
6
|
Matrine inhibits itching by lowering the activity of calcium channel. Sci Rep 2018; 8:11328. [PMID: 30054511 PMCID: PMC6063846 DOI: 10.1038/s41598-018-28661-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/22/2018] [Indexed: 01/26/2023] Open
Abstract
Sophorae Flavescentis Radix (SFR) is a medicinal herb with many functions that are involved in anti-inflammation, antinociception, and anticancer. SFR is also used to treat a variety of itching diseases. Matrine (MT) is one of the main constituents in SFR and also has the effect of relieving itching, but the antipruritic mechanism is still unclear. Here, we investigated the effect of MT on anti-pruritus. In acute and chronic itch models, MT significantly inhibited the scratching behavior not only in acute itching induced by histamine (His), chloroquine (CQ) and compound 48/80 with a dose-depended manner, but also in the chronic pruritus models of atopic dermatitis (AD) and acetone-ether-water (AEW) in mice. Furthermore, MT could be detected in the blood after intraperitoneal injection (i.p.) and subcutaneous injection (s.c.). Finally, electrophysiological and calcium imaging results showed that MT inhibited the excitatory synaptic transmission from dorsal root ganglion (DRG) to the dorsal horn of the spinal cord by suppressing the presynaptic N-type calcium channel. Taken together, we believe that MT is a novel drug candidate in treating pruritus diseases, especially for histamine-independent and chronic pruritus, which might be attributed to inhibition of the presynaptic N-type calcium channel.
Collapse
|
7
|
Zhou BG, Wei CS, Zhang S, Zhang Z, Gao HM. Matrine reversed multidrug resistance of breast cancer MCF-7/ADR cells through PI3K/AKT signaling pathway. J Cell Biochem 2018; 119:3885-3891. [PMID: 29130495 DOI: 10.1002/jcb.26502] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/09/2017] [Indexed: 02/05/2023]
Abstract
Matrine is an alkaloid extracted from a Chinese herb Sophora flavescens Ait, and has been used clinically for breast cancer with marked therapeutic efficacy in China. However, the mechanism has not been well known. Thus, the present study was to explore whether Matrine reverses multidrug resistance for breast cancer cells through the regulation of PI3K/AKT signaling pathway. Methyl thiazolyl tetrazolium (MTT) assay was used to detect the inhibitory action; Annexin V to detect apoptosis; fluorospectrophotometry to examine intracellular adriamycin (ADR) accumulation; and Western blot to label the proteins of P-glycoprotein (P-gp), MRP1, PTEN, p-AKT, Bcl-2, Bax, and Caspase-3. Matrine (0-2.5 mg/mL) inhibited MCF-7/ADR cell growth and induced apoptosis (P < 0.01). A total of 0.2 mg/mL Matrine could increase the intracellular concentration of ADR; the accumulation in MCF-7/ADR cells increased 3.56 times. Compared with control group, 0.6, 1.2 mg/mL Matrine reduced protein expressions of P-gp, MRP1, p-AKT, Bcl-2, but increased PTEN, Bax, and cleaved caspase-3 gradually, and unchanged caspase-3. Matrine was more likely to reduce the expression of P-gp, MRP1, and p-AKT at the same inhibition radio of Matrine, (0.6 mg/mL) and MK2206 (0.05 μmol/L). Matrine inhibited MCF-7/ADR cell growth, induced apoptosis, and reversed multidrug resistance for breast cancer cells through the regulation of downstream apoptosis factors of PI3K/AKT signaling pathway by decreasing cell phosphorylation of AKT level.
Collapse
Affiliation(s)
- Bing-Gang Zhou
- Department of Tumor Surgery, The First People's Hospital of Yinchuan, Yinchuan, Ningxia, China
| | - Chang-Sheng Wei
- Department of Breast Cancer Surgery, Gansu Provincial Cancer Hospital, Lanzhou, Gansu, China
| | - Song Zhang
- Postgraduate School, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhi Zhang
- Postgraduate School, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Huan-Min Gao
- Department of Neurology, Ningxia Hui Autonomous Region People's Hospital, The First Affiliated Hospital of Northwest University for Nationalities, Yinchuan, Ningxia, China
| |
Collapse
|
8
|
Suvarna V, Murahari M, Khan T, Chaubey P, Sangave P. Phytochemicals and PI3K Inhibitors in Cancer-An Insight. Front Pharmacol 2017; 8:916. [PMID: 29311925 PMCID: PMC5736021 DOI: 10.3389/fphar.2017.00916] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
In today's world of modern medicine and novel therapies, cancer still remains to be one of the prime contributor to the death of people worldwide. The modern therapies improve condition of cancer patients and are effective in early stages of cancer but the advanced metastasized stage of cancer remains untreatable. Also most of the cancer therapies are expensive and are associated with adverse side effects. Thus, considering the current status of cancer treatment there is scope to search for efficient therapies which are cost-effective and are associated with lesser and milder side effects. Phytochemicals have been utilized for many decades to prevent and cure various ailments and current evidences indicate use of phytochemicals as an effective treatment for cancer. Hyperactivation of phosphoinositide 3-kinase (PI3K) signaling cascades is a common phenomenon in most types of cancers. Thus, natural substances targeting PI3K pathway can be of great therapeutic potential in the treatment of cancer patients. This chapter summarizes the updated research on plant-derived substances targeting PI3K pathway and the current status of their preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Manikanta Murahari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S Ramaiah University of Applied Sciences, Bangalore, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Pramila Chaubey
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Preeti Sangave
- Department of Pharmaceutical Sciences, School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| |
Collapse
|
9
|
Xiao X, Ao M, Xu F, Li X, Hu J, Wang Y, Li D, Zhu X, Xin C, Shi W. Effect of matrine against breast cancer by downregulating the vascular endothelial growth factor via the Wnt/β-catenin pathway. Oncol Lett 2017; 15:1691-1697. [PMID: 29434864 PMCID: PMC5776934 DOI: 10.3892/ol.2017.7519] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to investigate the effect of matrine on breast cancer and its underlying mechanism. Matrine is a major component of Sophora flavescens, exhibited antitumor activity in a number of neoplasms, including breast cancer. The present study revealed that matrine inhibited cell viability and induced apoptosis in 4T1 and MCF-7 cells in a dose- and time-dependent manner in vitro. In addition, matrine suppressed the 4T1-tumor growth, induced apoptosis, inhibited the expression of vascular endothelial growth factor and downregulated the Wnt/β-catenin signaling pathway in vivo. All these findings indicated that matrine may be a novel effective candidate for the treatment of breast cancer.
Collapse
Affiliation(s)
- Xu Xiao
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Man Ao
- Department of Oncology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Fan Xu
- Department of Oncology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xiao Li
- Department of Radiology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Jiuli Hu
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Ying Wang
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Daixiao Li
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Xiaoqin Zhu
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Chunlan Xin
- Department of Pharmacy, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Wenda Shi
- Department of Radiology, Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
10
|
Mesenchymal stromal cells as vehicles of tetravalent bispecific Tandab (CD3/CD19) for the treatment of B cell lymphoma combined with IDO pathway inhibitor D-1-methyl-tryptophan. J Hematol Oncol 2017; 10:56. [PMID: 28228105 PMCID: PMC5322661 DOI: 10.1186/s13045-017-0397-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/11/2017] [Indexed: 01/06/2023] Open
Abstract
Background Although blinatumomab, a bispecific T cell engaging antibody, exhibits high clinical response rates in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia (B-ALL) and B cell non-Hodgkin’s lymphoma (B-NHL), it still has some limitations because of its short half-life. Mesenchymal stromal cells (MSCs) represent an attractive approach for delivery of therapeutic agents to cancer sites owing to their tropism towards tumors, but their immunosuppression capabilities, especially induced by indoleamine 2,3-dioxygenase (IDO), should also be taken into consideration. Methods Human umbilical cord-derived MSCs (UC-MSCs) were genetically modified to secrete Tandab (CD3/CD19), a tetravalent bispecific tandem diabody with two binding sites for CD3 and two for CD19. The tropism of MSCs towards Raji cells in vitro was determined by migration assays, and the homing property of MSCs in vivo was analyzed with firefly luciferase-labeled MSCs (MSC-Luc) by bioluminescent imaging (BLI). The cytotoxicity of T cells induced by MSC-secreting Tandab (CD3/CD19) was detected in vitro and in vivo in combination with d-1-methyl-tryptophan (D-1MT), an IDO pathway inhibitor. Results The purified Tandab (CD3/CD19) was functional with high-binding capability both for CD3-positive cells and CD19-positive cells and was able to induce specific lysis of CD19-positive cell lines (Raji, Daudi, and BJAB) in the presence of T cells. Additionally, results from co-culture killing experiments demonstrated that Tandab (CD3/CD19) secreted from MSCs was also effective. Then, we confirmed that D-1MT could enhance the cytotoxicity of T cells triggered by MSC-Tandab through reversing T cell anergy with down-regulation of CD98 and Jumonji and restoring the proliferation capacity of T cells. Furthermore, MSC-Luc could selectively migrate to tumor site in a BALB/c nude mouse model with Raji cells. And mice injected with MSC-Tandab in combination with D-1MT significantly inhibited the tumor growth. Conclusions These results suggest that UC-MSCs releasing Tandab (CD3/CD19) is an efficient therapeutic tool for the treatment of B cell lymphoma when combined with D-1MT. Electronic supplementary material The online version of this article (doi:10.1186/s13045-017-0397-z) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Liu Y, Qi Y, Bai ZH, Ni CX, Ren QH, Xu WH, Xu J, Hu HG, Qiu L, Li JZ, He ZG, Zhang JP. A novel matrine derivate inhibits differentiated human hepatoma cells and hepatic cancer stem-like cells by suppressing PI3K/AKT signaling pathways. Acta Pharmacol Sin 2017; 38:120-132. [PMID: 27773936 PMCID: PMC5220537 DOI: 10.1038/aps.2016.104] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/16/2016] [Indexed: 12/22/2022]
Abstract
Matrine is an alkaloid extracted from a Chinese herb Sophora flavescens Ait, which has shown chemopreventive potential against various cancers. In this study, we evaluated the anticancer efficacy of a novel derivative of matrine, (6aS, 10S, 11aR, 11bR, 11cS)-10- methylamino-dodecahydro- 3a,7a-diazabenzo (de) (MASM), against human hepatocellular carcinoma (HCC) cells and their corresponding sphere cells in vitro and in vivo. Human HCC cell lines (Hep3B and Huh7) were treated with MASM. Cell proliferation was assessed using CCK8 and colony assays; cell apoptosis and cell cycle distributions were examined with flow cytometry. The expression of cell markers and signaling molecules was detected using Western blot and qRT-PCR analyses. A sphere culture technique was used to enrich cancer stem cells (CSC) in Hep3B and Huh7 cells. The in vivo antitumor efficacy of MASM was evaluated in Huh7 cell xenograft model in BALB/c nude mice, which were administered MASM (10 mg·kg-1·d-1, ig) for 3 weeks. After the treatment was completed, tumor were excised and weighed. A portion of tumor tissue was enzymatically dissociated to obtain a single cell suspension for the spheroid formation assays. MASM (2, 10, 20 μmol/L) dose-dependently inhibited the proliferation of HCC cells, and induced apoptosis, which correlated with a reduction in Bcl-2 expression and an increase in PARP cleavage. MASM also induced cell cycle arrest in G0/G1 phase, which was accompanied by increased p27 and decreased Cyclin D1 expression. Interestingly, MASM (2, 10, and 20 μmol/L) drastically reduced the EpCAM+/CD133+ cell numbers, suppressed the sphere formation, inhibited the expression of stem cell marker genes and promoted the expression of mature hepatocyte markers in the Hep3B and Huh7 spheroids. Additionally, MASM dose-dependently suppressed the PI3K/AKT/mTOR and AKT/GSK3β/β-catenin signaling pathways in Hep3B and Huh7 cells. In Huh7 xenograft bearing nude mice, MASM administration significantly inhibited Huh7 xenograft tumor growth and markedly reduced the number of surviving cancer stem-like cells in the tumors. MASM administration also reduced the expression of stem cell markers while increasing the expression of mature hepatocyte markers in the tumor tissues. The novel derivative of matrine, MASM, markedly suppresses HCC tumor growth through multiple mechanisms, and it may be a promising candidate drug for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ying Liu
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 310000, China
| | - Yang Qi
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhi-hui Bai
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chen-xu Ni
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Qi-hui Ren
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei-heng Xu
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jing Xu
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 310000, China
| | - Hong-gang Hu
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Qiu
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jian-zhong Li
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhi-gao He
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 310000, China
| | - Jun-ping Zhang
- College of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
12
|
Zhao X, Zhang X, Lv Y, Xu Y, Li M, Pan Q, Chu Y, Liu N, Zhang GX, Zhu L. Matrine downregulates IL-33/ST2 expression in the central nervous system of rats with experimental autoimmune encephalomyelitis. Immunol Lett 2016; 178:97-104. [PMID: 27562326 DOI: 10.1016/j.imlet.2016.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 08/08/2016] [Accepted: 08/17/2016] [Indexed: 01/30/2023]
Abstract
Interleukin (IL)-33 is a recently described member of the IL-1 family and functions as a ligand for ST2, a member of the IL-1 receptor family. The role of IL-33/ST2 axis in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), an experimental model of multiple sclerosis (MS), remains controversial. Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has been recently found to suppress clinical EAE and CNS inflammation. However, the underlying immunoregulatory mechanisms have not been fully elucidated, and whether this effect of MAT is through inhibiting the function of the IL-33/ST2 axis is not known. In this study, we investigated the relationship between the therapeutic effects of MAT and IL-33/ST2 expression. MAT treatment successfully attenuated severe clinical deficit and histopathological changes, compared to untreated controls. While IL-33/ST2 mRNA expression was largely increased in spinal cord of EAE rats compared to naïve rats, this expression was significantly inhibited in rats treated with MAT. These results were further confirmed by their protein levels tested with immunohistochemistry. Together, our study demonstrates that MAT treatment regulates the inflammatory IL-33/ST2 axis, thus being a novel mechanism underlying the effect of MAT.
Collapse
MESH Headings
- Alkaloids/pharmacology
- Animals
- Anthelmintics/pharmacology
- Central Nervous System/metabolism
- Disease Models, Animal
- Down-Regulation
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Gene Expression Regulation/drug effects
- Immunohistochemistry
- Interleukin-33/genetics
- Interleukin-33/metabolism
- Multiple Sclerosis/genetics
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Quinolizines/pharmacology
- Rats
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/metabolism
- Spinal Cord/immunology
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Matrines
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Xiaojian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ying Lv
- Department of Nutriology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Menglong Li
- Department of Neurosurgery, Nanshi Affiliated Hospital of Henan University, Nanyang 473000, Henan, China
| | - Qingxia Pan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yaojuan Chu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Nan Liu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
13
|
Law BYK, Mok SWF, Wu AG, Lam CWK, Yu MXY, Wong VKW. New Potential Pharmacological Functions of Chinese Herbal Medicines via Regulation of Autophagy. Molecules 2016; 21:359. [PMID: 26999089 PMCID: PMC6274228 DOI: 10.3390/molecules21030359] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 02/29/2016] [Accepted: 03/09/2016] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a universal catabolic cellular process for quality control of cytoplasm and maintenance of cellular homeostasis upon nutrient deprivation and environmental stimulus. It involves the lysosomal degradation of cellular components such as misfolded proteins or damaged organelles. Defects in autophagy are implicated in the pathogenesis of diseases including cancers, myopathy, neurodegenerations, infections and cardiovascular diseases. In the recent decade, traditional drugs with new clinical applications are not only commonly found in Western medicines, but also highlighted in Chinese herbal medicines (CHM). For instance, pharmacological studies have revealed that active components or fractions from Chaihu (Radix bupleuri), Hu Zhang (Rhizoma polygoni cuspidati), Donglingcao (Rabdosia rubesens), Hou po (Cortex magnoliae officinalis) and Chuan xiong (Rhizoma chuanxiong) modulate cancers, neurodegeneration and cardiovascular disease via autophagy. These findings shed light on the potential new applications and formulation of CHM decoctions via regulation of autophagy. This article reviews the roles of autophagy in the pharmacological actions of CHM and discusses their new potential clinical applications in various human diseases.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Simon Wing Fai Mok
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Christopher Wai Kei Lam
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Margaret Xin Yi Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| |
Collapse
|
14
|
Kojima-Yuasa A, Huang X, Matsui-Yuasa I. Synergistic Anticancer Activities of Natural Substances in Human Hepatocellular Carcinoma. Diseases 2015; 3:260-281. [PMID: 28943624 PMCID: PMC5548258 DOI: 10.3390/diseases3040260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 12/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is highly resistant to currently available chemotherapeutic agents. The clinical outcome of HCC treatment remains unsatisfactory. Therefore, new effective and well-tolerated therapy strategies are needed. Natural products are excellent sources for the development of new medications for disease treatment. Recently, we and other researchers have suggested that the combined effect of natural products may improve the effect of chemotherapy treatments against the proliferation of cancer cells. In addition, many combination treatments with natural products augmented intracellular reactive oxygen species (ROS). In this review we will demonstrate the synergistic anticancer effects of a combination of natural products with chemotherapeutic agents or natural products against human HCC and provide new insight into the development of novel combination therapies against HCC.
Collapse
Affiliation(s)
- Akiko Kojima-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| | - Xuedan Huang
- Department of Pharmacognosy, School of Pharmacy, Kitasato University, 5-9-1 Shirogane, Minato-ku, Tokyo 108-8641, Japan.
| | - Isao Matsui-Yuasa
- Department of Food and Human Health Sciences, Graduate School of Human Life Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
| |
Collapse
|
15
|
Matrine pretreatment improves cardiac function in rats with diabetic cardiomyopathy via suppressing ROS/TLR-4 signaling pathway. Acta Pharmacol Sin 2015; 36:323-33. [PMID: 25619390 DOI: 10.1038/aps.2014.127] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 10/14/2014] [Indexed: 01/04/2023]
Abstract
AIM Matrine is an alkaloid from Sophora alopecuroides L, which has shown a variety of pharmacological activities and potential therapeutic value in cardiovascular diseases. In this study we examined the protective effects of matrine against diabetic cardiomyopathy (DCM) in rats. METHODS Male SD rats were injected with streptozotocin (STZ) to induce DCM. One group of DCM rats was pretreated with matrine (200 mg·kg(-1)·d(-1), po) for 10 consecutive days before STZ injection. Left ventricular function was evaluated using invasive hemodynamic examination, and myocardiac apoptosis was assessed. Primary rat myocytes were used for in vitro experiments. Intracellular ROS generation, MDA content and GPx activity were determined. Real-time PCR and Western blotting were performed to detect the expression of relevant mRNAs and proteins. RESULTS DCM rats exhibited abnormally elevated non-fasting blood glucose levels at 4 weeks after STZ injection, and LV function impairment at 16 weeks. The cardiac tissues of DCM rats showed markedly increased apoptosis, excessive ROS production, and activation of TLR-4/MyD-88/caspase-8/caspase-3 signaling. Pretreatment with matrine significantly decreased non-fasting blood glucose levels and improved LV function in DCM rats, which were associated with reducing apoptosis and ROS production, and suppressing TLR-4/MyD-88/caspase-8/caspase-3 signaling in cardiac tissues. Incubation in a high-glucose medium induced oxidative stress and activation of TLR-4/MyD-88 signaling in cultured myocytes in vitro, which were significantly attenuated by pretreatment with N-acetylcysteine. CONCLUSION Excessive ROS production in DCM activates the TLR-4/MyD-88 signaling, resulting in cardiomyocyte apoptosis, whereas pretreatment with matrine improves cardiac function via suppressing ROS/TLR-4 signaling pathway.
Collapse
|
16
|
Upregulation of immunomodulatory molecules by matrine treatment in experimental autoimmune encephalomyelitis. Exp Mol Pathol 2014; 97:470-6. [DOI: 10.1016/j.yexmp.2014.10.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 11/18/2022]
|
17
|
Zhao Z, Fan H, Higgins T, Qi J, Haines D, Trivett A, Oppenheim JJ, Wei H, Li J, Lin H, Howard OMZ. Fufang Kushen injection inhibits sarcoma growth and tumor-induced hyperalgesia via TRPV1 signaling pathways. Cancer Lett 2014; 355:232-41. [PMID: 25242356 DOI: 10.1016/j.canlet.2014.08.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 12/22/2022]
Abstract
Cancer pain is a deleterious consequence of tumor growth and related inflammation. Opioids and anti-inflammatory drugs provide first line treatment for cancer pain, but both are limited by side effects. Fufang Kushen injection (FKI) is GMP produced, traditional Chinese medicine used alone or with chemotherapy to reduce cancer-associated pain. FKI limited mouse sarcoma growth both in vivo and in vitro, in part, by reducing the phosphorylation of ERK and AKT kinases and BAD. FKI inhibited TRPV1 mediated capsaicin-induced ERK phosphorylation and reduced tumor-induced proinflammatory cytokine production. Thus, FKI limited cancer pain both directly by blocking TRPV1 signaling and indirectly by reducing tumor growth.
Collapse
Affiliation(s)
- Zhizheng Zhao
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Huiting Fan
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA; Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Tim Higgins
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Jia Qi
- Neuronal Networks Section, Intramural Research Program, National Institute on Drug Abuse, NIH, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Diana Haines
- Leidos Biomedical, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anna Trivett
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Joost J Oppenheim
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | - Hou Wei
- Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Li
- Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongsheng Lin
- Guang An Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - O M Zack Howard
- Laboratory of Molecular Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA.
| |
Collapse
|
18
|
Exploring the ligand-protein networks in traditional chinese medicine: current databases, methods and applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 827:227-57. [PMID: 25387968 PMCID: PMC7120483 DOI: 10.1007/978-94-017-9245-5_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
While the concept of "single component-single target" in drug discovery seems to have come to an end, "Multi-component-multi-target" is considered to be another promising way out in this field. The Traditional Chinese Medicine (TCM), which has thousands of years' clinical application among China and other Asian countries, is the pioneer of the "Multi-component-multi-target" and network pharmacology. Hundreds of different components in a TCM prescription can cure the diseases or relieve the patients by modulating the network of potential therapeutic targets. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. Without thorough investigation of its potential targets and side effects, TCM is not able to generate large-scale medicinal benefits, especially in the days when scientific reductionism and quantification are dominant. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This article firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in details along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.
Collapse
|
19
|
Zhang S, Cheng B, Li H, Xu W, Zhai B, Pan S, Wang L, Liu M, Sun X. Matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway. Mol Biol Rep 2014; 41:2101-8. [PMID: 24452711 DOI: 10.1007/s11033-014-3059-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 01/04/2014] [Indexed: 12/01/2022]
Abstract
The present study has investigated the anti-tumor activity and the underlying mechanisms of matrine on human colon cancer LoVo cells. Matrine inhibited the proliferation of the cells in dose- and time-dependent manners. The concentration required for 50 % inhibition (IC50) was 1.15, 0.738, and 0.414 mg/ml, when cell were incubated with matrine for 24, 48, and 72 h, respectively. Matrine induced cell cycle arrest at G1 phase by downregulating cyclin D1 and upregulating p27 and p21. Matrine induced cell apoptosis by reducing the ratio of Bcl-2/Bax and increasing the activation of caspase-9 in a dose-dependent manner. Matrine displayed its anti-tumor activity by inactivating Akt, the upstream factor of the above proteins. Matrine significantly reduced the protein levels of pAkt, and increased the protein levels of other downstream factors, pBad and pGSK-3β. Specific inhibition of pAkt induced cell apoptosis, and synergized with matrine to inhibit the proliferation of LoVo cells; whereas activation of Akt neutralized the inhibitory effect of matrine on cell proliferation. The present study has demonstrated that matrine inhibits proliferation and induces apoptosis of human colon cancer LoVo cells by inactivating Akt pathway, indicating matrine may be a potential anti-cancer agent for colon cancer.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Exploring the ligand-protein networks in traditional chinese medicine: current databases, methods, and applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:806072. [PMID: 23818932 PMCID: PMC3684027 DOI: 10.1155/2013/806072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 12/22/2022]
Abstract
The traditional Chinese medicine (TCM), which has thousands of years of clinical application among China and other Asian countries, is the pioneer of the “multicomponent-multitarget” and network pharmacology. Although there is no doubt of the efficacy, it is difficult to elucidate convincing underlying mechanism of TCM due to its complex composition and unclear pharmacology. The use of ligand-protein networks has been gaining significant value in the history of drug discovery while its application in TCM is still in its early stage. This paper firstly surveys TCM databases for virtual screening that have been greatly expanded in size and data diversity in recent years. On that basis, different screening methods and strategies for identifying active ingredients and targets of TCM are outlined based on the amount of network information available, both on sides of ligand bioactivity and the protein structures. Furthermore, applications of successful in silico target identification attempts are discussed in detail along with experiments in exploring the ligand-protein networks of TCM. Finally, it will be concluded that the prospective application of ligand-protein networks can be used not only to predict protein targets of a small molecule, but also to explore the mode of action of TCM.
Collapse
|
21
|
Gómez-Martín D, Ibarra-Sánchez M, Romo-Tena J, Cruz-Ruíz J, Esparza-López J, Galindo-Campos M, Díaz-Zamudio M, Alcocer-Varela J. Casitas B lineage lymphoma b is a key regulator of peripheral tolerance in systemic lupus erythematosus. ACTA ACUST UNITED AC 2013; 65:1032-42. [PMID: 23280105 DOI: 10.1002/art.37833] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 12/11/2012] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To analyze whether the expression and modulation of T cell receptor (TCR) signaling is dependent on Casitas B lineage lymphoma b (Cbl-b) in T cells from patients with systemic lupus erythematosus (SLE) upon stimulation with a tolerogenic substance. METHODS Peripheral blood mononuclear cells were obtained from 20 patients with SLE (active disease or in remission) and 20 healthy controls. Levels of Cbl-b expression were measured using reverse transcription-polymerase chain reaction and Western blotting in peripheral CD4+ T cells from SLE patients and healthy controls upon anergy induction. Cell proliferation was measured using the carboxyfluorescein diacetate succinimidyl ester dilution method. Cytokine production was analyzed by luminometry, and surface expression of activation markers was assessed by flow cytometry. Transfection assays were performed to induce overexpression of Cbl-b, and phosphorylation of TCR-associated kinases was evaluated. RESULTS CD4+ T cells from SLE patients displayed resistance to anergy (as evidenced by increased cell proliferation, interleukin-2 production, and expression of activation and costimulatory markers), and this was associated with altered Cbl-b expression. Upon ionomycin treatment, primary T cells showed enhanced MAPK activity and decreased Akt phosphorylation, which was representative of the anergic state. In T cells from lupus patients, Cbl-b overexpression led to increased expression of phosphorylated MAPK, thus indicating the reversibility of anergy resistance. CONCLUSION These findings suggest that abnormal peripheral tolerance in SLE is caused by a deficiency in Cbl-b, and that this ubiquitin ligase plays a key role in regulating TCR signaling during the induction of peripheral tolerance.
Collapse
Affiliation(s)
- Diana Gómez-Martín
- Department of Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kan QC, Zhu L, Liu N, Zhang GX. Matrine suppresses expression of adhesion molecules and chemokines as a mechanism underlying its therapeutic effect in CNS autoimmunity. Immunol Res 2013; 56:189-96. [DOI: 10.1007/s12026-013-8393-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Zhang S, Zhang Y, Zhuang Y, Wang J, Ye J, Zhang S, Wu J, Yu K, Han Y. Matrine induces apoptosis in human acute myeloid leukemia cells via the mitochondrial pathway and Akt inactivation. PLoS One 2012; 7:e46853. [PMID: 23056487 PMCID: PMC3466205 DOI: 10.1371/journal.pone.0046853] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/06/2012] [Indexed: 01/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by a rapid increase in the number of immature myeloid cells in bone marrow. Despite recent advances in the treatment, AML remains an incurable disease. Matrine, a major component extracted from Sophora flavescens Ait, has been demonstrated to exert anticancer effects on various cancer cell lines. However, the effects of matrine on AML remain largely unknown. Here we investigated its anticancer effects and underlying mechanisms on human AML cells in vitro and in vivo. The results showed that matrine inhibited cell viability and induced cell apoptosis in AML cell lines as well as primary AML cells from patients with AML in a dose- and time-dependent manner. Matrine induced apoptosis by collapsing the mitochondrial membrane potential, inducing cytochrome c release from mitochondria, reducing the ratio of Bcl-2/Bax, increasing activation of caspase-3, and decreasing the levels of p-Akt and p-ERK1/2. The apoptotic effects of matrine on AML cells were partially blocked by a caspase-3 inhibitor Z-DEVD-FMK and a PI3K/Akt activator IGF-1, respectively. Matrine potently inhibited in vivo tumor growth following subcutaneous inoculation of HL-60 cells in SCID mice. These findings indicate that matrine can inhibit cell proliferation and induce apoptosis of AML cells and may be a novel effective candidate as chemotherapeutic agent against AML.
Collapse
Affiliation(s)
- Shenghui Zhang
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Yan Zhang
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Yan Zhuang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Jiajie Wang
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Jianqin Ye
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Si Zhang
- Key Laboratory of Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Jianbo Wu
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Yixiang Han
- Laboratory of Internal Medicine, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
- * E-mail:
| |
Collapse
|
24
|
Leung EL, Cao ZW, Jiang ZH, Zhou H, Liu L. Network-based drug discovery by integrating systems biology and computational technologies. Brief Bioinform 2012; 14:491-505. [PMID: 22877768 PMCID: PMC3713711 DOI: 10.1093/bib/bbs043] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Network-based intervention has been a trend of curing systemic diseases, but it relies on regimen optimization and valid multi-target actions of the drugs. The complex multi-component nature of medicinal herbs may serve as valuable resources for network-based multi-target drug discovery due to its potential treatment effects by synergy. Recently, robustness of multiple systems biology platforms shows powerful to uncover molecular mechanisms and connections between the drugs and their targeting dynamic network. However, optimization methods of drug combination are insufficient, owning to lacking of tighter integration across multiple '-omics' databases. The newly developed algorithm- or network-based computational models can tightly integrate '-omics' databases and optimize combinational regimens of drug development, which encourage using medicinal herbs to develop into new wave of network-based multi-target drugs. However, challenges on further integration across the databases of medicinal herbs with multiple system biology platforms for multi-target drug optimization remain to the uncertain reliability of individual data sets, width and depth and degree of standardization of herbal medicine. Standardization of the methodology and terminology of multiple system biology and herbal database would facilitate the integration. Enhance public accessible databases and the number of research using system biology platform on herbal medicine would be helpful. Further integration across various '-omics' platforms and computational tools would accelerate development of network-based drug discovery and network medicine.
Collapse
Affiliation(s)
- Elaine L Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | | | | | | | | |
Collapse
|
25
|
Li WZ, Zhao N, Zhou YQ, Yang LB, Xiao-Ning W, Bao-Hua H, Peng K, Chun-Feng Z. Post-expansile hydrogel foam aerosol of PG-liposomes: A novel delivery system for vaginal drug delivery applications. Eur J Pharm Sci 2012; 47:162-9. [DOI: 10.1016/j.ejps.2012.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Revised: 05/24/2012] [Accepted: 06/05/2012] [Indexed: 11/15/2022]
|
26
|
Ortiz YM, García LF, Álvarez CM. Differences in phosphorylation patterns of intracellular signaling proteins in T cells from kidney transplant patients with different outcomes. Clin Transplant 2012; 26:935-48. [PMID: 22774864 DOI: 10.1111/j.1399-0012.2012.01683.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
Transplant patients with long-term graft survival (LTS) may have developed mechanisms that prevent rejection and allow graft function under low or no immunosuppressive therapy. In murine models, T cell tolerance is associated with alterations in the expression/activation of proteins involved in T cell signaling. These alterations have not been reported in transplanted patients with different outcomes. This study aimed to evaluate calcium mobilization, the phosphorylation of different proteins involved in T cell signaling and the expression of molecules associated with anergy, in T cells from kidney transplant patients. No differences were observed in calcium mobilization, although transplanted patients had a tendency toward augmented calcium flux. Chronic rejection patients (ChrRx) displayed lower Lck basal phosphorylation levels compared with LTS patients, and the phosphorylation profile of proteins evaluated was different. Among the groups, phosphorylation of Zap-70 was higher in LTS patients compared with ChrRx, and LAT phosphorylation was lower in LTS and ChrRx patients compared with healthy controls. The expression of molecules related to the anergic phenotype was similar among the study groups. Results suggest that phosphorylation patterns, rather than phosphorylation levels, may correlate with transplant outcome and that anergy may not be the main mechanism mediating LTS.
Collapse
Affiliation(s)
- Yaneth M Ortiz
- Laboratorio de Inmunología de Trasplantes, Grupo de Inmunología Celular e Inmunogenética, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | | |
Collapse
|
27
|
Tian XY, Liu L. Drug discovery enters a new era with multi-target intervention strategy. Chin J Integr Med 2012; 18:539-42. [PMID: 22528756 DOI: 10.1007/s11655-011-0900-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Indexed: 10/28/2022]
Abstract
In the past century, as medical research has become increasingly precise, it has become clear that the incidence and progression of many diseases involve multiple factors and pathologies; this is particularly true for the degenerative and metabolic diseases facing industrialized societies. At the same time, it becomes increasingly clear that single-target action drugs cannot effectively treat these diseases. Researchers are looking toward the chemical industry as well as traditional herbal medicines to find multi-target interventions. Thus, a new era in drug discovery has begun. Specifically, three approaches have proven effective in seeking multi-target drugs. These are: (1) designing drugs with multiple components; (2) discovering drugs through the study of synergistic compound-compound interactions in medicinal herbs or among chemical drugs and herbal components; and (3) developing drugs to tackle complex multi-component diseases. The authors conclude that there is an increasing need for multi-component remedies to treat the complex chronic diseases afflicting modern populations. Given this situation and the growing body of evidence that these new approaches are effective, multi-target intervention appears to have great potential for discovering, designing, and developing effective new drugs for today's diseases.
Collapse
Affiliation(s)
- Xiao-ying Tian
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | | |
Collapse
|
28
|
Zhao X, Kan Q, Zhu L, Zhang GX. Matrine Suppresses Production of IL-23/IL-17 and Ameliorates Experimental Autoimmune Encephalomyelitis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:933-41. [PMID: 21905283 DOI: 10.1142/s0192415x11009317] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae Flave, has been suggested to possess immunomodulatory characteristics; however, whether it is effective in multiple sclerosis (MS), an autoimmune disease of the central nervous system (CNS), is not known. Our aim was to bridge this gap by investigating the possible therapeutic effects of MAT on experimental autoimmune encephalomyelitis (EAE), an animal model of MS. We have found that, compared to the untreated controls, MAT-treated rats showed a significant decrease in clinical scores, in CNS infiltration of inflammatory cells (including CD4+, CD8+ T cells and macrophages) and demyelination. Furthermore, serum levels of IL-23 and IL-17 showed a marked reduction after MAT treatment, particularly in rats treated with higher doses of MAT. This study demonstrates that administration of MAT, as a natural compound, might be a novel therapy for autoimmune disorders such as MS.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lin Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Guang-Xian Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
29
|
Zhang B, Liu ZY, Li YY, Luo Y, Liu ML, Dong HY, Wang YX, Liu Y, Zhao PT, Jin FG, Li ZC. Antiinflammatory effects of matrine in LPS-induced acute lung injury in mice. Eur J Pharm Sci 2011; 44:573-9. [PMID: 22019524 DOI: 10.1016/j.ejps.2011.09.020] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 11/15/2022]
|